1
|
Rippstein N, Zemmour C, Rodrigues M, Ray-Coquard I, Gladieff L, Pautier P, Frénel JS, Costaz H, Lebreton C, Pomel C, Colombo PE, Marchal F, Guillemet C, de la Motte Rouge T, Eberst L, Bosquet L, Deluche E, Sabatier R. PARP inhibitors as maintenance therapy in ovarian cancer after platinum-sensitive recurrence: real-world experience from the Unicancer network. Oncologist 2025; 30:oyaf075. [PMID: 40349134 PMCID: PMC12065941 DOI: 10.1093/oncolo/oyaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/17/2024] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Based on results of randomized clinical trials, polyADP-ribose polymerase inhibitors (PARPi) have become the standard of care in patients with platinum-sensitive recurrent ovarian cancer (OvC) in patients responding to platinum chemotherapy. However, little is known about their impact on survival in a real-world setting. PATIENTS AND METHODS This retrospective French multicenter observational study included women with platinum-sensitive recurrent OvC (not limited to the first platinum-sensitive relapse) receiving PARPi as maintenance after response to platinum-based chemotherapy. They were compared to patients with similar characteristics undergoing observation after chemotherapy completion. Data were collected in the Ovarian Cancer Epidemiological Strategy and Medical Economics (ESME-OC) database between 2011 and 2021. We explored progression-free survival (PFS) and overall survival (OS) benefits with PARPi maintenance. RESULTS One hundred and twenty-three patients matching the selection criteria were included in the PARPi group and 397 patients in the control group. Median PFS was 19.9 months (95CI [15.0-21.9]) in the PARPi group vs 13.4 months (95CI [11.8-15.0]) in the control group, with a HR = 0.71 (95CI [0.55-0.93]), P = .01). Median OS was 82.0 months (95CI [48.6-Not Estimable]) in the PARPi group vs 44.7 months (95CI [38.8-53.7]) in the control group (HR = 0.47, 95CI [0.30-0.74], P < .001). Multivariate analyses including performance status, histological subtype, achievement of cytoreductive surgery at relapse, and platinum-free interval, confirmed the independent prognostic impact of PARPi treatment. CONCLUSION This first national study focusing on the efficacy of PARPi in a real-world population shows similar benefits than in randomized clinical trials, supporting their use in clinical routine practice. DATABASE REGISTRATION clinicaltrials.gov Identifier NCT03275298.
Collapse
Affiliation(s)
- Nicolas Rippstein
- Medical Oncology Department, Limoges University Hospital, Limoges, France
| | - Christophe Zemmour
- Department of Clinical Research and Investigation. Biostatistics unit. Paoli-Calmettes Institute, Marseille, France
| | - Manuel Rodrigues
- Medical Oncology Department, Curie Institute, University of Paris, Paris, France
| | | | - Laurence Gladieff
- Medical Oncology Department, Oncopole Claudius Régaud IUCT, Toulouse, France
| | | | - Jean-Sébastien Frénel
- Institut de Cancérologie de L’Ouest, Medical Oncology Department, Saint-Herblain, France
| | - Hélène Costaz
- Surgical Oncology Department, Georges-François Leclerc Cancer Center, Dijon, France
| | - Coriolan Lebreton
- Medicla Oncology Department, Institut Bergonié, 12 ARTiST lab, Inserm U1312, Université de Bordeaux, Bordeaux, France
| | - Christophe Pomel
- Surgical Oncology Department, Jean Perrin Cancer Center, Unité Inserm IMOST, Université de Clermont Auvergne, Clermont-Ferrand, France
| | | | - Frédéric Marchal
- Surgical Oncology Department, Lorraine Cancer Institute, Université de Lorraine, Nancy, France
| | - Cécile Guillemet
- Medical Oncology Department, Henri Becquerel Cancer Center, Rouen, France
| | | | - Lauriane Eberst
- Medical Oncology Department, Institut de Cancérologie de Strasbourg Europe, Strasbourg, France
| | - Lise Bosquet
- Health Data and Partnerships Departement, Unicancer, Paris, France
| | - Elise Deluche
- Medical Oncology Department, Limoges University Hospital, Limoges, France
| | - Renaud Sabatier
- Aix-Marseille Univ, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| |
Collapse
|
2
|
Zhong L, Wang H, Lei C, Zou D. Bevacizumab combined with chemotherapy could be superior to chemotherapy alone in relapsed ovarian cancer after PARPi: evidence from a multi-center propensity score-matched analysis. J Gynecol Oncol 2025; 36:e36. [PMID: 39392165 PMCID: PMC12099040 DOI: 10.3802/jgo.2025.36.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVE A retrospective, multi-center propensity score-matched (PMS) analysis was conducted to investigate the efficacy and safety of the treatment strategy that combines bevacizumab and chemotherapy for patients with relapsed epithelial ovarian cancer (EOC) who previously received poly ADP-ribose polymerase inhibitors (PARPis). METHODS A total of 250 ovarian cancer (OC) patients relapsed after PARPi received chemotherapy with or without bevacizumab at 4 medical centers were enrolled in the study. For both treatments, Kaplan-Meier analysis and Cox regression were used to compare PFS. RESULTS In the multivariable analysis of 250 patients, the incorporation of bevacizumab into chemotherapy demonstrated a significant enhancement in PFS (hazard ratio [HR]=0.49; 95% confidence interval [CI]=0.34-0.72; p<0.001). Fifty-five patients were enrolled in Group A (bevacizumab combined with chemotherapy) and 55 were enrolled in Group B (chemotherapy alone regime) after PSM analysis. A statistically significant difference in PFS was observed between the 2 regimens (HR=0.62; 95% CI=0.40-0.97; p=0.036), suggesting that the bevacizumab combined with chemotherapy regimen confers superior clinical benefits. The median PFS was 11 months in Group A and 9 months in Group B. A significant variation was noted in PFS between patients without RCRS (HR=0.50; 95% CI=0.30-0.82) and the platinum-resistant subgroup (HR=0.31; 95% CI=0.14-0.68). Adverse effects of Grade 3-4 were more prevalent in Group A than in Group B. Additionally, instances of severe hypertension and bowel perforation were reported solely within Group A. CONCLUSION In patients diagnosed with EOC relapsed after PARPi, the regime of chemotherapy combined with bevacizumab is associated with better PFS.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cuirong Lei
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Zhang J, Ouyang D, Liu M, Xiang Y, Li Z. Research progress on ferroptosis and PARP inhibitors in ovarian cancer: action mechanisms and resistance mechanisms. Front Pharmacol 2025; 16:1598279. [PMID: 40342999 PMCID: PMC12058875 DOI: 10.3389/fphar.2025.1598279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Ovarian cancer, a gynecologic malignancy with high mortality rates, faces persistent therapeutic challenges due to acquired resistance and frequent recurrence with conventional therapies. While poly (ADP-ribose) polymerase (PARP) inhibitors have primarily transformed clinical outcomes through the synthetic lethality mechanism, their long-term efficacy remains constrained by therapeutic resistance. Ferroptosis, a novel programmed cell death modality characterized by iron-dependent lipid peroxidation, has emerged as a promising therapeutic frontier in oncology. This review is the first to summarize the mechanisms of action and resistance associated with both ferroptosis and PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Jiqing Zhang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Obstetrics and Gynecology, Dongguan People’s Hospital, Dongguan, China
| | - Dan Ouyang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Obstetrics and Gynecology, Dongguan People’s Hospital, Dongguan, China
| | - Mu Liu
- Department of Obstetrics and Gynecology, Dongguan People’s Hospital, Dongguan, China
| | - Yuting Xiang
- Department of Obstetrics and Gynecology, Dongguan People’s Hospital, Dongguan, China
| | - Zhongjun Li
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Obstetrics and Gynecology, Dongguan People’s Hospital, Dongguan, China
| |
Collapse
|
4
|
Moretto R, Germani MM, Carullo M, Conca V, Minelli A, Giordano M, Bruno R, Rossini D, Gusmaroli E, De Grandis MC, Antoniotti C, Salvatore L, Passardi A, Tamberi S, Scartozzi M, Pietrantonio F, Lonardi S, Ugolini C, Masi G, Cremolini C. Exploring the Prognostic and Predictive Impact of Genomic Loss of Heterozygosity and Homologous Recombination Deficiency Alterations in Patients With Metastatic Colorectal Cancer. JCO Precis Oncol 2025; 9:e2400567. [PMID: 40249885 DOI: 10.1200/po-24-00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025] Open
Abstract
PURPOSE Genomic loss-of-heterozygosity (gLOH) consists in the loss of chromosomal regions and is associated with homologous recombination repair (HRR) system deficiency. We explored the role of gLOH and HRR-related gene alterations in metastatic colorectal cancer (mCRC). METHODS FoundationOne CDx assay was used to determine the percentage of gLOH and the presence of alterations in 27 HRR-related genes in archival chemo-naïve tumor tissues of patients with mCRC treated with first-line oxaliplatin- or irinotecan-based doublets and triplet ± anti-PD-L1. RESULTS Overall, 243 samples were analyzed. None of the nine deficient mismatch repair/microsatellite instability high tumors were gLOH-high, while 16 (7%) of 234 proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors were gLOH-high. In the pMMR/MSS population, six (3%) and 18 (8%) had at least a biallelic or monoallelic HRR-related gene alteration, respectively. Among patients receiving FOLFOXIRI alone (n = 68) or with an anti-PD-L1 (N = 90), higher benefit from the addition of the immune checkpoint inhibitor (ICI) was observed in the gLOH-high subgroup (n = 12), in terms of both progression-free survival (PFS; Pint = .02) and overall survival (OS; Pint = .03). No differences in PFS or OS were reported between patients treated with first-line oxaliplatin- (n = 40) versus irinotecan-based doublets (n = 25) or with the triplet FOLFOXIRI (n = 68) versus doublets (n = 65), according to the gLOH status. Among patients not receiving an anti-PD-L1, longer PFS was observed in the gLOH-low group (n = 138) versus the gLOH-high (n = 6) group (5.1 v 12.1 months; hazard ratio, 8.73 [95% CI, 3.64 to 20.9]; P < .001), and this was confirmed in the multivariate analysis (P < .001). No prognostic impact of monoallelic or biallelic HRR-related gene alterations was shown. CONCLUSION In pMMR/MSS mCRC, gLOH-high was associated with worse prognosis and higher benefit from the addition of anti-PD-L1 agents to chemotherapy. If confirmed in larger series, these results may inform the design of clinical trials.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Martina Carullo
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Minelli
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Clinical Oncology Unit, San Paolo Hospital, Civitavecchia, Italy
| | - Mirella Giordano
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossella Bruno
- Unit of Pathological Anatomy, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Daniele Rossini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Eleonora Gusmaroli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Caterina De Grandis
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lisa Salvatore
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Stefano Tamberi
- Oncology Unit, Ravenna Hospital, AUSL Romagna, Ravenna, Italy
| | - Mario Scartozzi
- Medical Oncology, University of Cagliari, Via Università, Cagliari, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Santoro A, Angelico G, Travaglino A, Inzani F, Spadola S, Pettinato A, Mazzucchelli M, Bragantini E, Maccio L, Zannoni GF. The multiple facets of ovarian high grade serous carcinoma: A review on morphological, immunohistochemical and molecular features. Crit Rev Oncol Hematol 2025; 208:104603. [PMID: 39732305 DOI: 10.1016/j.critrevonc.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive subtype of epithelial ovarian cancer and a leading cause of mortality among gynecologic malignancies. This review aims to comprehensively analyze the morphological, immunohistochemical, and molecular features of HGSOC, highlighting its pathogenesis and identifying biomarkers with diagnostic, prognostic, and therapeutic significance. Special emphasis is placed on the role of tumor microenvironment (TME) and genomic instability in shaping the tumor's behavior and therapeutic vulnerabilities. Key advancements, such as the identification of TP53 and BRCA mutations, the classification of homologous recombination repair (HRR) deficiencies, and the clinical implications of biomarkers like folate receptor alpha (FRα) and PD-L1 are discussed. These findings reveal actionable insights into targeted therapies, including immune checkpoint inhibitors and PARP inhibitors, which hold promise for improving outcomes in HGSOC. This synthesis of knowledge aims to bridge gaps in understanding HGSOC's multifaceted biology, enhance clinical decision-making, and foster the development of precision therapies.
Collapse
MESH Headings
- Humans
- Female
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/therapy
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Tumor Microenvironment
- Neoplasm Grading
- Immunohistochemistry
- Prognosis
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Mutation
Collapse
Affiliation(s)
- Angela Santoro
- Pathology Institute, Catholic University of Sacred Heart, Rome 00168, Italy; Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, Enna 94100, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia 27100, Italy
| | - Saveria Spadola
- Department of Medicine and Surgery, Kore University of Enna, Enna 94100, Italy
| | - Angela Pettinato
- Department of Pathological Anatomy, A.O.E. Cannizzaro, Via Messina, 829, Catania 95126, Italy
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Emma Bragantini
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento, Italy
| | - Livia Maccio
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento, Italy
| | - Gian Franco Zannoni
- Pathology Institute, Catholic University of Sacred Heart, Rome 00168, Italy; Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy.
| |
Collapse
|
6
|
García-Díaz HC, Larrosa-Garcia M, Gómez-Alonso J, Cruellas M, Felip E, Macarulla T, Farriols A, Carreras MJ. Off-label use of olaparib in uncommon tumor locations in patients with impaired homologous recombination genes. FARMACIA HOSPITALARIA 2025:S1130-6343(25)00017-0. [PMID: 40155245 DOI: 10.1016/j.farma.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVE To describe the effectiveness and safety of olaparib off-label indications in patients with impaired homologous recombination genes and solid tumors different than those authorized. METHODS A single-center, observational and retrospective study including patients treated with olaparib for off-label use. The main variables were patient characteristics, prior therapies, response to therapy, progression-free survival, overall survival and adverse events. RESULTS A total of 6 patients were included. All patients had metastases and received 3 or more lines of prior treatment. The primary tumor locations and mutations were partner and localizer of BRCA2 (PALB2) intrahepatic cholangiocarcinoma, ataxia telangiectasia mutated (ATM) non-small cell lung adenocarcinoma, somatic breast cancer gene (sBRCA2) colorectal cancer, germinal breast cancer gene 2 (gBRCA2) breast neuroendocrine tumor, gBRCA2 ampullary cancer and gBRCA2 pancreatic neuroendocrine tumor. At the end of the study, one patient was still receiving olaparib showing more than 25 months of sustained stable disease response. No novel toxicities were observed besides those included in the product information. CONCLUSIONS There is limited published evidence on the use of olaparib in patients harboring pathogenic variants other than breast cancer genes, like PALB2 and ATM and conditions different than those authorized such as digestive tract, neuroendocrine and lung tumors. Further research is to assess the efficacy of olaparib in these patients.
Collapse
Affiliation(s)
| | | | - Javier Gómez-Alonso
- Department of Pharmacy, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mara Cruellas
- Medical Oncology Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Enriqueta Felip
- Medical Oncology Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Teresa Macarulla
- Medical Oncology Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Anna Farriols
- Department of Pharmacy, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Maria J Carreras
- Department of Pharmacy, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| |
Collapse
|
7
|
Wang Z, Pu T, Miao W, Gao Y, Gao J, Zhang X. Olaparib increases chemosensitivity by upregulating miR-125a-3p in ovarian cancer cells. Discov Oncol 2025; 16:291. [PMID: 40064834 PMCID: PMC11893969 DOI: 10.1007/s12672-025-02048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE Ovarian cancer is associated with the highest mortality rate among all malignant gynecological tumors. PolyADP-ribose polymerase (PARP) inhibitor maintenance therapy is the standard treatment strategy for this type of cancer, and olaparib is a widely used oral PARP inhibitor for tumors with BRCA mutations. The present study aimed to investigate the effects of olaparib in non-BRCA-mutated ovarian cancer and the potential mechanisms involved. METHODS The antitumor effect of cisplatin alone or in combination with olaparib was analyzed in an ovarian cancer subcutaneous transplantation tumor model in nude mice. Furthermore, the differences in microRNA (miRNA) expression levels were analyzed using miRNA arrays. In addition, the effects of miR-125a-3p on the proliferation of non-BRCA-mutated (A2780 and OVCAR-3) ovarian cancer cells were detected using A Cell Counting Kit-8 and changes in the cell cycle were detected using flow cytometry. Furthermore, SPiDER-βGal was used to detect expression changes in cellular senescence, and the expression of DNA damage repair proteins was detected using western blot analysis. RESULTS The results revealed that cisplatin plus olaparib significantly reduced tumor volume in mice subjected to subcutaneous tumor transplantation, and the expression of miR-125a-3p significantly increased with this treatment combination. The overexpression of miR-125a-3p could inhibit cell migration, invasion and induces cell cycle arrest. CONCLUSION On the whole, the present study demonstrates that the increased expression of miR-125a-3p induces DNA damage and senescence in ovarian cancer cells, which enhances the therapeutic sensitivity.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Tao Pu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Weiwei Miao
- College of Pharmacy, Shanghai University of Medicine and Health Science, Shanghai, 201318, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, No.1111, Huchenghuan Road, Pudong New Area, Shanghai, 201306, China.
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| |
Collapse
|
8
|
Wu Y, Zeng Y, Wu Y, Ha X, Feng Z, Liu C, Liu Z, Wang J, Ju X, Huang S, Liang L, Zheng B, Yang L, Wang J, Wu X, Li S, Wen H. HIF-1α-induced long noncoding RNA LINC02776 promotes drug resistance of ovarian cancer by increasing polyADP-ribosylation. Clin Transl Med 2025; 15:e70244. [PMID: 40118782 PMCID: PMC11928293 DOI: 10.1002/ctm2.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Chemoresistance remains a major hurdle in ovarian cancer (OC) treatment, as many patients eventually develop resistance to platinum-based chemotherapy and/or PARP inhibitors (PARPi). METHODS We performed transcriptome-wide analysis by RNA sequencing (RNA-seq) data of platinum-resistant and -sensitive OC tissues. We demonstrated the role of LINC02776 in platinum resistance in OC cells, mice models and patient-derived organoid (PDO) models. RESULTS We identify the long noncoding RNA LINC02776 as a critical factor of platinum resistance. Elevated expression of LINC02776 is observed in platinum-resistant OC and serves as an independent prognostic factor for OC patients. Functionally, silencing LINC02776 reduces proliferation and DNA damage repair in OC cells, thereby enhancing sensitivity to platinum and PARPi in both xenograft mouse models and patient-derived organoid (PDO) models with acquired chemoresistance. Mechanistically, LINC02776 binds to the catalytic domain of poly (ADP-ribose) polymerase 1 (PARP1), promoting PARP1-dependent polyADP-ribosylation (PARylation) and facilitating homologous recombination (HR) restoration. Additionally, high HIF-1α expression in platinum-resistant tissues further stimulates LINC02776 transcription. CONCLUSIONS Our findings suggest that targeting LINC02776 represents a promising therapeutic strategy for OC patients who have developed resistance to platinum or PARPi. KEY POINTS LINC02776 promotes OC cell proliferation by regulating DNA damage and apoptosis signaling pathways. LINC02776 binds PARP1 to promote DNA damage-triggered PARylation in OC cells. LINC02776 mediates cisplatin and olaparib resistance in OC cells by enhancing PARP1-mediated PARylation activity and regulating the PARP1-mediated HR pathway. The high expression of LINC02776 is induced by HIF-1α in platinum-resistant OC cells and tissues.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zeng
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yong Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xinyu Ha
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zheng Feng
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Chaohua Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ziqi Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jiajia Wang
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xingzhu Ju
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Linhui Liang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Bin Zheng
- Accurate International Biotechnology Co. Ltd.GuangzhouChina
| | - Lulu Yang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Jun Wang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Xiaohua Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wen
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Gao R, Wu P, Yin X, Zhuang L, Meng X. Deep analysis of the trials and major challenges in the first-line treatment for patients with extensive-stage small cell lung cancer. Int Immunopharmacol 2025; 148:114116. [PMID: 39847950 DOI: 10.1016/j.intimp.2025.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The median overall survival (OS) is approximately 10 months when chemotherapy alone is the first-line treatment for extensive-stage small cell lung cancer (ES-SCLC). The approval of the two PD-L1 inhibitors, atezolizumab and durvalumab, marked the beginning of the immunotherapy era for ES-SCLC. Serplulimab, as the first PD-1 inhibitor to achieve success in the first-line treatment of ES-SCLC, has not only demonstrated significant improvements in patient survival outcomes but also ushered in a new era for PD-1 inhibitors in the treatment of ES-SCLC. Recently, antiangiogenic agents with chemo-immunotherapy have achieved breakthroughs in first-line ES-SCLC treatment. Improving the clinical benefits of individualized treatment for patients with ES-SCLC remains challenging. Challenges include identifying biomarkers for targeted therapy, exploring new treatments, developing new medicines, and classifying SCLC molecular subtypes. This review provides an in-depth analysis of research on first-line ES-SCLC treatment. Additionally, it discusses advances in ES-SCLC treatment.
Collapse
Affiliation(s)
- Ran Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Peizhu Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Lulu Zhuang
- Cheeloo College of Cancer Center, Shandong University, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.
| |
Collapse
|
10
|
Milella M, Orsi G, di Marco M, Salvatore L, Procaccio L, Noventa S, Bozzarelli S, Garajova I, Vasile E, Giordano G, Macchini M, Cavaliere A, Gaule M, Bergamo F, Chiaravalli M, Palloni A, Carloni R, Bittoni A, Niger M, Rapposelli IG, Rodriquenz MG, Scartozzi M, Mosconi S, Giommoni E, Bernardini I, Paratore C, Spallanzani A, Bencardino K, Forti L, Tamburini E, Lonardi S, Scarpa A, Cascinu S, Tortora G, Sperduti I, Reni M. Real-World Impact of Olaparib Exposure in Advanced Pancreatic Cancer Patients Harboring Germline BRCA1-2 Pathogenic Variants. Cancer Med 2025; 14:e70364. [PMID: 39861955 PMCID: PMC11761426 DOI: 10.1002/cam4.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 10/13/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication. METHODS Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed. RESULTS Of 114, 53 BRCA-mutant pancreatic cancer patients had received olaparib for metastatic disease. OS was significantly longer in patients who were exposed to olaparib (hazard ratio [HR] 0.568, 95% confidence interval [CI] 0.351-0.918, log-rank p = 0.02) in any setting/line of treatment; similar results were obtained for patients who received olaparib as maintenance treatment (in any line of treatment), patients who had stage IV disease at diagnosis, and patients who did not experience progressive disease as their best response to first-line chemotherapy. Exposure to olaparib in the first-line maintenance setting after platinum-based chemotherapy, however, did not significantly impact survival. At multivariate analysis, CA19.9 levels at diagnosis and response to first-line chemotherapy were independently prognostic; however, when response to chemotherapy was excluded, any exposure to olaparib was a significant independent predictor of longer OS, together with CA19.9 levels. CONCLUSION The real-world data presented here support the use of olaparib for metastatic disease in germline BRCA-mutant pancreatic cancer patients, as it may significantly prolong survival.
Collapse
|
11
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
12
|
Chen H, Tan F, Zhang Y, Xie B, Luo A. Enhancing PARP inhibitor efficacy using reduction-responsive nanoparticles encapsulating NADP. J Mater Chem B 2025; 13:955-964. [PMID: 39624987 DOI: 10.1039/d4tb01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown success in cancer chemotherapy; however, not all tumors respond effectively to PARPi treatment, even in the presence of BRCA1/2 mutations or homologous recombination (HR) repair defects. NADP+ was recently identified as an endogenous inhibitor of ADP-ribosylation with the potential to sensitize cancer cells to PARPi, yet its lack of membrane permeability poses a significant challenge to its clinical application. In this study, we developed reduction-responsive nanoparticles (NPs) containing disulfide bonds, which can be cleaved in the reductive environment of tumor cells. These NPs encapsulate NADP+ and the commercially available PARP inhibitor olaparib. The uptake of these NPs significantly increases the intracellular concentration of NADP+, which negatively regulates DNA damage-induced PARylation and impairs DNA damage repair. The combined effects of elevated NADP+ levels and olaparib synergistically suppress tumor cell growth. Overall, our study offers a promising strategy for the clinical application of NADP+.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yukui Zhang
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
13
|
Parola S, Oing C, Rescigno P, Feliciano S, Carlino F, Pompella L, Marretta AL, De Santo I, Viggiani M, Muratore M, Facchini BA, Orefice J, Cioli E, Sparano F, Mallardo D, De Giorgi U, Palmieri G, Ascierto PA, Ottaviano M. PARP inhibitors in testicular germ cell tumors: what we know and what we are looking for. Front Genet 2024; 15:1480417. [PMID: 39678373 PMCID: PMC11638157 DOI: 10.3389/fgene.2024.1480417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Testicular germ cell tumors (TGCTs), the most common malignancies affecting young men, are characterized by high sensitivity to cisplatin-based chemotherapy, which leads to high cure rates even in metastatic disease. However, approximately 30% of patients with metastatic TGCTs relapse after first-line treatment and those who can be defined as platinum-refractory patients face a very dismal prognosis with only limited chemotherapy-based treatment options and an overall survival of few months. Hence, to understand the mechanisms underlying cisplatin resistance is crucial for developing new treatment strategies. This narrative review explores the potential role of PARP inhibitors (PARPis) in overcoming cisplatin resistance in TGCTs, starting from the rationale of their ability to induce DNA damage in cells with homologous recombination repair (HRR). Thus far, PARPis have failed to show meaningful clinical activity in platinum-refractory TGCT patients, either alone or in combination with chemotherapy. However, few responses to PARPis in TGCTs have been detected in patients with BRCA1/2, ATM or CHEK2 mutations, reinforcing the idea that patients should be optimally selected for tailored treatments in the era of personalized medicine. Future preclinical and clinical research is needed to further investigate the molecular mechanisms of cisplatin resistance and to identify novel therapeutic strategies in resistant/refractory TGCTs patients.
Collapse
Affiliation(s)
- Sara Parola
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Christoph Oing
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Salvatore Feliciano
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Francesca Carlino
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Luca Pompella
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | | | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Martina Viggiani
- Medical Oncology Unit, Ospedale San Giuseppe Moscati, ASL Caserta, Aversa, Italy
| | - Margherita Muratore
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Bianca Arianna Facchini
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Orefice
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cioli
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Sparano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Domenico Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
14
|
Kozłowska E, Haltia UM, Puszynski K, Färkkilä A. Mathematical modeling framework enhances clinical trial design for maintenance treatment in oncology. Sci Rep 2024; 14:29721. [PMID: 39613825 DOI: 10.1038/s41598-024-80768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Clinical trials are costly and time-intensive endeavors, with a high rate of drug candidate failures. Moreover, the standard approaches often evaluate drugs under a limited number of protocols. In oncology, where multiple treatment protocols can yield divergent outcomes, addressing this issue is crucial. Here, we present a computational framework that simulates clinical trials through a combination of mathematical and statistical models. This approach offers a means to explore diverse treatment protocols efficiently and identify optimal strategies for oncological drug administration. We developed a computational framework with a stochastic mathematical model as its core, capable of simulating virtual clinical trials closely recapitulating the clinical scenarios. Testing our framework on the landmark SOLO-1 clinical trial investigating Poly-ADP-Ribose Polymerase maintenance treatment in high-grade serous ovarian cancer, we demonstrate that managing toxicity through treatment interruptions or dose reductions does not compromise treatment's clinical benefits. Additionally, we provide evidence suggesting that further reduction of hematological toxicity could significantly improve the clinical outcomes. The value of this computational framework lies in its ability to expedite the exploration of new treatment protocols, delivering critical insights pivotal to shaping the landscape of upcoming clinical trials.
Collapse
Affiliation(s)
- Emilia Kozłowska
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland.
| |
Collapse
|
15
|
Luo Z, Huang Y, Chen S, Zhang B, Huang H, Dabiri S, Chen Y, Zhang A, Andreas AR, Li S. Delivery of PARP inhibitors through 2HG-incorporated liposomes for synergistically targeting DNA repair in cancer. Cancer Lett 2024; 604:217268. [PMID: 39321912 DOI: 10.1016/j.canlet.2024.217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PARP inhibitors (PARPi) benefit only a small subset of patients with DNA homologous recombination (HR) defects. In addition, long-term administration of a PARPi can lead to the development of drug resistance. 2-Hydroxyglutarate (2HG) has long been known as an oncometabolite but is capable of inducing an HR defect, which makes tumor cells exquisitely sensitive to PARPi. To facilitate the translation of this discovery to the treatment of both HR-deficient and HR-proficient tumors, a liposomal formulation was developed for codelivery of 2HG and veliparib, a PARPi. A sequential loading protocol was developed such that the initial loading of 2HG into liposomes greatly facilitated the subsequent, pH gradient-driven remote loading of veliparib. The liposomes co-loaded with veliparib and 2HG exhibited favorable stability, slow kinetics of drug release, and targeted delivery to the tumor. Furthermore, the veliparib/2HG liposomes demonstrated enhanced anti-tumor activity in both PARPi-resistant BRCA mutant cancer and BRCA wildtype cancer by synergistically enhancing the defect in DNA repair. Moreover, combination of veliparib and 2HG via liposomal co-delivery also augmented the function of cytotoxic T cells by activating the STING pathway and downregulating PD-L1 expression via 2HG-induced hypermethylation.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Shangyu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Sheida Dabiri
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Alexis R Andreas
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
17
|
Corti G, Buzo K, Berrino E, Miotto M, Aquilano MC, Lentini M, Bellomo SE, Lorenzato A, Bartolini A, Mauri G, Lazzari L, Russo M, Di Nicolantonio F, Siena S, Marsoni S, Marchiò C, Bardelli A, Arena S. Prediction of homologous recombination deficiency identifies colorectal tumors sensitive to PARP inhibition. NPJ Precis Oncol 2024; 8:231. [PMID: 39402170 PMCID: PMC11473949 DOI: 10.1038/s41698-024-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/17/2024] Open
Abstract
The synthetic lethal effect observed with the use of PARP inhibitors (PARPi) with tumors characterized by the loss of key players in the homologous recombination (HR) pathway, commonly referred to as "BRCAness", is maintaining high interest in oncology. While BRCAness is a well-established feature in breast, ovarian, prostate, and pancreatic carcinomas, our recent findings indicate that up to 15% of colorectal cancers (CRC) also harbor defects in the HR pathway, presenting promising opportunities for innovative therapeutic strategies in CRC patients. We developed a new tool called HRDirect, which builds upon the HRDetect algorithm and is able to predict HR deficiency (HRD) from reference-free tumor samples. We validated HRDirect using matched breast cancer and CRC patient samples. Subsequently, we assessed its efficacy in predicting response to the PARP inhibitor olaparib by comparing it with two other commercial assays: AmoyDx HRD by Amoy Diagnostics and the TruSight Oncology 500 HRD (TSO500-HRD) panel by Illumina NGS technology. While all three approaches successfully identified the most PARPi-sensitive CRC models, HRDirect demonstrated superior precision in distinguishing resistant models compared to AmoyDX and TSO500-HRD, which exhibited overlapping scores between sensitive and resistant cells. Furthermore, we propose integrating HRDirect scoring with ATM and RAD51C immunohistochemical analysis as part of our "composite biomarker approach" to enhance the identification of HRD tumors, with an immediate translational and clinical impact for CRC personalized treatment.
Collapse
Affiliation(s)
- Giorgio Corti
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Kristi Buzo
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Miotto
- Department of Oncology, University of Torino, Torino, Italy
| | - Maria Costanza Aquilano
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marilena Lentini
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | | | | | | | - Gianluca Mauri
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Luca Lazzari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Salvatore Siena
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Torino, Italy.
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Sabrina Arena
- Department of Oncology, University of Torino, Torino, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| |
Collapse
|
18
|
Fenton SE, Hussain M. Olaparib monotherapy or in combination with abiraterone for treating mutated metastatic castration-resistant prostate cancer: alone or stronger together? Expert Opin Investig Drugs 2024; 33:993-999. [PMID: 39135527 DOI: 10.1080/13543784.2024.2391828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Prostate cancer has entered the era of precision medicine with the introduction of PARP inhibitors for patients with specific mutations in genes associated with DNA damage repair. Recent studies have shown benefit in combination therapy with PARP inhibitors like olaparib and antiandrogens like abiraterone. AREAS COVERED This review discusses the pharmacodynamics and pharmacokinetics of olaparib as well as the data supporting combination therapy with olaparib and abiraterone. EXPERT OPINION Co-targeting the androgen receptor and PARP pathway has shown clear clinical benefit in the management of patients with metastatic castration resistant prostate cancer and mutations in BRCA1, BRCA2, and ATM. The benefit in patients without these mutations is less clear, and the benefit of olaparib combination therapy in the management of hormone sensitive disease remains to be seen.
Collapse
Affiliation(s)
- Sarah E Fenton
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Maha Hussain
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Li W, Wei J, Cheng M, Liu M. Unveiling promising targets in gastric cancer therapy: A comprehensive review. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200857. [PMID: 39280587 PMCID: PMC11396074 DOI: 10.1016/j.omton.2024.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, ranking fifth in incidence and third in mortality among all malignancies worldwide. Its insidious onset, aggressive growth, proclivity for metastasis, and limited treatment options have contributed to its high fatality rate. Traditional approaches for GC treatment primarily involve surgery and chemotherapy. However, there is growing interest in targeted therapies and immunotherapies. This comprehensive review highlights recent advancements in GC targeted therapy and immunotherapy. It delves into the mechanisms of various strategies, underscoring their potential in GC treatment. Additionally, the review evaluates the efficacy and safety of relevant clinical trials. Despite the benefits observed in numerous advanced GC patients with targeted therapies and immunotherapies, challenges persist. We discuss pertinent strategies to overcome these challenges, thereby providing a solid foundation for enhancing the clinical effectiveness of targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Wenke Li
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Mo Cheng
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
20
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, for the Australian Ovarian Cancer Study Group, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
21
|
Kim JH, Kim ET, Kim SI, Park EY, Park MY, Park SY, Lim MC. Prognostic Role of CA-125 Elimination Rate Constant (KELIM) in Patients with Advanced Epithelial Ovarian Cancer Who Received PARP Inhibitors. Cancers (Basel) 2024; 16:2339. [PMID: 39001400 PMCID: PMC11240593 DOI: 10.3390/cancers16132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND This multicenter retrospective study aimed to investigate the prognostic value of the CA-125 elimination rate constant K (KELIM) in EOC patients who received platinum-based chemotherapy followed by PARP inhibitors, in either upfront or interval treatment settings. METHODS Between July 2019 and November 2022, we identified stage III-IV EOC patients who underwent primary or interval cytoreductive surgery and received olaparib or niraparib. Individual KELIM values were assessed based on validated kinetics and classified into favorable and unfavorable cohorts. RESULTS In a study of 252 patients undergoing frontline maintenance therapy with olaparib or niraparib, favorable KELIM (≥1) scores were associated with a higher PFS benefit in the primary cytoreductive surgery (PCS) cohort (hazard ratio (HR) for disease progression or death 3.51, 95% confidence interval (CI); 1.37-8.97, p = 0.009). Additionally, within the interval cytoreductive surgery (ICS) cohort, a favorable KELIM score (≥1) significantly increased the likelihood of achieving complete resection following cytoreductive surgery, with 59.4% in the favorable KELIM group compared to 37.8% in those with unfavorable KELIM. CONCLUSIONS A favorable KELIM score was associated with improved PFS in patients with advanced EOC undergoing PCS. Furthermore, in the ICS cohort, a favorable KELIM score increased the probability of complete cytoreduction.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Eun Taeg Kim
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Pusan 49241, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun Young Park
- Biostatistics Collaboration Team, Research Core Center, National Cancer Center, Goyang 10408, Republic of Korea
| | - Min Young Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea
- Rare & Paediatric Cancer Branch and Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
- Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
22
|
Xu Y, Chen YJA, Wu Y, Saverimuthu A, Jadhav A, Bhuiyan R, Sandler J, Yio J, Kumar V. The prognostic and predictive value of homologous recombination deficiency status in patients with advanced stage epithelial ovarian carcinoma after first-line platinum-based chemotherapy. Front Oncol 2024; 14:1372482. [PMID: 38915363 PMCID: PMC11194312 DOI: 10.3389/fonc.2024.1372482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
Objective Homologous recombination (HR) comprises series of interrelated pathways that repair double-stranded DNA breaks and inter-strand crosslinks. It provides support for DNA replication to recover stalled or broken replication forks. Compared with homologous recombination proficiency (HRP), cancers with homologous recombination deficiency (HRD) are more likely to undergo cell death when treated with DNA-damaging agents, such as platinum agents, and have better disease control. Methods Patients diagnosed with stage III/IV ovarian cancer, early stages with recurrence, who received adjuvant chemotherapy after debulking surgery, and who also had known HR status were eligible. Results Forty-four patients were included, with 21 in the HRD group (including 8 with germline mutations) and 23 in the HRP group. The HRD group was composed predominantly of serous carcinoma (95.2%), while mucinous (n=3) and clear cell (n=1) cases were all found in the HRP group. Stage III/IV disease was 66.7% and 91.3% in HRD and HRP groups, respectively (p=0.064). Patients who were optimally debulked to no residual disease was 90.0% and 72.7% (p=0.243), respectively. Late line use of PARP inhibitors was 33.3% and 17.4% (p=0.303). Median PFS was 22.5 months (95% CI, 18.5 - 66.6) and 21.5 months (95% CI, 18.3-39.5) (p=0.49) in HRD and HRP respectively. Median platinum free interval (PFI) was 15.8 months (95% CI 12.4-60.4) and 15.9 months (95% CI 8.3-34.1) (p=0.24), respectively. Median OS was 88.2 months (95% CI 71.2-NA) and 49.7 months (95% CI 35.1-NA) (p=0.21). The PFS of the patients with germline BRCA mutations (n=5) was 54.3 months (95% CI 23.1-NA) and 21.5 months (95% CI 18.3-39.5) in the HRP group (p=0.095); the PFI difference was 47.7 months (95% CI 17.6-NA) in the BRCA mutation group, and 15.9 months (95% CI 12.4-60.4) in HRP, showing statistical significance (p=0.039); while the median OS was NA and 49.7 months (95% CI 35.1-NA) respectively (p=0.051). When adding two additional patients with somatic BRCA mutations to the germline BRCA mutation carriers, the median OS is NA (95% CI 73, NA) versus 49.7 months (95% CI 35.1, NA) for HRP (p=0.045). Conclusions HRD status was not associated with longer PFS or PFI in advanced ovarian cancer who received first line adjuvant platinum-based chemotherapy. Its role as a prognostic marker for overall survival is suggested, particularly in the subgroup with germline and somatic BRCA mutations.
Collapse
Affiliation(s)
- Yiqing Xu
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Yi-Ju Amy Chen
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Weill Cornell Medical College and New York Presbyterian/Queens Hospital, Flushing, NY, United States
| | - Yunhong Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Saverimuthu
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Archana Jadhav
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Rehana Bhuiyan
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Jason Sandler
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Jiang Yio
- Division of Hematologic Oncology, Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY, United States
| | - Vivek Kumar
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
24
|
Cantillo E, Blanc-Durand F, Leary A, Slomovitz BM, Fuh K, Washington C. Updates in the Use of Targeted Therapies for Gynecologic Cancers. Am Soc Clin Oncol Educ Book 2024; 44:e438582. [PMID: 38788185 DOI: 10.1200/edbk_438582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Targeted therapies have changed the treatment landscape in gynecologic cancer. Studies released over the past year have led to the incorporation of immunotherapy (IO) into the treatment for all patients with endometrial and cervical cancers at some point during their disease course. Poly(ADP-ribose) polymerase (PARP) inhibitors continue to play a role in women with ovarian carcinoma, particularly in homologous repair deficient tumors. Furthermore, the benefit of PARP inhibitors in challenging subgroups continues to be elucidated. Biomarker identification has led to the approval or compendium listing of several antibody-drug conjugates (ADCs). This review will update on IO, ADCs, and PARP inhibition for the treatment of gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | - Katherine Fuh
- University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
25
|
Masucci M, Karlsson C, Blomqvist L, Ernberg I. Bridging the Divide: A Review on the Implementation of Personalized Cancer Medicine. J Pers Med 2024; 14:561. [PMID: 38929782 PMCID: PMC11204735 DOI: 10.3390/jpm14060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The shift towards personalized cancer medicine (PCM) represents a significant transformation in cancer care, emphasizing tailored treatments based on the genetic understanding of cancer at the cellular level. This review draws on recent literature to explore key factors influencing PCM implementation, highlighting the role of innovative leadership, interdisciplinary collaboration, and coordinated funding and regulatory strategies. Success in PCM relies on overcoming challenges such as integrating diverse medical disciplines, securing sustainable investment for shared infrastructures, and navigating complex regulatory landscapes. Effective leadership is crucial for fostering a culture of innovation and teamwork, essential for translating complex biological insights into personalized treatment strategies. The transition to PCM necessitates not only organizational adaptation but also the development of new professional roles and training programs, underscoring the need for a multidisciplinary approach and the importance of team science in overcoming the limitations of traditional medical paradigms. The conclusion underscores that PCM's success hinges on creating collaborative environments that support innovation, adaptability, and shared vision among all stakeholders involved in cancer care.
Collapse
Affiliation(s)
- Michele Masucci
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Tomtebodavägen 18B, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Claes Karlsson
- Department of Oncology-Pathology (Onc-Pat), Karolinska Institutet, Anna Steckséns gata 30A, D2:04, 171 65 Solna, Sweden;
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Anna Steckséns gata 53, 171 65 Solna, Sweden;
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
26
|
Zouzoulas D, Tsolakidis D, Tzitzis P, Chatzistamatiou K, Theodoulidis V, Sofianou I, Grimbizis G, Timotheadou E. CA-125 KELIM as an Alternative Predictive Tool to Identify Which Patients Can Benefit from PARPi in High-Grade Serous Advanced Ovarian Cancer: A Retrospective Pilot Diagnostic Accuracy Study. Int J Mol Sci 2024; 25:5230. [PMID: 38791269 PMCID: PMC11121425 DOI: 10.3390/ijms25105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
BRCA mutation and homologous recombination deficiency (HRD) are the criteria for the administration of PARP inhibitor (PARPi) maintenance therapy. It is known that PARPi efficacy is related to platinum sensitivity and that the latter can be demonstrated from the CA-125 elimination rate constant (KELIM). This study aims to investigate if KELIM can be another tool in the identification of patients that could be benefit from PARPi therapy. Retrospective analysis of patients with high-grade serous advanced ovarian cancer that underwent cytoreduction and was further tested for HRD status. The HRD status was tested either by myChoice HRD CDx assay or by RediScore assay. KELIM score was measured in both neoadjuvant and adjuvant settings with the online tool biomarker-kinetics.org. A total of 39 patients had available data for estimating both HRD status and KELIM score. When assuming KELIM as a binary index test with the value 1 as the cut-off point, the sensitivity was 0.86, 95% CI (0.64-0.97) and the specificity was 0.83, 95% CI (0.59-0.96). On the other hand, when assuming KELIM as a continuous index test, the area under the curve (AUC) was 81% and the optimal threshold, using the Youden index, was identified as 1.03 with a sensitivity of 85.7% and a specificity of 83.3%. KELIM score seems to be a new, cheaper, and faster tool to identify patients that can benefit from PARPi maintenance therapy.
Collapse
Affiliation(s)
- Dimitrios Zouzoulas
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Dimitrios Tsolakidis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Panagiotis Tzitzis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Kimon Chatzistamatiou
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Vasilis Theodoulidis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Iliana Sofianou
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Grigoris Grimbizis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Eleni Timotheadou
- Department of Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| |
Collapse
|
27
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
28
|
Kim SI, Kim H, Dan K, Park H, Lee C, Kim HS, Chung HH, Kim J, Park NH, Han D, Lee M. Proteomic landscaping of high-grade serous ovarian carcinoma identifies stearoyl-CoA desaturase 5 as a potential predictive biomarker for poly(ADP-ribose) polymerase inhibitor response. Clin Transl Med 2024; 14:e1693. [PMID: 38720404 PMCID: PMC11079157 DOI: 10.1002/ctm2.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
| | - Hong‐Beom Park
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Jae‐Weon Kim
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine and Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
- Department of MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Maria Lee
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Obstetrics and GynecologySeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
29
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
30
|
Batson M, Goldblatt LG, Pundock S, Arutyunov A, McKenna D, Haggerty A, Symecko H, Shah PD. Electronic medical record documentation of germline genetic evaluations in patients with ovarian cancer. J Genet Couns 2024; 33:314-321. [PMID: 37183564 DOI: 10.1002/jgc4.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Germline genetic evaluation is indicated for all patients with epithelial ovarian cancer (EOC). For testing to have clinical utility, results must be documented within the electronic medical record (EMR) and accessible to providers at the point of care, which can be challenging in the context of current EMR limitations and genetic testing processes. We examined the receipt of genetics services and EMR capture of genetic testing results in patients with EOC. We conducted a retrospective chart review to examine germline genetic evaluations among patients with EOC seen by a gynecologic or medical oncologist at the University of Pennsylvania in 2016. EMRs were reviewed to determine: (1) if patients were referred for genetic evaluation; (2) if genetic testing was performed; (3) if results were documented in office notes, scanned third-party test reports, and/or the EMR problem list; (4) if provider notes correctly listed the variant classification. Overall, 413 (62%) of patients had documented genetic testing. Genetic testing was documented in almost all provider notes (96%) and the majority of scanned EMR reports (64%). Pathogenic variants were found in 119 (29%) individuals; the majority (70%) had genetic testing documented within EMR problem lists. Provider notes were highly accurate in describing variant classification. In this study, genetic testing was performed and documented in the EMR for most EOC patients. Approximately one-third of those tested did not have scanned test reports specifying variant found, limiting the utility of test results for cascade testing and therapeutic decisions.
Collapse
Affiliation(s)
- Melissa Batson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lindsay G Goldblatt
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stacy Pundock
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Arutyunov
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle McKenna
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley Haggerty
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heather Symecko
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Payal D Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Sun Z, Li L, Zhai B, Hu M, Huang L, Huang S, Ye L, Kong X, Xu J, Bai J, Yan J, Zhou Q, Hu Z, Zhang Y, Jiang Y, Zhang Y, Qiao Z, Zou Y, Xu Y, Zhu Q. Rational Design of PARP1/c-Met Dual Inhibitors for Overcoming PARP1 Inhibitor Resistance Induced by c-Met Overexpression. J Med Chem 2024; 67:4916-4935. [PMID: 38477575 DOI: 10.1021/acs.jmedchem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The emergence of resistance to PARP1 inhibitors poses a current therapeutic challenge, necessitating the development of novel strategies to overcome this obstacle. The present study describes the design and synthesis of a series of small molecules that target both PARP1 and c-Met. Among them, compound 16 is identified as a highly potent dual inhibitor, exhibiting excellent inhibitory activities against PARP1 (IC50 = 3.3 nM) and c-Met (IC50 = 32.2 nM), as well as demonstrating good antiproliferative effects on HR-proficient cancer cell lines and those resistant to PARP1 inhibitors. Importantly, compound 16 demonstrates superior antitumor potency compared to the PARP1 inhibitor Olaparib and the c-Met inhibitor Crizotinib, either alone or in combination, in MDA-MB-231 and HCT116OR xenograft models. These findings highlight the potential of PARP1/c-Met dual inhibitors for expanding the indications of PARP1 inhibitors and overcoming tumor cells' resistance to them.
Collapse
Affiliation(s)
- Zeren Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Lanjie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Bingxin Zhai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Mengxuan Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Shihui Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Liu Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangying Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Bai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjie Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qichen Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Zheqi Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yuchen Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Qiao
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
32
|
Arcieri M, Tius V, Andreetta C, Restaino S, Biasioli A, Poletto E, Damante G, Ercoli A, Driul L, Fagotti A, Lorusso D, Scambia G, Vizzielli G. How BRCA and homologous recombination deficiency change therapeutic strategies in ovarian cancer: a review of literature. Front Oncol 2024; 14:1335196. [PMID: 38525421 PMCID: PMC10957789 DOI: 10.3389/fonc.2024.1335196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 03/26/2024] Open
Abstract
About 50% of High Grade Serous Ovarian Cancer exhibit a high degree of genomic instability due to mutation of genes involved in Homologous Recombination (HRD) and such defect accounts for synthetic lethality mechanism of PARP inhibitors (PARP-i). Several clinical trials have shown how BRCA and HRD mutational status profoundly affect first line chemotherapy as well as response to maintenance therapy with PARP-i, hence Progression Free Survival and Overall Survival. Consequently, there is urgent need for the development of increasingly reliable HRD tests, overcoming present limitations, as they play a key role in the diagnostic and therapeutic process as well as have a prognostic and predictive value. In this review we offer an overview of the state of the art regarding the actual knowledge about BRCA and HRD mutational status, the rationale of PARPi use and HRD testing (current and in development assays) and their implications in clinical practice and in the treatment decision process, in order to optimize and choose the best tailored therapy in patients with ovarian cancer.
Collapse
Affiliation(s)
- Martina Arcieri
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Science, University of Messina, Messina, Italy
| | - Veronica Tius
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Claudia Andreetta
- Department of Medical Oncology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Stefano Restaino
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Anna Biasioli
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elena Poletto
- Department of Medical Oncology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giuseppe Damante
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
- Medical Genetics Institute, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Alfredo Ercoli
- Department of Human Pathology in Adult and Childhood “G. Barresi”, Unit of Gynecology and Obstetrics, University of Messina, Messina, Italy
| | - Lorenza Driul
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Anna Fagotti
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenica Lorusso
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
33
|
Anbil S, Reiss KA. Targeting BRCA and PALB2 in Pancreatic Cancer. Curr Treat Options Oncol 2024; 25:346-363. [PMID: 38311708 DOI: 10.1007/s11864-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
OPINION STATEMENT An important subgroup of pancreatic ductal adenocarcinomas (PDACs) harbor pathogenic variants in BRCA1, BRCA2, or PALB2. These tumors are exquisitely sensitive to platinum-based chemotherapy and patients may experience deep and durable responses to this treatment. PARP inhibitors offer potential respite from the cumulative toxicities of chemotherapy as they significantly extend progression-free survival compared to a chemotherapy holiday. Given the lack of proven survival benefit, the decision to use a maintenance PARP inhibitor rather than continue chemotherapy should be individualized. Interestingly, in both published clinical trials of maintenance PARP inhibitors, there is a striking range of interpatient benefit: Even in the platinum-sensitive setting, roughly 25% of tumors appear to be PARP inhibitor refractory (progressive disease within 2 months of starting treatment), 50% sustain moderate benefit (up to 2 years), and 25% are hyper-responsive (more than 2 years of benefit). This finding highlights the need to refine our understanding of which patients will respond to maintenance PARP inhibitors, both by being able to identify biallelic loss and by deepening our knowledge of resistance mechanisms and who develops them. Recent data supports that reversion mutations are common in PARP inhibitor refractory patients, but we have little understanding of the mechanisms that drive delayed resistance and long-term responses. Identifying which patients are more prone to certain mechanisms of resistance and tackling them with specific treatment strategies are areas of active investigation. Additionally, given that PARP inhibitors have limited overall efficacy for most patients, upfront combination strategies are an important future strategy.
Collapse
Affiliation(s)
- Sriram Anbil
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA
| | - Kim A Reiss
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA.
| |
Collapse
|
34
|
Ikeda R, Matsuoka Y, Inoue M, Ishikawa A, Akagi K, Kageyama Y. Treatment-related neuroendocrine prostate cancer with BRCA2 germline mutation treated with olaparib. IJU Case Rep 2024; 7:115-119. [PMID: 38440716 PMCID: PMC10909146 DOI: 10.1002/iju5.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 03/06/2024] Open
Abstract
Introduction The efficacy of olaparib for treatment-related neuroendocrine prostate cancer is unknown. Here, we report a case of treatment-related neuroendocrine prostate cancer with a BRCA2 mutation that was treated with olaparib with 1-year efficacy. Case presentation A 75-year-old man initially diagnosed with prostate adenocarcinoma developed treatment-related neuroendocrine prostate cancer after 10-year androgen deprivation therapy. Despite the initial temporary effects of etoposide and carboplatin, the patient experienced prostate bed tumor recurrence 1 year after chemotherapy cessation. FoundationOne® detected a BRCA2 gene mutation, and olaparib was initiated after repeating one chemotherapy course using the same chemotherapeutic agents. The patient received olaparib with sustained tumor regression for 1 year without severe side effects. Conclusion Olaparib may be the treatment of choice for treatment-related neuroendocrine prostate cancer in patients with BRCA mutations.
Collapse
Affiliation(s)
- Riko Ikeda
- Department of Urology Saitama Cancer Center Saitama Japan
| | - Yoh Matsuoka
- Department of Urology Saitama Cancer Center Saitama Japan
| | - Masaharu Inoue
- Department of Urology Saitama Cancer Center Saitama Japan
| | | | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention Saitama Cancer Center Saitama Japan
| | - Yukio Kageyama
- Department of Urology Saitama Cancer Center Saitama Japan
| |
Collapse
|
35
|
Meijer TG, Martens JWM, Prager-van der Smissen WJC, Verkaik NS, Beaufort CM, van Herk S, Robert-Finestra T, Hoogenboezem RM, Ruigrok-Ritstier K, Paul MW, Gribnau J, Bindels EMJ, Kanaar R, Jager A, van Gent DC, Hollestelle A. Functional Homologous Recombination (HR) Screening Shows the Majority of BRCA1/2-Mutant Breast and Ovarian Cancer Cell Lines Are HR-Proficient. Cancers (Basel) 2024; 16:741. [PMID: 38398132 PMCID: PMC10887177 DOI: 10.3390/cancers16040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.
Collapse
Affiliation(s)
- Titia G Meijer
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Wendy J C Prager-van der Smissen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nicole S Verkaik
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Stanley van Herk
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Teresa Robert-Finestra
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Developmental Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Ruigrok-Ritstier
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Joost Gribnau
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Developmental Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
36
|
Daly GR, AlRawashdeh MM, McGrath J, Dowling GP, Cox L, Naidoo S, Vareslija D, Hill ADK, Young L. PARP Inhibitors in Breast Cancer: a Short Communication. Curr Oncol Rep 2024; 26:103-113. [PMID: 38236558 PMCID: PMC10891270 DOI: 10.1007/s11912-023-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW In the last decade, poly (ADP-ribose) polymerase (PARP) inhibitors have been approved in the treatment of several cancers, such as breast and ovarian cancer. This article aims to discuss the current uses, limitations, and future directions for PARP inhibitors (PARPis) in the treatment of breast cancer. RECENT FINDINGS Following the results of the OlympiAD and EMBRACA trials, PARPis were approved in HER2-negative breast cancer with a germline BRCA mutation. We reviewed this class of drugs' mechanism of action, efficacy, and limitations, as well as further studies that discussed resistance, impaired homologous recombination repair (HRR), and the combination of PARPis with other drugs. Improving understanding of HRR, increasing the ability to target resistance, and combining PARPis with other novel agents are continuing to increase the clinical utility of PARPis.
Collapse
Affiliation(s)
- Gordon R Daly
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Maen Monketh AlRawashdeh
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Jason McGrath
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gavin P Dowling
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Luke Cox
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sindhuja Naidoo
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Damir Vareslija
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie Young
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
37
|
Song Y, Ran W, Jia H, Yao Q, Li G, Chen Y, Wang X, Xiao Y, Sun M, Lu X, Xing X. Next-generation sequencing-based analysis of homologous recombination repair gene variant in ovarian cancer. Heliyon 2024; 10:e23684. [PMID: 38298632 PMCID: PMC10827683 DOI: 10.1016/j.heliyon.2023.e23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ovarian cancer is the leading cause of death from gynecological malignancies. Investigating the HRR-related gene status, notably BRCA1/2 in different regions and populations is of great significance for formulating accurate target therapy. Methods We collected 124 ovarian cancer cases from the Affiliated Hospital of.Qingdao University, detected the genomic alteration of 32 genes by NGS, including.19 HRR-related genes, 9 proto-oncogenes and 4 tumor suppressor genes. Clinicopathological characteristics, variants, clinical significance, and correlation with prognosis were analyzed. Results The incidence of HRR-related gene mutation was 59.68 % and no statistical significance was found with multiple clinicopathological characteristics. BRCA1/2 (27.42 %) were the most frequent mutated HRR genes. 23 (18.55 %) cases harbored gBRCA1/2 mutation, with all BRCA1 mutations were pathogenic/likely pathogenic and 2 cases of BRCA2 mutation was variant of uncertain significance. Somatic BRCA1/2 mutations were found in 12 (9.68 %) cases, and sBRCA1/2 had a higher frequency in less common ovarian cancer than high-grade serous carcinoma. HRR-related gene mutation status was associated with better prognosis than HRR wild-type. Conclusions Somatic BRCA1/2 mutation has higher incidence in less common ovarian cancer. HRR gene mutation status is an independent prognosis factor in ovarian cancer. Clarifying the HRR gene status is important for the selection of target therapy as well as the evaluation of prognosis.
Collapse
Affiliation(s)
- Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yang Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaonan Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Mengqi Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiao Lu
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| |
Collapse
|
38
|
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024; 19:9. [PMID: 38184614 PMCID: PMC10770950 DOI: 10.1186/s13000-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time.Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
Collapse
Affiliation(s)
- Anne Vogel
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Anna Haupts
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.
| |
Collapse
|
39
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
40
|
Zhong A, Cheng CS, Lu RQ, Guo L. Suppression of NBS1 Upregulates CyclinB to Induce Olaparib Sensitivity in Ovarian Cancer. Technol Cancer Res Treat 2024; 23:15330338231212085. [PMID: 38192153 PMCID: PMC10777771 DOI: 10.1177/15330338231212085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Accepted: 10/18/2023] [Indexed: 01/10/2024] Open
Abstract
Background: Deficiencies in DNA damage repair responses promote chemotherapy sensitivity of tumor cells. The Nibrin homolog encoding gene Nijmegen Breakage Syndrome 1 (NBS1) is a crucial component of the MRE11-RAD50-NBN complex (MRN complex) and is involved in the response to DNA double-strand breaks (DSBs) repair that has emerged as an attractive strategy to overcome tumor drug resistance, but the functional relationship between NBS1 regulated DNA damage repair and cell cycle checkpoints has not been fully elucidated. Methods: In this study, lentivirus-mediated RNAi was used to construct NBS1-downregulated cells. Flow cytometry, qPCR, and immunohistochemistry were used to explore the regulatory relationship between NBS1 and CyclinB in vivo and in vitro. Results: Our findings suggest that NBS1 deficiency leads to defective homologous recombination repair. Inhibition of NBS1 expression activates CHK1 and CyclinB signaling pathways leading to cell cycle arrest and sensitizes ovarian cancer cells to Olaparib treatment in vitro and in vivo. NBS1-deficient ovarian cancer cells tend to maintain sensitivity to chemotherapeutic drugs through activation of cell cycle checkpoints. Conclusions: NBS1 may be a potential therapeutic target for epithelial ovarian cancer as it plays a role in the regulation of the DNA damage response and cell cycle checkpoints. Suppression of NBS1 upregulates CyclinB to induce Olaparib sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Ailing Zhong
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Chien-shan Cheng
- Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Ren quan Lu
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Fu X, Li P, Zhou Q, He R, Wang G, Zhu S, Bagheri A, Kupfer G, Pei H, Li J. Mechanism of PARP inhibitor resistance and potential overcoming strategies. Genes Dis 2024; 11:306-320. [PMID: 37588193 PMCID: PMC10425807 DOI: 10.1016/j.gendis.2023.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023] Open
Abstract
PARP inhibitors (PARPi) are a kind of cancer therapy that targets poly (ADP-ribose) polymerase. PARPi is the first clinically approved drug to exert synthetic lethality by obstructing the DNA single-strand break repair process. Despite the significant therapeutic effect in patients with homologous recombination (HR) repair deficiency, innate and acquired resistance to PARPi is a main challenge in the clinic. In this review, we mainly discussed the underlying mechanisms of PARPi resistance and summarized the promising solutions to overcome PARPi resistance, aiming at extending PARPi application and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Zhou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guannan Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shiya Zhu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Bagheri
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
42
|
McNeish IA, Monk BJ. Is more of a good thing still a good thing? PARP inhibitor retreatment in high-grade ovarian carcinoma. Ann Oncol 2023; 34:1074-1076. [PMID: 38072509 DOI: 10.1016/j.annonc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- I A McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - B J Monk
- HonorHealth Research Institute, Division of Gynecologic Oncology, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
43
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, AOCS Group, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Kim YN, Chung YS, Lee JH, Park E, Lee ST, Kim S, Lee JY. Application of precision medicine based on next-generation sequencing and immunohistochemistry in ovarian cancer: a real-world experience. J Gynecol Oncol 2023; 34:e70. [PMID: 37417298 PMCID: PMC10627761 DOI: 10.3802/jgo.2023.34.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE To evaluate the landscape of gene alterations and immunohistochemistry (IHC) profiles of patients with ovarian cancer for targeted therapy and investigate the real-world experience of applying precision medicine. METHODS Patients diagnosed with ovarian cancer between January 2015 and May 2021 at Severance Hospital and who underwent tumor next-generation sequencing (NGS) were reviewed. Data on germline mutation, IHC markers for mismatch repair deficiency (MMRd), programmed death ligand 1 (PD-L1) expression, and human epidermal growth factor receptor 2 (HER2) expression were acquired. The use of matched therapy and its clinical outcomes were evaluated. RESULTS Of the 512 patients who underwent tumor NGS, 403 underwent panel-based germline testing. In patients who underwent both tests, tumor NGS identified 39 patients (9.7%) with BRCA mutations and 16 patients (4.0%) with other homologous recombination repair (HRR)-associated gene mutations, which were not found in germline testing. The most common single nucleotide variants were TP53 (82.2%), ARID1A (10.4%), PIK3CA (9.7%), and KRAS (8.4%). Copy number aberrations were found in 122 patients. MMRd was found in 3.2% of patients, high PD-L1 expression in 10.1%, and HER2 overexpression in 6.5%. Subsequently, 75 patients (14.6%) received a poly (ADP-ribose) polymerase inhibitor based on BRCA mutation and 11 patients (2.1%) based on other HRR-associated gene mutations. Six patients (1.2%) with MMRd underwent immunotherapy. Twenty-eight patients (5.5%) received other matched therapies targeting HER2, fibroblast growth factor receptor, folate receptor alpha, RAS, and PIK3CA. CONCLUSION A comprehensive review of germline mutation, IHC, and tumor NGS helped identify candidates for precision therapy in patients with ovarian cancer, a proportion of whom received matched therapy.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Soo Chung
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhyang Park
- Department of Pathology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Fanale D, Corsini LR, Pedone E, Randazzo U, Fiorino A, Di Piazza M, Brando C, Magrin L, Contino S, Piraino P, Bazan Russo TD, Cipolla C, Russo A, Bazan V. Potential agnostic role of BRCA alterations in patients with several solid tumors: One for all, all for one? Crit Rev Oncol Hematol 2023; 190:104086. [PMID: 37536445 DOI: 10.1016/j.critrevonc.2023.104086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Germline BRCA1/2 alterations in the Homologous Recombination (HR) pathway are considered as main susceptibility biomarkers to Hereditary Breast and Ovarian Cancers (HBOC). The modern molecular biology technologies allowed to characterize germline and somatic BRCA1/2 alterations in several malignancies, broadening the landscape of BRCA1/2-alterated tumors. In the last years, BRCA genetic testing, beyond the preventive value, also assumed a predictive and prognostic significance for patient management. The approval of molecules with agnostic indication is leading to a new clinical model, defined "mutational". Among these drugs, the Poly (ADP)-Ribose Polymerase inhibitors (PARPi) for BRCA1/2-deficient tumors were widely studied leading to increasing therapeutic implications. In this Review we provided an overview of the main clinical studies describing the association between BRCA-mutated tumors and PARPi response, focusing on the controversial evidence about the potential agnostic indication based on BRCA1/2 alterations in several solid tumors.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marianna Di Piazza
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Calogero Cipolla
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
46
|
Minaguchi T, Shikama A, Akiyama A, Satoh T. Molecular biomarkers for facilitating genome‑directed precision medicine in gynecological cancer (Review). Oncol Lett 2023; 26:426. [PMID: 37664647 PMCID: PMC10472042 DOI: 10.3892/ol.2023.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Prominent recent advancements in cancer treatment include the development and clinical application of next-generation sequencing (NGS) technologies, alongside a diverse array of novel molecular targeting therapeutics. NGS has enabled the high-speed and low-cost sequencing of whole genomes in individual patients, which has opened the era of genome-based precision medicine. The development of numerous molecular targeting agents, including anti-VEGF antibodies, poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, have all improved the efficacy of systemic cancer therapy. Accumulating bench and translational research evidence has led to identification of various cancer-related biomarker profiles. In particular, companion diagnostics have been developed for some of these biomarkers, which can be clinically applied and are now widely used for guiding cancer therapies. Selecting biomarkers accurately will improve therapeutic efficacy, avoid overtreatment, enable earlier diagnosis and reduce the cost of preventing and treating gynecological cancer. Therefore, biomarkers are fast becoming indispensable tools in the practice of genome-directed precision medicine. In the present review, the current evidence of cancer-related biomarkers in the field of gynecological oncology, their molecular interpretations and future perspectives are outlined. The aim of the present review is to provide potentially useful information for the formulation of clinical trials.
Collapse
Affiliation(s)
- Takeo Minaguchi
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
47
|
Rivero Belenchón I, Congregado Ruiz CB, Saez C, Osman García I, Medina López RA. Parp Inhibitors and Radiotherapy: A New Combination for Prostate Cancer (Systematic Review). Int J Mol Sci 2023; 24:12978. [PMID: 37629155 PMCID: PMC10455664 DOI: 10.3390/ijms241612978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
PARPi, in combination with ionizing radiation, has demonstrated the ability to enhance cellular radiosensitivity in different tumors. The rationale is that the exposure to radiation leads to both physical and biochemical damage to DNA, prompting cells to initiate three primary mechanisms for DNA repair. Two double-stranded DNA breaks (DSB) repair pathways: (1) non-homologous end-joining (NHEJ) and (2) homologous recombination (HR); and (3) a single-stranded DNA break (SSB) repair pathway (base excision repair, BER). In this scenario, PARPi can serve as radiosensitizers by leveraging the BER pathway. This mechanism heightens the likelihood of replication forks collapsing, consequently leading to the formation of persistent DSBs. Together, the combination of PARPi and radiotherapy is a potent oncological strategy. This combination has proven its efficacy in different tumors. However, in prostate cancer, there are only preclinical studies to support it and, recently, an ongoing clinical trial. The objective of this paper is to perform a review of the current evidence regarding the use of PARPi and radiotherapy (RT) in PCa and to give future insight on this topic.
Collapse
Affiliation(s)
- Inés Rivero Belenchón
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Belen Congregado Ruiz
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Saez
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Ignacio Osman García
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| |
Collapse
|
48
|
Klotz DM, Schwarz FM, Dubrovska A, Schuster K, Theis M, Krüger A, Kutz O, Link T, Wimberger P, Drukewitz S, Buchholz F, Thomale J, Kuhlmann JD. Establishment and Molecular Characterization of an In Vitro Model for PARPi-Resistant Ovarian Cancer. Cancers (Basel) 2023; 15:3774. [PMID: 37568590 PMCID: PMC10417418 DOI: 10.3390/cancers15153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Overcoming PARPi resistance is a high clinical priority. We established and characterized comparative in vitro models of acquired PARPi resistance, derived from either a BRCA1-proficient or BRCA1-deficient isogenic background by long-term exposure to olaparib. While parental cell lines already exhibited a certain level of intrinsic activity of multidrug resistance (MDR) proteins, resulting PARPi-resistant cells from both models further converted toward MDR. In both models, the PARPi-resistant phenotype was shaped by (i) cross-resistance to other PARPis (ii) impaired susceptibility toward the formation of DNA-platinum adducts upon exposure to cisplatin, which could be reverted by the drug efflux inhibitors verapamil or diphenhydramine, and (iii) reduced PARP-trapping activity. However, the signature and activity of ABC-transporter expression and the cross-resistance spectra to other chemotherapeutic drugs considerably diverged between the BRCA1-proficient vs. BRCA1-deficient models. Using dual-fluorescence co-culture experiments, we observed that PARPi-resistant cells had a competitive disadvantage over PARPi-sensitive cells in a drug-free medium. However, they rapidly gained clonal dominance under olaparib selection pressure, which could be mitigated by the MRP1 inhibitor MK-751. Conclusively, we present a well-characterized in vitro model, which could be instrumental in dissecting mechanisms of PARPi resistance from HR-proficient vs. HR-deficient background and in studying clonal dynamics of PARPi-resistant cells in response to experimental drugs, such as novel olaparib-sensitizers.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Franziska Maria Schwarz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Kati Schuster
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Krüger
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45147 Essen, Germany;
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Richardson DL, Eskander RN, O'Malley DM. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance: A Narrative Review. JAMA Oncol 2023; 9:851-859. [PMID: 37079311 DOI: 10.1001/jamaoncol.2023.0197] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Importance Platinum-based chemotherapy has been the standard of care for ovarian cancer for the past 3 decades. Although most patients respond to platinum-based treatment, emergence of platinum resistance in recurrent ovarian cancer is inevitable during the disease course. Outcomes for patients with platinum-resistant ovarian cancer are poor, and options remain limited, highlighting a substantial unmet need for new treatment options. Observations This review summarizes the current and evolving treatment landscape for platinum-resistant ovarian cancer with a focus on the development of novel compounds. Biologic and targeted therapies such as bevacizumab and poly (ADP-ribose) polymerase (PARP) inhibitors-originally approved in the platinum-resistant setting but since withdrawn-are now used in the up-front or platinum-sensitive setting, prolonging the duration of platinum sensitivity and delaying the use of nonplatinum options. The greater use of maintenance therapy and the emphasis on using platinum beyond first-line treatment has most likely been associated with a greater number of lines of platinum therapy before a patient is designated as having platinum-resistant ovarian cancer. In this contemporary setting, recent trials in platinum-resistant ovarian cancer have mostly had negative outcomes, with none having a clinically significant effect on progression-free or overall survival since the approval of bevacizumab in combination with chemotherapy. Nonetheless, a multitude of new therapies are under evaluation; preliminary results are encouraging. A focus on biomarker-directed treatment and patient selection may provide greater success in identifying novel therapies for treating platinum-resistant ovarian cancer. Conclusions and Relevance Although many clinical trials in platinum-resistant ovarian cancer have had negative outcomes, these failures provide insights into how clinical trial design, biomarker-directed therapy, and patient selection could facilitate future successes in platinum-resistant ovarian cancer treatment.
Collapse
Affiliation(s)
- Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, UC San Diego Health, La Jolla
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, Columbus
| |
Collapse
|