1
|
Lu YT, Zhang X, Cheng J. Meta-analysis of the effect of cognitive stimulation therapy on cognitive function in patients with Alzheimer's disease. World J Psychiatry 2025; 15:102542. [DOI: 10.5498/wjp.v15.i4.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND There is no effective treatment for Alzheimer's disease (AD), and pharmacological treatment of AD in clinical settings is expensive and prolonged, resulting in a huge psychological and economic burden on the patient's family and caregivers and society as a whole, AD is characterized by progressive, worsening cognitive impairment, and there are currently no drugs that can effectively reverse cognitive impairment. However, it is important to intervene early or delay cognitive impairment so that the condition can be delayed and, ultimately, the burden on patients and families can be reduced through maintenance treatment. It may be that non-pharmacological interventions such as cognitive stimulation therapy (CST) can help with cognitive dysfunction.
AIM To provide a better treatment plan for AD patients and delay the deterioration of cognitive function, the effect of CST on cognitive function in AD was studied by Meta-analysis.
METHODS Comprehensive search the Chinese and English databases were comprehensively searched by computer. Chinese databases: China Biomedical Literature Database (CBM), Wanfang Database, VIP Database, and China Periodicals Full-text Database (CNKI). The collection time limit is from July 21, 2010 to July 21, 2022 randomized controlled trials literature on the effects of CST on cognitive function in patients with AD. According to the inclusion and exclusion criteria, literature screening, data extraction, and quality evaluation were performed. Standardized mean difference (SMD) and 95%CI were used as evaluation criteria to evaluate the cognitive function of CST in AD patients. Sensitivity analysis and publication bias detection were performed on the results. Publication bias was assessed using funnel plots, and funnel plot symmetry was assessed with Eggr's test.
RESULTS CST can not improve Mental State Examination Scale (MMSE) scores in AD patients. Meta-analysis of CST on MMSE scores showed that the heterogeneity was P = 0.14, I2 = 35%. I2 = 35% < 50%, and the Q test P > 0.1, choose the random effect model to integrate statistics, get SMD = 0.02, 95%CI: -0.37, 0.42, P > 0.05. Meta-analysis of CST on AD Cognitive Functioning Assessment Scale scores showed that the heterogeneity was P = 0.13, I2 = 36%. I2 = 36% < 50 choose a fixed effect model to integrate statistics, get SMD = -0.01, 95%CI: -0.40, 0.39, P > 0.05, the difference is not statistically significant. Meta-analysis of CST on the cognitive function indicators of patients showed that the heterogeneity was P = 0.17, I2 = 31%. I2 = 31% < 50%, the fixed effect model showed SMD = 0.01, 95%CI: -0.37, 0.38, P > 0.05, the difference was not statistically significant.
CONCLUSION CST may not improve the cognitive function of AD patients, not improve the cognitive function of AD patients, not improve the ability of daily living, and not reduce mental behavior can improve the cognitive function of AD patients.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Psychiatry, Shenyang Mental Health Center, Shenyang 110000, Liaoning Province, China
| | - Xin Zhang
- Department of Neurology, Shenyang First People's Hospital, Shenyang 110000, Liaoning Province, China
| | - Jun Cheng
- Second Department of Psychology, Shenyang Mental Health Center, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
2
|
Alves L, Hashiguchi D, Loss CM, van Praag H, Longo BM. Vascular dysfunction in Alzheimer's disease: Exploring the potential of aerobic and resistance exercises as therapeutic strategies. J Alzheimers Dis 2025:13872877251321118. [PMID: 40079781 DOI: 10.1177/13872877251321118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of morbidity and mortality worldwide, as a result of cognitive decline and neurological dysfunction. In AD, reduced cerebral blood flow and impaired vascularization result from capillary bed degeneration and decreased angiogenesis, as observed in both patients and animal models. Physical exercise is recognized as a potential intervention to delay AD progression and reduce disease risk. While most studies have focused on the benefits of aerobic exercise (AE), emerging evidence suggests that resistance exercise (RE) also exerts positive effects on overall health and cognitive function in aging and AD. However, a notable gap in knowledge remains regarding the effects of RE on cerebral blood flow and vascular structure. This review explores the processes by which AE and RE influence brain vascularization in aging and AD, including blood flow, endothelial function, angiogenesis and neurotrophic factor levels. Based on pre-clinical and clinical studies, we conclude that both AE and RE contribute to improved cerebral blood flow and vascular function, promoting vascular repair in the aging and AD-affected brain. By examining the relationship between exercise modalities and brain vascularization, this review expands knowledge regarding the processes underlying the neuroprotective effects of exercise in neurodegenerative and aging conditions.
Collapse
Affiliation(s)
- Larissa Alves
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| | - Debora Hashiguchi
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brasil
| | - Cássio Morais Loss
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Beatriz Monteiro Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Martínez-López S, Tabone M, Clemente-Velasco S, González-Soltero MDR, Bailén M, de Lucas B, Bressa C, Domínguez-Balmaseda D, Marín-Muñoz J, Antúnez C, Gálvez BG, Larrosa M. A systematic review of lifestyle-based interventions for managing Alzheimer's disease: Insights from randomized controlled trials. J Alzheimers Dis 2024; 102:943-966. [PMID: 39584279 DOI: 10.1177/13872877241292829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge in healthcare, prompting exploration into non-pharmacological interventions to complement traditional treatments. OBJECTIVE This systematic review explores the efficacy of lifestyle-based interventions in managing AD. METHODS A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus between 2018 and 2023, selecting randomized controlled trials examining factors such as exercise, diet, stress, and cognitive training in AD patients. RESULTS The review revealed physical exercise as the predominant non-pharmacological intervention, accompanied by dietary modifications, cognitive training, and therapies such as mindfulness and music. While exercise demonstrated improvements in quality of life, its cognitive benefits were limited. Modified diets, such as Atkins and ketogenic, displayed inconsistent effects on cognitive function but influenced other health-related parameters. Additionally, probiotic therapy and novel cognitive training technologies were explored. CONCLUSIONS Despite some interventions showing promise in enhancing cognitive function and slowing disease progression, uncertainties remain regarding the dose-response relationship, underlying mechanisms, and potential synergistic effects. Moreover, consideration of genetic and sex-based disparities is warranted. This synthesis underscores the need for further research to elucidate the nuances of non-pharmacological interventions in managing AD effectively. PROSPERO REGISTRATION NUMBER CRD42023432823.
Collapse
Affiliation(s)
- Sara Martínez-López
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
| | - Mariangela Tabone
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Sara Clemente-Velasco
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Del Rocío González-Soltero
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Biomédicas y Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María Bailén
- Masmicrobiota Research group, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz de Lucas
- Masmicrobiota Research group, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Research group, Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, Pozuelo de Alarcón, Madrid, Spain
| | - Diego Domínguez-Balmaseda
- Masmicrobiota Research group, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Real Madrid Graduate School, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Juan Marín-Muñoz
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Larrosa
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Masmicrobiota Research group, Madrid, Spain
| |
Collapse
|
4
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Liu S, Yang Y, Wang K, Zhang T, Luo J. A study on the impact of acute exercise on cognitive function in Alzheimer's disease or mild cognitive impairment patients: A narrative review. Geriatr Nurs 2024; 59:215-222. [PMID: 39053163 DOI: 10.1016/j.gerinurse.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
This narrative review follows the JBI approach and comprehensively explores the effects and mechanisms of acute exercise on cognitive function in Alzheimer's disease (AD) and Mild cognitive impairment (MCI) patients. The results showed that the combination of acute exercise and cognitive training improved the cognitive function of AD patients better than aerobic exercise or resistance training alone. For patients with MCI, moderate intensity acute aerobic exercise and resistance exercise were beneficial to enhance Inhibitory control (IC), but high-intensity acute exercise was adverse to improve IC; Brain-derived neurotrophic factor (BDNF) and Insulin-like growth factor 1 (IGF-1) may assume the potential mediating mechanism of acute exercise on cognitive function in AD and MCI patients, but more research is needed to further confirm this mechanism.
Collapse
Affiliation(s)
- Shiqi Liu
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Yi Yang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Kun Wang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Tingran Zhang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Jiong Luo
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
7
|
Masterova KS, Wang J, Mack C, Moro T, Deer R, Volpi E. Enhancing flow-mediated dilation analysis by optimizing an open-source software with automated edge detection. J Appl Physiol (1985) 2024; 137:300-311. [PMID: 38695355 PMCID: PMC11424171 DOI: 10.1152/japplphysiol.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
Flow-mediated dilation (FMD) is a common measure of endothelial function and an indicator of vascular health. Automated software methods exist to improve the speed and accuracy of FMD analysis. Compared with commercial software, open-source software offers similar capabilities at a much lower cost while allowing for increased customization specific to users' needs. We introduced modifications to an existing open-source software, FloWave.us to better meet FMD analysis needs. The purpose of this study was to compare the repeatability and reliability of the modified FloWave.us software to the original software and to manual measurements. To assess these outcomes, duplex ultrasound imaging data from the popliteal artery in older adults were analyzed. The average percent FMD for the modified software was 6.98 ± 3.68% and 7.27 ± 3.81% for observer 1 and 2 respectively, compared with 9.17 ± 4.91% and 10.70 ± 4.47% with manual measurements and 5.07 ± 31.79% with the original software for observer 1. The modified software and manual methods demonstrated higher intraobserver intraclass correlation coefficients (ICCs) for repeated measures for baseline diameter, peak diameter, and percent FMD compared with the original software. For percent FMD, the interobserver ICC was 0.593 for manual measurements and 0.723 for the modified software. With the modified method, an average of 97.7 ± 2.4% of FMD videos frames were read, compared with only 17.9 ± 15.0% frames read with the original method when analyzed by the same observer. Overall, this work further establishes open-source software as a robust and viable tool for FMD analysis and demonstrates improved reliability compared with the original software.NEW & NOTEWORTHY This study improves edge detection capabilities and implements noise reduction strategies to optimize an existing open-source software's suitability for flow-mediated dilation (FMD) analysis. The modified software improves the precision and reliability of FMD analysis compared with the original software algorithm. We demonstrate that this modified open-source software is a robust tool for FMD analysis.
Collapse
Affiliation(s)
- Kseniya S Masterova
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiefei Wang
- Department of Biostatistics, University of Texas Medical Branch, Galveston, Texas, United States
| | - Courtney Mack
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States
| | - Tatiana Moro
- Department of Biomedical Science, University of Padova, Padua, Italy
| | - Rachel Deer
- Center for Recovery, Physical Activity, and Nutrition, University of Texas Medical Branch, Galveston, Texas, United States
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, United States
- Barshop Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States
| |
Collapse
|
8
|
Yang HS, Yau WYW, Carlyle BC, Trombetta BA, Zhang C, Shirzadi Z, Schultz AP, Pruzin JJ, Fitzpatrick CD, Kirn DR, Rabin JS, Buckley RF, Hohman TJ, Rentz DM, Tanzi RE, Johnson KA, Sperling RA, Arnold SE, Chhatwal JP. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer's disease. Brain 2024; 147:2158-2168. [PMID: 38315899 PMCID: PMC11146430 DOI: 10.1093/brain/awae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3PT, UK
| | - Bianca A Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeremy J Pruzin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | | | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA 02115, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Paillard T, Blain H, Bernard PL. The impact of exercise on Alzheimer's disease progression. Expert Rev Neurother 2024; 24:333-342. [PMID: 38390841 DOI: 10.1080/14737175.2024.2319766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION The preventive effects of chronic physical exercise (CPE) on Alzheimer's disease (AD) are now admitted by the scientific community. Curative effects of CPE are more disputed, but they deserve to be investigated, since CPE is a natural non-pharmacological alternative for the treatment of AD. AREAS COVERED In this perspective, the authors discuss the impact of CPE on AD based on an exhaustive literature search using the electronic databases PubMed, ScienceDirect and Google Scholar. EXPERT OPINION Aerobic exercise alone is probably not the unique solution and needs to be complemented by other exercises (physical activities) to optimize the slowing down of AD. Anaerobic, muscle strength and power, balance/coordination and meditative exercises may also help to slow down the AD progression. However, the scientific evidence does not allow a precise description of the best training program for patients with AD. Influential environmental conditions (e.g. social relations, outdoor or indoor exercise) should also be studied to optimize training programs aimed at slowing down the AD progression.
Collapse
Affiliation(s)
- Thierry Paillard
- Movement, Balance, Performance, and Health Laboratory, Université de Pau & Pays de l'Adour, Tarbes, France
| | - Hubert Blain
- Pole de Gérontologie Antonin Balmes, CHU de Montpellier; EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Alès, France
| | - Pierre Louis Bernard
- UFR STAPS, EuroMov Digital Health in Motion, Université de Montpellier, IMT Mines Ales, Alès, France
| |
Collapse
|
10
|
Abdullahi A, Wong TW, Ng SS. Understanding the mechanisms of disease modifying effects of aerobic exercise in people with Alzheimer's disease. Ageing Res Rev 2024; 94:102202. [PMID: 38272266 DOI: 10.1016/j.arr.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Alzheimer's disease (AD) is a very disabling disease. Pathologically, it is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain that results in neurodegeneration. Its clinical manifestations include progressive memory impairment, language decline and difficulty in carrying out activities of daily living (ADL). The disease is managed using interventions such as pharmacological interventions and aerobic exercise. Use of aerobic exercise has shown some promises in reducing the risk of developing AD, and improving cognitive function and the ability to carry out both basic and instrumental ADL. Although, the mechanisms through which aerobic exercise improves AD are poorly understood, improvement in vascular function, brain glucose metabolism and cardiorespiratory fitness, increase in antioxidant capacity and haemoglobin level, amelioration of immune-related and inflammatory responses, modulation of concentration of circulating Neurotrophins and peptides and decrease in concentration of tau protein and cortisol level among others seem to be the possible mechanisms. Therefore, understanding these mechanisms is important to help characterize the dose and the nature of the aerobic exercise to be given. In addition, they may also help in finding ways to optimize other interventions such as the pharmacological interventions. However, more quality studies are needed to verify the mechanisms.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
11
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
12
|
Qi F, Zuo Z, Hu K, Wang R, Wu T, Liu H, Tang J, Wang Q, Xie Y, Tan L, Yang Y, Zhang X, Zheng J, Xu J, Yao Z, Wang S, Wu LJ, Guo K. VEGF-A in serum protects against memory impairment in APP/PS1 transgenic mice by blocking neutrophil infiltration. Mol Psychiatry 2023; 28:4374-4389. [PMID: 37280283 PMCID: PMC10827659 DOI: 10.1038/s41380-023-02097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid β (Aβ)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zejie Zuo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong Wu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaoling Tang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingbo Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Xie
- Five-year Programs of Clinical Medicine in the 2017 grade, School of Medicine, Sun Yat-sen University, Shenzhen, 528406, China
| | - Liren Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunjie Yang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Xu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Kaihua Guo
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Lok N, Tosun AS, Lok S, Temel V, Aydın Z. Effect of physical activity program applied to patients with Alzheimer's disease on cognitive functions and depression level: a randomised controlled study. Psychogeriatrics 2023; 23:856-863. [PMID: 37487556 DOI: 10.1111/psyg.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND In this study, it was aimed to evaluate the effect of a physical activity program applied to Alzheimer's disease patients on cognitive functions and depression. METHOD This study is a randomised controlled study designed in a pre-test post-test design. It was conducted with 72 patients in total, 36 of whom were interventions and 36 were controls, at the Alzheimer's Day Life Centre. In data collection, a personal information form prepared by the researchers, questioning the socio-demographic characteristics of individuals, Mini Mental Test and Cornell Dementia Depression Scale were used. In the analysis of the data, the homogeneity between the groups in terms of independent variables was evaluated by performing a Chi-square analysis. In the evaluation of cognitive functions and depression levels of the experimental and control groups, t-test was used in the dependent and independent groups. Statistical significance level was accepted as P < 0.05. RESULTS In the study, the cognitive functions of the experimental group, in which a 12-week physical activity program was applied, were higher than the control group and the difference was significant (P < 0.05). Similarly, the depression scale mean score of the experimental group was found to be better than the depression level of the individuals in the control group, and the difference was significant (P < 0.05). CONCLUSION The 12-week physical activity program applied to Alzheimer's disease patients improved cognitive functions and depression levels of individuals.
Collapse
Affiliation(s)
- Neslihan Lok
- Department of Psychiatric Nursing, Selcuk University Faculty of Nursing, Konya, Turkey
| | - Alime Selçuk Tosun
- Department of Public Health Nursing, Selcuk University Faculty of Nursing, Konya, Turkey
| | - Sefa Lok
- Department of Coaching Education, Selcuk University Faculty of Sports Sciences, Konya, Turkey
| | - Veysel Temel
- Karamanoğlu Mehmetbey University Faculty of Sports Sciences, Karaman, Turkey
| | - Zekiye Aydın
- Department of Nursing, Selcuk University Health Sciences Institute, Konya, Turkey
| |
Collapse
|
14
|
Van Skike CE, DeRosa N, Galvan V, Hussong SA. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer's disease. GeroScience 2023; 45:1987-1996. [PMID: 37052770 PMCID: PMC10400743 DOI: 10.1007/s11357-023-00786-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Peripheral artery disease (PAD), defined as reduced blood flow to the lower limbs, is a serious disorder that can lead to loss of function in the lower extremities and even loss of limbs. One of the main risk factors for PAD is age, with up to 25% of adults over the age of 55 and up to 40% over the age of 80 presenting with some form of the disease. While age is the largest risk factor for PAD, other risk factors include atherosclerosis, smoking, hypertension, and diabetes. Furthermore, previous studies have suggested that the incidence of PAD is significantly increased in patients with Alzheimer's disease (AD). Attenuation of mTOR with rapamycin significantly improves cerebral blood flow and heart function in aged rodents as well as in mouse models of atherosclerosis, atherosclerosis-driven cognitive impairment, and AD. In this study, we show that rapamycin treatment improves peripheral blood flow in aged mice and in mouse models of atherosclerosis and AD. Inhibition of mTOR with rapamycin ameliorates deficits in baseline hind paw perfusion in aged mice and restores levels of blood flow to levels indistinguishable from those of young controls. Furthermore, rapamycin treatment ameliorates peripheral blood flow deficits in mouse models of atherosclerosis and AD. These data indicate that mTOR is causally involved in the reduction of blood flow to lower limbs associated with aging, atherosclerosis, and AD-like progression in model mice. Rapamycin or other mTOR inhibitors may have potential as interventions to treat peripheral artery disease and other peripheral circulation-related conditions.
Collapse
Affiliation(s)
- Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA
| |
Collapse
|
15
|
Yamasaki T. Preventive Strategies for Cognitive Decline and Dementia: Benefits of Aerobic Physical Activity, Especially Open-Skill Exercise. Brain Sci 2023; 13:brainsci13030521. [PMID: 36979331 PMCID: PMC10046723 DOI: 10.3390/brainsci13030521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
As there is no curative treatment for dementia, including Alzheimer's disease (AD), it is important to establish an optimal nonpharmaceutical preventive intervention. Physical inactivity is a representative modifiable risk factor for dementia, especially for AD in later life (>65 years). As physical activity and exercise are inexpensive and easy to initiate, they may represent an effective nonpharmaceutical intervention for the maintenance of cognitive function. Several studies have reported that physical activity and exercise interventions are effective in preventing cognitive decline and dementia. This review outlines the effects of physical activity and exercise-associated interventions in older adults with and without cognitive impairment and subsequently summarizes their possible mechanisms. Furthermore, this review describes the differences between two types of physical exercise-open-skill exercise (OSE) and closed-skill exercise (CSE)-in terms of their effects on cognitive function. Aerobic physical activity and exercise interventions are particularly useful in preventing cognitive decline and dementia, with OSE exerting a stronger protective effect on cognitive functions than CSE. Therefore, the need to actively promote physical activity and exercise interventions worldwide is emphasized.
Collapse
Affiliation(s)
- Takao Yamasaki
- Department of Neurology, Minkodo Minohara Hospital, Fukuoka 811-2402, Japan
- Kumagai Institute of Health Policy, Fukuoka 816-0812, Japan
- School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan
| |
Collapse
|
16
|
Pedrinolla A, Cavedon V, Milanese C, Barbi C, Giuriato G, Laginestra FG, Martignon C, Schena F, Venturelli M. The role of muscle mass in vascular remodeling: insights from a single-leg amputee model. Eur J Appl Physiol 2023; 123:523-531. [PMID: 36367571 PMCID: PMC9941227 DOI: 10.1007/s00421-022-05076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Both muscle mass and physical activity are independent mechanisms that play a role in vascular remodeling, however, the direct impact of muscle mass on the structure and function of the vessels is not clear. The aim of the study was to determine the impact of muscle mass alteration on lower limbs arterial diameter, blood flow, shear rate and arterial stiffness. METHODS Nine (33 ± 13 yrs) male individuals with a single-leg amputation were recruited. Vascular size (femoral artery diameter), hemodynamics (femoral artery blood flow and shear rate were measured at the level of the common femoral artery in both amputated (AL) and whole limbs (WL). Muscle mass of both limbs, including thigh for AL and thigh and leg for WL, was measured with a DXA system. RESULTS AL muscle mass was reduced compared to the WL (3.2 ± 1.2 kg vs. 9.4 ± 2.1 kg; p = 0.001). Diameter of the femoral artery was reduced in the AL (0.5 ± 0.1 cm) in comparison to the WL (0.9 ± 0.2 cm, p = 0.001). However, femoral artery blood flow normalized for the muscle mass (AL = 81.5 ± 78.7ml min-1 kg-1,WL = 32.4 ± 18.3; p = 0.11), and blood shear rate (AL = 709.9 ± 371.4 s-1, WL = 526,9 ± 295,6; p = 0.374) were non different between limbs. A correlation was found only between muscle mass and femoral artery diameter (p = 0.003, R = 0.6561). CONCLUSION The results of this study revealed that the massive muscle mass reduction caused by a leg amputation, but independent from the level of physical activity, is coupled by a dramatic arterial diameter decrease. Interestingly, hemodynamics and arterial stiffness do not seem to be impacted by these structural changes.
Collapse
Affiliation(s)
- Anna Pedrinolla
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
| | - Valentina Cavedon
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Chiara Milanese
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Chiara Barbi
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Gaia Giuriato
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Fabio Giuseppe Laginestra
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Camilla Martignon
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Federico Schena
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Massimo Venturelli
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Uysal İ, Başar S, Aysel S, Kalafat D, Büyüksünnetçi AÖ. Aerobic exercise and dual-task training combination is the best combination for improving cognitive status, mobility and physical performance in older adults with mild cognitive impairment. Aging Clin Exp Res 2023; 35:271-281. [PMID: 36550323 DOI: 10.1007/s40520-022-02321-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
AIM The aim of the present study was to investigate the effects of different exercise combinations on cognitive status, muscle strength of lower extremities, mobility, physical performance, mood and quality of life in older adults with mild cognitive impairment (MCI). METHODS A total of 48 older adults with MCI were randomly assigned to four groups: (1) aerobic plus lower extremity strengthening exercises (AG), (2) dual-task training plus lower extremity strengthening exercises (DG), (3) aerobic exercise, dual-task training and lower extremity strengthening exercises (ADG), (4) solely lower extremity strengthening exercises (CG). Patients' cognitive status, lower extremity muscle strength, balance, mobility, activities-specific balance confidence, functional exercise capacity, physical performance, mood and quality of life were evaluated. RESULTS In all three intervention groups, there was a significant improvement in cognitive status, balance, mobility, activities-specific balance confidence, physical performance, mood and quality of life (p < 0.05). The most remarkable change was observed in the ADG on cognitive status, mobility and physical performance parameters (p < 0.05). In addition, the most significant improvement in balance parameters was recorded both in the DG and ADG (p < 0.05). Besides, the highest increase in functional exercise capacity was detected both in the AG and ADG (p < 0.05). On the other hand, both exercise combinations were superior to the control group in terms of improving mood and quality of life (p < 0.05). CONCLUSION The trial results proved that aerobic exercise and dual-task training is the best combination for improving cognitive status, mobility and physical performance in older adults with MCI.
Collapse
Affiliation(s)
- İsmail Uysal
- Fethiye Vocational School of Health Services, Department of Elderly Care, Muğla Sıtkı Koçman University, 48330, Fethiye, Muğla, Turkey.
| | - Selda Başar
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
| | | | | | | |
Collapse
|
18
|
Li J, Wang C, Zhang P. Effects of traditional Chinese exercise on vascular function in patients with Alzheimer's disease: A protocol for systematic review and network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e32517. [PMID: 36701718 PMCID: PMC9857473 DOI: 10.1097/md.0000000000032517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an insidious onset, usually characterized by memory impairment, visual-spatial skill impairment, executive dysfunction and personality behavioral changes. Studies have confirmed that vascular dysfunction may precede AD pathological changes and can present as vascular malformations, atherosclerosis, and impaired self-regulation, and can affect oxidative stress and amyloidosis. Therefore, it is important to improve or prevent vascular dysfunction in AD patients. Regular exercise can effectively inhibit the production of reactive oxygen species during the occurrence of AD and can improve the reduction of cerebral blood flow due to AD. Previous studies have shown that exercise can achieve superior clinical results in improving vascular function in AD patients. Therefore, we hypothesize that traditional Chinese exercises (TCEs) may have a good clinical effect in improving vascular function in patients with AD. METHODS We will search "PubMed," "the Cochrane Library," "Embase," "Web of Science," "CINAHL," "ProQuest Dissertations and Theses," and "ProQuest-Health & Medical Collection," "CNKI," "SinoMed," "VIP," and "Wanfang Data" to find randomized controlled trials of the effects of TCEs on AD vascular function from the creation of the database to the present, including at least 1 indicator in carotid intima-media thickness (cIMT), middle cerebral artery mean flow velocity (MFV), blood indicators [Heme Oxidase-1 (HO-1), angiopoietin I (Ang I), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, matrix metalloproteinase-9 (MMP-9)], and arterial stiffness [(Ankle Brachial Index (ABI), pulse wave velocity (PWV)]. For the included literature, Excel 2019 will be used for data extraction and collection. For the indicators that can be netted for network meta-analysis, Surface Under the Cumulative Ranking for each exercise modality will be calculated with the help of Stata 16.0 and rank, where the higher the SUCRA score, the higher the ranking. For the indicators that cannot be netted, Review Manager 5.4 will be used for meta-analysis will be performed to evaluate the improvement effect of TCEs on AD patients. RESULTS This meta-analysis will further determine the efficacy and safety of TCEs on vascular function in AD patients. CONCLUSION In this study, randomized controlled trials of the effects of TCEs on vascular function in AD patients will be selected to provide evidence-based medical evidence for promoting the application of TCEs by observing the order of advantages and disadvantages of various exercise modalities through network meta-analysis.
Collapse
Affiliation(s)
- Jin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chen Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- * Correspondence: Peizhen Zhang, School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China (e-mail: )
| |
Collapse
|
19
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
20
|
Zarezadehmehrizi A, Hong J, Lee J, Rajabi H, Gharakhanlu R, Naghdi N, Azimi M, Park Y. Exercise training ameliorates cognitive dysfunction in amyloid beta-injected rat model: possible mechanisms of Angiostatin/VEGF signaling. Metab Brain Dis 2021; 36:2263-2271. [PMID: 34003412 DOI: 10.1007/s11011-021-00751-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer's disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aβ (Aβ), and Aβ-exercise (Aβ-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aβ-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aβ-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aβ-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aβ-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.
Collapse
Affiliation(s)
- Aliasghar Zarezadehmehrizi
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Reza Gharakhanlu
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Naser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran 13164, Tehran, Iran
| | - Mohammad Azimi
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
21
|
Pedrinolla A, Magliozzi R, Colosio AL, Danese E, Gelati M, Rossi S, Pogliaghi S, Calabrese M, Muti E, Cè E, Longo S, Esposito F, Lippi G, Schena F, Venturelli M. Repeated passive mobilization to stimulate vascular function in individuals of advanced age who are chronically bedridden. A randomized controlled trial. J Gerontol A Biol Sci Med Sci 2021; 77:588-596. [PMID: 34036337 DOI: 10.1093/gerona/glab148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vascular dysfunction and associated disorders are major side effects of chronic bed rest, yet passive mobilization as a potential treatment has only been theorized so far. This study investigated the effects of passive mobilization treatment on vascular function in older, chronically bedridden people. METHODS The study sample was 45 chronically bedridden people of advanced age (mean age 87 years; 56% female; mean bed rest 4 years) randomly assigned to a treatment (n=23) or a control group (CTRL, n=22). The treatment group received passive mobilization twice daily (30 min, 5 times/week) for 4 weeks. A kinesiologist performed passive mobilization by passive knee flexion/extension at 1 Hz in one leg (treated leg, T-leg vs ctrl-leg). The CTRL group received routine treatment. The primary outcome was changes in peak blood flow (∆Peak) as measured with the single passive leg movement test (sPLM) at the common femoral artery. RESULTS ∆Peak was increased in both legs in the Treatment group (+90.9 ml/min, p<0.001, in T-leg and +25.7 ml/min, p=0.039 in ctrl-leg). No difference in peak blood flow after routine treatment was found in the CTRL group. CONCLUSION Improvement in vascular function after 4 weeks of passive mobilization was recorded in the treatment group. Passive mobilization may be advantageously included in standard clinical practice as an effective strategy to treat vascular dysfunction in persons with severely limited mobility.
Collapse
Affiliation(s)
- Anna Pedrinolla
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Alessandro L Colosio
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Elisa Danese
- Department of Life and Reproduction Sciences, Laboratory of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Matteo Gelati
- Department of Life and Reproduction Sciences, Laboratory of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Stefania Rossi
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Silvia Pogliaghi
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | | | - Emiliano Cè
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| | - Giuseppe Lippi
- Department of Life and Reproduction Sciences, Laboratory of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement Science, Section of Movement Science, University of Verona, Verona, Italy.,Department of Internal Medicine section of Geriatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer's disease. Mech Ageing Dev 2021; 195:111444. [PMID: 33539904 DOI: 10.1016/j.mad.2021.111444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Aging plays an important role in the etiology of the most common age-related diseases (ARDs), including Alzheimer's disease (AD). The increasing number of AD patients and the lack of disease-modifying drugs warranted intensive research to tackle the pathophysiological mechanisms underpinning AD development. Vascular aging/dysfunction is a common feature of almost all ARDs, including cardiovascular (CV) diseases, diabetes and AD. To this regard, interventions aimed at modifying CV outcomes are under extensive investigation for their pleiotropic role in ameliorating and slowing down cognitive impairment in middle-life and elderly individuals. Evidence from observational and clinical studies confirm the notion that the earlier the interventions are conducted, the most favorable are the effects on cognitive function. Therefore, epidemiological research should focus on the early detection of deviations from a healthy cognitive aging trajectory, through the stratification of adult individuals according to the rate of aging. Here, we review the interplay between vascular and cognitive dysfunctions associated with aging, to disentangle the complex mechanisms underpinning the development and progression of neurodegenerative disorders, with a specific focus on AD.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Liana Spazzafumo
- Epidemiologic Observatory, Regional Health Agency, Regione Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|