1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025:10.1007/s00204-024-03930-z. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Roselli C, Surakka I, Olesen MS, Sveinbjornsson G, Marston NA, Choi SH, Holm H, Chaffin M, Gudbjartsson D, Hill MC, Aegisdottir H, Albert CM, Alonso A, Anderson CD, Arking DE, Arnar DO, Barnard J, Benjamin EJ, Braunwald E, Brumpton B, Campbell A, Chami N, Chasman DI, Cho K, Choi EK, Christophersen IE, Chung MK, Conen D, Crijns HJ, Cutler MJ, Czuba T, Damrauer SM, Dichgans M, Dörr M, Dudink E, Duong T, Erikstrup C, Esko T, Fatkin D, Faul JD, Ferreira M, Freitag DF, Ganesh SK, Gaziano JM, Geelhoed B, Ghouse J, Gieger C, Giulianini F, Graham SE, Gudnason V, Guo X, Haggerty C, Hayward C, Heckbert SR, Hveem K, Ito K, Johnson R, Jukema JW, Jurgens SJ, Kääb S, Kane JP, Kany S, Kardia SLR, Kavousi M, Khurshid S, Kamanu FK, Kirchhof P, Kleber ME, Knight S, Komuro I, Krieger JE, Launer LJ, Li D, Lin H, Lin HJ, Loos RJF, Lotta L, Lubitz SA, Lunetta KL, Macfarlane PW, Magnusson PKE, Malik R, Mantineo H, Marcus GM, März W, McManus DD, Melander O, Melloni GEM, Meyre PB, Miyazawa K, Mohanty S, Monfort LM, Müller-Nurasyid M, Nafissi NA, Natale A, Nazarian S, Ostrowski SR, Pak HN, Pang S, Pedersen OB, Pedersen NL, Pereira AC, Pirruccello JP, Preuss M, Psaty BM, Pullinger CR, Rader DJ, Rämö JT, Ridker PM, Rienstra M, Risch L, Roden DM, Rotter JI, Sabatine MS, Schunkert H, Shah SH, Shim J, Shoemaker MB, Simonson B, Sinner MF, Smit RAJ, Smith JA, Smith NL, Smith JG, Soliman EZ, Sørensen E, Sotoodehnia N, Strbian D, Stricker BH, Teder-Laving M, Sun YV, Thériault S, Thorolfsdottir RB, Thorsteinsdottir U, Tveit A, van der Harst P, van Meurs J, Wang B, Weiss S, Wells QS, Weng LC, Wilson PW, Xiao L, Yang PS, Yao J, Yoneda ZT, Zeller T, Zeng L, Zhao W, Zhou X, Zöllner S, Ruff CT, Bundgaard H, Willer C, Stefansson K, Ellinor PT. Meta-analysis of genome-wide associations and polygenic risk prediction for atrial fibrillation in more than 180,000 cases. Nat Genet 2025; 57:539-547. [PMID: 40050429 DOI: 10.1038/s41588-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/30/2024] [Indexed: 03/15/2025]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm abnormality and is a leading cause of heart failure and stroke. This large-scale meta-analysis of genome-wide association studies increased the power to detect single-nucleotide variant associations and found more than 350 AF-associated genetic loci. We identified candidate genes related to muscle contractility, cardiac muscle development and cell-cell communication at 139 loci. Furthermore, we assayed chromatin accessibility using assay for transposase-accessible chromatin with sequencing and histone H3 lysine 4 trimethylation in stem cell-derived atrial cardiomyocytes. We observed a marked increase in chromatin accessibility for our sentinel variants and prioritized genes in atrial cardiomyocytes. Finally, a polygenic risk score (PRS) based on our updated effect estimates improved AF risk prediction compared to the CHARGE-AF clinical risk score and a previously reported PRS for AF. The doubling of known risk loci will facilitate a greater understanding of the pathways underlying AF.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Morten S Olesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicholas A Marston
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Christine M Albert
- Department of Cardiology, Cedars-Sinai, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan E Arking
- McKusick Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Cardiovascular Centre, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - John Barnard
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Eugene Braunwald
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nathalie Chami
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Mina K Chung
- Cardiovascular Medicine, Heart Vascular and Thoracic Institute and Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Harry J Crijns
- Department of Cardiology and CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Tomasz Czuba
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Lund University Diabetes Center, Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Elton Dudink
- Department of Cardiology and CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - ThuyVy Duong
- McKusick Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- UNSW Sydney, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Michael Gaziano
- Million Veteran Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jonas Ghouse
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kópavogur, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- UNSW Sydney, Sydney, New South Wales, Australia
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shaan Khurshid
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Frederick K Kamanu
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
- Institute of Cardiovascular Sciences, Birmingham, UK
- AFNET, Münster, Germany
| | - Marcus E Kleber
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Issei Komuro
- International University of Health and Welfare, Tokyo, Japan
- Department of Frontier Cardiovascular Science, The University of Tokyo, Tokyo, Japan
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luca Lotta
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Peter W Macfarlane
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK
- Electrocardiology Group, New Lister Building, Royal Infirmary, Glasgow, Scotland, UK
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Helene Mantineo
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - David D McManus
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Olle Melander
- Department of Internal Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | | | - Pascal B Meyre
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Basel, Switzerland
| | - Kazuo Miyazawa
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Laia M Monfort
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martina Müller-Nurasyid
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Navid A Nafissi
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, Austin, TX, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hui-Nam Pak
- Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Shichao Pang
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorenz Risch
- Institute of Laboratory Medicine, Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Dan M Roden
- Departments of Medicine Pharmacology and Biomedical Informatics, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc S Sabatine
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - Svati H Shah
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Jaemin Shim
- Korea University Cardiovascular Center, Seoul, Republic of Korea
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - Roelof A J Smit
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L Smith
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Lund University Diabetes Center, Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nona Sotoodehnia
- Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Daniel Strbian
- Department of Neurology and Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Arnljot Tveit
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stefan Weiss
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Quinn S Wells
- Departments of Medicine Pharmacology and Biomedical Informatics, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Peter W Wilson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pil-Sung Yang
- Cha University College of Medicine, Seoul, Republic of Korea
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tanja Zeller
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
- University Center of Cardiovascular Sciences, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christian T Ruff
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cristen Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Heart and Vascular Institute, Mass General Brigham, Boston, MA, USA.
| |
Collapse
|
3
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
4
|
Vanlerberghe C, Jourdain AS, Frenois F, Ait-Yahya E, Bamshad M, Dieux A, Dufour W, Leduc F, Manouvrier-Hanu S, Patterson K, Ghoumid J, Escande F, Smol T, Brunelle P, Petit F. Functional characterization vs in silico prediction for TBX5 missense and splice variants in Holt-Oram syndrome. Genet Med 2024; 26:101267. [PMID: 39268717 DOI: 10.1016/j.gim.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
PURPOSE Predicting effects of genomic variants has become a real challenge in the diagnosis of rare human diseases. Holt-Oram syndrome is an autosomal condition characterized by the association of radial and heart defects, due to variants in TBX5. Most variants are predicted to be truncating and result in haploinsufficiency. The pathogenicity of missense or splice variants is harder to demonstrate. METHODS Fourteen TBX5 variants of uncertain significance (5 missense, 9 splice) and 6 likely pathogenic missense variants were selected for functional testing, depending on the variant-type (immunolocalization, western blot, reporter assays, minigene splice assays, and reverse transcription-polymerase chain reaction). Results were compared with in silico predictions. RESULTS Functional tests allowed to reclassify 9/14 variants of uncertain significance in TBX5 as likely pathogenic, confirming their role in Holt-Oram syndrome. We demonstrated loss of function (n = 8) or gain of function (n = 1) for 9 of the 11 missense variants, whereas no functional impact was shown for the 2 variants: p.(Gly195Ala) and p.(Ser261Cys), as suggested by contradictory predictions of in silico approaches. Of 9 splice variants predicted to affect splicing by SpliceAI, we observed partial or complete exon skipping (n = 6), intron retention (n = 2) or exon shortening (n = 1), inducing frame shifting with premature stop codons. CONCLUSION Bioinformatic and biological approaches are complementary, together with a good knowledge of clinical conditions, for accurate American College of Medical Genetics and Genomics classification in human rare diseases.
Collapse
Affiliation(s)
- Clémence Vanlerberghe
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France.
| | - Anne Sophie Jourdain
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France; CHU Lille, UF Oncologie moléculaire, Lille, France
| | - Frédéric Frenois
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - Emilie Ait-Yahya
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France; CHU Lille, cellule bioinformatique, plateau commun de séquençage, Lille, France
| | - Mike Bamshad
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, Seattle, WA
| | - Anne Dieux
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - William Dufour
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - Fiona Leduc
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - Sylvie Manouvrier-Hanu
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA
| | - Jamal Ghoumid
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| | - Fabienne Escande
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France; CHU Lille, UF Oncologie moléculaire, Lille, France
| | - Thomas Smol
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France; CHU Lille, Institut de génétique médicale, Lille, France
| | - Perrine Brunelle
- Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France; CHU Lille, Institut de génétique médicale, Lille, France
| | - Florence Petit
- CHU Lille, Centre de Référence des Anomalies du Développement, Lille, France; Univ Lille, CHU Lille, ULR 7364-RADEME-Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, Lille, France
| |
Collapse
|
5
|
Hill MC, Simonson B, Roselli C, Xiao L, Herndon CN, Chaffin M, Mantineo H, Atwa O, Bhasin H, Guedira Y, Bedi KC, Margulies KB, Klattenhoff CA, Tucker NR, Ellinor PT. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat Commun 2024; 15:10002. [PMID: 39562555 PMCID: PMC11576987 DOI: 10.1038/s41467-024-54296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF. Attractin Like 1 (ATRNL1) was overexpressed in CMs among patients with AF and localized to the intercalated disks. Further, in both knockdown and overexpression experiments we identify a potent role for ATRNL1 in cell stress response, and in the modulation of the cardiac action potential. Finally, we detect an unexpected expression pattern for a leading AF candidate gene, KCNN3. In sum, we uncover a role for ATRNL1 which may serve as potential therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Matthew C Hill
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline N Herndon
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ondine Atwa
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harshit Bhasin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Guedira
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan R Tucker
- Departments of Pharmacology and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Leblanc FJA, Jin X, Kang K, Lee CJM, Xu J, Xuan L, Ma W, Belhaj H, Benzaki M, Mehta N, Foo RSY, Reilly S, Anene-Nzelu CG, Pan Z, Nattel S, Yang B, Lettre G. Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses. iScience 2024; 27:110660. [PMID: 39262787 PMCID: PMC11388022 DOI: 10.1016/j.isci.2024.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Human genetics can provide strong AF therapeutic candidates, but the identification of the causal genes and their functions remains challenging. Here, we applied an AF fine-mapping strategy that leverages results from a previously published cross-ancestry genome-wide association study (GWAS), expression quantitative trait loci (eQTLs) from left atrial appendages (LAAs) obtained from two cohorts with distinct ancestry, and a paired RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) LAA single-nucleus assay (sn-multiome). At nine AF loci, our co-localization and fine-mapping analyses implicated 14 genes. Data integration identified several candidate causal AF variants, including rs7612445 at GNB4 and rs242557 at MAPT. Finally, we showed that the repression of the strongest AF-associated eQTL gene, LINC01629, in human embryonic stem cell-derived cardiomyocytes using CRISPR inhibition results in the dysregulation of pathways linked to genes involved in the development of atrial tissue and the cardiac conduction system.
Collapse
Affiliation(s)
- Francis J A Leblanc
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Xuexin Jin
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chang Jie Mick Lee
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lina Xuan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wenbo Ma
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | | | - Marouane Benzaki
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Neelam Mehta
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Roger Sik Yin Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Chukwuemeka George Anene-Nzelu
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhenwei Pan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Stanley Nattel
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Owais A, Barney M, Ly OT, Brown G, Chen H, Sridhar A, Pavel A, Khetani SR, Darbar D. Genetics and Pharmacogenetics of Atrial Fibrillation: A Mechanistic Perspective. JACC Basic Transl Sci 2024; 9:918-934. [PMID: 39170958 PMCID: PMC11334418 DOI: 10.1016/j.jacbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 08/23/2024]
Abstract
The heritability of atrial fibrillation (AF) is well established. Over the last decade genetic architecture of AF has been unraveled by genome-wide association studies and family-based studies. However, the translation of these genetic discoveries has lagged owing to an incomplete understanding of the pathogenic mechanisms underlying the genetic variants, challenges in classifying variants of uncertain significance (VUS), and limitations of existing disease models. We review the mechanistic insight provided by basic science studies regarding AF mechanisms, recent developments in high-throughput classification of VUS, and advances in bioengineered cardiac models for developing personalized therapy for AF.
Collapse
Affiliation(s)
- Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Grace Brown
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
8
|
C S SL, Sharma K, Manaswini M, Thakur K. Holt-Oram Syndrome With Atrial Septal Defect. Cureus 2024; 16:e64772. [PMID: 39156428 PMCID: PMC11329708 DOI: 10.7759/cureus.64772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Holt-Oram syndrome is an autosomal dominant condition marked by heart and upper limb defects. Holt and Oram were the first to narrate this in 1960. Holt-Oram syndrome is the prototype of heart-hand syndromes and has recently been mapped to the long arm of chromosome 12 (12q2). This syndrome was described in 1960 by Dr Mary Holt and Dr Samuel Oram. It is an autosomal dominant condition resulting from a mutation in TBX5 located on chromosome 12q24.1, which regulates cardiac and limb morphogenesis. It must be differentiated from heart-hand syndrome type II (Tobatznik's syndrome) and heart-hand syndrome type III (MIM No. 140450), which are phenotypically similar. The latter do not map to 12q2, and atrial septal defects do not occur in these conditions. This syndrome is distinguished by heart problems as well as thumb aplasia or hypoplasia. It is sometimes referred to as atriodigital syndrome, upper limb-cardiovascular syndrome, heart-hand syndrome, cardiomelic syndrome, or cardiac limb syndrome. Other upper-limb anomalies include aplasia or hypoplasia of the radius, arm length variation, atypical forearm pronation and supination, uncommon thumb resistance, sloping shoulders, and restricted shoulder movement. All those who are affected have an aberrant carpal bone, which might be the only sign of the illness. Seventy-five percent of those with Holt-Oram syndrome have a congenital cardiac defect, which most frequently affects the septum. In this case, we report a girl who is 4 years and 6 months old and is a known case of Holt-Oram syndrome with an atrial septal defect. She underwent device closure and had come to the pediatric op with fever and cough.
Collapse
Affiliation(s)
- Shri Lakshmi C S
- Pediatrics, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Kshitij Sharma
- Pediatrics, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Madhu Manaswini
- Pediatrics, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Keerthi Thakur
- Pediatrics, Sree Balaji Medical College and Hospital, Chennai, IND
| |
Collapse
|
9
|
Linna-Kuosmanen S, Vuori M, Kiviniemi T, Palmu J, Niiranen T. Genetics, transcriptomics, metagenomics, and metabolomics in the pathogenesis and prediction of atrial fibrillation. Eur Heart J Suppl 2024; 26:iv33-iv40. [PMID: 39099578 PMCID: PMC11292413 DOI: 10.1093/eurheartjsupp/suae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The primary cellular substrates of atrial fibrillation (AF) and the mechanisms underlying AF onset remain poorly characterized and therefore, its risk assessment lacks precision. While the use of omics may enable discovery of novel AF risk factors and narrow down the cellular pathways involved in AF pathogenesis, the work is far from complete. Large-scale genome-wide association studies and transcriptomic analyses that allow an unbiased, non-candidate-gene-based delineation of molecular changes associated with AF in humans have identified at least 150 genetic loci associated with AF. However, only few of these loci have been thoroughly mechanistically dissected, indicating that much remains to be discovered for targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the other hand, add to the understanding of AF downstream of the primary substrate and integrate the signalling of environmental and host factors, respectively. These two rapidly developing fields have already provided several correlates of prevalent and incident AF that require additional validation in external cohorts and experimental studies. In this review, we take a look at the recent developments in genetics, transcriptomics, metagenomics, and metabolomics and how they may aid in improving the discovery of AF risk factors and shed light into the molecular mechanisms leading to AF onset.
Collapse
Affiliation(s)
- Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Matti Vuori
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Department of Internal Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
10
|
Møller Nielsen AK, Dehn AM, Hjortdal V, Larsen LA. TBX5 variants and cardiac phenotype: A systematic review of the literature and a novel variant. Eur J Med Genet 2024; 68:104920. [PMID: 38336121 DOI: 10.1016/j.ejmg.2024.104920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
T-Box Transcription Factor 5 (TBX5) variants are associated with Holt-Oram syndrome. Holt-Oram syndrome display phenotypic variability, regarding upper limb defects, congenital heart defects, and arrhythmias. To investigate the genotype-phenotype relationship between TBX5 variants and cardiac disease, we performed a systematic review of the literature. Through the systematic review we identified 108 variants in TBX5 associated with a cardiac phenotype in 277 patients. Arrhythmias were more frequent in patients with a missense variant (48% vs 30%, p = 0.009) and upper limb abnormalities were more frequent in patients with protein-truncating variants (85% vs 64%, p = 0.0008). We found clustering of missense variants in the T-box domain. Furthermore, we present a family with atrial septal defects. By whole exome sequencing, we identified a novel missense variant p.Phe232Leu in TBX5. The cardiac phenotype included atrial septal defect, arrhythmias, heart failure, and dilated cardiomyopathy. Clinical examination revealed subtle upper limb abnormalities. Thus, the family corresponds to the diagnostic criteria of Holt-Oram syndrome. We provide an overview of cardiac phenotypes associated with TBX5 variants and show an increased risk of arrhythmias associated to missense variants compared to protein-truncating variants. We report a novel missense variant in TBX5 in a family with an atypical Holt-Oram syndrome phenotype.
Collapse
Affiliation(s)
- Anne Kathrine Møller Nielsen
- Department of Cardiothoracic Surgery, Rigshospitalet, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Maria Dehn
- Department of Cardiothoracic Surgery, Rigshospitalet, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Rigshospitalet, Denmark
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Vinciguerra M, Dobrev D, Nattel S. Atrial fibrillation: pathophysiology, genetic and epigenetic mechanisms. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100785. [PMID: 38362554 PMCID: PMC10866930 DOI: 10.1016/j.lanepe.2023.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Li N, Li YJ, Guo XJ, Wu SH, Jiang WF, Zhang DL, Wang KW, Li L, Sun YM, Xu YJ, Yang YQ, Qiu XB. Discovery of TBX20 as a Novel Gene Underlying Atrial Fibrillation. BIOLOGY 2023; 12:1186. [PMID: 37759586 PMCID: PMC10525918 DOI: 10.3390/biology12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Atrial fibrillation (AF), the most prevalent type of sustained cardiac dysrhythmia globally, confers strikingly enhanced risks for cognitive dysfunction, stroke, chronic cardiac failure, and sudden cardiovascular demise. Aggregating studies underscore the crucial roles of inherited determinants in the occurrence and perpetuation of AF. However, due to conspicuous genetic heterogeneity, the inherited defects accounting for AF remain largely indefinite. Here, via whole-genome genotyping with genetic markers and a linkage assay in a family suffering from AF, a new AF-causative locus was located at human chromosome 7p14.2-p14.3, a ~4.89 cM (~4.43-Mb) interval between the markers D7S526 and D7S2250. An exome-wide sequencing assay unveiled that, at the defined locus, the mutation in the TBX20 gene, NM_001077653.2: c.695A>G; p.(His232Arg), was solely co-segregated with AF in the family. Additionally, a Sanger sequencing assay of TBX20 in another family suffering from AF uncovered a novel mutation, NM_001077653.2: c.862G>C; p.(Asp288His). Neither of the two mutations were observed in 600 unrelated control individuals. Functional investigations demonstrated that the two mutations both significantly reduced the transactivation of the target gene KCNH2 (a well-established AF-causing gene) and the ability to bind the promoter of KCNH2, while they had no effect on the nuclear distribution of TBX20. Conclusively, these findings reveal a new AF-causative locus at human chromosome 7p14.2-p14.3 and strongly indicate TBX20 as a novel AF-predisposing gene, shedding light on the mechanism underlying AF and suggesting clinical significance for the allele-specific treatment of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Dao-Liang Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China;
| | - Kun-Wei Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| |
Collapse
|
14
|
Karki R, Raina A, Ezzeddine FM, Bois MC, Asirvatham SJ. Anatomy and Pathology of the Cardiac Conduction System. Cardiol Clin 2023; 41:277-292. [PMID: 37321681 DOI: 10.1016/j.ccl.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The cardiac conduction system is formed of histologically and electrophysiologically distinct specialized tissues uniquely located in the human heart. Understanding the anatomy and pathology of the cardiac conduction system is imperative to an interventional electrophysiologist to perform safe ablation and device therapy for the management of cardiac arrhythmias and heart failure. The current review summarizes the normal and developmental anatomy of the cardiac conduction system, its variation in the normal heart and congenital anomalies, and its pathology and discusses important clinical pearls for the proceduralist.
Collapse
Affiliation(s)
- Roshan Karki
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Anvi Raina
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Chalazan B, Freeth E, Mohajeri A, Ramanathan K, Bennett M, Walia J, Halperin L, Roston T, Lazarte J, Hegele RA, Lehman A, Laksman Z. Genetic testing in monogenic early-onset atrial fibrillation. Eur J Hum Genet 2023; 31:769-775. [PMID: 37217627 PMCID: PMC10325969 DOI: 10.1038/s41431-023-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
A substantial proportion of atrial fibrillation (AF) cases cannot be explained by acquired AF risk factors. Limited guidelines exist that support routine genetic testing. We aim to determine the prevalence of likely pathogenic and pathogenic variants from AF genes with robust evidence in a well phenotyped early-onset AF population. We performed whole exome sequencing on 200 early-onset AF patients. Variants from exome sequencing in affected individuals were filtered in a multi-step process, prior to undergoing clinical classification using current ACMG/AMP guidelines. 200 AF individuals were recruited from St. Paul's Hospital and London Health Sciences Centre who were ≤ 60 years of age and without any acquired AF risk factors at the time of AF diagnosis. 94 of these AF individuals had very early-onset AF ( ≤ 45). Mean age of AF onset was 43.6 ± 9.4 years, 167 (83.5%) were male and 58 (29.0%) had a confirmed family history. There was a 3.0% diagnostic yield for identifying a likely pathogenic or pathogenic variant across AF genes with robust gene-to-disease association evidence. This study demonstrates the current diagnostic yield for identifying a monogenic cause for AF in a well-phenotyped early-onset AF cohort. Our findings suggest a potential clinical utility for offering different screening and treatment regimens in AF patients with an underlying monogenic defect. However, further work is needed to dissect the additional monogenic and polygenic determinants for patients without a genetic explanation for their AF despite the presence of specific genetic indicators such as young age of onset and/or positive family history.
Collapse
Affiliation(s)
- Brandon Chalazan
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Emma Freeth
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arezoo Mohajeri
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | - Matthew Bennett
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jagdeep Walia
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Halperin
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Thomas Roston
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Julieta Lazarte
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Department of Medicine and The School of Biomedical Engineering, University of British Columbia and the Centre for Heart Lung Innovation, Vancouver, Canada.
| |
Collapse
|
16
|
Nakano Y. Genome and atrial fibrillation. J Arrhythm 2023; 39:303-309. [PMID: 37324776 PMCID: PMC10264727 DOI: 10.1002/joa3.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023] Open
Abstract
Atrial fibrillation (AF), the most common type of arrhythmia, can cause several adverse effects, such as stroke, heart failure, and cognitive dysfunction, also in addition to reducing quality of life and increasing mortality. Evidence suggests that AF is caused by a combination of genetic and clinical predispositions. In line with this, genetic studies on AF have progressed significantly through linkage studies, genome-wide association studies, use of polygenic risk scores, and studies on rare coding variations, gradually elucidating the relationship between genes and the pathogenesis and prognosis of AF. This article will review current trends in genetic analysis concerning AF.
Collapse
Affiliation(s)
- Yukiko Nakano
- Department of Cardiovascular MedicineHiroshima University Graduate School of Biomedical and Health SciencesHiroshimaJapan
| |
Collapse
|
17
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050812. [PMID: 37238360 DOI: 10.3390/children10050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Congenital heart defects (CHD) are the most common congenital abnormality, with an overall global birth prevalence of 9.41 per 1000 live births. The etiology of CHDs is complex and still poorly understood. Environmental factors account for about 10% of all cases, while the rest are likely explained by a genetic component that is still under intense research. Transcription factors and signaling molecules are promising candidates for studies regarding the genetic burden of CHDs. The present narrative review provides an overview of the current knowledge regarding some of the genetic mechanisms involved in the embryological development of the cardiovascular system. In addition, we reviewed the association between the genetic variation in transcription factors and signaling molecules involved in heart development, including TBX5, GATA4, NKX2-5 and CRELD1, and congenital heart defects, providing insight into the complex pathogenesis of this heterogeneous group of diseases. Further research is needed in order to uncover their downstream targets and the complex network of interactions with non-genetic risk factors for a better molecular-phenotype correlation.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Song MK, Trembley MA, Wang P, Lu F, Gianeselli M, Prondzynski M, Bortolin RH, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity by regulating an atrial enhancer network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537535. [PMID: 37131696 PMCID: PMC10153240 DOI: 10.1101/2023.04.21.537535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.
Collapse
|
20
|
Cao Y, Zhang X, Akerberg BN, Yuan H, Sakamoto T, Xiao F, VanDusen NJ, Zhou P, Sweat ME, Wang Y, Prondzynski M, Chen J, Zhang Y, Wang P, Kelly DP, Pu WT. In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity. Circulation 2023; 147:881-896. [PMID: 36705030 PMCID: PMC10010668 DOI: 10.1161/circulationaha.122.061955] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.
Collapse
Affiliation(s)
- Yangpo Cao
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Haiyun Yuan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China (H.Y.)
| | - Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.S., D.P.K.)
| | - Feng Xiao
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Nathan J VanDusen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (N.J.V.)
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Mason E Sweat
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Yi Wang
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Jian Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Yan Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Peizhe Wang
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.)
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.S., D.P.K.)
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA (Y.C., X.Z., B.N.A., F.X., P.Z., M.E.S., Y.W., M.P., J.C., Y.Z., P.W., W.T.P.).,Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| |
Collapse
|
21
|
Mutation in Smek2 regulating hepatic glucose metabolism causes hypersarcosinemia and hyperhomocysteinemia in rats. Sci Rep 2023; 13:3053. [PMID: 36810603 PMCID: PMC9944932 DOI: 10.1038/s41598-022-26115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2022] [Indexed: 02/24/2023] Open
Abstract
Suppressor of mek1 (Dictyostelium) homolog 2 (Smek2), was identified as one of the responsible genes for diet-induced hypercholesterolemia (DIHC) of exogenously hypercholesterolemic (ExHC) rats. A deletion mutation in Smek2 leads to DIHC via impaired glycolysis in the livers of ExHC rats. The intracellular role of Smek2 remains obscure. We used microarrays to investigate Smek2 functions with ExHC and ExHC.BN-Dihc2BN congenic rats that harbor a non-pathological Smek2 allele from Brown-Norway rats on an ExHC background. Microarray analysis revealed that Smek2 dysfunction leads to extremely low sarcosine dehydrogenase (Sardh) expression in the liver of ExHC rats. Sarcosine dehydrogenase demethylates sarcosine, a byproduct of homocysteine metabolism. The ExHC rats with dysfunctional Sardh developed hypersarcosinemia and homocysteinemia, a risk factor for atherosclerosis, with or without dietary cholesterol. The mRNA expression of Bhmt, a homocysteine metabolic enzyme and the hepatic content of betaine (trimethylglycine), a methyl donor for homocysteine methylation were low in ExHC rats. Results suggest that homocysteine metabolism rendered fragile by a shortage of betaine results in homocysteinemia, and that Smek2 dysfunction causes abnormalities in sarcosine and homocysteine metabolism.
Collapse
|
22
|
Bosada FM, van Duijvenboden K, Giovou AE, Rivaud MR, Uhm JS, Verkerk AO, Boukens BJ, Christoffels VM. An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility. eLife 2023; 12:80317. [PMID: 36715501 PMCID: PMC9928424 DOI: 10.7554/elife.80317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Cardiology, Severance Hospital, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Physiology, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastrichtNetherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
23
|
Prapa M, Lago-Docampo M, Swietlik EM, Montani D, Eyries M, Humbert M, Welch CL, Chung WK, Berger RMF, Bogaard HJ, Danhaive O, Escribano-Subías P, Gall H, Girerd B, Hernandez-Gonzalez I, Holden S, Hunt D, Jansen SMA, Kerstjens-Frederikse W, Kiely DG, Lapunzina P, McDermott J, Moledina S, Pepke-Zaba J, Polwarth GJ, Schotte G, Tenorio-Castaño J, Thompson AAR, Wharton J, Wort SJ, Megy K, Mapeta R, Treacy CM, Martin JM, Li W, Swift AJ, Upton PD, Morrell NW, Gräf S, Valverde D. First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease. Am J Respir Crit Care Med 2022; 206:1522-1533. [PMID: 35852389 PMCID: PMC9757087 DOI: 10.1164/rccm.202203-0485oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Medicine and
- St. George’s University Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Emilia M. Swietlik
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | - Mélanie Eyries
- Département de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rolf M. F. Berger
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Olivier Danhaive
- Division of Neonatology, St.-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Pilar Escribano-Subías
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Henning Gall
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Barbara Girerd
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Simon Holden
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Samara M. A. Jansen
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | | | - David G. Kiely
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - John McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Joanna Pepke-Zaba
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gary J. Polwarth
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gwen Schotte
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jair Tenorio-Castaño
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - A. A. Roger Thompson
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Karyn Megy
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rutendo Mapeta
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | - Wei Li
- Department of Medicine and
| | - Andrew J. Swift
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine and
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | | |
Collapse
|
24
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
25
|
Nielsen AKM, Ellesøe SG, Larsen LA, Hjortdal V, Nyboe C. Comparison of Outcome in Patients With Familial Versus Spontaneous Atrial Septal Defect. Am J Cardiol 2022; 173:128-131. [PMID: 35361477 DOI: 10.1016/j.amjcard.2022.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Patients with atrial septal defects (ASDs) have increased mortality and morbidity. This can only partly be explained by hemodynamic changes caused by the ASD, suggesting additional underlying causes. Patients with an ASD have an increased burden of pathogenic gene variants in ASD-related genes, indicating genetics as an important factor in etiology. Inheritance of genetic variants with high impact can cause ASD in relatives (familial ASD). This study aimed to investigate whether lifelong outcomes were different in patients with familial ASD compared with patients with sporadic ASD. We used health registries and a nationwide cohort of 2,151 patients with ASD to compare the incidences of atrial fibrillation or flutter (together abbreviated as AF), heart failure, and mortality between patients with familial and sporadic ASD using Cox proportional hazard ratio and Fine and Gray analysis. Patients with familial ASD experienced AF and heart failure earlier in life than patients with sporadic ASD, with hazard ratios of 1.6 and 1.7, respectively. Subdistribution hazard ratios showed an increased risk of AF and heart failure in patients with familial ASD compared with patients with sporadic ASDs (2.3 and 3.1, respectively). Our results suggest that genetic variants with high impact may influence the outcomes of patients with ASD. In conclusion, patients with familial ASD have an increased risk and an earlier onset of AF and heart failure compared with patients with sporadic ASD, hence clinical awareness of arrhythmias and heart failure in patients with familial ASD may lead to timely treatment.
Collapse
Affiliation(s)
| | | | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Nyboe
- Cardiothoracic Anaesthesia, Department of Anaesthesia and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Pensa AV, Baman JR, Puckelwartz MJ, Wilcox JE. Genetically Based Atrial Fibrillation: Current Considerations for Diagnosis and Management. J Cardiovasc Electrophysiol 2022; 33:1944-1953. [PMID: 35262243 DOI: 10.1111/jce.15446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common atrial arrhythmia and is subcategorized into numerous clinical phenotypes. Given its heterogeneity, investigations into the genetic mechanisms underlying AF have been pursued in recent decades, with predominant analyses focusing on early onset or lone AF. Linkage analyses, genome wide association studies (GWAS), and single gene analyses have led to the identification of rare and common genetic variants associated with AF risk. Significant overlap with genetic variants implicated in dilated cardiomyopathy syndromes, including truncating variants of the sarcomere protein titin, have been identified through these analyses, in addition to other genes associated with cardiac structure and function. Despite this, widespread utilization of genetic testing in AF remains hindered by the unclear impact of genetic risk identification on clinical outcomes and the high prevalence of variants of unknown significance (VUS). However, genetic testing is a reasonable option for patients with early onset AF and in those with significant family history of arrhythmia. While many knowledge gaps remain, emerging data support genotyping to inform selection of AF therapeutics. In this review we highlight the current understanding of the complex genetic basis of AF and explore the overlap of AF with inherited cardiomyopathy syndromes. We propose a set of criteria for clinical genetic testing in AF patients and outline future steps for the integration of genetics into AF care. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anthony V Pensa
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jayson R Baman
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane E Wilcox
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
27
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm JS, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM. Patient-specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022; 145:606-619. [PMID: 35113653 PMCID: PMC8860223 DOI: 10.1161/circulationaha.121.054347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The pathogenic missense variant p.G125R in TBX5 causes Holt-Oram syndrome (HOS; hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. Methods: We analyzed electrocardiograms (ECGs) of an extended family pedigree of HOS patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiological analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single nuclei and tissue RNA sequencing) and epigenetic profiling (ATAC-sequencing, H3K27ac CUT&RUN-sequencing). Results: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in HOS patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared to controls. Transcriptional profiling of atria revealed most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and non-coding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R sensitive putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA binding motifs of members of the SP- and KLF families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, altered transcriptional regulation and changed cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. Conclusions: Our data reveal how a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Aix-Marseille University, INSERM, TAGC, U1090, Marseille, France
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton Baartscheer
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Mahfuz AMUB, Khan MA, Deb P, Ansary SJ, Jahan R. Identification of deleterious single nucleotide polymorphism (SNP)s in the human TBX5 gene & prediction of their structural & functional consequences: An in silico approach. Biochem Biophys Rep 2021; 28:101179. [PMID: 34917776 PMCID: PMC8646135 DOI: 10.1016/j.bbrep.2021.101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
T-box transcription factor 5 gene (TBX5) encodes the transcription factor TBX5, which plays a crucial role in the development of heart and upper limbs. Damaging single nucleotide variants in this gene alter the protein structure, disturb the functions of TBX5, and ultimately cause Holt-Oram Syndrome (HOS). By analyzing the available single nucleotide polymorphism information in the dbSNP database, this study was designed to identify the most deleterious TBX5 SNPs through insilico approaches and predict their structural and functional consequences. Fifty-eight missense substitutions were found damaging by sequence homology-based tools: SIFT and PROVEAN, and structure homology-based tool PolyPhen-2. Various disease association meta-predictors further scrutinized these SNPs. Additionally, conservation profile of the amino acid residues, their surface accessibility, stability, and structural integrity of the native protein upon mutations were assessed. From these analyses, finally 5 SNPs were detected as the most damaging ones: [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 (V153D), rs769113870 (E208D), and rs1318021626 (I222N)]. Analyses of stop-lost, nonsense, UTR, and splice site SNPs were also conducted. Through integrative bioinformatics analyses, this study has identified the SNPs that are deleterious to the TBX5 protein structure and have the potential to cause HOS. Further wet-lab experiments can validate these findings.
Deleterious SNPs in the human TBX5 gene responsible for Holt-Oram Syndrome have been identified. 58 missense and 2 nonsense SNPs were identified as deleterious. 86 3′ UTR SNPs were predicted to be located on miRNA target sites. Possible effects of missense SNPs on the TBX5 protein structure have been studied.
Collapse
Affiliation(s)
- A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Promita Deb
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Sharmin Jahan Ansary
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| |
Collapse
|
29
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
30
|
Karki R, Raina A, Ezzeddine FM, Bois MC, Asirvatham SJ. Anatomy and Pathology of the Cardiac Conduction System. Card Electrophysiol Clin 2021; 13:569-584. [PMID: 34689887 DOI: 10.1016/j.ccep.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cardiac conduction system is formed of histologically and electrophysiologically distinct specialized tissues uniquely located in the human heart. Understanding the anatomy and pathology of the cardiac conduction system is imperative to an interventional electrophysiologist to perform safe ablation and device therapy for the management of cardiac arrhythmias and heart failure. The current review summarizes the normal and developmental anatomy of the cardiac conduction system, its variation in the normal heart and congenital anomalies, and its pathology and discusses important clinical pearls for the proceduralist.
Collapse
Affiliation(s)
- Roshan Karki
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Anvi Raina
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
31
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
32
|
Cenni C, Andres S, Hempel M, Strom TM, Thomas E, Davies A, Timoney N, Frigiola A, Logan M, Holder-Espinasse M. TBX3 and TBX5 duplication: A family with an atypical overlapping Holt-Oram/ulnar-mammary syndrome phenotype. Eur J Med Genet 2021; 64:104213. [PMID: 33930582 DOI: 10.1016/j.ejmg.2021.104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/15/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. A wide spectrum of TBX5 mutations have been reported previously, most resulting in a null allele leading to haploinsufficiency. TBX5 gene duplications have been previously reported in association with typical and atypical HOS phenotypes. Ulnar-Mammary syndrome (UMS) is a distinct rare, autosomal dominant condition caused by mutations in the TBX3 gene. TBX5 and TBX3 are physically linked in cis on human chromosome 12 and contiguous chromosome 12q24 deletions comprising both TBX5 and TBX3 genes have been previously reported but to our knowledge, duplications have never been described. We report on a large German family with at least 17 affected individuals over 6 generations bearing a duplication at 12q24.21 identified on array-CGH comprising both TBX5 and TBX3 genes. Affected patients are presenting with HOS and UMS symptoms, consisting of variable limb anomalies involving the radial and the ulnar rays and cardiac findings such as congenital heart defects, persistent arterial duct or aortic stenosis, and non-classical symptoms, such as supernumerary nipples and cardiomyopathy. Fluorescence in situ hybridisation confirmed a tandem duplication at the 12q24.21 locus. This is the first report of a contiguous TBX3/TBX5 duplication associated with HOS/UMS phenotype.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Breast Diseases/complications
- Breast Diseases/genetics
- Breast Diseases/pathology
- Female
- Gene Duplication
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Septal Defects, Atrial/complications
- Heart Septal Defects, Atrial/genetics
- Heart Septal Defects, Atrial/pathology
- Humans
- Lower Extremity Deformities, Congenital/complications
- Lower Extremity Deformities, Congenital/genetics
- Lower Extremity Deformities, Congenital/pathology
- Male
- Pedigree
- Phenotype
- T-Box Domain Proteins/genetics
- Ulna/abnormalities
- Ulna/pathology
- Upper Extremity Deformities, Congenital/complications
- Upper Extremity Deformities, Congenital/genetics
- Upper Extremity Deformities, Congenital/pathology
Collapse
Affiliation(s)
- Camille Cenni
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Stephanie Andres
- Institute of Human Genetics, Technische Universitat Munchen, Munich, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universitat Munchen, Munich, Germany
| | - Ellen Thomas
- Genomics England, Queen Mary University of London, London, UK; Genomic Medicine, Imperial College Healthcare NHS Trust, London, UK
| | | | - Norma Timoney
- Department of Plastic Surgery, St Thomas Hospital, London, UK
| | | | - Malcolm Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | | |
Collapse
|
33
|
Leigh RS, Ruskoaho HJ, Kaynak BL. Cholecystokinin peptide signaling is regulated by a TBX5-MEF2 axis in the heart. Peptides 2021; 136:170459. [PMID: 33249116 DOI: 10.1016/j.peptides.2020.170459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/15/2022]
Abstract
The procholecystokinin (proCCK) gene encodes a secreted peptide known to regulate the digestive, endocrine, and nervous systems. Though recently proposed as a biomarker for heart dysfunction, its physiological role in both the embryonic and adult heart is poorly understood, and there are no reports of tissue-specific regulators of cholecystokinin signaling in the heart or other tissues. In the present study, mRNA of proCCK was observed in cardiac tissues during mouse embryonic development, establishing proCCK as an early marker of differentiated cardiomyocytes which is later restricted to anatomical subdomains of the neonatal heart. Three-dimensional analysis of the expression of proCCK and CCKAR/CCKBR receptors was performed using in situ hybridization and optical projection tomography, illustrating chamber-specific expression patterns in the postnatal heart. Transcription factor motif analyses indicated developmental cardiac transcription factors TBX5 and MEF2C as upstream regulators of proCCK, and this regulatory activity was confirmed in reporter gene assays. proCCK mRNA levels were also measured in the infarcted heart and in response to cyclic mechanical stretch and endothelin-1, indicating dynamic transcriptional regulation which might be leveraged for improved biomarker development. Functional analyses of exogenous cholecystokinin octapeptide (CCK-8) administration were performed in differentiating mouse embryonic stem cells (mESCs), and the results suggest that CCK-8 does not act as a differentiation modulator of cardiomyocyte subtypes. Collectively, these findings indicate that proCCK is regulated at the transcriptional level by TBX5-MEF2 and neurohormonal signaling, informing use of proCCK as a biomarker and future strategies for upstream manipulation of cholecystokinin signaling in the heart and other tissues.
Collapse
Affiliation(s)
- Robert S Leigh
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki J Ruskoaho
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bogac L Kaynak
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Park YM, Roh SY, Lee DI, Shim J, Choi JI, Park SW, Kim YH. The Effects of Single Nucleotide Polymorphisms in Korean Patients with Early-onset Atrial Fibrillation after Catheter Ablation. J Korean Med Sci 2020; 35:e411. [PMID: 33350184 PMCID: PMC7752257 DOI: 10.3346/jkms.2020.35.e411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND This study evaluated the status of single nucleotide polymorphisms (SNPs) in Korean patients with early-onset (< 40 years old) atrial fibrillation (AF) and their effects on the outcome after catheter ablation. METHODS A total of 89 patients (35.7 ± 3.7 years, 81 males) with drug-refractory AF (paroxysmal 64.0%) who underwent catheter ablation were included in this study. Sixteen SNPs, including rs13376333, rs10465885, rs10033464, rs2200733, rs17042171, rs6843082, rs7193343, rs2106261, rs17570669, rs853445, rs11708996, rs6800541, rs251253, rs3807989, rs11047543, and rs3825214, were genotyped. Serial 48-hour Holter monitoring was conducted to detect AF recurrences during long-term follow up. RESULTS Wild-type genotypes of rs11047543 (GG; 26/69 [37.7%] vs. GA; 13/18 [72.2%] vs. AA; 0/0 [0%], P = 0.009) and rs7193343 (CC; 0/7 [0%] vs. CT; 22/40 [55.0%] vs. TT; 18/41 [43.9%], P = 0.025) and the homozygous variant of rs3825214 (AA; 16/31 [51.6%] vs. AG; 22/43 [51.2%] vs. GG; 2/13 [15.4%], P = 0.056) were significantly associated with a lower rate of late recurrence. When the patients were assigned to four groups according to the number of risk alleles (n = 0-3), there were significant differences in recurrence rate (n = 0; 0/3 vs. n = 1; 2/13 [15.4%] vs. n = 2; 24/52 [46.2%] vs. n = 3; 13/17 [76.5%], P = 0.003). When correcting for multiple variables, rs11047543 (hazard ratio [HR], 2.723; 95% confidence interval [CI], 1.358-5.461; P = 0.005) and the number of risk alleles (HR, 2.901; 95% CI, 1.612-5.219; P < 0.001) were significantly associated with recurrence of AF after catheter ablation. CONCLUSION Polymorphisms on rs7193343 closest to ZFHX3 (16q22), rs3825214 near to TBX5 (12q24), and rs11047543 near to SOX5 (12p12) modulate the risk for AF recurrence after catheter ablation. The number of risk alleles of these 3 SNPs was an independent predictor of recurrence during long-term follow up in Korean patients with early-onset AF.
Collapse
Affiliation(s)
- Yae Min Park
- Division of Cardiology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Seung Young Roh
- Division of Cardiology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dae In Lee
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Jaemin Shim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Jong Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Sang Weon Park
- Division of Cardiology, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
| | - Young Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea.
| |
Collapse
|
35
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
36
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|
37
|
Chen HX, Yang ZY, Hou HT, Wang J, Wang XL, Yang Q, Liu L, He GW. Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J Cell Mol Med 2020; 24:13751-13762. [PMID: 33098376 PMCID: PMC7753982 DOI: 10.1111/jcmm.15950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Congenital heart disease (CHD) associated with polydactyly involves various genes. We aimed to identify variations from genes related to complex CHD with polydactyly and to investigate the cellular functions related to the mutations. Blood was collected from a complex CHD case with polydactyly, and whole exome sequencing (WES) was performed. The CRISPR/Cas9 system was used to generate human pluripotent stem cell with mutations (hPSCs-Mut) that were differentiated into cardiomyocytes (hPSC-CMs-Mut) and analysed by transcriptomics on day 0, 9 and 13. Two heterozygous mutations, LTBP2 (c.2206G>A, p.Asp736Asn, RefSeq NM_000428.2) and TCTN3 (c.1268G>A, p.Gly423Glu, RefSeq NM_015631.5), were identified via WES but no TBX5 mutations were found. The stable cell lines of hPSCs-LTBP2mu /TCTN3mu were constructed and differentiated into hPSC-CMs-LTBP2mu /TCTN3mu . Compared to the wild type, LTBP2 mutation delayed the development of CMs. The TCTN3 mutation consistently presented lower rate and weaker force of the contraction of CMs. For gene expression pattern of persistent up-regulation, pathways in cardiac development and congenital heart disease were enriched in hPSCs-CM-LTBP2mu , compared with hPSCs-CM-WT. Thus, the heterozygous mutations in TCTN3 and LTBP2 affect contractility (rate and force) of cardiac myocytes and may affect the development of the heart. These findings provide new insights into the pathogenesis of complex CHD with polydactyly.
Collapse
Affiliation(s)
- Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zi-Yue Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiu-Li Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Zhejiang University, Hangzhou, Zhejiang, China.,Drug Research and Development Center, Wannan Medical College, Wuhu, Anhui, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
38
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
van Walree ES, Dombrowsky G, Jansen IE, Mirkov MU, Zwart R, Ilgun A, Guo D, Clur SAB, Amin AS, Savage JE, van der Wal AC, Waisfisz Q, Maugeri A, Wilsdon A, Bu'Lock FA, Hurles ME, Dittrich S, Berger F, Audain Martinez E, Christoffels VM, Hitz MP, Milewicz DM, Posthuma D, Meijers-Heijboer H, Postma AV, Mathijssen IB. Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms. Genet Med 2020; 23:103-110. [PMID: 32820247 PMCID: PMC8804301 DOI: 10.1038/s41436-020-00939-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. Methods Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD), family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 controls, and the other 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. Results We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n=3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n=20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (meta-SKAT p=0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. Conclusion A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.
Collapse
Affiliation(s)
- Eva S van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands.
| | - Gregor Dombrowsky
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
| | - Iris E Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maša Umićević Mirkov
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Rob Zwart
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aho Ilgun
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmed S Amin
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Anna Wilsdon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Frances A Bu'Lock
- East Midlands Congenital Heart Centre and University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sven Dittrich
- Department of Pediatric Cardiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Berger
- German Heart Center Berlin, Department of Congenital Heart Disease, Pediatric Cardiology, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Enrique Audain Martinez
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc-Philip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniëlle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Cuellar A, Bala K, Di Pietro L, Barba M, Yagnik G, Liu JL, Stevens C, Hur DJ, Ingersoll RG, Justice CM, Drissi H, Kim J, Lattanzi W, Boyadjiev SA. Gain-of-function variants and overexpression of RUNX2 in patients with nonsyndromic midline craniosynostosis. Bone 2020; 137:115395. [PMID: 32360898 PMCID: PMC7358991 DOI: 10.1016/j.bone.2020.115395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Craniosynostosis (CS), the premature fusion of one or more cranial sutures, is a relatively common congenital anomaly, occurring in 3-5 per 10,000 live births. Nonsyndromic CS (NCS) accounts for up to 80% of all CS cases, yet the genetic factors contributing to the disorder remain largely unknown. The RUNX2 gene, encoding a transcription factor critical for bone and skull development, is a well known CS candidate gene, as copy number variations of this gene locus have been found in patients with syndromic craniosynostosis. In the present study, we aimed to characterize RUNX2 to better understand its role in the genetic etiology and in the molecular mechanisms underlying midline suture ossification in NCS. We report four nonsynonymous variants, one intronic variant and one 18 bp in-frame deletion in RUNX2 not found in our study control population. Significant difference in allele frequency (AF) for the deletion variant RUNX2 p.Ala84-Ala89del (ClinVar 257,095; dbSNP rs11498192) was observed in our sagittal NCS cohort when compared to the general population (P = 1.28 × 10-6), suggesting a possible role in the etiology of NCS. Dual-luciferase assays showed that three of four tested RUNX2 variants conferred a gain-of-function effect on RUNX2, further suggesting their putative pathogenicity in the tested NCS cases. Downregulation of RUNX2 expression was observed in prematurely ossified midline sutures. Metopic sites showed significant downregulation of promoter 1-specific isoforms compared to sagittal sites. Suture-derived mesenchymal stromal cells showed an increased expression of RUNX2 over matched unfused suture derived cells. This demonstrates that RUNX2, and particularly the distal promoter 1-isoform group, are overexpressed in the osteogenic precursors within the pathological suture sites.
Collapse
Affiliation(s)
- Araceli Cuellar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Krithi Bala
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Garima Yagnik
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jia Lie Liu
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christina Stevens
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - David J Hur
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roxann G Ingersoll
- Mc-Kusick-Nathans Institute of Genetic Medicine, Johns Hopkins, Baltimore, MD, USA
| | - Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinoh Kim
- Department of Biological Sciences, College of Veterinary Medicine, Iowa State University, IA, USA
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
42
|
Zhang E, Yang J, Liu Y, Hong N, Xie H, Fu Q, Li F, Chen S, Yu Y, Sun K. MESP2 variants contribute to conotruncal heart defects by inhibiting cardiac neural crest cell proliferation. J Mol Med (Berl) 2020; 98:1035-1048. [PMID: 32572506 DOI: 10.1007/s00109-020-01929-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Conotruncal heart defects (CTDs) are closely related to defective outflow tract (OFT) development, in which cardiac neural crest cells (CNCCs) play an indispensable role. However, the genetic etiology of CTDs remains unclear. Mesoderm posterior 2 (MESP2) is an important transcription factor regulating early cardiogenesis. Nevertheless, MESP2 variants have not been reported in congenital heart defect (CHD) patients. We first identified four MESP2 variants in 601 sporadic nonsyndromic CTD patients that were not detected in 400 healthy controls using targeted sequencing. Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence assays revealed MESP2 expression in the OFT of Carnegie stage (CS) 11, CS13, and CS15 human embryos and embryonic day (E) 8.5, E10, and E11.5 mouse embryos. Functional analyses in HEK 293T cells, HL-1 cells, JoMa1 cells, and primary mouse CNCCs revealed that MESP2 directly regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factors. Three MESP2 variants, c.346G>C (p.G116R), c.921C>G (p.Y307X), and c.59A>T (p.Q20L), altered the transcriptional activities of MYOCD, GATA4, NKX2.5, and CFC1 and inhibited CNCC proliferation by upregulating p21cip1 or downregulating Cdk4. Based on our findings, MESP2 variants disrupted MESP2 function by interfering with CNCC proliferation during OFT development, which may contribute to CTDs. KEY MESSAGES: This study first analyzed MESP2 variants identified in sporadic nonsyndromic CTD patients. MESP2 is expressed in the OFT of different stages of human and mouse embryos. MESP2 regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factor p21cip1 or Cdk4.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jianping Yang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Liu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huilin Xie
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
43
|
Abstract
Atrial fibrillation is a common heart rhythm disorder that leads to an increased risk for stroke and heart failure. Atrial fibrillation is a complex disease with both environmental and genetic risk factors that contribute to the arrhythmia. Over the last decade, rapid progress has been made in identifying the genetic basis for this common condition. In this review, we provide an overview of the primary types of genetic analyses performed for atrial fibrillation, including linkage studies, genome-wide association studies, and studies of rare coding variation. With these results in mind, we aim to highlighting the existing knowledge gaps and future directions for atrial fibrillation genetics research.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen Groningen, the Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen Groningen, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
45
|
Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP. Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 2020; 129:4937-4950. [PMID: 31609246 DOI: 10.1172/jci124231] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.
Collapse
Affiliation(s)
| | | | - Leonid Tyan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ivan P Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics.,Department of Pathology, and
| |
Collapse
|
46
|
Patterson J, Coats C, McGowan R. Familial dilated cardiomyopathy associated with pathogenic TBX5 variants: Expanding the cardiac phenotype associated with Holt-Oram syndrome. Am J Med Genet A 2020; 182:1725-1734. [PMID: 32449309 DOI: 10.1002/ajmg.a.61635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/07/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant disorder caused by heterozygous pathogenic variants in cardiac T-box transcription factor, TBX5. Classically, it is associated with upper limb malformations and variable cardiac abnormalities. Limb manifestations are considered to be invariably present, ranging in severity from limitation in movement, to triphalangeal thumbs, absent thumbs, shortened forearms, or phocomelia. Cardiac involvement is characterized by congenital heart defects, most commonly septal structural malformations, and conduction system disease. Recently, novel TBX5 variants have also been reported in association with dilated cardiomyopathy (DCM). In this context, we report eight individuals from four unrelated families, in whom pathogenic variants in TBX5 segregated with an atypical HOS phenotype. Affected individuals exhibit relatively mild skeletal features of HOS, with a predominant cardiac phenotype, which includes several individuals affected by non-ischaemic DCM. To our knowledge, these represent the first reported cases of DCM in families with skeletal features of HOS, some of whom also harbored variants previously linked to a classical HOS phenotype (p. Arg279* and p.Arg237Gln). This finding supports diverse roles of TBX5 in cardiovascular development and function, and confirms the importance of long-term cardiac surveillance for individuals affected by HOS. Furthermore, these families highlight the wide phenotypic variability of HOS, which may include comparatively mild upper limb findings in respect to cardiac manifestations.
Collapse
Affiliation(s)
- Jenny Patterson
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Caroline Coats
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
47
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
48
|
Yuan SM, Xu ZY. Fetal arrhythmias: prenatal evaluation and intrauterine therapeutics. Ital J Pediatr 2020; 46:21. [PMID: 32050988 PMCID: PMC7017517 DOI: 10.1186/s13052-020-0785-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Fetal arrhythmias are a common phenomenon with rather complicated etiologies. Debates remain regarding prenatal diagnosis and treatment of fetal arrhythmias. Methods The literature reporting on prenatal diagnosis and treatment of fetal arrhythmias published in the recent two decades were retrieved, collected and analyzed. Results Both fetal magnetocardiogram and electrocardiogram provide information of cardiac time intervals, including the QRS and QT durations. M-mode ultrasound detects the AV and VA intervals, fetal heart rate, and AV conduction. By using Doppler ultrasound, simultaneous recording of the atrial and ventricular waves can be obtained. Benign fetal arrhythmias, including premature contractions and sinus tachycardia, do not need any treatment before and after birth. Sustained fetal arrhythmias that predispose to the occurrence of hydrops fetalis, cardiac dysfunction or eventual fetal demise require active treatments. Intrauterine therapy of fetal tachyarrhythmias has been carried out by the transplacental route. If maternal transplacental treatment fails, intraumbilical, intraperitoneal, or direct fetal intramuscular injection of antiarrhythmic agents can be attempted. Conclusions The outcomes of intrauterine therapy of fetal tachyarrhythmias depend on the types or etiology of fetal arrhythmias and fetal conditions. Most are curable to a transplacental treatment by the first-line antiarrhythmic agents. Fetal cardiac pacings are effective methods to restore sinus rhythm in drug-resistant or hemodynamically compromised cases. Immediate postnatal pacemaker implantation is warranted in refractory cases.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China
| | - Zhi-Yang Xu
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China.
| |
Collapse
|
49
|
Wang S, Zhang J, He X, Zhang Y, Chen J, Su Q, Pang S, Zhang S, Cui Y, Yan B. Identification and functional analysis of genetic variants in TBX5 gene promoter in patients with acute myocardial infarction. BMC Cardiovasc Disord 2019; 19:265. [PMID: 31775637 PMCID: PMC6880377 DOI: 10.1186/s12872-019-1237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Coronary artery disease (CAD), including acute myocardial infarction (AMI), is a common complex disease. Although a great number of genetic loci and variants for CAD have been identified, genetic causes and underlying mechanisms remain largely unclear. Epidemiological studies have revealed that CAD incidence is strikingly higher in patients with congenital heart disease than that in normal population. T-box transcription factors play critical roles in embryonic development. In particular, TBX5 as a dosage-sensitive regulator is required for cardiac development and function. Thus, dysregulated TBX5 gene expression may be involved in CAD development. Methods TBX5 gene promoter was genetically and functionally analysed in large groups of AMI patients (n = 432) and ethnic-matched healthy controls (n = 448). Results Six novel heterozygous DNA sequence variants (DSVs) in the TBX5 gene promoter (g.4100A > G, g.4194G > A, g.4260 T > C, g.4367C > A, g.4581A > G and g.5004G > T) were found in AMI patients, but in none of controls. These DSVs significantly changed the activity of TBX5 gene promoter in cultured cells (P < 0.05). Furthermore, three of the DSVs (g.4100A > G, g.4260 T > C and g.4581A > G) evidently modified the binding sites of unknown transcription factors. Conclusions The DSVs identified in AMI patients may alter TBX5 gene promoter activity and change TBX5 level, contributing to AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jie Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Xiaohui He
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Yexin Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jing Chen
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Qiang Su
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China
| | - Shufang Zhang
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China. .,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China. .,Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
50
|
Delisle BP, Yu Y, Puvvula P, Hall AR, Huff C, Moon AM. Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing. Pediatr Cardiol 2019; 40:1388-1400. [PMID: 31372681 DOI: 10.1007/s00246-019-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavan Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA
| | - Allison R Hall
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA. .,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|