Published online Oct 27, 2022. doi: 10.5496/wjmg.v10.i2.7
Peer-review started: March 5, 2022
First decision: June 16, 2022
Revised: June 28, 2022
Accepted: October 12, 2022
Article in press: October 12, 2022
Published online: October 27, 2022
Processing time: 235 Days and 21.9 Hours
Epigenetic disruptions have been implicated in some cases of infertility and can serve as therapeutic targets. However, the involvement of epigenetics in infertility has not received adequate attention.
This study aimed to determine the epigenetic basis of infertility in order to enhance public knowledge.
Relevant articles on the subject were collected from PubMed, RCA, Google Scholar, SpringerLink, and Scopus. The articles were pooled together and duplicates were removed using Endnote software.
Available information shows that epigenetic mechanisms, mainly DNA methylation, histone modification, and microRNA interference are necessary for normal gametogenesis and embryogenesis. As a result, epigenetic disruptions in genes that control gametogenesis and embryogenesis, such as DDX3X, ADH4, AZF, PLAG1, D1RAS3, CYGB, MEST, JMJD1A, KCNQ1, IGF2, H19, and MTHFR may result in infertility. Aberrant DNA methylation during genomic imprinting and parental epigenetic mark erasures, in particular, may affect the DNA epigenomes of sperm and oocytes, resulting in reproductive abnormalities. Histone epigenetic dysregulation during oocyte development and histone-protamine replacement in the sperm may also cause reproductive abnormalities. Furthermore, overexpression or repression of certain microRNAs embedded in the ovary, testis, embryo, as well as granulosa cells and oocytes may impair reproduction. Male infertility is characterized by spermatogenesis failure, which includes oligozoospermia, asthenozoospermia, and teratozoospermia, while female infertility is characterized by polycystic ovary syndrome. Some epigenetic modifications can be reversed by deactivating the regulatory enzymes, implying that epigenetic reprogramming could help treat infertility in some cases. For some disorders, epigenetic drugs are available, but none have been formulated for infertility.
Some cases of infertility have an epigenetic etiology and can be treated by reversing the same epigenetic mechanism that caused it. As a result, medical practitioners are urged to come up with epigenetic treatments for infertility that have an epigenetic cause.
Core Tip: This article reviews the role of epigenetics in the etiology of infertility, which can be used as a therapeutic target. Some cases of infertility are due to epigenetic disruptions, and this is probably the cause of unknown etiology in some cases of infertility. However, there is little awareness on this subject, hindering its application in mainstream medicine.