1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Wang W, Liu Q, Yang Q, Fu S, Zheng D, Su Y, Xu J, Wang Y, Piao H, Liu K. 3D-printing hydrogel programmed released exosomes to restore aortic medial degeneration through inhibiting VSMC ferroptosis in aortic dissection. J Nanobiotechnology 2024; 22:600. [PMID: 39367412 PMCID: PMC11453022 DOI: 10.1186/s12951-024-02821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024] Open
Abstract
Aortic dissection (AD) is a devastating disease with a high mortality rate. Exosomes derived from mesenchymal stem cells (exo-MSCs) offer a promising strategy to restore aortic medial degeneration and combat ferroptosis in AD. However, their rapid degradation in the circulatory system and low treatment efficiency limit their clinical application. Methylacrylated gelatin (Gelma) was reported as a matrix material to achieve controlled release of exosomes. Herein, exo-MSCs-embedded in Gelma hydrogels (Gelma-exos) using ultraviolet light and three-dimensional (3D) printing technology. These Gelma-exos provide a sustained release of exo-MSCs as Gelma gradually degrades, helping to restore aortic medial degeneration and prevent ferroptosis. The sustained release of exosomes can inhibit the phenotypic switch of vascular smooth muscle cells (VSMCs) to a proliferative state, and curb their proliferation and migration. Additionally, the 3D-printed Gelma-exos demonstrated the ability to inhibit ferroptosis in vitro, in vivo and ex vivo experiments. In conclusion, our Gelma-exos, combined with 3D-printed technology, offer an alternative treatment approach for repairing aortic medial degeneration and ferroptosis in AD, potentially reducing the incidence of aortic dissection rupture.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Qing Liu
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiwei Yang
- China Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songning Fu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yale Su
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Jinyu Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China.
| |
Collapse
|
3
|
叶 芷, 农 雪, 王 艳, 车 光, 周 斌, 黄 建, 张 林. [Expression of circRNA_051778 in Lung Adenocarcinoma-Associated Malignant and Tuberculous Pleural Effusions and Its Clinical Significance]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1254-1263. [PMID: 39507963 PMCID: PMC11536259 DOI: 10.12182/20240960302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/26/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the expression and clinical significance of circular RNA (circRNA) 051778 in lung adenocarcinoma-malignant pleural effusion (LA-MPE) and tuberculous pleural effusion (TPE). Methods This is a cross-sectional study. A total of 212 patients were recruited from the Jiangxi Chest Hospital between October 2018 and September 2019, and their pleural effusion samples and/or plasma samples were collected. The exosomal circRNA profile was sketched by circRNA microarray. Differentially expressed circRNAs (DECs) were verified by droplet digital PCR. In addition, a putative circRNA-miRNA-mRNA network was constructed, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the functions of the DECs. The diagnostic value of circRNA_051778 was evaluated by binary logistic regression and receiver operating characteristic curve. Results The expression level of circRNA_051778 in the LA-MPE samples was (3.92±0.48) copies/100 ng cDNA, while that in the TPE samples was (21.53±2.22) copies/100 ng cDNA. Compared to that in the TPE samples, circRNA_051778 was significantly downregulated in the LA-MPE samples (P<0.001). The potential targets of circRNA_051778 were enriched in positive regulation of GTPase activity, cytoplasm, protein binding, and cancer-related pathways. The area under the curve (AUC) for the combined assessment of circRNA_051778 with liquid-based thin-layer cytology (TCT), erythrocyte sedimentation rate (ESR), and tuberculosis antibody (TBA) was 0.98 (95% confidence interval: 0.97-1.00), with the sensitivity being 88.0% and the specificity being 100.0%. Conclusion Exosomal circRNA_051778 is downregulated in LA-MPE. According to the findings from the GO and KEGG analyses, exosomal circRNA_051778 may play a role in cancer development and has the potential to serve as a marker for differential diagnostic of LA-MPE and TPE when it is used in combination with TCT, ESR, and TBA.
Collapse
Affiliation(s)
- 芷杉 叶
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 雪萍 农
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 艳云 王
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 光璐 车
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 斌 周
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 建华 黄
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 林 张
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- 江西省胸科医院 病理科 (南昌 330006)Department of Pathology, Jiangxi Chest Hospital, Nanchang 330006, China
| |
Collapse
|
4
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
5
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
7
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
8
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Khan FB, Uddin S, Elderdery AY, Goh KW, Ming LC, Ardianto C, Palakot AR, Anwar I, Khan M, Owais M, Huang CY, Daddam JR, Khan MA, Shoaib S, Khursheed M, Reshadat S, Khayat Kashani HR, Mirza S, Khaleel AA, Ayoub MA. Illuminating the Molecular Intricacies of Exosomes and ncRNAs in Cardiovascular Diseases: Prospective Therapeutic and Biomarker Potential. Cells 2022; 11:cells11223664. [PMID: 36429092 PMCID: PMC9688392 DOI: 10.3390/cells11223664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accumulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering all these aspects, this review provides a comprehensive overview of the recent understanding of exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited to harness their potential as a therapeutic intervention and prospective biomarker against CVDs. Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a reality in near future.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| | - Abdul Rasheed Palakot
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohsina Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel
| | - Meraj Alam Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children & DigiBiomics Inc, Toronto, ON M51X8, Canada
| | - Shoaib Shoaib
- Department Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Sara Reshadat
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan 3513119111, Iran
| | | | - Sameer Mirza
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abbas A. Khaleel
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| |
Collapse
|
10
|
Liao H, Chai Y, Sun Y, Guo Z, Wang X, Wang Z, Wang Z, Wang Z. Hsa_circ_0074158 regulates the endothelial barrier function in sepsis and its potential value as a biomarker. Front Genet 2022; 13:1002344. [DOI: 10.3389/fgene.2022.1002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Sepsis is one of the main causes of death in critically ill patients with high morbidity and mortality. Circular RNAs (CircRNAs) are aberrantly expressed, and play significant regulatory roles in many diseases. However, the expression profiles and functions of circRNAs in sepsis have not yet been fully clarified.Methods: Our present study performed an RNA sequencing (RNA-seq) analysis to assess the expression profiles of circRNAs in vitro. We applied the quantitative real-time polymerase chain reaction (RT-qPCR) to verify the RNA-seq results. The analyses of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the competitive endogenous RNA (ceRNA) regulatory networks, were performed to explore the potential mechanism in sepsis. And then, significantly up-regulated differentially expressed (DE) circRNA, hsa_circ_0074158, was selected for further study. Hsa_circ_0074158 was silenced to investigate its regulatory function in sepsis, and the barrier function was also examined in vitro. Endothelial cell junctions were valued using Vascular endothelial cadherin (VE-cadherin), which was detected by immunofluorescence staining. We measured endothelial permeability by transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran extravasation.Results: In total, 203 significantly DE circRNAs, including 77 up-regulated and 126 down-regulated, were identified. In vitro, the RT-qPCR assay showed that the expression pattern of hsa_circ_0074158, hsa_circ_RSBN1L_11059, hsa_circ_0004188, and hsa_circ_0005564 were consistent with the results from RNA-seq analysis. The expression of hsa_circ_0074158 detected by RT-qPCR in vivo was also consistent with the RNA-seq results. The ceRNA networks, GO enrichment, and the KEGG pathway analyses revealed that circRNAs may be related to the barrier function in sepsis. The immunofluorescence assay showed that the suppression of hsa_circ_0074158 expression significantly enhanced the expression of VE-cadherin, which was suppressed in lipopolysaccharide (LPS)-induced sepsis. Additionally, hsa_circ_0074158 knockdown could partially reverse the LPS-induced TEER reduction and FITC-dextran extravasation elevation in sepsis.Conclusion: In conclusion, we have found DE circRNAs could serve as potential biomarkers and therapeutic targets for sepsis. Hsa_circ_0074158 plays a vital role in sepsis and is related to the disruption of the endothelial barrier.
Collapse
|
11
|
Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells 2022; 11:cells11050777. [PMID: 35269399 PMCID: PMC8908994 DOI: 10.3390/cells11050777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Heart failure is a major global health concern. Noncoding RNAs (ncRNAs) are involved in physiological processes and in the pathogenesis of various diseases, including heart failure. ncRNAs have emerged as critical components of transcriptional regulatory pathways that govern cardiac development, stress response, signaling, and remodeling in cardiac pathology. Recently, studies of ncRNAs in cardiovascular disease have achieved significant development. Here, we discuss the roles of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) that modulate the cardiac hypertrophy and heart failure.
Collapse
|
12
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
13
|
Tian C, Liu J, Di X, Cong S, Zhao M, Wang K. Exosomal hsa_circRNA_104484 and hsa_circRNA_104670 may serve as potential novel biomarkers and therapeutic targets for sepsis. Sci Rep 2021; 11:14141. [PMID: 34238972 PMCID: PMC8266806 DOI: 10.1038/s41598-021-93246-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
In order to explore the role of exosomal circRNAs in the occurrence and development of sepsis, we looked for potential diagnostic markers to accurately identify sepsis and to lay a molecular basis for precise treatment. Ultracentrifugation was used to extract exosomes from the serum of patients with sepsis and healthy individuals. Then, changes in circRNA expression in exosomes were studied by circRNA microarray analysis. Gene ontology (GO) analysis and Kyoto City Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used to annotate the biological functions and pathways of genes, and a circRNA-miRNA-mRNA regulatory network was constructed. In the microarray analysis, 132 circRNAs were significantly differentially expressed, including 80 and 52 that were upregulated and downregulated, respectively. RT-qPCR verified the results of microarray analysis: hsa_circRNA_104484 and hsa_circRNA_104670 were upregulated in sepsis serum exosomes. ROC analysis showed that hsa_circRNA_104484 and hsa_circRNA_104670 in serum exosomes have the potential to be used as diagnostic markers for sepsis. The circRNA-miRNA-mRNA network predicted the potential regulatory pathways of differentially expressed circRNAs. There are differences in the expression of circRNA in serum exosomes between patients with sepsis and healthy individuals, which may be involved in the occurrence and development of the disease. Among them, elevations in hsa_circRNA_104484 and hsa_circRNA_104670 could be used as novel diagnostic biomarkers and molecular therapeutic targets.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaying Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
14
|
Abstract
Circular RNAs (circRNAs) have recently been identified as a new class of long noncoding RNAs with gene regulatory roles. These covalently closed transcripts are generated when the pre-mRNA splicing machinery back splices to join a downstream 5' splice site to an upstream 3' splice site. CircRNAs are naturally resistant to degradation by exonucleases and have long half-lives compared with their linear counterpart that potentially could serve as biomarkers for disease. Recent evidence highlights that circRNAs may play an essential role in cardiovascular injury and repair. However, our knowledge of circRNA is still in its infancy with limited direct evidence to suggest that circRNA may play critical roles in the mechanism and treatment of cardiac dysfunction. In this review, we focus on our current understanding of circRNA in the cardiovascular system.
Collapse
|
15
|
Qu Y, Qi L, Hao L, Zhu J. Upregulation of circ-ASPH contributes to glioma cell proliferation and aggressiveness by targeting the miR-599/AR/SOCS2-AS1 signaling pathway. Oncol Lett 2021; 21:388. [PMID: 33777211 PMCID: PMC7988692 DOI: 10.3892/ol.2021.12649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glioma (GM) is the most common type of malignant brain tumor with a high recurrence rate. Circular RNAs (circRNAs) play a key role in mediating tumorigenesis. However, the functions and mechanisms of circRNAs in GM are still not fully understood. A circRNA microarray was performed to identify differentially expressed circRNAs in GM and non-cancerous specimens. Reverse transcription-quantitative PCR was used to detect circ-aspartyl/asparaginyl β-hydroxylase (ASPH) expression in GM tissues and cells. The clinical importance of circ-ASPH was investigated using Kaplan-Meier analysis. The functions of circ-ASPH were investigated in LN229 and U87MG cells. Bioinformatics, RNA immunoprecipitation, RNA pull-down and luciferase reporter assays were used to explore the mechanisms of circ-ASPH in GM. circ-ASPH levels were upregulated in GM specimens and cells. The prognostic role of circ-ASPH was identified in patients with GM. Loss/gain of function assays demonstrated that circ-ASPH increased cell proliferation, migration and invasion in GM cells. Mechanistically, circ-ASPH counteracted microRNA (miR)-599-mediated androgen receptor (AR) suppression by acting as a sponge for miR-599. Rescue assays indicated that circ-ASPH facilitated cell progression by regulating AR expression. Moreover, AR activated long non-coding RNA suppressor of cytokine signaling 2-antisense RNA 1 (SOCS2-AS1) expression in GM cells. Taken together, circ-ASPH/miR-599/AR/SOCS2-AS1 signaling may be a promising biomarker/therapeutic target for GM.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China.,Department of Neurosurgery, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Li Qi
- Department of Nursing, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Liguo Hao
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jian Zhu
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China.,Department of Neurosurgery, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
16
|
Tian M, Xue J, Dai C, Jiang E, Zhu B, Pang H. CircSLC8A1 and circNFIX can be used as auxiliary diagnostic markers for sudden cardiac death caused by acute ischemic heart disease. Sci Rep 2021; 11:4695. [PMID: 33633191 PMCID: PMC7907149 DOI: 10.1038/s41598-021-84056-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden cardiac death (SCD) caused by acute ischemic heart disease (IHD) is a major cause of sudden death worldwide. Circular RNAs (circRNAs) are abundant in the heart and play important roles in cardiovascular diseases, but the role of circRNAs as biomarkers in the forensic diagnosis of SCD caused by acute IHD remains poorly characterized. To investigate the potential of two heart-enriched circRNAs, circNFIX and circSLC8A1, we explored the expression of these two circRNAs in different kinds of commonly used IHD models, and further verified their expressions in forensic autopsy cases. The results from both the IHD rat and H9c2 cell models revealed that circSlc8a1 level was upregulated, while the circNfix level was elevated in the early stage of ischemia and subsequently downregulated. The time-dependent expression patterns of the two circRNAs suggested their potential as SCD biomarkers. In autopsy cases, the results showed that the expression of these two circRNAs in the myocardium with acute IHD-related SCDs corresponded to the observations in the ischemic models. Further analysis related to myocardial ischemia indicated that circSLC8A1 showed high sensitivity and specificity for myocardial infarction and was positively correlated with creatine kinase MB in pericardial fluid. Downregulated circNFIX level could indicate the ischemic myocardial damage, and it was negatively correlated with the coronary artery stenosis grade. The combination of circSLC8A1 and circNFIX had better performance to discriminate IHD-related SCDs. The results suggested that circSLC8A1 and circNFIX may be used as auxiliary diagnostic markers for SCD caused by acute IHD in forensic medicine.
Collapse
Affiliation(s)
- Meihui Tian
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Jiajia Xue
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Cuiyun Dai
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Enzhu Jiang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China.
| |
Collapse
|
17
|
Circular RNAs in Sudden Cardiac Death Related Diseases: Novel Biomarker for Clinical and Forensic Diagnosis. Molecules 2021; 26:molecules26041155. [PMID: 33670057 PMCID: PMC7926443 DOI: 10.3390/molecules26041155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
The prevention and diagnosis of sudden cardiac death (SCD) are among the most important keystones and challenges in clinical and forensic practice. However, the diagnostic value of the current biomarkers remains unresolved issues. Therefore, novel diagnostic biomarkers are urgently required to identify patients with early-stage cardiovascular diseases (CVD), and to assist in the postmortem diagnosis of SCD cases without typical cardiac damage. An increasing number of studies show that circular RNAs (circRNAs) have stable expressions in myocardial tissue, and their time- and tissue-specific expression levels might reflect the pathophysiological status of the heart, which makes them potential CVD biomarkers. In this article, we briefly introduced the biogenesis and functional characteristics of circRNAs. Moreover, we described the roles of circRNAs in multiple SCD-related diseases, including coronary artery disease (CAD), myocardial ischemia or infarction, arrhythmia, cardiomyopathy, and myocarditis, and discussed the application prospects and challenges of circRNAs as a novel biomarker in the clinical and forensic diagnosis of SCD.
Collapse
|
18
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Ma Q, Huai B, Liu Y, Jia Z, Zhao Q. Circular RNA circ_0020123 Promotes Non-Small Cell Lung Cancer Progression Through miR-384/TRIM44 Axis. Cancer Manag Res 2021; 13:75-87. [PMID: 33442296 PMCID: PMC7800473 DOI: 10.2147/cmar.s278913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Background It was reported that circular RNAs (circRNAs) and microRNAs (miRNAs) were related to non-small cell lung cancer (NSCLC) development. However, the detailed mechanisms of circ_0020123 and miR-384 in NSCLC are elusive. Methods QRT-PCR and Western blot assay were performed to detect the transcription and protein levels of genes, respectively. Then, the functional experiments, including MTT assay, flow cytometry, and transwell assay, were employed. Besides, the interaction between miR-384 and circ_0020123 or tripartite motif‑containing protein 44 (TRIM44) was predicted by starbase or targetscan, and then verified by the dual-luciferase reporter, RNA pull-down assays and RNA immunoprecipitation assay (RIP). Mouse xenograft assay was performed to evaluate the effect of circ_0020123 on tumor growth in vivo. Results Levels of circ_0020123 and TRIM44 were enhanced, and the miR-384 level was attenuated in NSCLC tissues and cells. Circ_0020123 depletion attenuated the abilities of NSCLC cell viability, migration, invasion, and epithelial–mesenchymal transition (EMT), and induced apoptosis. Besides, circ_0020123 interacted with miR-384, and miR-384 targeted TRIM44. Circ_0020123 regulated cell progression by regulating miR-384 and subsequently mediated TRIM44 expression. Besides, circ_0020123 depletion repressed tumor growth in vivo. Conclusion We demonstrated that circ_0020123 knockdown suppressed NSCLC cell progression by regulating the miR-384/TRIM44 axis, providing the theoretical basis for the therapy of NSCLC.
Collapse
Affiliation(s)
- Qingshan Ma
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Baogang Huai
- Department of Pulmonary Disease, Pinyi County Hospital of Traditional Chinese Medicine, Linyi, Shandong 273300, People's Republic of China
| | - Yuting Liu
- University Department, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zhongyao Jia
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Qilong Zhao
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| |
Collapse
|
20
|
Xie W, He M, Liu Y, Huang X, Song D, Xiao Y. CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis. J Reprod Dev 2020; 66:493-504. [PMID: 32801258 PMCID: PMC7768166 DOI: 10.1262/jrd.2019-165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNA (circRNA) plays a key role in the development and progression of several diseases; however, its role in intrauterine adhesions (IUAs) is not well understood. This study aims to investigate the expression profiles and potential role of circRNA in IUA. RNA-sequencing was performed to screen for abnormally expressed circRNAs in TGF-β1-induced IUA endometrial stromal cell (ESC) model (IUA group) and an SMAD3 inhibitor, SIS3-treated IUA ESC model (SIS3 group). Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to uncover the key functions and pathways. Interaction networks were constructed and analyzed based on the competing endogenous RNA hypothesis of circRNA. CircRNAs were validated by Sanger sequencing and quantitative polymerase chain reaction (qPCR). Cell proliferation and apoptosis were measured using MTS and flow cytometry, respectively. The protein and mRNA expression levels of fibrosis-related proteins were measured using western blotting and reverse transcription-qPCR, respectively. A total of 66 circRNAs were differentially expressed between the IUA and SIS3 groups. CircPlekha7 was identified as one of the significantly upregulated circRNAs in the SIS3 group. Overexpression of circPlekha7 enhanced apoptosis, decreased the viability of ESCs, and suppressed the expression of α-SMA, collagen I, and SMAD3 in ESCs; whereas knockdown of circPlekha7 exhibited opposite results. Altogether, the results indicate that circPlekha7 plays an anti-fibrotic role in IUA and may serve as a promising prognostic biomarker for patients with IUA. Therefore, overexpression of circPlekha7 could be a potential treatment strategy for IUA.
Collapse
Affiliation(s)
- Wei Xie
- Hysteroscopic Centre, Fu Xing Hospital, Capital Medical University, Beijing100038, China
| | - Min He
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Yuhuan Liu
- Hysteroscopic Centre, Fu Xing Hospital, Capital Medical University, Beijing100038, China
| | - Xiaowu Huang
- Hysteroscopic Centre, Fu Xing Hospital, Capital Medical University, Beijing100038, China
| | - Dongmei Song
- Hysteroscopic Centre, Fu Xing Hospital, Capital Medical University, Beijing100038, China
| | - Yu Xiao
- Hysteroscopic Centre, Fu Xing Hospital, Capital Medical University, Beijing100038, China
| |
Collapse
|
21
|
Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:101-118. [PMID: 33335796 PMCID: PMC7732971 DOI: 10.1016/j.omtn.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
22
|
Hou C, Gu L, Guo Y, Zhou Y, Hua L, Chen J, He S, Zhang S, Jia Q, Zhao C, Zhang J, Xu G, Jia E. Association between circular RNA expression content and severity of coronary atherosclerosis in human coronary artery. J Clin Lab Anal 2020; 34:e23552. [PMID: 32889742 PMCID: PMC7755800 DOI: 10.1002/jcla.23552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may act as biomarkers of coronary artery disease (CAD). However, the relationship between expression characteristics of circRNAs and coronary atherosclerosis has not been fully explored. The aim of this study was to determine and characterize the circRNAs from human coronary artery. METHODS The coronary artery segments were obtained from an 81-year-old male patient with sudden death of myocardial infarction at autopsy. The coronary stenosis and atherosclerosis were evaluated by hematoxylin and eosin (H&E) staining, and the circRNAs expression profile was characterized by RNA sequencing (RNA-seq). The differentially expressed circRNAs were validated by qRT-PCR. RESULTS The analysis of H&E staining indicated that coronary atherosclerosis grade and extent in the LM was more serious than that in other coronary arteries. Twenty-seven circRNAs were selected for expression validation in coronary artery. CircRNAs corresponding cyclization sites of 3 circRNAs (hsa_circ_0016868, hsa_circ_0001364, hsa_circ_0006731) have been verified by Sanger sequencing. CONCLUSION The 3 circRNAs are suggested to play a pathological role underlying the coronary arteries atherosclerosis and may serve as a valuable resource as diagnostic or therapeutic targets against CAD.
Collapse
Affiliation(s)
- Can Hou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingfeng Gu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Hua
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenhui Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Zhang C, Huo ST, Wu Z, Chen L, Wen C, Chen H, Du WW, Wu N, Guan D, Lian S, Yang BB. Rapid Development of Targeting circRNAs in Cardiovascular Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:568-576. [PMID: 32721877 PMCID: PMC7390851 DOI: 10.1016/j.omtn.2020.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are circularized, single-stranded RNAs that are covalently linked. With their abundance in tissues and developmental stage-specific expression, circRNAs participate in a variety of physiological and pathological processes. In this review, we discuss the development of circRNAs used as biomarkers and therapeutic targets for cardiovascular diseases (CVDs), focusing on recent discoveries and applications of exosomal circRNAs that highlight opportunities and challenges. Some studies have identified a spectrum of circRNAs that are differentially expressed in CVDs, while other studies further manipulated specific circRNA expression and showed an ameliorated pathogenic state such as ischemic injury, hypertrophy, and cardiac fibrosis. Studies and applications of circRNAs are being rapidly developed. We expect to see clinical use of circRNAs as biomarkers and targets for disease treatment in the near future.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China; Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Si Tong Huo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, Guangdong Province, China
| | - Lina Chen
- Basic Medical College, Xiangnan University, Chenzhou 523000, China
| | - Chang Wen
- Jiangxi Medical College, Nanchang University, Nanchang 330000, Nanchang, Jiangxi Province, China
| | - Honghao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China; Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
24
|
Maguire EM, Xiao Q. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J 2020; 287:5260-5283. [DOI: 10.1111/febs.15357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Eithne Margaret Maguire
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University China
| |
Collapse
|
25
|
Zhao J, Mu L, Wang Z, Fang X, He X, Zhang X, Xu X. The potential roles of circular RNAs in osteonecrosis of the femoral head (Review). Mol Med Rep 2019; 21:533-539. [PMID: 31974613 PMCID: PMC6947852 DOI: 10.3892/mmr.2019.10866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are categorized as non-coding RNAs that, unlike widely known canonical linear RNAs, form a covalently closed continuous loop without 5′ or 3′ polarities, which enables them to resist digestion by RNA exonucleases. Although the functions of circRNAs remain largely unknown, accumulated evidence has demonstrated that circRNAs can act as microRNA sponges, which allows them to regulate numerous biological processes and disease mechanisms, including apoptosis, angiogenesis, invasion, metastasis and stem cell differentiation. Although research into circRNAs is in its infancy, studies have identified critical roles for circRNAs in the initiation and progression of disease. The present study delineated the characteristics and functions of circRNAs, and focused on the potential relationship between circRNAs and osteonecrosis of the femoral head (ONFH). CircRNAs represent a novel avenue for studying the mechanisms underlying ONFH as well as possible treatments.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Long Mu
- Department of Orthopaedics, Harbin Fifth Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Zhengchun Wang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiangchun Fang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xuefeng He
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaofeng Zhang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xilin Xu
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|