1
|
van Valkengoed DW, Hirasawa M, Rottschäfer V, de Lange ECM. Reliability of in vitro data for the mechanistic prediction of brain extracellular fluid pharmacokinetics of P-glycoprotein substrates in vivo; are we scaling correctly? J Pharmacokinet Pharmacodyn 2025; 52:16. [PMID: 39921770 PMCID: PMC11807079 DOI: 10.1007/s10928-025-09963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Plasma pharmacokinetic (PK) profiles often do not resemble the PK within the central nervous system (CNS) because of blood-brain-border (BBB) processes, like active efflux by P-glycoprotein (P-gp). Methods to predict CNS-PK are therefore desired. Here we investigate whether in vitro apparent permeability (Papp) and corrected efflux ratio (ERc) extracted from literature can be repurposed as input for the LeiCNS-PK3.4 physiologically-based PK model to confidently predict rat brain extracellular fluid (ECF) PK of P-gp substrates. Literature values of in vitro Caco-2, LLC-PK1-mdr1a/MDR1, and MDCKII-MDR1 cell line transport data were used to calculate P-gp efflux clearance (CLPgp). Subsequently, CLPgp was scaled from in vitro to in vivo through a relative expression factor (REF) based on P-gp expression differences. BrainECF PK was predicted well (within twofold error of the observed data) for 2 out of 4 P-gp substrates after short infusions and 3 out of 4 P-gp substrates after continuous infusions. Variability of in vitro parameters impacted both predicted rate and extent of drug distribution, reducing model applicability. Notably, use of transport data and in vitro P-gp expression obtained from a single study did not guarantee an accurate prediction; it often resulted in worse predictions than when using in vitro expression values reported by other labs. Overall, LeiCNS-PK3.4 shows promise in predicting brainECF PK, but this study highlights that the in vitro to in vivo translation is not yet robust. We conclude that more information is needed about context and drug dependency of in vitro data for robust brainECF PK predictions.
Collapse
Affiliation(s)
- Daan W van Valkengoed
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Makoto Hirasawa
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Drug-induced cholestasis (DIC) predictions based on in vitro inhibition of major bile acid clearance mechanisms. Arch Toxicol 2025; 99:377-391. [PMID: 39542928 DOI: 10.1007/s00204-024-03895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Drug-induced cholestasis (DIC) is recognized as a major safety concern in drug development, as it represents one of the three types of drug-induced liver injury (DILI). Cholestasis is characterized by the disruption of bile flow, leading to intrahepatic accumulation of toxic bile acids. Bile acid regulation is a multifarious process, orchestrated by several hepatic mechanisms, namely sinusoidal uptake and efflux, canalicular secretion and intracellular metabolism. In the present study, we developed a prediction model of DIC using in vitro inhibition data for 47 marketed drugs on nine transporters and five enzymes known to regulate bile acid homeostasis. The resulting model was able to distinguish between drugs with or without DILI concern (p-value = 0.039) and demonstrated a satisfactory predictive performance, with the area under the precision-recall curve (PR AUC) measured at 0.91. Furthermore, we simplified the model considering only two processes, namely reversible inhibition of OATP1B1 and time-dependent inhibition of CYP3A4, which provided an enhanced performance (PR AUC = 0.95). Our study supports literature findings suggesting a contribution not only from a single process inhibition, but a rather synergistic effect of the key bile acid clearance processes in the development of cholestasis. The use of a quantitative model in the preclinical investigations of DIC is expected to reduce attrition rate in advanced development programs and guide the discovery and development of safe medicines.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
3
|
Takahashi Y, Kambayashi A. Physiologically based in vitro - in vivo correlation of modified release oral formulations with non-linear intestinal absorption: A case study using mirabegron. Eur J Pharm Biopharm 2024; 204:114479. [PMID: 39233190 DOI: 10.1016/j.ejpb.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Establishing an in vitro - in vivo correlation (IVIVC) for oral modified release (MR) formulations would make it possible to substitute an in vitro dissolution test for human bioequivalence (BE) studies when changing the formulation or manufacturing methods. However, the number of IVIVC applications and approvals are reportedly low. One of the main reasons for failure to obtain IVIVCs using conventional methodologies may be the lack of consideration of the dissolution and absorption mechanisms of drugs in the physiological environment. In particular, it is difficult to obtain IVIVC using conventional methodologies for drugs with non-linear absorption processes. Therefore, the aim of the present study was to develop a physiologically based biopharmaceutics model (PBBM) that enables Level A IVIVCs for mirabegron MR formulations with non-linear absorption characteristics. Using human pharmacokinetic (PK) data for immediate-release formulations of mirabegron, the luminal drug concentration-dependent membrane permeation coefficient was calculated through curve fitting. The membrane permeation coefficient data were then applied to the human PK data of the MR formulations to estimate the in vivo dissolution rate by curve fitting. It was assumed that in vivo dissolution could be described using a zero-order rate equation. Furthermore, a Levy plot was generated using the estimated in vivo dissolution rate and the in vitro dissolution rate obtained from the literature. Finally, the dissolution rate of the MR formulations from the Levy plot was applied to the PBBM to predict the oral PK of the mirabegron MR formulations. This PB-IVIVC approach successfully generated linear Levy plots with slopes of almost 1.0 for MR formulations with different dose strengths and dissolution rates. The Cmax values of the MR formulations were accurately predicted using this approach, whereas the prediction errors for AUC exceeded the Level A IVIVC criteria. This can be attributed to the incomplete description of colonic absorption in the current PBBM.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Atsushi Kambayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
4
|
Deng S, Li W, Chen Q, Shao J, Zhang J, Wang Y, Li Y. Developing a novel P-glycoprotein inhibitor and pairing it with oral paclitaxel liposomes for enhanced cancer therapy. Biomed Pharmacother 2024; 180:117577. [PMID: 39427547 DOI: 10.1016/j.biopha.2024.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
The mucus layer and intestine epithelium pose challenges to the bioavailability of orally administered paclitaxel (PTX). A novel P-glycoprotein inhibitor, (S)-2-decanoylamino-3-(1-naphthyl)propionyl-leucyl-valine (PgpI), was synthesized in this study. Its structure was characterized using 1H NMR, 13C NMR, ESI-MS and IR spectroscopies. The efficacy and in vivo toxicity of PgpI were comprehensively evaluated by R8-PEG@PLs&PgpI, i.e., the oral combination of PgpI and octaarginine R8-PEG-DSPE modified PTX liposomes (R8-PEG@PLs), for lung cancer treatment. The joint forms between PgpI and R8-PEG@PLs were investigated and the affinity of PgpI for intestinal P-glycoprotein remained unaffected when combined externally with R8-PEG@PLs (R8-PEG@PLs&PgpI), compared to the diminished affinity for internal combination. The primary endocytic pathway for R8-PEG@PLs&PgpI in Caco-2 cells was the lipid raft, with increased percentage of macropinocytosis compared to unmodified PTX liposomes (PLs). The established physiology-based cellular kinetic models revealed that the net internalization rate of PTX was 2.3 times higher in R8-PEG@PLs&PgpI than in PLs, correlating with in vivo 2.2 times of antitumor rate. R8-PEG@PLs&PgpI may address the deficits of PLs in human lung A549 tumor-bearing mice due to the lower drug concentration than in normal mice. The external combination of R8-PEG@PLs&PgpI, offering maximal efficacy and security of PgpI, is promising for oral PTX delivery.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Liposomes
- Animals
- Humans
- Administration, Oral
- Caco-2 Cells
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Mice, Inbred BALB C
- Polyethylene Glycols/chemistry
- A549 Cells
- Mice, Nude
- Male
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sikai Deng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Weiwei Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiyu Chen
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianqun Shao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Junbo Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yinghuan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Xu R, Liu W, Ge W, He H, Jiang Q. Physiologically-based pharmacokinetic pharmacodynamic parent-metabolite model of edoxaban to predict drug-drug-disease interactions: M4 contribution. CPT Pharmacometrics Syst Pharmacol 2023; 12:1093-1106. [PMID: 37101392 PMCID: PMC10431043 DOI: 10.1002/psp4.12977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to develop a physiologically-based pharmacokinetic pharmacodynamic (PBPK/PD) parent-metabolite model of edoxaban, an oral anticoagulant with a narrow therapeutic index, and to predict pharmacokinetic (PK)/PD profiles and potential drug-drug-disease interactions (DDDIs) in patients with renal impairment. A whole-body PBPK model with a linear additive PD model of edoxaban and its active metabolite M4 was developed and validated in SimCYP for healthy adults with or without interacting drugs. The model was extrapolated to situations including renal impairment and drug-drug interactions (DDIs). Observed PK and PD data in adults were compared with predicted data. The effect of several model parameters on the PK/PD response of edoxaban and M4 was investigated in sensitivity analysis. The PBPK/PD model successfully predicted PK profiles of edoxaban and M4 as well as anticoagulation PD responses with or without the influence of interacting drugs. For patients with renal impairment, the PBPK model successfully predicted the fold change in each impairment group. Inhibitory DDI and renal impairment had a synergistic effect on the increased exposure of edoxaban and M4, and their downstream anticoagulation PD effect. Sensitivity analysis and DDDI simulation show that renal clearance, intestinal P-glycoprotein activity, and hepatic OATP1B1 activity are the major factors affecting edoxaban-M4 PK profiles and PD responses. Anticoagulation effect induced by M4 cannot be ignored when OATP1B1 is inhibited or downregulated. Our study provides a reasonable approach to adjust the dose of edoxaban in several complicated scenarios especially when M4 cannot be ignored due to decreased OATP1B1 activity.
Collapse
Affiliation(s)
- Ruijuan Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wenyuan Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Hua He
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
6
|
Ito K, Naoi M, Nishiyama K, Kudo T, Tsuda Y, MacLean C, Ishiguro N. Impact of P-glycoprotein on intracellular drug concentration in peripheral blood mononuclear cells and K562 cells. Drug Metab Pharmacokinet 2023; 49:100487. [PMID: 36724603 DOI: 10.1016/j.dmpk.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
P-glycoprotein (P-gp) expression in lymphocytes is variable and 2-fold higher in rheumatoid arthritis (RA) patients with treatment resistance than in healthy subjects. To date the information on P-gp-mediated drug interaction in lymphocyte is limited. We analyzed the importance on P-gp in lymphocytes using peripheral blood mononuclear cells (PBMCs) together with K562, K562/Adr, and K562/Vin cells, which have various P-gp levels, as cell models, and dexamethasone, nintedanib and apafant as weak to good P-gp substrates. P-gp levels in K562, K562/Adr, and K562/Vin cells were 0.3-, 20-, and 106-fold of healthy PBMCs, respectively. While cell accumulation of apafant and nintedanib decreased in all cells with increasing P-gp levels, dexamethasone accumulation in K562/Adr was comparable to that in healthy PBMCs and K562 cells. Cell accumulations of substrates in cells with low P-gp expression were not significantly changed by the P-gp inhibitors at therapeutic concentrations. However, accumulation increased to 1.4-fold at highest in K562/Adr cells with higher P-gp expression than in PBMCs of the RA patients. These results suggest P-gp controls the cellular concentration of P-gp substrates in PBMCs or K562 cells but cellular concentration of a weak P-gp substrate would not be apparently affected even in cells with a sufficient P-gp expression.
Collapse
Affiliation(s)
- Kohei Ito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Marina Naoi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Yasuhiro Tsuda
- Clinical Pharmacology Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Caroline MacLean
- Department of R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan.
| |
Collapse
|
7
|
Yoshitomo A, Asano S, Hozuki S, Tamemoto Y, Shibata Y, Hashimoto N, Takahashi K, Sasaki Y, Ozawa N, Kageyama M, Iijima T, Kazuki Y, Sato H, Hisaka A. Significance of Basal Membrane Permeability of Epithelial Cells in Predicting Intestinal Drug Absorption. Drug Metab Dispos 2023; 51:318-328. [PMID: 36810197 DOI: 10.1124/dmd.122.000907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Drug absorption from the gastrointestinal tract is often restricted by efflux transport by P-glycoprotein (P-gp) and metabolism by CYP3A4. Both localize in the epithelial cells, and thus, their activities are directly affected by the intracellular drug concentration, which should be regulated by the ratio of permeability between apical (A) and basal (B) membranes. In this study, using Caco-2 cells with forced expression of CYP3A4, we assessed the transcellular permeation of A-to-B and B-to-A directions and the efflux from the preloaded cells to both sides of 12 representative P-gp or CYP3A4 substrate drugs and obtained the parameters for permeabilities, transport, metabolism, and unbound fraction in the enterocytes (fent) using simultaneous and dynamic model analysis. The membrane permeability ratios for B to A (RBA) and fent varied by 8.8-fold and by more than 3000-fold, respectively, among the drugs. The RBA values for digoxin, repaglinide, fexofenadine, and atorvastatin were greater than 1.0 (3.44, 2.39, 2.27, and 1.90, respectively) in the presence of a P-gp inhibitor, thus suggesting the potential involvement of transporters in the B membrane. The Michaelis constant for quinidine for P-gp transport was 0.077 µM for the intracellular unbound concentration. These parameters were used to predict overall intestinal availability (FAFG) by applying an intestinal pharmacokinetic model, advanced translocation model (ATOM), in which permeability of A and B membranes accounted separately. The model predicted changes in the absorption location for P-gp substrates according to its inhibition, and FAFG values of 10 of 12 drugs, including quinidine at varying doses, were explained appropriately. SIGNIFICANCE STATEMENT: Pharmacokinetics has improved predictability by identifying the molecular entities of metabolism and transport and by using mathematical models to appropriately describe drug concentrations at the locations where they act. However, analyses of intestinal absorption so far have not been able to accurately consider the concentrations in the epithelial cells where P-glycoprotein and CYP3A4 exert effects. In this study, the limitation was removed by measuring the apical and basal membrane permeability separately and then analyzing these values using new appropriate models.
Collapse
Affiliation(s)
- Aoi Yoshitomo
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Satoshi Asano
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Shizuka Hozuki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yuta Tamemoto
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yukihiro Shibata
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Natsumi Hashimoto
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Keita Takahashi
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yoko Sasaki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Naoka Ozawa
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Michiharu Kageyama
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Takeshi Iijima
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yasuhiro Kazuki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| |
Collapse
|
8
|
Translatability of in vitro Inhibition Potency to in vivo P-Glycoprotein Mediated Drug Interaction Risk. J Pharm Sci 2023; 112:1715-1723. [PMID: 36682487 DOI: 10.1016/j.xphs.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
P-glycoprotein (P-gp) may limit oral drug absorption of substrate drugs due to intestinal efflux. Therefore, regulatory agencies require investigation of new chemical entities as possible inhibitors of P-gp in vitro. Unfortunately, inter-laboratory and inter-assay variability have hindered the translatability of in vitro P-gp inhibition data to predict clinical drug interaction risk. The current study was designed to evaluate the impact of potential IC50 discrepancies between two commonly utilized assays, i.e., bi-directional Madin-Darby Canine Kidney-MDR1 cell-based and MDR1 membrane vesicle-based assays. When comparing vesicle- to cell-based IC50 values (n = 28 inhibitors), non-P-gp substrates presented good correlation between assay formats, whereas IC50s of P-gp substrates were similar or lower in the vesicle assays. The IC50s obtained with a cell line expressing relatively low P-gp aligned more closely to those obtained from the vesicle assay, but passive permeability of the inhibitors did not appear to influence the correlation of IC50s, suggesting that efflux activity reduces intracellular inhibitor concentrations. IC50s obtained between two independent laboratories using the same assay type showed good correlation. Using the G-value (i.e., ratio of estimated gut concentration-to-inhibition potency) >10 cutoff recommended by regulatory agencies resulted in minimal differences in predictive performance, suggesting this cutoff is appropriate for either assay format.
Collapse
|
9
|
Nagar S, Radice C, Tuohy R, Stevens R, Bennyhoff D, Korzekwa K. The Rat Continuous Intestine Model Predicts the Impact of Particle Size and Transporters on the Oral Absorption of Glyburide. Mol Pharm 2023; 20:219-231. [PMID: 36541850 DOI: 10.1021/acs.molpharmaceut.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oral drug absorption is known to be impacted by the physicochemical properties of drugs, properties of oral formulations, and physiological characteristics of the intestine. The goal of the present study was to develop a mathematical model to predict the impact of particle size, feeding time, and intestinal transporter activity on oral absorption. A previously published rat continuous intestine absorption model was extended for solid drug absorption. The impact of active pharmaceutical ingredient particle size was evaluated with glyburide (GLY) as a model drug. Two particle size suspensions of glyburide were prepared with average particle sizes of 42.7 and 4.1 μm. Each suspension was dosed as a single oral gavage to male Sprague Dawley rats, and concentration-time (C-t) profiles of glyburide were measured with liquid chromatography coupled with tandem mass spectrometry. A continuous rat intestine absorption model was extended to include drug dissolution and was used to predict the absorption kinetics of GLY depending on particle size. Additional literature datasets of rat GLY formulations with particle sizes ranging from 0.25 to 4.0 μm were used for model predictions. The model predicted reasonably well the absorption profiles of GLY based on varying particle size and varying feeding time. The model predicted inhibition of intestinal uptake or efflux transporters depending on the datasets. The three datasets used formulations with different excipients, which may impact the transporter activity. Model simulations indicated that the model provides a facile framework to predict the impact of transporter inhibition on drug C-t profiles. Model simulations can also be conducted to evaluate the impact of an altered intestinal lumen environment. In conclusion, the rat continuous intestine absorption model may provide a useful tool to predict the impact of varying drug formulations on rat oral absorption profiles.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Robert Tuohy
- Pace Analytical Life Sciences LLC, Norristown, Pennsylvania19401, United States
| | - Raymond Stevens
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Dale Bennyhoff
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| |
Collapse
|
10
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
11
|
Martinez MN, Wu F, Sinko B, Brayden DJ, Grass M, Kesisoglou F, Stewart A, Sugano K. A Critical Overview of the Biological Effects of Excipients (Part II): Scientific Considerations and Tools for Oral Product Development. AAPS J 2022; 24:61. [DOI: 10.1208/s12248-022-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
|
12
|
Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs. Pharm Res 2022; 39:1393-1413. [PMID: 35488144 DOI: 10.1007/s11095-022-03275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of the present study was to quantitatively determine the expression of transporters, receptors and tight junction molecules at the blood-arachnoid barrier (BAB) and blood-spinal cord barrier (BSCB) in cervical, thoracic and lumbar spines from dogs. METHODS The expression levels of 31 transporters, 3 receptors, 1 tight junction protein, and 3 marker proteins in leptomeninges and capillaries isolated from spines (3 male and 2 female dogs) were determined by quantitative Targeted Absolute Proteomics (qTAP). The units were converted from fmol/μg protein to pmol/cm (absolute abundance at the BAB and the BSCB in a 1 cm section of spine). RESULTS The expression of MDR1 and BCRP were greater at the BSCB compared to the BAB (especially in the cervical cord), and the expressions at the lumbar BSCB were lower than that for the cervical BSCB. Among the organic anionic and cationic drug transporters, OAT1, OAT3, MRP1, OCT2 and MATE1/2 were detected only in the BAB, and not at the BSCB). The expression of these transporters was higher in the order: lumbar > thoracic > cervical BAB. The expressions of GLUT1, 4F2hc, EAAT1, 2, PEPT2, CTL1, and MCT1 at the BSCB of the cervical cord were higher than the corresponding values for the cervical BAB, and these values decreased in going down the spinal cord. CONCLUSION These results provide a better understanding of the molecular mechanisms underlying the concentration gradients of drugs and endogenous substances in the cerebrospinal fluid and parenchyma of the spinal cord.
Collapse
|
13
|
Fujita A, Noguchi S, Hamada R, Inoue S, Shimada T, Katakura S, Maruyama T, Sai Y, Nishimura T, Tomi M. Limited Impact of Murine Placental MDR1 on Fetal Exposure of Certain Drugs Explained by Bypass Transfer Between Adjacent Syncytiotrophoblast Layers. Pharm Res 2022; 39:1645-1658. [PMID: 35083640 PMCID: PMC9246986 DOI: 10.1007/s11095-022-03165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Purpose Multidrug resistance protein 1 (MDR1) is located at the interface between two syncytiotrophoblast layers in rodent placenta, and may influence fetal drug distribution. Here, we quantitatively compare the functional impact per single MDR1 molecule of MDR1 at the placental barrier and blood-brain barrier in mice. Methods MDR1A and MDR1B proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Paclitaxel or digoxin was continuously administered to pregnant Mdr1a−/−/Mdr1b−/− or wild-type mice, and the drug concentrations in the maternal and fetal plasma and maternal brain were quantified by LC-MS/MS. Results MDR1A and MDR1B proteins are expressed in the membrane of mouse placental labyrinth, and total MDR1 at the placental barrier amounts to about 30% of that at the blood-brain barrier. The fetal-to-maternal plasma concentration ratio of digoxin was only marginally affected in Mdr1a−/−/Mdr1b−/− mice, while that of paclitaxel showed a several-fold increase. No such difference between the two drugs was found in the maternal brain distribution. The impact per single MDR1 molecule on the fetal distribution of digoxin was calculated to be much lower than that on the brain distribution, but this was not the case for paclitaxel. Our pharmacokinetic model indicates that the impact of placental MDR1 is inversely correlated to the ratio of permeability through gap junctions connecting the two syncytiotrophoblast layers to passive diffusion permeability. Conclusion Our findings indicate that murine placental MDR1 has a minimal influence on the fetal concentration of certain substrates, such as digoxin, due to bypass transfer, probably via connexin26 gap junctions. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03165-6.
Collapse
Affiliation(s)
- Arimi Fujita
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Saki Noguchi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Rika Hamada
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Satoko Inoue
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tsutomu Shimada
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomohiro Nishimura
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masatoshi Tomi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
14
|
Teng H, Deng H, He Y, Lv Q, Chen L. The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. EFOOD 2021. [DOI: 10.53365/efood.k/144604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Flavonoids are widely existing compounds with enormous pharmacological effects from food and medicine. However, the low bioavailability in intestinal absorption and metabolism limits their clinical application. Intestinal efflux ABC (ATP binding cassette) transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), act as "pumping doors" to regulate the efflux of flavonoids from intestinal epithelial cells into the intestinal cavity or the systemic circulation. The present review describes the critical effect of ABC transporters involved in the efflux of flavonoids which depend on its efflux direction. And the role of flavonoids for modulation of intestinal ABC transporters was emphasized and several examples were given. We summarized that the resistance effect of flavonoid-mediated multidrug on ABC transporters may influence the bioavailability of drugs, bioactive ingredients and/or toxic compounds upon dietary uptake. Meanwhile, flavonoids functionalized as reversing agents of the ABC transporter may be an important mechanism for unexpected food-drug, food-toxin or food-food interactions. The overview also indicates that elucidation of the action and mechanism of the intestinal metabolic enzymes-efflux transporters coupling will lay a foundation for improving the bioavailability of flavonoids <i>in vivo</i> and increasing their clinical efficacy.
Collapse
|
15
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Pan X, Yamazaki S, Neuhoff S, Zhang M, Pilla Reddy V. Unraveling pleiotropic effects of rifampicin by using physiologically based pharmacokinetic modeling: Assessing the induction magnitude of P-glycoprotein-cytochrome P450 3A4 dual substrates. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1485-1496. [PMID: 34729944 PMCID: PMC8674000 DOI: 10.1002/psp4.12717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Rifampicin induces both P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) through regulating common nuclear receptors (e.g., pregnane X receptor). The interplay of P-gp and CYP3A4 has emerged to be an important factor in clinical drug-drug interactions (DDIs) with P-gp-CYP3A4 dual substrates and requires qualitative and quantitative understanding. Although physiologically based pharmacokinetic (PBPK) modeling has become a widely accepted approach to assess DDIs and is able to reasonably predict DDIs caused by CYP3A4 induction and P-gp induction individually, the predictability of PBPK models for the effect of simultaneous P-gp and CYP3A4 induction on P-gp-CYP3A4 dual substrates remains to be systematically evaluated. In this study, we used a PBPK modeling approach for the assessment of DDIs between rifampicin and 12 drugs: three sensitive P-gp substrates, seven P-gp-CYP3A4 dual substrates, and two P-gp-CYP3A4 dual substrates and inhibitors. A 3.5-fold increase of intestinal P-gp abundance was incorporated in the PBPK models to account for rifampicin-mediated P-gp induction at steady state. The simulation results showed that accounting for P-gp induction in addition to CYP3A4 induction improved the prediction accuracy of the area under the concentration-time curve and maximum (peak) plasma drug concentration ratios compared with considering CYP3A4 induction alone. Furthermore, the interplay of relevant drug-specific parameters and its impact on the magnitude of DDIs were evaluated using sensitivity analysis. The PBPK approach described herein, in conjunction with robust in vitro and clinical data, can help in the prospective assessment of DDIs involving other P-gp and CYP3A4 dual substrates. The database reported in the present study provides a valuable aid in understanding the combined effect of P-gp and CYP3A4 induction during drug development.
Collapse
Affiliation(s)
- Xian Pan
- Simcyp DivisionCertara UK LimitedSheffieldUK
| | - Shinji Yamazaki
- Pharmacokinetics, Dynamics & MetabolismPfizer Worldwide Research & DevelopmentSan DiegoCaliforniaUSA
- Present address:
Drug Metabolism & PharmacokineticsJanssen Research & Development, LLCSan DiegoCaliforniaUSA
| | | | - Mian Zhang
- Simcyp DivisionCertara UK LimitedSheffieldUK
| | - Venkatesh Pilla Reddy
- Modelling and Simulation, Early Oncolog, Oncology R&DAstraZenecaCambridgeUK
- Clinical Pharmacology and Pharmacometrics, Biopharmaceuticals R&DAstraZenecaCambridgeUK
| |
Collapse
|
17
|
Yamazaki S, Evers R, De Zwart L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:55-67. [PMID: 34668334 PMCID: PMC8752109 DOI: 10.1002/psp4.12733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
As one of the key components in model‐informed drug discovery and development, physiologically‐based pharmacokinetic (PBPK) modeling linked with in vitro‐to‐in vivo extrapolation (IVIVE) is widely applied to quantitatively predict drug–drug interactions (DDIs) on drug‐metabolizing enzymes and transporters. This study aimed to investigate an IVIVE for intestinal P‐glycoprotein (Pgp, ABCB1)‐mediated DDIs among three Pgp substrates, digoxin, dabigatran etexilate, and quinidine, and two Pgp inhibitors, itraconazole and verapamil, via PBPK modeling. For Pgp substrates, assuming unbound Michaelis‐Menten constant (Km) to be intrinsic, in vitro‐to‐in vivo scaling factors for maximal Pgp‐mediated efflux rate (Jmax) were optimized based on the clinically observed results without co‐administration of Pgp inhibitors. For Pgp inhibitors, PBPK models utilized the reported in vitro values of Pgp inhibition constants (Ki), 1.0 μM for itraconazole and 2.0 μM for verapamil. Overall, the PBPK modeling sufficiently described Pgp‐mediated DDIs between these substrates and inhibitors with the prediction errors of less than or equal to ±25% in most cases, suggesting a reasonable IVIVE for Pgp kinetics in the clinical DDI results. The modeling results also suggest that Pgp kinetic parameters of both the substrates (Km and Jmax) and the inhibitors (Ki) are sensitive to Pgp‐mediated DDIs, thus being key for successful DDI prediction. It would also be critical to incorporate appropriate unbound inhibitor concentrations at the site of action into PBPK models. The present results support a quantitative prediction of Pgp‐mediated DDIs using in vitro parameters, which will significantly increase the value of in vitro studies to design and run clinical DDI studies safely and effectively.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, San Diego, California, USA
| | - Raymond Evers
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Loeckie De Zwart
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
18
|
Hong Y, Ishizuka T, Watanabe A, Tachibana M, Lee M, Ishizuka H, LaCreta F, Abutarif M. Model-based assessments of CYP3A-mediated drug-drug interaction risk of milademetan. Clin Transl Sci 2021; 14:2220-2230. [PMID: 34080309 PMCID: PMC8604211 DOI: 10.1111/cts.13082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Milademetan is a small‐molecule inhibitor of murine double minute 2 (MDM2) that is in clinical development for advanced solid tumors and hematological cancers, including liposarcoma and acute myeloid leukemia. Milademetan is a CYP3A and P‐glycoprotein substrate and moderate CYP3A inhibitor. The current study aims to understand the drug‐drug interaction (DDI) risk of milademetan as a CYP3A substrate during its early clinical development. A clinical DDI study of milademetan (NCT03614455) showed that concomitant administration of single‐dose milademetan with the strong CYP3A inhibitor itraconazole or posaconazole increased milademetan mean area under the curve from zero to infinity (AUCinf) by 2.15‐fold (90% confidence interval [CI], 1.98–2.34) and 2.49‐fold (90% CI, 2.26–2.74), respectively, supporting that the milademetan dose should be reduced by 50% when concomitantly administered with strong CYP3A inhibitors. A physiologically‐based pharmacokinetic (PBPK) model of milademetan was subsequently developed to predict the magnitude of CYP3A‐mediated DDI potential of milademetan with moderate CYP3A inhibitors. The PBPK model predicted an increase in milademetan exposure of 1.72‐fold (90% CI, 1.69–1.76) with fluconazole, 1.91‐fold (90% CI, 1.83–1.99) with erythromycin, and 2.02‐fold (90% CI, 1.93–2.11) with verapamil. In addition, it estimated that milademetan’s original dose (160 mg once daily) could be resumed from its half‐reduced dose 3 days after discontinuation of concomitant strong CYP3A inhibitors. The established PBPK model of milademetan was qualified and considered to be robust enough to support continued development of milademetan.
Collapse
Affiliation(s)
- Ying Hong
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | - Tomoko Ishizuka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Akiko Watanabe
- Quantitative Clinical Pharmacology, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masaya Tachibana
- Quantitative Clinical Pharmacology, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Mark Lee
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | - Hitoshi Ishizuka
- Quantitative Clinical Pharmacology, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Frank LaCreta
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | - Malaz Abutarif
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| |
Collapse
|
19
|
Igarashi F, Nakagawa T, Shinohara Y, Tachibana T. Analysis of Non-linear Pharmacokinetics of P-Glycoprotein Substrates in a Microfluidic Device Using a Mathematical Model that Includes an Unstirred Water Layer (UWL) Compartment. Pharm Res 2021; 38:1031-1039. [PMID: 34009624 DOI: 10.1007/s11095-021-03054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this research is to analyze non-linear pharmacokinetics of P-glycoprotein (P-gp) substrates in a cell based assay of a microfluidic device, which might be affected by hydrodynamic barrier (unstirred water layer, UWL). RESULTS Apparent permeability (Papp) were obtained using non-P-gp substrates (propranolol, metoprolol, and atenolol) and P-gp substrates (quinidine and talinolol) in a commercially available microfluidic device, organoplate ® of Caco-2 cell based assay. The previous UWL resistance model was well fitted to Papp of static and flow condition by assuming UWL including and negligible condition, while P-gp substrates of higher passive permeability (quinidine) was apart from the fitting curve. The concentration dependent non-linear kinetics of P-gp substrates, quinidine and talinolol, was more analyzed in detail, and apparent Vmax discrepancy between static and flow assay condition in the quinidine assay was observed, while that was not observed in talinolol, the lower permeable substrate. Based on the experimental results, a mathematical model for P-gp substrates including UWL compartment on the previous 3-compartment model was developed, and it indicated that the apparent Vmax was variable along with the ratio between passive permeability and UWL permeability. CONCLUSIONS The mathematical model adding UWL compartment well explained non-linear pharmacokinetics of apparent permeability of P-gp substrate in the microfluidic device. The model also has a potential to be applied to P-gp substrate permeability analysis in vivo.
Collapse
Affiliation(s)
- Fumihiko Igarashi
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan.
| | - Toshito Nakagawa
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Yuka Shinohara
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Tatsuhiko Tachibana
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| |
Collapse
|
20
|
Storelli F, Anoshchenko O, Unadkat JD. Successful Prediction of Human Steady-State Unbound Brain-to-Plasma Concentration Ratio of P-gp Substrates Using the Proteomics-Informed Relative Expression Factor Approach. Clin Pharmacol Ther 2021; 110:432-442. [PMID: 33675056 PMCID: PMC8360000 DOI: 10.1002/cpt.2227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
In order to optimize central nervous system (CNS) drug development, accurate prediction of the drug's human steady-state unbound brain interstitial fluid-to-plasma concentration ratio (Kp,uu,brain ) is critical, especially for drugs that are effluxed by the multiple drug resistance transporters (e.g., P-glycoprotein, P-gp). Due to lack of good in vitro human blood-brain barrier models, we and others have advocated the use of a proteomics-informed relative expressive factor (REF) approach to predict Kp,uu,brain . Therefore, we tested the success of this approach in humans, with a focus on P-gp substrates, using brain positron emission tomography imaging data for verification. To do so, the efflux ratio (ER) of verapamil, N-desmethyl loperamide, and metoclopramide was determined in human P-gp-transfected MDCKII cells using the Transwell assay. Then, using the ER estimate, Kp,uu,brain of the drug was predicted using REF (ER approach). Alternatively, in vitro passive and P-gp-mediated intrinsic clearances (CLs) of these drugs, estimated using a five-compartmental model, were extrapolated to in vivo using REF (active CL) and brain microvascular endothelial cells protein content (passive CL). The ER approach successfully predicted Kp,uu,brain of all three drugs within twofold of observed data and within 95% confidence interval of the observed data for verapamil and N-desmethyl loperamide. Using the in vitro-to-in vivo extrapolated clearance approach, Kp,uu,brain was reasonably well predicted but not the brain unbound interstitial fluid drug concentration-time profile. Therefore, we propose that the ER approach be used to predict Kp,uu,brain of CNS candidate drugs to enhance their success in development.
Collapse
Affiliation(s)
- Flavia Storelli
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Olena Anoshchenko
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Jashvant D. Unadkat
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
21
|
Abstract
From the viewpoint of drug discovery, it is an important issue to elucidate the drug permeability at the human central nervous system (CNS) barriers and the molecular mechanisms in the cells forming CNS barriers especially during CNS diseases. I introduced quantitative proteomics techniques into the blood-brain barrier (BBB) study, then quantitatively investigated the transport system at the human BBB and clarified the quantitative differences in protein expression levels and functions of transporters and receptors between animals and humans, or in vitro and in vivo. Based on the difference in the absolute expression level of transporters between in vitro and in vivo, I demonstrated that the drug efflux activity of P-glycoprotein (P-gp) at in vivo BBB can be accurately reconstructed from the in vitro system, not only in mouse models but also monkeys similar to humans and pathological conditions. Furthermore, I discovered Claudin-11 as another tight junction molecule expressed at the CNS barriers, and clarified that it contributes to the disruption of the CNS barriers in multiple sclerosis. Furthermore, it was also elucidated that the P-gp dysfunction causes excessive brain entry of glucocorticoid which causes a nerve damage in cerebral infarct, and it can be suppressed by targeting Abl/Src kinases. These suggest that targeting the tight junctions and transporters, which are important molecules at the CNS barriers, would potentially lead to the treatment of CNS diseases. In this review, I would like to introduce a new CNS barrier study opened by quantitative proteomics research.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
22
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
23
|
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system(s) under investigation. As a consequence, the apparent kinetic parameters, such as Km or Ki, that are derived can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components which can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Preclinical Development, Black Diamond Therapeutics, Cambridge, MA, USA
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
24
|
Sáfár Z, Kecskeméti G, Molnár J, Kurunczi A, Szabó Z, Janáky T, Kis E, Krajcsi P. Inhibition of ABCG2/BCRP-mediated transport-correlation analysis of various expression systems and probe substrates. Eur J Pharm Sci 2020; 156:105593. [PMID: 33059043 DOI: 10.1016/j.ejps.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
BCRP / ABCG2 is a key determinant of pharmacokinetics of substrate drugs. Several BCRP substrates and inhibitors are of low passive permeability, and the vesicular transport assay works well in this permeability space. Membranes were prepared from BCRP-HEK293, MCF-7/MX, and baculovirus-infected Sf9 cells with (BCRP-Sf9-HAM), and without (BCRP-Sf9) cholesterol loading. Km values for three substrates - estrone-3-sulfate, sulfasalazine, topotecan - correlated well between the four expression systems. In contrast, a 10-20-fold range in Vmax values was observed, with BCRP-HEK293 membranes possessing the largest dynamic range. IC50 values of the different test systems were similar to each other, with 94.4% of pairwise comparisons being within 3-fold. Substrate dependent inhibition showed somewhat greater variation, as 81.4% of IC50 values in the BCRP-HEK293 membranes were within 3-fold in pairwise comparisons. Overall, BCRP-HEK293 membranes demonstrated the highest activity. The IC50 values showed good concordance but substrate dependent inhibition was observed for some drugs.
Collapse
Affiliation(s)
- Zsolt Sáfár
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Judit Molnár
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Anita Kurunczi
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Zoltán Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Emese Kis
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Péter Krajcsi
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary; Solvo Biotechnology, a Charles River Company, 4-20 Irinyi J str, Budapest H-1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter str 50/a, Budapest H-1083, Hungary; Semmelweis University, Faculty of Health Sciences, Vas str 17, Budapest H-1088, Hungary.
| |
Collapse
|
25
|
Li N, Kulkarni P, Badrinarayanan A, Kefelegn A, Manoukian R, Li X, Prasad B, Karasu M, McCarty WJ, Knutson CG, Gupta A. P-glycoprotein Substrate Assessment in Drug Discovery: Application of Modeling to Bridge Differential Protein Expression Across In Vitro Tools. J Pharm Sci 2020; 110:325-337. [PMID: 32946896 DOI: 10.1016/j.xphs.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (P-gp) efflux assay is an integral part of discovery screening, especially for drugs requiring brain penetration as P-gp efflux ratio (ER) inversely correlates with brain exposure. However, significant variability in P-gp ER generated across cell lines can lead to misclassification of a P-gp substrate and subsequently disconnect with brain exposure data. We hypothesized that the ER depends on P-gp protein expression level in the in vitro assay. Quantitative proteomics and immunofluorescence staining were utilized to characterize P-gp protein expression and localization in four recombinant cell lines, over-expressing human or mouse P-gp isoforms, followed by functional evaluation. Efflux data generated in each cell line was compared against available rodent brain distribution data. The results suggested that the cell line with highest P-gp expression (hMDCK-MDR1 sourced from NIH) led to greatest dynamic range for efflux; thus, proving to be the most sensitive model to predict brain penetration. Cell lines with lower P-gp expression exhibited the greatest tendency for compound-dependent in vitro efflux saturation leading to false negative results. Ultimately, P-gp kinetics were characterized using a compartmental model to generate system-independent parameters to resolve such discrepancy. This study highlights the need for careful choice of well characterized P-gp in vitro tools and utility of modeling techniques to enable appropriate interpretation of the data.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Priyanka Kulkarni
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Akshay Badrinarayanan
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Adey Kefelegn
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Raffi Manoukian
- Department of Cytometry Sciences, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Xingwen Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Matthew Karasu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - William J McCarty
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Charles G Knutson
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Anshul Gupta
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
27
|
Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers. Drug Metab Dispos 2020; 48:491-498. [PMID: 32193356 DOI: 10.1124/dmd.119.088674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is expressed on the apical membrane of small intestinal epithelial cells and functions as an efflux pump with broad substrate recognition. Therefore, quantitative evaluation of the contribution of BCRP to the intestinal permeability of new chemical entities is very important in drug research and development. In this study, we assessed the BCRP-mediated efflux of several model drugs in Caco-2 cells using WK-X-34 as a dual inhibitor of P-glycoprotein (P-gp) and BCRP and LY335979 as a selective inhibitor of P-gp. The permeability of daidzein was high with an apparent permeability coefficient for apical-to-basal transport (P AB) of 20.3 × 10-6 cm/s. In addition, its efflux ratio (ER) was 1.55, indicating that the contribution of BCRP to its transport is minimal. Estrone-3-sulfate and ciprofloxacin showed relatively higher ER values (>2.0), whereas their BCRP-related absorptive quotient (AQ BCRP) was 0.21 and 0.3, respectively. These results indicate that BCRP does not play a major role in regulating the permeability of estrone-3-sulfate and ciprofloxacin in Caco-2 cells. Nitrofurantoin showed a P AB of 1.8 × 10-6 cm/s, and its ER was 7.6. However, the AQ BCRP was 0.37, suggesting minimal contribution of BCRP to nitrofurantoin transport in Caco-2 cells. In contrast, topotecan, SN-38, and sulfasalazine had low P AB values (0.81, 1.13, and 0.19 × 10-6 cm/s, respectively), and each AQ BCRP was above 0.6, indicating that BCRP significantly contributes to the transport of these compounds in Caco-2 cells. In conclusion, Caco-2 cells are useful to accurately estimate the contribution of BCRP to intestinal drug absorption. SIGNIFICANCE STATEMENT: We performed an in vitro assessment of the contribution of breast cancer resistance protein (BCRP) to the transport of BCRP and/or P-glycoprotein (P-gp) substrates across Caco-2 cell monolayers using absorptive quotient, which has been proposed to represent the contribution of drug efflux transporters to the net efflux. The present study demonstrates that the combined use of a BCRP/P-gp dual inhibitor and a P-gp selective inhibitor is useful to estimate the impact of BCRP and P-gp on the permeability of tested compounds in Caco-2 cells.
Collapse
Affiliation(s)
- Iichiro Kawahara
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Satoyo Nishikawa
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Yusuke Kono
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Takuya Fujita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| |
Collapse
|
28
|
Nagayasu M, Ozeki K, Sakurai Y, Tsutsui H, Onoue S. Simplified Method to Determine the Efflux Ratio on P-Glycoprotein Substrates Using Three-Compartment Model Analysis for Caco-2 Cell Assay Data. Pharm Res 2019; 37:13. [PMID: 31873817 DOI: 10.1007/s11095-019-2729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Multiple time-point sampling is required in transcellular transport studies to accurately calculate the appropriate efflux ratio (ER). Our study sought to develop a simplified method to determine the ER in Caco-2 cells. METHODS The equation for the ER was derived from a three-compartment model of apical to basal and basal to apical transport. Transcellular transport studies were conducted with 10 non-P-glycoprotein (P-gp) and 6 P-gp substrates in Caco-2 cells, and the ER was calculated using this equation. RESULTS The equation for the ER used the concentration ratio in the receiver compartment at the same time-point; therefore, the ER can theoretically be calculated using only a single point. The ER of all non-P-gp substrates tested was close to 1 at all sampling times. The ERs of cyclosporine A calculated from the concentration ratio at 30, 60, 90, and 120 min incubation were 2.93, 6.43, 7.12, and 9.57, respectively, and the ER at 120 min was almost identical to the theoretical value (9.62) calculated using three-compartment model analysis. The other 5 P-gp substrates showed a similar tendency. Single-point sampling can be used to accurately calculate ER at 120 min. CONCLUSIONS Single-point sampling is a promising approach for calculating appropriate ERs in the drug discovery stage.
Collapse
Affiliation(s)
- Miho Nagayasu
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8256, Japan
| | - Kazuhisa Ozeki
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Yuuji Sakurai
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Haruka Tsutsui
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8256, Japan
| |
Collapse
|
29
|
Yamazaki S, Costales C, Lazzaro S, Eatemadpour S, Kimoto E, Varma MV. Physiologically-Based Pharmacokinetic Modeling Approach to Predict Rifampin-Mediated Intestinal P-Glycoprotein Induction. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:634-642. [PMID: 31420942 PMCID: PMC6765699 DOI: 10.1002/psp4.12458] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Physiologically‐based pharmacokinetic (PBPK) modeling is a powerful tool to quantitatively describe drug disposition profiles in vivo, thereby providing an alternative to predict drug–drug interactions (DDIs) that have not been tested clinically. This study aimed to predict effects of rifampin‐mediated intestinal P‐glycoprotein (Pgp) induction on pharmacokinetics of Pgp substrates via PBPK modeling. First, we selected four Pgp substrates (digoxin, talinolol, quinidine, and dabigatran etexilate) to derive in vitro to in vivo scaling factors for intestinal Pgp kinetics. Assuming unbound Michaelis‐Menten constant (Km) to be intrinsic, we focused on the scaling factors for maximal efflux rate (Jmax) to adequately recover clinically observed results. Next, we predicted rifampin‐mediated fold increases in intestinal Pgp abundances to reasonably recover clinically observed DDI results. The modeling results suggested that threefold to fourfold increases in intestinal Pgp abundances could sufficiently reproduce the DDI results of these Pgp substrates with rifampin. Hence, the obtained fold increases can potentially be applicable to DDI prediction with other Pgp substrates.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| | - Sarah Lazzaro
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| | - Soraya Eatemadpour
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| | - Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| | - Manthena V Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut, USA
| |
Collapse
|
30
|
Nagayasu M, Ozeki K, Onoue S. Three-Compartment Model Analysis with Minimal Sampling Points in the Caco-2 Permeability Assay. Biol Pharm Bull 2019; 42:1600-1604. [PMID: 31474721 DOI: 10.1248/bpb.b19-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to establish a modified method of three-compartment model analysis that minimized the sampling frequency. A Caco-2 permeability assay was performed on ten structurally diverse compounds with passive diffusion. A three-compartment model was analyzed by a conventional method and a method with fewer sampling points, called the simplified method, using concentration-time profiles in the donor, intracellular, and receiver compartments. The concentration-time profiles in all compartments were well described by the conventional method. The calculated unbound fraction of intracellular (fu2) and apparent permeability coefficient (Papp) were 0.0107-1.22 and 0.886-146 × 10-6 cm/s, respectively. The simplified method also described the concentration profiles in the compartments of all ten compounds except one, ibuprofen. The difference in values calculated by the simplified method compared to the conventional method was between -7 and 7% for fu2 and between -6 and 42% for Papp. These results suggested that the parameter values from the simplified method were comparable with those from the conventional method. The simplified method may be a promising approach to improve the throughput of three-compartment model analyses of Caco-2 permeability assays in the early stages of drug discovery.
Collapse
Affiliation(s)
- Miho Nagayasu
- Research division, Chugai Pharmaceutical Co. Ltd.,Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
31
|
Pepin XJ, Moir AJ, Mann JC, Sanderson NJ, Barker R, Meehan E, Plumb AP, Bailey GR, Murphy DS, Krejsa CM, Andrew MA, Ingallinera TG, Slatter JG. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part II. A mechanistic PBPK model for IR formulation comparison, proton pump inhibitor drug interactions, and administration with acidic juices. Eur J Pharm Biopharm 2019; 142:435-448. [DOI: 10.1016/j.ejpb.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
|
32
|
Chiang PC, Nagapudi K, Liu J, Crawford JJ, Zbieg JR, Plise E, Deng Y. An Integrated Analysis of Solid Form Change Impact on Solubility and Permeability: Case Study of Oral Exposure in Rats of an RAR Related Orphan Receptor C Inhibitor. J Pharm Sci 2019; 108:2256-2263. [DOI: 10.1016/j.xphs.2019.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/15/2022]
|
33
|
Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P‑glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover. Eur J Pharm Sci 2019; 134:194-204. [PMID: 31047967 DOI: 10.1016/j.ejps.2019.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/02/2019] [Accepted: 04/26/2019] [Indexed: 01/27/2023]
Abstract
Several reports demonstrated that rifampicin affected pharmacokinetics of victim drugs following oral more than intravenous administration. We aimed to establish a semi-physiologically based pharmacokinetic (semi-PBPK) model involving both enzyme and transporter turnover to simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 (CYP) 3A4/P‑glycoprotein (P-GP) in human. Rifampicin was chosen as the CYP3A /P-GP inducer. Thirteen victim drugs including P-GP substrates (digoxin and talinolol), CYP3A substrates (alfentanil, midazolam, nifedipine, ondansetron and oxycodone), dual substrates of CYP3A/P-GP (quinidine, cyclosporine A, tacrolimus and verapamil) and complex substrates (S-ketamine and tramadol) were chosen to investigate drug-drug interactions (DDIs) with rifampicin. Corresponding parameters were cited from literatures. Before and after multi-dose of oral rifampicin, the pharmacokinetic profiles of victim drugs for oral or intravenous administration to human were predicted using the semi-PBPK model and compared with the observed values. Contribution of both CYP3A and P-GP induction in intestine and liver by rifampicin to pharmacokinetic profiles of victim drugs was investigated. The predicted pharmacokinetic profiles of drugs before and after rifampicin administration accorded with the observations. The predicted pharmacokinetic parameters and DDIs were successful, whose fold-errors were within 2. It was consistent with observations that the DDIs of rifampicin with oral victim drugs were larger than those with intravenous victim drugs. DDIs of rifampicin with CYP3A or P-GP substrates following oral versus intravenous administration to human were successfully predicted using the developed semi-PBPK model.
Collapse
|
34
|
Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, Watanabe T, Ogasawara Y, Takahashi T, Tsukimoto M, Mizuguchi K. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein. Mol Pharm 2019; 16:1851-1863. [PMID: 30933526 DOI: 10.1021/acs.molpharmaceut.8b01143] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay ( R2 = 0.941) and in vivo Kp,brain ratio (mdr1a/1b KO/WT) in mice ( R2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.
Collapse
Affiliation(s)
- Rikiya Ohashi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Reiko Watanabe
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Tsuyoshi Esaki
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | | | | | | | | | | | | | - Kenji Mizuguchi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| |
Collapse
|
35
|
Riede J, Umehara KI, Schweigler P, Huth F, Schiller H, Camenisch G, Poller B. Examining P-gp efflux kinetics guided by the BDDCS - Rational selection of in vitro assay designs and mathematical models. Eur J Pharm Sci 2019; 132:132-141. [PMID: 30857914 DOI: 10.1016/j.ejps.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The generation of reliable kinetic parameters to describe P-glycoprotein (P-gp) activity is essential for predicting the impact of efflux transport on gastrointestinal drug absorption. The compound-specific selection of in vitro assay designs and ensuing data analysis methods is explored in this manuscript. We measured transcellular permeability and cellular uptake of five P-gp substrates in Caco-2 and LLC-PK1 MDR1 cells. Kinetic parameters of P-gp-mediated efflux transport (Km, Vmax) were derived from conventional and mechanistic compartmental models. The estimated apparent Km values based on medium concentrations in the conventional permeability model indicated significant differences between the cell lines. The respective intrinsic Km values based on unbound intracellular concentrations in the mechanistic compartmental models were significantly lower and comparable between cell lines and assay formats. Non-specific binding or lysosomal trapping were shown to cause discrepancies in the kinetic parameters obtained from different assay formats. A guidance for the selection of in vitro assays and kinetic assessment methods is proposed in line with the Biopharmaceutics Drug Disposition Classification System (BDDCS). The recommendations are expected to aid the acquisition of robust and reproducible kinetic parameters of P-gp-mediated efflux transport.
Collapse
Affiliation(s)
- Julia Riede
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Ken-Ichi Umehara
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Patrick Schweigler
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Felix Huth
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Hilmar Schiller
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Gian Camenisch
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Birk Poller
- Division of PK Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
36
|
Jiang H, Guo D, Chen D, Wu Y, Jin X, Zhu X. A new insight into the reversal of multidrug resistance in cancer by nanodrugs. Biomater Sci 2019; 7:3489-3496. [DOI: 10.1039/c9bm00355j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work offers novel mechanistic insights into MDR reversal by nanodrugs, and this process involves reducing the P-gp distribution ratio in the cell membrane through cellular internalization behavior rather than merely evading P-gp recognition.
Collapse
Affiliation(s)
- Huangyong Jiang
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Dongbo Guo
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Dong Chen
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yan Wu
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Xin Jin
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Xinyuan Zhu
- State Metal Matrix Composites’ Central Lab
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
37
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
38
|
Schlessinger A, Welch MA, van Vlijmen H, Korzekwa K, Swaan PW, Matsson P. Molecular Modeling of Drug-Transporter Interactions-An International Transporter Consortium Perspective. Clin Pharmacol Ther 2018; 104:818-835. [PMID: 29981151 PMCID: PMC6197929 DOI: 10.1002/cpt.1174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Membrane transporters play diverse roles in the pharmacokinetics and pharmacodynamics of small-molecule drugs. Understanding the mechanisms of drug-transporter interactions at the molecular level is, therefore, essential for the design of drugs with optimal therapeutic effects. This white paper examines recent progress, applications, and challenges of molecular modeling of membrane transporters, including modeling techniques that are centered on the structures of transporter ligands, and those focusing on the structures of the transporters. The goals of this article are to illustrate current best practices and future opportunities in using molecular modeling techniques to understand and predict transporter-mediated effects on drug disposition and efficacy.Membrane transporters from the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies regulate the cellular uptake, efflux, and homeostasis of many essential nutrients and significantly impact the pharmacokinetics of drugs; further, they may provide targets for novel therapeutics as well as facilitate prodrug approaches. Because of their often broad substrate selectivity they are also implicated in many undesirable and sometimes life-threatening drug-drug interactions (DDIs).5,6.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew A. Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Herman van Vlijmen
- Computational Chemistry, Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Sweden
,Address correspondence to: Pär Matsson, Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden, Phone: +46-(0)18-471 46 30, Fax: +46-(0)18-471 42 23,
| |
Collapse
|
39
|
Allosteric Role of Substrate Occupancy Toward the Alignment of P-glycoprotein Nucleotide Binding Domains. Sci Rep 2018; 8:14643. [PMID: 30279588 PMCID: PMC6168518 DOI: 10.1038/s41598-018-32815-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette transporter that eliminates toxins from the cell but causes multidrug resistance in chemotherapies. The crystal structures of Pgp revealed drug-like compounds bound to an inward-facing conformation in which the energy-harnessing nucleotide binding domains (NBDs) were widely separated with no interfacial interaction. Following drug binding, inward-facing Pgp must transition to an NBD dimer conformation to achieve ATP binding and hydrolysis at canonical sites defined by both halves of the interface. However, given the high degree of flexibility shown for this transporter, it is difficult to envision how NBDs overcome entropic considerations for achieving proper alignment in order to form the canonical ATP binding site. We explored the hypothesis that substrate occupancy of the polyspecific drug-binding cavity plays a role in the proper alignment of NBDs using computational approaches. We conducted twelve atomistic molecular dynamics (MD) simulations (100-300 ns) on inward-facing Pgp in a lipid bilayer with and without small molecule substrates to ascertain effects of drug occupancy on NBD dimerization. Both apo- and drug-occupied simulations showed NBDs approaching each other compared to the crystal structures. Apo-Pgp reached a pseudo-dimerization in which NBD signature motifs for ATP binding exhibited a significant misalignment during closure. In contrast, occupancy of three established substrates positioned by molecular docking achieved NBD alignment that was much more compatible with a canonical NBD dimerization trajectory. Additionally, aromatic amino acids, known to confer the polyspecific drug-binding characteristic of the internal pocket, may also govern polyspecific drug access to the cavity. The enrichment of aromatics comprising the TM4-TM6 portal suggested a preferential pathway over the aromatic-poor TM10-TM12 for lateral drug entry from the lipid bilayer. Our study also suggested that drug polyspecificity is enhanced due to a synergism between multiple drug-domain interactions involving 36 residues identified in TM1, 5, 6, 7, 11 and 12.
Collapse
|
40
|
Yamazaki S, Loi CM, Kimoto E, Costales C, Varma MV. Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. Drug Metab Dispos 2018; 46:1200-1211. [PMID: 29739809 DOI: 10.1124/dmd.118.080424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Bosutinib is an orally available Src/Abl tyrosine kinase inhibitor indicated for the treatment of patients with Ph+ chronic myelogenous leukemia at a clinically recommended dose of 500 mg once daily. Clinical results indicated that increases in bosutinib oral exposures were supraproportional at the lower doses (50-200 mg) and approximately dose-proportional at the higher doses (200-600 mg). Bosutinib is a substrate of CYP3A4 and P-glycoprotein and exhibits pH-dependent solubility with moderate intestinal permeability. These findings led us to investigate the factors influencing the underlying pharmacokinetic mechanisms of bosutinib with physiologically based pharmacokinetic (PBPK) models. Our primary objectives were to: 1) refine the previously developed bosutinib PBPK model on the basis of the latest oral bioavailability data and 2) verify the refined PBPK model with P-glycoprotein kinetics on the basis of the bosutinib drug-drug interaction (DDI) results with ketoconazole and rifampin. Additionally, the verified PBPK model was applied to predict bosutinib DDIs with dual CYP3A/P-glycoprotein inhibitors. The results indicated that 1) the refined PBPK model adequately described the observed plasma concentration-time profiles of bosutinib and 2) the verified PBPK model reasonably predicted the effects of ketoconazole and rifampin on bosutinib exposures by accounting for intestinal P-glycoprotein inhibition/induction. These results suggested that bosutinib DDI mechanism could involve not only CYP3A4-mediated metabolism but also P-glycoprotein-mediated efflux on absorption. In summary, P-glycoprotein kinetics could constitute an element in the PBPK models critical to understanding the pharmacokinetic mechanism of dual CYP3A/P-glycoprotein substrates, such as bosutinib, that exhibit nonlinear pharmacokinetics owing largely to a saturation of intestinal P-glycoprotein-mediated efflux.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California (S.Y., C.-M.L.) and Groton, Connecticut (E.K., C.C., M.V.V.)
| | - Cho-Ming Loi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California (S.Y., C.-M.L.) and Groton, Connecticut (E.K., C.C., M.V.V.)
| | - Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California (S.Y., C.-M.L.) and Groton, Connecticut (E.K., C.C., M.V.V.)
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California (S.Y., C.-M.L.) and Groton, Connecticut (E.K., C.C., M.V.V.)
| | - Manthena V Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California (S.Y., C.-M.L.) and Groton, Connecticut (E.K., C.C., M.V.V.)
| |
Collapse
|
41
|
Liu H, Dong K, Zhang W, Summerfield SG, Terstappen GC. Prediction of brain:blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discov Today 2018; 23:1357-1372. [PMID: 29548981 DOI: 10.1016/j.drudis.2018.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022]
Abstract
Recent years have seen a paradigm shift away from optimizing the brain:blood concentration ratio toward the more relevant brain:blood unbound concentration ratio (Kp,uu,br) in CNS drug discovery. Here, we review the recent developments in the in silico and in vitro model systems to predict the Kp,uu,br of discovery compounds with special emphasis on the in-vitro-in-vivo correlation. We also discuss clinical 'translation' of rodent Kp,uu,br and highlight the future directions for improvement in brain penetration prediction. Important in this regard are in silico Kp,uu,br models built on larger datasets of high quality, calibration and deeper understanding of experimental in vitro transporter systems, and better understanding of blood-brain barrier transporters and their in vivo relevance aside from P-gp and BCRP.
Collapse
Affiliation(s)
- Houfu Liu
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China.
| | - Kelly Dong
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| | - Wandong Zhang
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| | - Scott G Summerfield
- Bioanalysis, Immunogenicity and Biomarker, Platform Technology and Science, GlaxoSmithKline, Ware, UK
| | - Georg C Terstappen
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| |
Collapse
|
42
|
Sager G, Smaglyukova N, Fuskevaag OM. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J Cell Physiol 2018; 233:5972-5980. [PMID: 29244191 PMCID: PMC5947735 DOI: 10.1002/jcp.26409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023]
Abstract
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.
Collapse
Affiliation(s)
- Georg Sager
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ole-Martin Fuskevaag
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
43
|
Ozgür B, Saaby L, Langthaler K, Brodin B. Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates. Eur J Pharm Sci 2017; 112:112-121. [PMID: 29146563 DOI: 10.1016/j.ejps.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Recently, we transfected the porcine intestinal cell line IPEC-J2, with human P-glycoprotein (P-gp, ABCB1). The resulting cell line, iP-gp, has a high expression of functional human P-gp in the apical membrane, and a low expression of nonhuman ATP-binding cassette (ABC) transporters. The aim of the present work was to investigate the usability of iP-gp cell line for determining transepithelial transport kinetics of the prototypical P-gp substrates digoxin and rhodamine 123. The cell line generated tight monolayers after 16days of culture, reflected by high transepithelial electrical resistance values (TEER>15,000Ω·cm2), immunocytochemistry and low fluxes of the paracellular flux marker [14C]-mannitol. Monolayer integrity was not affected the common solvents dimethyl sulfoxide (DMSO), methanol and ethanol in concentrations up to 2% (v/v). Transepithelial fluxes of [3H]-labeled digoxin and rhodamine 123 were measured at varying donor concentrations, and kinetic parameters were estimated. Km and Vmax of P-gp mediated basolateral-to-apical (B-A) flux of rhodamine 123 were estimated to 332±124μM and 111±16pmol·cm-2·min-1 (n=3, total N=6), respectively. Vmax and Km of digoxin B-A flux could not be estimated due to the low aqueous solubility of digoxin. The half maximal inhibitory concentrations (IC50) of the selective P-gp inhibitor, zosuquidar (LY-335979), were estimated to 0.05±0.01μM (n=3, total N=6) and 0.04±0.01μM (n=3, total N=6) in transport experiments with digoxin and rhodamine 123 as substrates, respectively. Bidirectional fluxes of digoxin and rhodamine 123 were measured in transfected Madin Darby canine kidney cells (MDCK II MDR1) and compared with the fluxes obtained with the iP-gp cell monolayers. Efflux ratios were highest in the iP-gp cells, due to a tighter paracellular pathway. In conclusion, both digoxin and rhodamine 123 could be used to obtain IC50 values of inhibition, Ki values were only possible to obtain using rhodamine 123. The observed tightness, robustness towards solvents and the high efflux ratios confirmed that the iP-gp cell line may serve as a useful screening tool for investigations of substrate-P-gp interactions and modulation of P-gp function.
Collapse
Affiliation(s)
- Burak Ozgür
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer-FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
44
|
Abstract
INTRODUCTION In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.
Collapse
Affiliation(s)
- Teruo Murakami
- a Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences , Hiroshima International University , Hiroshima , Japan
| |
Collapse
|
45
|
Ando H, Hatakeyama H, Sato H, Hisaka A, Suzuki H. Determinants of Intestinal Availability for P-glycoprotein Substrate Drugs Estimated by Extensive Simulation With Mathematical Absorption Models. J Pharm Sci 2017; 106:2771-2779. [DOI: 10.1016/j.xphs.2017.04.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 11/15/2022]
|
46
|
A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics. J Pharm Sci 2017; 106:2257-2264. [DOI: 10.1016/j.xphs.2017.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
|
47
|
Liu H, Huang L, Li Y, Fu T, Sun X, Zhang YY, Gao R, Chen Q, Zhang W, Sahi J, Summerfield S, Dong K. Correlation between Membrane Protein Expression Levels and Transcellular Transport Activity for Breast Cancer Resistance Protein. Drug Metab Dispos 2017; 45:449-456. [PMID: 28209803 DOI: 10.1124/dmd.116.074245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/10/2017] [Indexed: 02/13/2025] Open
Abstract
Emerging evidence indicates an important role for the breast cancer resistance protein (BCRP) in limiting brain penetration of substrate drugs. While in vitro transwell assays can provide an indication of BCRP substrate potential, the predictability of these assays in relation to in vivo brain penetration is still under debate. The present study examined the correlation of BCRP membrane protein expression level and transcellular transport activity across Madin-Darby canine kidney (MDCK) II monolayers. We expressed human BCRP or murine BCRP1 in MDCKII wild-type cells using BacMam2 virus transduction. The selective P-glycoprotein (P-gp) inhibitor LY335979 (1 μM) was included in the transport medium to measure BCRP-mediated transcellular transport for P-gp and BCRP cosubstrates. The BCRP levels in membrane extracts from MDCKII-BCRP or MDCKII-Bcrp1 cells were quantified by liquid chromatography-tandem mass spectrometry. The results are summarized as follows: 1) the membrane protein expression levels correlate with the corrected efflux ratios of substrates for human BCRP and murine BCRP1 within the efflux ratios investigated; 2) we demonstrate good concordance in rank order between the BCRP and BCRP1-mediated efflux ratios for 12 drugs; and 3) we propose an approach to contextualize in vitro BCRP transport data of discovery compounds by comparing them to the in vitro and in vivo transport data of the reference drug dantrolene and taking into account interbatch variation in BCRP expression. This approach correctly predicted compromised brain penetration for 25 discovery compounds in rodents, which were BCRP substrates but not P-gp or weak P-gp substrates. These results suggest that BCRP-expressing MDCKII cells are useful in predicting the in vivo role of BCRP in brain penetration.
Collapse
Affiliation(s)
- Houfu Liu
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Liang Huang
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Yi Li
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Tingting Fu
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Xueying Sun
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Yan-Yan Zhang
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Ruina Gao
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Qingfang Chen
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Wandong Zhang
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Jasminder Sahi
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Scott Summerfield
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| | - Kelly Dong
- Departments of Mechanistic Safety and Disposition (H.L., T.F., X.S.), Bioanalysis, Immunogenicity and Biomarker (L.H., R.G., K.D.), Protein, Cellular and Structural Sciences (Q.C.), Modeling and Computational Sciences (Y.-Y.Z.), Integrated Biological Platform Sciences (W.Z.), and Drug Metabolism and Pharmacokinetics (Y.L., J.S.), Platform Technology and Science, GlaxoSmithKline R&D China; and Department of Bioanalysis, Immunogenicity and Biomarker (S.S.), Platform Technology and Science, GlaxoSmithKline, Ware, United Kingdom
| |
Collapse
|
48
|
Pedersen JM, Khan EK, Bergström CAS, Palm J, Hoogstraate J, Artursson P. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). Eur J Pharm Sci 2017; 103:70-76. [PMID: 28263911 DOI: 10.1016/j.ejps.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Drug transport and drug-drug interactions (DDI) with human ABC transporters are generally investigated in mammalian cell lines or inverted membrane vesicles from insect cells (Sf9) overexpressing the transporter of interest. In this study, we instead used membrane vesicles from human embryonic kidney cells (HEK293) overexpressing wild type MDR1/Pgp (ABCB1), BCRP (ABCG2), and MRP2 (ABCC2) with the aim to study the concentration dependent inhibition of shared and prototypic probe substrates. We first investigated 15 substrates and identified estrone-17-beta-glucorinide (E17G) as shared substrate. Nine specific and general inhibitors were then studied using E17G and prototypic probe substrates. The results were compared with those previously obtained in Sf9 vesicles and cell lines of canine (MDCKII) and human (Saos-2) origin. For the majority of inhibitors, Ki values differed <10-fold between E17G and probe substrates. Significant differences in Ki values were observed for about one third of the inhibitors. The transport inhibition potencies in HEK293 vesicles were in good agreement with those obtained in Sf9 vesicles. Large differences were found in the inhibition potencies observed in the vesicular systems compared to the cellular systems. Nevertheless, the rank order correlations between the different experimental systems were generally good. Our study provides further information on substrate dependent inhibition of ABC-transporters, and suggests that simple ranking of compounds can be used as a tier one approach to bridge results obtained in different experimental systems.
Collapse
Affiliation(s)
| | - Elin K Khan
- Department of Pharmacy, Uppsala Univeristy, Uppsala, Sweden
| | | | - Johan Palm
- Pharmaceutical Technology and Development, AstraZeneca R&D Gothenburg, SE-43183 Mölndal, Sweden
| | - Janet Hoogstraate
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, Sweden
| | - Per Artursson
- Department of Pharmacy and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Takano J, Maeda K, Bolger MB, Sugiyama Y. The Prediction of the Relative Importance of CYP3A/P-glycoprotein to the Nonlinear Intestinal Absorption of Drugs by Advanced Compartmental Absorption and Transit Model. Drug Metab Dispos 2016; 44:1808-1818. [PMID: 27538919 DOI: 10.1124/dmd.116.070011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/17/2016] [Indexed: 02/13/2025] Open
Abstract
Intestinal CYP3A and P-glycoprotein (P-gp) decrease the intestinal absorption of substrate drugs. Since substrate specificity of CYP3A often overlaps that of P-gp, and estimation of their saturability in the intestine is difficult, dose-dependent FaFg (fraction of the administered drugs that reach the portal blood) of substrate drugs and the relative importance of CYP3A and P-gp have not been clarified in many cases. Thus, we tried to establish the universal methodology for predicting the in vivo absorption of several CYP3A and/or P-gp substrates from in vitro assays. One of the key points is to set up the scaling factor (SF), correcting the difference between the observed in vivo clearance and the predicted clearance from in vitro data. The SFs of Vmax for CYP3A (SFCYP3A) and P-gp (SFP-gp) were simultaneously optimized to explain the FaFg of CYP3A and/or P-gp substrate drugs. The best predictability of FaFg was achieved when considering both SFCYP3A and SFP-gp The simulation also clarified the relative importance of CYP3A and P-gp in determining FaFg In particular, the nonlinear intestinal absorption of verapamil was caused by the saturation of intestinal CYP3A, whereas that of quinidine was governed by the saturation of both CYP3A and P-gp. In addition, the dose-dependent FaFg of selective and dual CYP3A and/or P-gp substrates was well predicted. We therefore propose a methodology for predicting the FaFg of drugs using a mathematical model with optimized SFCYP3A and SFP-gp Our methodology is applicable to in vitro-in vivo extrapolation of intestinal absorption, even if absolute in vivo functions of enzymes/transporters are unclear.
Collapse
Affiliation(s)
- Junichi Takano
- Kyorin Pharmaceutical Co., Ltd., Tokyo, Japan (J.T.); Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M.); Simulations Plus, Inc., Lancaster, California (M.B.B.); and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Kanagawa, Japan (Y.S.)
| | - Kazuya Maeda
- Kyorin Pharmaceutical Co., Ltd., Tokyo, Japan (J.T.); Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M.); Simulations Plus, Inc., Lancaster, California (M.B.B.); and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Kanagawa, Japan (Y.S.)
| | - Michael B Bolger
- Kyorin Pharmaceutical Co., Ltd., Tokyo, Japan (J.T.); Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M.); Simulations Plus, Inc., Lancaster, California (M.B.B.); and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Kanagawa, Japan (Y.S.)
| | - Yuichi Sugiyama
- Kyorin Pharmaceutical Co., Ltd., Tokyo, Japan (J.T.); Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M.); Simulations Plus, Inc., Lancaster, California (M.B.B.); and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Kanagawa, Japan (Y.S.)
| |
Collapse
|
50
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|