1
|
Jalil A, Pilot T, Bourgeois T, Laubriet A, Li X, Diedisheim M, Deckert V, Magnani C, Le Guern N, Pais de Barros JP, Nguyen M, Pallot G, Vouilloz A, Proukhnitzky L, Hermetet F, Aires V, Lesniewska E, Lagrost L, Auwerx J, Le Goff W, Venteclef N, Steinmetz E, Thomas C, Masson D. Plasmalogen remodeling modulates macrophage response to cytotoxic oxysterols and atherosclerotic plaque vulnerability. Cell Rep Med 2025; 6:102131. [PMID: 40345182 DOI: 10.1016/j.xcrm.2025.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Essential fatty acid metabolism in myeloid cells plays a critical but underexplored role in immune function. Here, we demonstrate that simultaneous inactivation of two key enzymes involved in macrophage polyunsaturated fatty acid (PUFA) metabolism-ELOVL5, which elongates long-chain PUFAs, and LPCAT3, which incorporates them into phospholipids-disrupts membrane organization by promoting the formation of cholesterol-enriched domains. This increases macrophage sensitivity to cytotoxic oxysterols and leads to more vulnerable atherosclerotic plaques with enlarged necrotic cores in a mouse model of atherosclerosis. In humans, analysis of 187 carotid plaques reveals a positive correlation between LPCAT3/ELOVL5-generated phospholipids-including arachidonate (C20:4 n-6)-containing ether lipids-and more stable plaque profiles. Additionally, Mendelian randomization analysis supports a causal relationship between LPCAT3 expression and reduced risk of ischemic stroke. Our findings uncover a regulatory circuit essential for PUFA-containing phospholipid generation in macrophages, positioning PUFA-containing ether lipids as promising biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Aline Laubriet
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marc Diedisheim
- Centre - Clinique Saint Gatien Alliance (NCT+), 37214 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Valérie Deckert
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Charlène Magnani
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytic Platform, UBFC, 21000 Dijon, France
| | - Maxime Nguyen
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Department of Anesthesiology and Critical Care Medicine, Dijon University Medical Center, 21000 Dijon, France
| | - Gaëtan Pallot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Adrien Vouilloz
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Lil Proukhnitzky
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - François Hermetet
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Virginie Aires
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Eric Lesniewska
- Université Bourgogne, UMR1231, 21000 Dijon, France; Laboratory of Physics, National Center for Scientific Research, URA 5027, UFR Sciences et techniques, 21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, ICAN Institut, UMR_S1166, Hôpital de la Pitié, 75013 Paris, France
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Eric Steinmetz
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France.
| |
Collapse
|
2
|
Kramer S, Su MH, Stephenson M, Rabinowitz J, Maher B, Roberson-Nay R, Castro-de-Arajuo LFS, Zhou Y, Neale MC, Gillespie N. Measuring the associations between brain morphometry and polygenic risk scores for substance use disorders in drug-naive adolescents. RESEARCH SQUARE 2025:rs.3.rs-6190536. [PMID: 40235481 PMCID: PMC11998789 DOI: 10.21203/rs.3.rs-6190536/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Substance use has been associated with differences in adult brain morphology; however, it is unclear whether these differences precede or are a result of substance use substance use. We investigated the impact of polygenic risk scores (PRSs) for cannabis use disorder (CUD) and general substance use and substance use disorder liability (SU/SUD) on brain morphology in drug-naïve adolescents. Baseline data were used from 1,874 European-descent participants (ages 9-11) comprising 222, 328 and 387 pairs of MZ twins, DZ twins, and Non-Twin Siblings, respectively, in the Adolescent Brain Cognitive Development Study. We fitted multivariate twin models to estimate the putative effects of CUD, SU/SUD, and brain region-specific PRSs. These models assessed their influence on six subcortical and two cortical phenotypes. PRS for CUD and SU/SUD were created based on GWAS conducted by Johnson et al. (2020) and Hatoum et al. (2023), respectively. When decomposing variance in each brain region of interest (ROI), we used the corresponding ROI-specific PRS. Brain morphometry in drug-naive subjects was unrelated to CUD PRS. The variance explained in each ROI by its corresponding PRS ranged from 0.8-4.4%. The SU/SUD PRS showed marginally significant effects (0.2-0.4%) on cortical surface area and nucleus accumbens volume, but overall effect sizes were small. Our findings indicate that differences in brain morphometry among baseline drug-naive individuals are not associated with the genetic risk for CUD but show a weak association with general addiction and substance use risk (SU/SUD), particularly in nucleus accumbens volume and total cortical surface area.
Collapse
|
3
|
Dron JS, Natarajan P, Peloso GM. The breadth and impact of the Global Lipids Genetics Consortium. Curr Opin Lipidol 2025; 36:61-70. [PMID: 39602359 PMCID: PMC11888832 DOI: 10.1097/mol.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW This review highlights contributions of the Global Lipids Genetics Consortium (GLGC) in advancing the understanding of the genetic etiology of blood lipid traits, including total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, and non-HDL cholesterol. We emphasize the consortium's collaborative efforts, discoveries related to lipid and lipoprotein biology, methodological advancements, and utilization in areas extending beyond lipid research. RECENT FINDINGS The GLGC has identified over 923 genomic loci associated with lipid traits through genome-wide association studies (GWASs), involving more than 1.65 million individuals from globally diverse populations. Many loci have been functionally validated by individuals inside and outside the GLGC community. Recent GLGC studies show increased population diversity enhances variant discovery, fine-mapping of causal loci, and polygenic score prediction for blood lipid levels. Moreover, publicly available GWAS summary statistics have facilitated the exploration of lipid-related genetic influences on cardiovascular and noncardiovascular diseases, with implications for therapeutic development and drug repurposing. SUMMARY The GLGC has significantly advanced the understanding of the genetic basis of lipid levels and serves as the leading resource of GWAS summary statistics for these traits. Continued collaboration will be critical to further understand lipid and lipoprotein biology through large-scale genetic assessments in diverse populations.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge
- Cardiovascular Research Center, Massachusetts General Hospital
- Department of Medicine, Harvard Medical School
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Jonsdottir AB, Sveinbjornsson G, Thorolfsdottir RB, Tamlander M, Tragante V, Olafsdottir T, Rognvaldsson S, Sigurdsson A, Eggertsson HP, Aegisdottir HM, Arnar DO, Banasik K, Beyter D, Bjarnason RG, Bjornsdottir G, Brunak S, Topholm Bruun M, Dowsett J, Einarsson E, Einarsson G, Erikstrup C, Fridriksdottir R, Ghouse J, Gretarsdottir S, Halldorsson GH, Hansen T, Helgadottir A, Holm PC, Ivarsdottir EV, Iversen KK, Jensen BA, Jonsdottir I, Knight S, Knowlton KU, Kristmundsdottir S, Larusdottir AE, Magnusson OT, Masson G, Melsted P, Mikkelsen C, Moore KHS, Oddsson A, Olason PI, Palsson F, Pedersen OB, Schwinn M, Sigurdsson EL, Skaftason A, Stefansdottir L, Stefansson H, Steingrimsdottir T, Sturluson A, Styrkarsdottir U, Sørensen E, Teitsdottir UD, Thorgeirsson TE, Thorisson GA, Thorsteinsdottir U, Ulfarsson MO, Ullum H, Vikingsson A, Walters GB, Nadauld LD, Bundgaard H, Ostrowski SR, Helgason A, Halldorsson BV, Norddahl GL, Ripatti S, Gudbjartsson DF, Thorleifsson G, Steinthorsdottir V, Holm H, Sulem P, Stefansson K. Missense variants in FRS3 affect body mass index in populations of diverse ancestries. Nat Commun 2025; 16:2694. [PMID: 40133257 PMCID: PMC11937519 DOI: 10.1038/s41467-025-57753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Obesity is associated with adverse effects on health and quality of life. Improved understanding of its underlying pathophysiology is essential for developing counteractive measures. To search for sequence variants with large effects on BMI, we perform a multi-ancestry meta-analysis of 13 genome-wide association studies on BMI, including data derived from 1,534,555 individuals of European ancestry, 339,657 of Asian ancestry, and 130,968 of African ancestry. We identify an intergenic 262,760 base pair deletion at the MC4R locus that associates with 4.11 kg/m2 higher BMI per allele, likely through downregulation of MC4R. Moreover, a rare FRS3 missense variant, p.Glu115Lys, only found in individuals from Finland, associates with 1.09 kg/m2 lower BMI per allele. We also detect three other low-frequency FRS3 missense variants that associate with BMI with smaller effects and are enriched in different ancestries. We characterize FRS3 as a BMI-associated gene, encoding an adaptor protein known to act downstream of BDNF and TrkB, which regulate appetite, food intake, and energy expenditure through unknown signaling pathways. The work presented here contributes to the biological foundation of obesity by providing a convincing downstream component of the BDNF-TrkB pathway, which could potentially be targeted for obesity treatment.
Collapse
Affiliation(s)
- Andrea B Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | | | - Max Tamlander
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Hildur M Aegisdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Cardiovascular Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Karina Banasik
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ragnar G Bjarnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Medical Center, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Søren Brunak
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jonas Ghouse
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter C Holm
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Karmark Iversen
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Adalheidur E Larusdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Emil L Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Healthcare in Iceland, Primary Health Care of the Capital Area, Reykjavik, Iceland
| | | | | | | | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | - Arnor Vikingsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Bortnick AE, Austin TR, Hamerton E, Gudmundsdottir V, Emilsson V, Jennings LL, Gudnason V, Owens DS, Massera D, Dufresne L, Yang TY, Engert JC, Thanassoulis G, Tracy RP, Gerszten RE, Psaty BM, Kizer JR. Plasma Proteomic Assessment of Calcific Aortic Valve Disease in Older Adults. J Am Heart Assoc 2025; 14:e036336. [PMID: 40008515 DOI: 10.1161/jaha.124.036336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD), and ensuing severe aortic stenosis (AS), is the foremost valvular disorder of aging, yet preventive therapies are lacking. A better understanding of the molecular underpinnings of aortic valve calcification (AVC) is necessary to develop pharmacologic interventions. METHODS AND RESULTS We undertook large-scale plasma proteomics in a cohort study of adults ≥65 years old, the CHS (Cardiovascular Health Study), to identify individual proteins associated with echocardiographic AVC and incident moderate/severe AS. Proteomics measurements were performed with the aptamer-based SomaLogic platform of ~5000 proteins. Significant proteins were validated in a second cohort, the AGES-RS (Age, Gene/Environment Susceptibility-Reykjavik Study), which assessed AVC and AS by computed tomography. The potential causal associations of replicated proteins were tested in 2-sample Mendelian randomization using identified cis protein quantitative trait loci in consortia having computed tomography-quantified AVC or AS as outcomes. Six proteins showed Bonferroni-corrected significant relationships with AVC in CHS. Three of these, CXCL-12 (C-X-C chemokine ligand 12), KLKB1 (kallikrein), and leptin, replicated in AGES-RS, of which the former 2 are novel. Only 1 protein, CXCL6, which showed a near-significant association with AS in the replication cohort, was significantly (positively) associated with incident AS. Mendelian randomization analysis was conducted for KLKB1, CXCL12, and CXCL6, which supported a causal relationship for higher KLKB1 with lower AVC (beta=-0.25, P=0.009). CONCLUSIONS This study of older adults newly identified and largely replicated associations of 3 circulating proteins with calcific aortic valve disease, of which the relationship of plasma KLKB1 may have a causal basis. Additional investigation is necessary to determine if KLKB1 could be harnessed for calcific aortic valve disease therapeutics.
Collapse
Affiliation(s)
- Anna E Bortnick
- Department of Medicine, Divisions of Cardiology and Geriatrics Montefiore Medical Center and Albert Einstein College of Medicine Bronx NY
- Department of Obstetrics and Gynecology and Women's Health Montefiore Medical Center and Albert Einstein College of Medicine Bronx NY
| | - Thomas R Austin
- Cardiovascular Health Research Unit, Department of Epidemiology University of Washington Seattle WA
| | - Emily Hamerton
- Department of Medicine University of California San Francisco San Francisco CA
- Cardiology Section San Francisco Veterans Affairs Health Care System San Francisco CA
| | - Valborg Gudmundsdottir
- Faculty of Medicine University of Iceland Reykjavik Iceland
- Icelandic Heart Association Kopavogur Iceland
| | | | | | - Vilmundur Gudnason
- Faculty of Medicine University of Iceland Reykjavik Iceland
- Icelandic Heart Association Kopavogur Iceland
| | - David S Owens
- Division of Cardiology University of Washington Seattle WA
| | - Daniele Massera
- Leon H. Charney Division of Cardiology New York University Langone Health New York NY
| | - Line Dufresne
- Preventive and Genomic Cardiology McGill University Health Centre Research Institute Montreal Quebec Canada
| | - Ta-Yu Yang
- Preventive and Genomic Cardiology McGill University Health Centre Research Institute Montreal Quebec Canada
- Department of Human Genetics McGill University Montreal Quebec Canada
| | - James C Engert
- Preventive and Genomic Cardiology McGill University Health Centre Research Institute Montreal Quebec Canada
- Department of Human Genetics McGill University Montreal Quebec Canada
- Division of Experimental Medicine McGill University Montreal Quebec Canada
| | - George Thanassoulis
- Preventive and Genomic Cardiology McGill University Health Centre Research Institute Montreal Quebec Canada
- Division of Experimental Medicine McGill University Montreal Quebec Canada
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine Larner College of Medicine, University of Vermont Burlington VT
| | - Robert E Gerszten
- Department of Medicine, Division of Cardiology Beth Israel Deaconess Hospital and Harvard Medical School Boston MA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health University of Washington Seattle WA
| | - Jorge R Kizer
- Department of Medicine University of California San Francisco San Francisco CA
- Cardiology Section San Francisco Veterans Affairs Health Care System San Francisco CA
- Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA
| |
Collapse
|
6
|
Gallagher CS, Ginsburg GS, Musick A. Biobanking with genetics shapes precision medicine and global health. Nat Rev Genet 2025; 26:191-202. [PMID: 39567741 DOI: 10.1038/s41576-024-00794-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Precision medicine provides patients with access to personally tailored treatments based on individual-level data. However, developing personalized therapies requires analyses with substantial statistical power to map genetic and epidemiologic associations that ultimately create models informing clinical decisions. As one solution, biobanks have emerged as large-scale, longitudinal cohort studies with long-term storage of biological specimens and health information, including electronic health records and participant survey responses. By providing access to individual-level data for genotype-phenotype mapping efforts, pharmacogenomic studies, polygenic risk score assessments and rare variant analyses, biobanks support ongoing and future precision medicine research. Notably, due in part to the geographical enrichment of biobanks in Western Europe and North America, European ancestries have become disproportionately over-represented in precision medicine research. Herein, we provide a genetics-focused review of biobanks from around the world that are in pursuit of supporting precision medicine. We discuss the limitations of their designs, ongoing efforts to diversify genomics research and strategies to maximize the benefits of research leveraging biobanks for all.
Collapse
Affiliation(s)
- C Scott Gallagher
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey S Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Anjené Musick
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
DeCarli C, Rajan KB, Jin LW, Hinman J, Johnson DK, Harvey D, Fornage M, on behalf of the Diverse Vascular Contributions to Cognitive Impairment and Dementia (Diverse VCID) Study Investigators. WMH Contributions to Cognitive Impairment: Rationale and Design of the Diverse VCID Study. Stroke 2025; 56:758-776. [PMID: 39545328 PMCID: PMC11850211 DOI: 10.1161/strokeaha.124.045903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
As awareness of dementia increases, more individuals with minor cognitive complaints are requesting clinical assessment. Neuroimaging studies frequently identify incidental white matter hyperintensities, raising patient concerns about their brain health and future risk for dementia. Moreover, current US demographics indicate that ≈50% of these individuals will be from diverse backgrounds by 2060. Racial and ethnic minority populations bear a disproportionate burden of vascular risk factors magnifying dementia risk. Despite established associations between white matter hyperintensities and cognitive impairment, including dementia, no study has comprehensively and prospectively examined the impact of individual and combined magnetic resonance imaging measures of white matter injury, their risk factors, and comorbidities on cognitive performance among a diverse, nondemented, stroke-free population with cognitive complaints over an extended period of observation. The Diverse VCID (Diverse Vascular Cognitive Impairment and Dementia) study is designed to fill this knowledge gap through 3 assessments of clinical, behavioral, and risk factors; neurocognitive and magnetic resonance imaging measures; fluid biomarkers of Alzheimer disease, vascular inflammation, angiogenesis, and endothelial dysfunction; and measures of genetic risk collected prospectively over a minimum of 3 years in a cohort of 2250 individuals evenly distributed among Americans of Black/African, Latino/Hispanic, and non-Hispanic White backgrounds. The goal of this study is to investigate the basic mechanisms of small vessel cerebrovascular injury, emphasizing clinically relevant assessment tools and developing a risk score that will accurately identify at-risk individuals for possible treatment or clinical therapeutic trials, particularly individuals of diverse backgrounds where vascular risk factors and disease are more prevalent.
Collapse
Affiliation(s)
- Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago IL
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine University of California Davis California USA
| | - Jason Hinman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David K. Johnson
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences University of California Davis California USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
8
|
Naderi H, Warren HR, Munroe PB. Harnessing the power of genomics in hypertension: tip of the iceberg? CAMBRIDGE PRISMS. PRECISION MEDICINE 2025; 3:e2. [PMID: 40071139 PMCID: PMC11894416 DOI: 10.1017/pcm.2025.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 03/14/2025]
Abstract
Despite the blaze of advancing knowledge on its complex genetic architecture, hypertension remains an elusive condition. Genetic studies of blood pressure have yielded bitter-sweet results thus far with the identification of more than 2,000 genetic loci, though the candidate causal genes and biological pathways remain largely unknown. The era of big data and sophisticated statistical tools has propelled insights into pathophysiology and causal inferences. However, new genetic risk tools for hypertension are the tip of the iceberg, and applications of genomic technology are likely to proliferate. We review the genomics of hypertension, exploring the significant milestones in our current understanding of this condition and the progress towards personalised treatment and management for hypertension.
Collapse
Affiliation(s)
- Hafiz Naderi
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, West Smithfield, London, UK
- National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Helen R. Warren
- William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Patricia B. Munroe
- William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Koohi F, Harshfield EL, Gill D, Ge W, Burgess S, Markus HS. Optimizing treatment of cardiovascular risk factors in cerebral small vessel disease using genetics. Brain 2024:awae399. [PMID: 39661645 PMCID: PMC7617411 DOI: 10.1093/brain/awae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024] Open
Abstract
Cerebral small vessel disease (cSVD) causes lacunar stroke (LS), intracerebral haemorrhage, and is the most common pathology underlying vascular dementia. However, there are few trials examining whether treating conventional cardiovascular risk factors reduce stroke risk in cSVD, as opposed to stroke as a whole. We used Mendelian randomization techniques to investigate which risk factors are causally related to cSVD and to evaluate whether specific drugs may be beneficial in cSVD prevention. We identified genetic proxies for blood pressure traits, lipids, glycaemic markers, anthropometry measures, smoking, alcohol consumption, and physical activity from large-scale genome-wide association studies of European ancestry. We also selected genetic variants as proxies for drug target perturbation in hypertension, dyslipidaemia, hyperglycaemia, and obesity. Mendelian randomization was performed to assess their associations with LS from the GIGASTROKE Consortium (n = 6811) and in a sensitivity analysis in a cohort of patients with MRI-confirmed LS (n = 3306). We also investigated associations with three neuroimaging features of cSVD, namely, white matter hyperintensities (n = 55 291), fractional anisotropy (n = 36 460), and mean diffusivity (n = 36 012). Genetic predisposition to higher systolic and diastolic blood pressure was associated with LS and cSVD imaging markers. Genetically predicted liability to diabetes, obesity, smoking, higher triglyceride levels, and the ratio of triglycerides to high density lipoprotein (HDL) also showed detrimental associations with LS risk, while genetic predisposition to higher HDL concentrations and moderate-to-vigorous physical activity showed protective associations. Genetically proxied blood pressure-lowering through calcium channel blockers (CCBs) was associated with cSVD imaging markers, while genetically proxied HDL-raising through Cholesteryl Ester Transfer Protein (CETP) inhibitors, triglyceride-lowering through lipoprotein lipase (LPL), and weight-lowering through gastric inhibitory polypeptide receptor (GIPR) were associated with lower risk of LS. Our findings highlight the importance of some conventional cardiovascular risk factors, including blood pressure and BMI, in cSVD, but not other e.g. LDL. The findings further demonstrate the potential beneficial effects of CCBs on cSVD imaging markers and CETP inhibitors, LPL enhancement, and GIPR obesity-targeted drugs on LS. They provide useful information for initiating future clinical trials examining secondary prevention strategies in cSVD.
Collapse
Affiliation(s)
- Fatemeh Koohi
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eric L Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W12 0BZ, UK
| | - Wenjing Ge
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Huffman JE, Nicholas J, Hahn J, Heath AS, Raffield LM, Yanek LR, Brody JA, Thibord F, Almasy L, Bartz TM, Bielak LF, Bowler RP, Carrasquilla GD, Chasman DI, Chen MH, Emmert DB, Ghanbari M, Haessler J, Hottenga JJ, Kleber ME, Le NQ, Lee J, Lewis JP, Li-Gao R, Luan J, Malmberg A, Mangino M, Marioni RE, Martinez-Perez A, Pankratz N, Polasek O, Richmond A, Rodriguez BAT, Rotter JI, Steri M, Suchon P, Trompet S, Weiss S, Zare M, Auer P, Cho MH, Christofidou P, Davies G, de Geus E, Deleuze JF, Delgado GE, Ekunwe L, Faraday N, Gögele M, Greinacher A, Gao H, Howard T, Joshi PK, Kilpeläinen TO, Lahti J, Linneberg A, Naitza S, Noordam R, Paüls-Vergés F, Rich SS, Rosendaal FR, Rudan I, Ryan KA, Souto JC, van Rooij FJA, Wang H, Zhao W, Becker LC, Beswick A, Brown MR, Cade BE, Campbell H, Cho K, Crapo JD, Curran JE, de Maat MPM, Doyle M, Elliott P, Floyd JS, Fuchsberger C, Grarup N, Guo X, Harris SE, Hou L, Kolcic I, Kooperberg C, Menni C, Nauck M, O'Connell JR, Orrù V, Psaty BM, Räikkönen K, Smith JA, Soria JM, Stott DJ, van Hylckama Vlieg A, Watkins H, Willemsen G, Wilson PWF, Ben-Shlomo Y, et alHuffman JE, Nicholas J, Hahn J, Heath AS, Raffield LM, Yanek LR, Brody JA, Thibord F, Almasy L, Bartz TM, Bielak LF, Bowler RP, Carrasquilla GD, Chasman DI, Chen MH, Emmert DB, Ghanbari M, Haessler J, Hottenga JJ, Kleber ME, Le NQ, Lee J, Lewis JP, Li-Gao R, Luan J, Malmberg A, Mangino M, Marioni RE, Martinez-Perez A, Pankratz N, Polasek O, Richmond A, Rodriguez BAT, Rotter JI, Steri M, Suchon P, Trompet S, Weiss S, Zare M, Auer P, Cho MH, Christofidou P, Davies G, de Geus E, Deleuze JF, Delgado GE, Ekunwe L, Faraday N, Gögele M, Greinacher A, Gao H, Howard T, Joshi PK, Kilpeläinen TO, Lahti J, Linneberg A, Naitza S, Noordam R, Paüls-Vergés F, Rich SS, Rosendaal FR, Rudan I, Ryan KA, Souto JC, van Rooij FJA, Wang H, Zhao W, Becker LC, Beswick A, Brown MR, Cade BE, Campbell H, Cho K, Crapo JD, Curran JE, de Maat MPM, Doyle M, Elliott P, Floyd JS, Fuchsberger C, Grarup N, Guo X, Harris SE, Hou L, Kolcic I, Kooperberg C, Menni C, Nauck M, O'Connell JR, Orrù V, Psaty BM, Räikkönen K, Smith JA, Soria JM, Stott DJ, van Hylckama Vlieg A, Watkins H, Willemsen G, Wilson PWF, Ben-Shlomo Y, Blangero J, Boomsma D, Cox SR, Dehghan A, Eriksson JG, Fiorillo E, Fornage M, Hansen T, Hayward C, Ikram MA, Jukema JW, Kardia SLR, Lange LA, März W, Mathias RA, Mitchell BD, Mook-Kanamori DO, Morange PE, Pedersen O, Pramstaller PP, Redline S, Reiner A, Ridker PM, Silverman EK, Spector TD, Völker U, Wareham NJ, Wilson JF, Yao J, VA Million Veteran Program, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Trégouët DA, Johnson AD, Wolberg AS, de Vries PS, Sabater-Lleal M, Morrison AC, Smith NL. Whole-genome analysis of plasma fibrinogen reveals population-differentiated genetic regulators with putative liver roles. Blood 2024; 144:2248-2265. [PMID: 39226462 PMCID: PMC11600029 DOI: 10.1182/blood.2023022596] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 09/05/2024] Open
Abstract
ABSTRACT Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole-genome sequencing (WGS) data provide better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program (n = 32 572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 131 340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, 4 are driven by common variants of small effect with reported minor allele frequency (MAF) at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor 2 conditionally distinct, noncoding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA) contains 7 distinct signals, including 1 novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR = 0.180; MAFEUR = 0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.
Collapse
Affiliation(s)
- Jennifer E. Huffman
- Palo Alto VA Institute for Research, VA Palo Alto Heath Care System, Palo Alto, CA
- MAVERIC, VA Boston Healthcare System, Boston, MA
| | - Jayna Nicholas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Julie Hahn
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Adam S. Heath
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Traci M. Bartz
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Germán D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
| | - David B. Emmert
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marcus E. Kleber
- SYNLAB MVZ für Humangenetik Mannheim, Mannheim, Germany
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ngoc-Quynh Le
- Unit of Genomics of Complex Disease, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Joshua P. Lewis
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Anni Malmberg
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
- National Institute for Health and Care Research Biomedical Research Centre, Guy’s and St Thomas’ Foundation Trust, London, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Anne Richmond
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Benjamin A. T. Rodriguez
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato-Cagliari, Italy
| | - Pierre Suchon
- Centre de Recherche en Cardiovascular et Nutrition, INSERM, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicin, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, German Center for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Marjan Zare
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Paul Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paraskevi Christofidou
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Eco de Geus
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Commissariat a l'Energie Atomique et aux Energies Alternatives, Université Paris-Saclay, Evry, France
| | - Graciela E. Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lynette Ekunwe
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martin Gögele
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Andreas Greinacher
- Department of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Tom Howard
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato-Cagliari, Italy
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicin, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferran Paüls-Vergés
- Unit of Genomics of Complex Disease, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | | | - Juan Carlos Souto
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Frank J. A. van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Heming Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Lewis C. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew Beswick
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Brian E. Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Kelly Cho
- MAVERIC, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Margaret Doyle
- Department of Pathology and Laboratory Medicine, The University of Vermont Larner College of Medicine, Colchester, VT
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- United Kingdom-Dementia Research Institute, Imperial College London, London, United Kingdom
| | - James S. Floyd
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
| | - Christian Fuchsberger
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany, University Medicine Greifswald, Greifswald, Germany
| | | | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jose Manuel Soria
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - David J. Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter W. F. Wilson
- VA Atlanta Healthcare System, Decatur, GA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yoav Ben-Shlomo
- Poulation Health Sciences, University of Bristol, Bristol, United Kingdom
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Dorret Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- United Kingdom-Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Johan G. Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Winfried März
- Synlab Academy, Synlab Holding Deutschland GmbH, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rasika A. Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland, Baltimore, MD
- Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Pierre-Emmanuel Morange
- Centre de Recherche en Cardiovascular et Nutrition, INSERM, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter P. Pramstaller
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA
| | - Alexander Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Edwin K. Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, German Center for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - James F. Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - VA Million Veteran Program
- Palo Alto VA Institute for Research, VA Palo Alto Heath Care System, Palo Alto, CA
- MAVERIC, VA Boston Healthcare System, Boston, MA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, University of Washington, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- National Jewish Health, Denver, CO
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- SYNLAB MVZ für Humangenetik Mannheim, Mannheim, Germany
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Unit of Genomics of Complex Disease, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, University of Maryland, Baltimore, MD
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
- National Institute for Health and Care Research Biomedical Research Centre, Guy’s and St Thomas’ Foundation Trust, London, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
- Faculty of Medicine, University of Split, Split, Croatia
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato-Cagliari, Italy
- Centre de Recherche en Cardiovascular et Nutrition, INSERM, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Section of Gerontology and Geriatrics, Department of Internal Medicin, Leiden University Medical Center, Leiden, The Netherlands
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, German Center for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre National de Recherche en Génomique Humaine, Commissariat a l'Energie Atomique et aux Energies Alternatives, Université Paris-Saclay, Evry, France
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pathology and Laboratory Medicine, The University of Vermont Larner College of Medicine, Colchester, VT
- United Kingdom-Dementia Research Institute, Imperial College London, London, United Kingdom
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
- Department of Preventive Medicine, Northwestern University, Chicago, IL
- Institute of Clinical Chemistry and Laboratory Medicine, German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany, University Medicine Greifswald, Greifswald, Germany
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- VA Atlanta Healthcare System, Decatur, GA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Poulation Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Synlab Academy, Synlab Holding Deutschland GmbH, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA
- Bordeaux Population Health Research Center, INSERM UMR 1219, University of Bordeaux, Bordeaux, France
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Palo Alto VA Institute for Research, VA Palo Alto Heath Care System, Palo Alto, CA
- MAVERIC, VA Boston Healthcare System, Boston, MA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, University of Washington, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- National Jewish Health, Denver, CO
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- SYNLAB MVZ für Humangenetik Mannheim, Mannheim, Germany
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Unit of Genomics of Complex Disease, Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, University of Maryland, Baltimore, MD
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
- National Institute for Health and Care Research Biomedical Research Centre, Guy’s and St Thomas’ Foundation Trust, London, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
- Faculty of Medicine, University of Split, Split, Croatia
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato-Cagliari, Italy
- Centre de Recherche en Cardiovascular et Nutrition, INSERM, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Section of Gerontology and Geriatrics, Department of Internal Medicin, Leiden University Medical Center, Leiden, The Netherlands
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, German Center for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre National de Recherche en Génomique Humaine, Commissariat a l'Energie Atomique et aux Energies Alternatives, Université Paris-Saclay, Evry, France
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pathology and Laboratory Medicine, The University of Vermont Larner College of Medicine, Colchester, VT
- United Kingdom-Dementia Research Institute, Imperial College London, London, United Kingdom
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
- Department of Preventive Medicine, Northwestern University, Chicago, IL
- Institute of Clinical Chemistry and Laboratory Medicine, German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany, University Medicine Greifswald, Greifswald, Germany
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- VA Atlanta Healthcare System, Decatur, GA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Poulation Health Sciences, University of Bristol, Bristol, United Kingdom
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Synlab Academy, Synlab Holding Deutschland GmbH, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA
- Bordeaux Population Health Research Center, INSERM UMR 1219, University of Bordeaux, Bordeaux, France
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, INSERM UMR 1219, University of Bordeaux, Bordeaux, France
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Paul, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA
| |
Collapse
|
11
|
Gendre B, Martinez‐Perez A, Kleber ME, van Hylckama Vlieg A, Boland A, Olaso R, Germain M, Munsch G, Moissl AP, Suchon P, Souto JC, Soria JM, Deleuze J, März W, Rosendaal FR, Sabater‐Lleal M, Morange P, Trégouët D, CHARGE Hemostasis Working Group. Genome-Wide Search for Nonadditive Allele Effects Identifies PSKH2 as Involved in the Variability of Factor V Activity. J Am Heart Assoc 2024; 13:e034943. [PMID: 39424413 PMCID: PMC11935730 DOI: 10.1161/jaha.124.034943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Factor V (FV) is a key molecular player in the coagulation cascade. FV plasma levels have been associated with several human diseases, including thrombosis, bleeding, and diabetic complications. So far, 2 genes have been robustly found through genome-wide association analyses to contribute to the inter-individual variability of plasma FV levels: structural F5 gene and PLXDC2. METHODS AND RESULTS The authors used the underestimated Brown-Forsythe methodology implemented in the QuickTest software to search for non-additive genetic effects that could contribute to the inter-individual variability of FV plasma activity. QUICKTEST was applied to 4 independent genome-wide association studies studies (LURIC [Ludwigshafen RIsk and Cardiovascular Health Study], MARTHA [Marseille Thrombosis Association], MEGA [Multiple Environmental and Genetic Assessment], and RETROVE [Riesgo de Enfermedad Tromboembolica Venosa]) totaling 4505 participants of European ancestry with measured FV plasma levels. Results obtained in the 4 cohorts were meta-analyzed using a fixed-effect model. Additional analyses involved exploring haplotype and gene×gene interactions in downstream investigations. A genome-wide significant signal at the PSKH2 locus on chr8q21.3 with lead variant rs75463553 with no evidence for heterogeneity across cohorts was observed (P=0.518). Although rs75463553 did not show an association with mean FV levels (P=0.49), it demonstrated a robust significant (P=3.38x10-9) association with the variance of FV plasma levels. Further analyses confirmed the reported association of PSKH2 with neutrophil biology and revealed that rs75463553 likely interacts with two loci, GRIN2A and POM121L12, known for their involvement in smoking biology. CONCLUSIONS This comprehensive approach identifies the role of PSKH2 as a novel molecular player in the genetic regulation of FV, shedding light on the contribution of neutrophils to FV biology.
Collapse
Affiliation(s)
- Blandine Gendre
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of BordeauxBordeauxFrance
| | - Angel Martinez‐Perez
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Marcus E. Kleber
- Department of Medicine V, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
- SYNLAB Center of Human Genetics MannheimManheimGermany
| | | | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris‐SaclayEvryFrance
- Laboratory of Excellence GENMED (Medical Genomics)EvryFrance
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris‐SaclayEvryFrance
- Laboratory of Excellence GENMED (Medical Genomics)EvryFrance
| | - Marine Germain
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of BordeauxBordeauxFrance
| | - Gaëlle Munsch
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of BordeauxBordeauxFrance
| | - Angela Patricia Moissl
- Department of Medicine V, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Pierre Suchon
- Cardiovascular and Nutrition Research Center (C2VN), INSERM, INRAE, Aix‐Marseille UniversityMarseilleFrance
| | - Juan Carlos Souto
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIMadridSpain
- Thrombosis and Haemostasis UnitHospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB‐Sant Pau)BarcelonaSpain
| | - José Manuel Soria
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Jean‐François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris‐SaclayEvryFrance
- Laboratory of Excellence GENMED (Medical Genomics)EvryFrance
| | - Winfried März
- Department of Medicine V, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
- SYNLAB Academy, SYNLAB Holding GermanyMannheim and AugsburgGermany
| | - Frits R. Rosendaal
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenNetherlands
| | - Maria Sabater‐Lleal
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIMadridSpain
- Cardiovascular Medicine Unit, Department of MedicineKarolinska InstitutetStockholmSweden
| | - Pierre‐Emmanuel Morange
- Cardiovascular and Nutrition Research Center (C2VN), INSERM, INRAE, Aix‐Marseille UniversityMarseilleFrance
| | - David‐Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of BordeauxBordeauxFrance
| | | |
Collapse
|
12
|
Patel Y, Shin J, Sliz E, Tang A, Mishra A, Xia R, Hofer E, Rajula HSR, Wang R, Beyer F, Horn K, Riedl M, Yu J, Völzke H, Bülow R, Völker U, Frenzel S, Wittfeld K, Van der Auwera S, Mosley TH, Bouteloup V, Lambert JC, Chêne G, Dufouil C, Tzourio C, Mangin JF, Gottesman RF, Fornage M, Schmidt R, Yang Q, Witte V, Scholz M, Loeffler M, Roshchupkin GV, Ikram MA, Grabe HJ, Seshadri S, Debette S, Paus T, Pausova Z. Genetic risk factors underlying white matter hyperintensities and cortical atrophy. Nat Commun 2024; 15:9517. [PMID: 39496600 PMCID: PMC11535513 DOI: 10.1038/s41467-024-53689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
White matter hyperintensities index structural abnormalities in the cerebral white matter, including axonal damage. The latter may promote atrophy of the cerebral cortex, a key feature of dementia. Here, we report a study of 51,065 individuals from 10 cohorts demonstrating that higher white matter hyperintensity volume associates with lower cortical thickness. The meta-GWAS of white matter hyperintensities-associated cortical 'atrophy' identifies 20 genome-wide significant loci, and enrichment in genes specific to vascular cell types, astrocytes, and oligodendrocytes. White matter hyperintensities-associated cortical 'atrophy' showed positive genetic correlations with vascular-risk traits and plasma biomarkers of neurodegeneration, and negative genetic correlations with cognitive functioning. 15 of the 20 loci regulated the expression of 54 genes in the cerebral cortex that, together with their co-expressed genes, were enriched in biological processes of axonal cytoskeleton and intracellular transport. The white matter hyperintensities-cortical thickness associations were most pronounced in cortical regions with higher expression of genes specific to excitatory neurons with long-range axons traversing through the white matter. The meta-GWAS-based polygenic risk score predicts vascular and all-cause dementia in an independent sample of 500,348 individuals. Thus, the genetics of white matter hyperintensities-related cortical atrophy involves vascular and neuronal processes and increases dementia risk.
Collapse
Affiliation(s)
- Yash Patel
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jean Shin
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ariana Tang
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
| | - Rui Xia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Edith Hofer
- Institut für Medizinische Informatik, Statistik und Dokumentation, Graz, Austria
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Hema Sekhar Reddy Rajula
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Frauke Beyer
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology; Leipzig University, Leipzig, Germany
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology; Leipzig University, Leipzig, Germany
| | - Jing Yu
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Thomas H Mosley
- The MIND Center, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Vincent Bouteloup
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
- CHU Bordeaux, CIC 1401 EC, Pôle Santé Publique, Bordeaux, France
| | - Jean-Charles Lambert
- U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Geneviève Chêne
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
- Department of Public Health, CHU de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
- Department of Public Health, CHU de Bordeaux, Bordeaux, France
| | | | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, Maryland, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Reinhold Schmidt
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Veronica Witte
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology; Leipzig University, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology; Leipzig University, Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases; Leipzig University, Leipzig, Germany
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hans J Grabe
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | | | - Stephanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, Bordeaux, France
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | - Tomas Paus
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Canada.
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Canada.
- Department of Psychiatry, McGill University, Montreal, Canada.
- ECOGENE-21, Chicoutimi, Canada.
| | - Zdenka Pausova
- The Hospital for Sick Children, Toronto, Ontario, Canada.
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Canada.
- ECOGENE-21, Chicoutimi, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
13
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, et alGarcía-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Maniega SM, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van T Ent D, van Bokhoven H, van der Meer D, van der Wee NJA, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat Genet 2024; 56:2333-2344. [PMID: 39433889 DOI: 10.1038/s41588-024-01951-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Adrian I Campos
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zuriel Ceja
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Brittany L Mitchell
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Katrina L Grasby
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jackson G Thorp
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Philippe Amouyel
- Universite Lille, U1167-RID-AGE-LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging Diseases, Lille, France
- Institut National de la Santé et de la Recherche Médicale, Lille, France
- Centre Hospitalier Universitaire de Lille Department of Public Health, Lille, France
- Institut Pasteur de Lille UMR1167, Lille, France
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alejandro Arias-Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marco P M Boks
- Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)-Georgia State, Georgia Tech and Emory University, Atlanta, GA, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher R K Ching
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion Biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, Spain
| | | | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stéphanie Debette
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Susanne Erk
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, Oslo New University College, Oslo, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, Germany
- Goethe-University Frankfurt, Frankfurt, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Heinz
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE)-Site Rostock/Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Neda Jahanshad
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Rene S Kahn
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales Psychiatrie', Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics Program, Amsterdam, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, Seattle, WA, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, Germany
| | - Rafael Romero-Garcia
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | - Arvin Saremi
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Gottfried Schatz Center for Signaling, Metabolism and Aging, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Gunter Schumann
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, PR China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia I Thomopoulos
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The National Centre of Excellence in Intellectual Disability Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Dennis van T Ent
- Department of Biological Psychology and Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael W Weiner
- University of California, San Francisco, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sarah E Medland
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby WE, Ganesh S, Lannery K, Schuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024; 15:7858. [PMID: 39251642 PMCID: PMC11385577 DOI: 10.1038/s41467-024-52302-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney E Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Schuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Noordam R, Wang W, Nagarajan P, Wang H, Brown MR, Bentley AR, Hui Q, Kraja AT, Morrison JL, O'Connel JR, Lee S, Schwander K, Bartz TM, de las Fuentes L, Feitosa MF, Guo X, Hanfei X, Harris SE, Huang Z, Kals M, Lefevre C, Mangino M, Milaneschi Y, van der Most P, Pacheco NL, Palmer ND, Rao V, Rauramaa R, Sun Q, Tabara Y, Vojinovic D, Wang Y, Weiss S, Yang Q, Zhao W, Zhu W, Abu Yusuf Ansari M, Aschard H, Anugu P, Assimes TL, Attia J, Baker LD, Ballantyne C, Bazzano L, Boerwinkle E, Cade B, Chen HH, Chen W, Ida Chen YD, Chen Z, Cho K, De Anda-Duran I, Dimitrov L, Do A, Edwards T, Faquih T, Hingorani A, Fisher-Hoch SP, Gaziano JM, Gharib SA, Giri A, Ghanbari M, Grabe HJ, Graff M, Gu CC, He J, Heikkinen S, Hixson J, Ho YL, Hood MM, Houghton SC, Karvonen-Gutierrez CA, Kawaguchi T, Kilpeläinen TO, Komulainen P, Lin HJ, Linchangco GV, Luik AI, Ma J, Meigs JB, McCormick JB, Menni C, Nolte IM, Norris JM, Petty LE, Polikowsky HG, Raffield LM, Rich SS, Riha RL, Russ TC, Ruiz-Narvaez EA, Sitlani CM, Smith JA, Snieder H, Sofer T, Shen B, Tang J, Taylor KD, Teder-Laving M, Triatin R, et alNoordam R, Wang W, Nagarajan P, Wang H, Brown MR, Bentley AR, Hui Q, Kraja AT, Morrison JL, O'Connel JR, Lee S, Schwander K, Bartz TM, de las Fuentes L, Feitosa MF, Guo X, Hanfei X, Harris SE, Huang Z, Kals M, Lefevre C, Mangino M, Milaneschi Y, van der Most P, Pacheco NL, Palmer ND, Rao V, Rauramaa R, Sun Q, Tabara Y, Vojinovic D, Wang Y, Weiss S, Yang Q, Zhao W, Zhu W, Abu Yusuf Ansari M, Aschard H, Anugu P, Assimes TL, Attia J, Baker LD, Ballantyne C, Bazzano L, Boerwinkle E, Cade B, Chen HH, Chen W, Ida Chen YD, Chen Z, Cho K, De Anda-Duran I, Dimitrov L, Do A, Edwards T, Faquih T, Hingorani A, Fisher-Hoch SP, Gaziano JM, Gharib SA, Giri A, Ghanbari M, Grabe HJ, Graff M, Gu CC, He J, Heikkinen S, Hixson J, Ho YL, Hood MM, Houghton SC, Karvonen-Gutierrez CA, Kawaguchi T, Kilpeläinen TO, Komulainen P, Lin HJ, Linchangco GV, Luik AI, Ma J, Meigs JB, McCormick JB, Menni C, Nolte IM, Norris JM, Petty LE, Polikowsky HG, Raffield LM, Rich SS, Riha RL, Russ TC, Ruiz-Narvaez EA, Sitlani CM, Smith JA, Snieder H, Sofer T, Shen B, Tang J, Taylor KD, Teder-Laving M, Triatin R, Tsai MY, Völzke H, Westerman KE, Xia R, Yao J, Young KL, Zhang R, Zonderman AB, Zhu X, Below JE, Cox SR, Evans M, Fornage M, Fox ER, Franceschini N, Harlow SD, Holliday E, Ikram MA, Kelly T, Lakka TA, Lawlor DA, Li C, Liu CT, Mägi R, Manning AK, Matsuda F, Morrison AC, Nauck M, North KE, Penninx BW, Province MA, Psaty BM, Rotter JI, Spector TD, Wagenknecht LE, Willems van Dijk K, Study LC, Jaquish CE, Wilson PW, Peyser PA, Munroe PB, de Vries PS, Gauderman WJ, Sun YV, Chen H, Miller CL, Winkler TW, Rao DC, Redline S, van Heemst D. A Large-Scale Genome-Wide Gene-Sleep Interaction Study in 732,564 Participants Identifies Lipid Loci Explaining Sleep-Associated Lipid Disturbances. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312466. [PMID: 39281768 PMCID: PMC11398441 DOI: 10.1101/2024.09.02.24312466] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We performed large-scale genome-wide gene-sleep interaction analyses of lipid levels to identify novel genetic variants underpinning the biomolecular pathways of sleep-associated lipid disturbances and to suggest possible druggable targets. We collected data from 55 cohorts with a combined sample size of 732,564 participants (87% European ancestry) with data on lipid traits (high-density lipoprotein [HDL-c] and low-density lipoprotein [LDL-c] cholesterol and triglycerides [TG]). Short (STST) and long (LTST) total sleep time were defined by the extreme 20% of the age- and sex-standardized values within each cohort. Based on cohort-level summary statistics data, we performed meta-analyses for the one-degree of freedom tests of interaction and two-degree of freedom joint tests of the main and interaction effect. In the cross-population meta-analyses, the one-degree of freedom variant-sleep interaction test identified 10 loci (P int <5.0e-9) not previously observed for lipids. Of interest, the ASPH locus (TG, LTST) is a target for aspartic and succinic acid metabolism previously shown to improve sleep and cardiovascular risk. The two-degree of freedom analyses identified an additional 7 loci that showed evidence for variant-sleep interaction (P joint <5.0e-9 in combination with P int <6.6e-6). Of these, the SLC8A1 locus (TG, STST) has been considered a potential treatment target for reduction of ischemic damage after acute myocardial infarction. Collectively, the 17 (9 with STST; 8 with LTST) loci identified in this large-scale initiative provides evidence into the biomolecular mechanisms underpinning sleep-duration-associated changes in lipid levels. The identified druggable targets may contribute to the development of novel therapies for dyslipidemia in people with sleep disturbances.
Collapse
|
16
|
Young WJ, van der Most PJ, Bartz TM, Bos MM, Biino G, Duong T, Foco L, Lominchar JT, Müller‐Nurasyid M, Nardone GG, Pecori A, Ramirez J, Repetto L, Schramm K, Shen X, van Duijvenboden S, van Heemst D, Weiss S, Yao J, Benjamins J, Alonso A, Spedicati B, Biggs ML, Brody JA, Dörr M, Fuchsberger C, Gögele M, Guo X, Ikram MA, Jukema JW, Kääb S, Kanters JK, Lifelines Cohort Study, Lin HJ, Linneberg A, Nauck M, Nolte IM, Pianigiani G, Santin A, Soliman EZ, Tesolin P, Vaccargiu S, Waldenberger M, van der Harst P, Verweij N, Arking DE, Concas MP, De Grandi A, Girotto G, Grarup N, Kavousi M, Mook‐Kanamori DO, Navarro P, Orini M, Padmanabhan S, Pattaro C, Peters A, Pirastu M, Pramstaller PP, Heckbert SR, Sinner M, Snieder H, Völker U, Wilson JF, Gauderman WJ, Lambiase PD, Sotoodehnia N, Tinker A, Warren HR, Noordam R, Munroe PB. Genome-Wide Interaction Analyses of Serum Calcium on Ventricular Repolarization Time in 125 393 Participants. J Am Heart Assoc 2024; 13:e034760. [PMID: 39206732 PMCID: PMC11646519 DOI: 10.1161/jaha.123.034760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability. METHODS AND RESULTS We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analysis (genome-wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single-stage genome-wide meta-analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2-degrees of freedom joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98 independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction P value <5×10-8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6). CONCLUSIONS We have found limited support for an interaction effect of serum calcium on QT and JT variant associations despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to be considered.
Collapse
Affiliation(s)
- William J. Young
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
| | - Peter J. van der Most
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics and MedicineUniversity of WashingtonSeattleWAUSA
| | - Maxime M. Bos
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of ItalyPaviaItaly
| | - ThuyVy Duong
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Luisa Foco
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Jesus T. Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Martina Müller‐Nurasyid
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | | | - Alessandro Pecori
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Julia Ramirez
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Aragon Institute of Engineering Research, University of ZaragozaSpain
- Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y NanomedicinaZaragozaSpain
| | - Linda Repetto
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
| | - Katharina Schramm
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Xia Shen
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan UniversityGuangzhouChina
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
- Nuffield Department of Population HealthUniversity of OxfordUnited Kingdom
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Stefan Weiss
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jie Yao
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Jan‐Walter Benjamins
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGAUSA
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Mary L. Biggs
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Department of Internal Medicine B—Cardiology, Pneumology, Infectious Diseases, Intensive Care MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Christian Fuchsberger
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
- Center for Statistical GeneticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Martin Gögele
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Stefan Kääb
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | | | - Henry J. Lin
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Pediatrics/Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Allan Linneberg
- Center for Clinical Research and PreventionBispebjerg and Frederiksberg Hospital, The Capital RegionCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine GreifswaldGreifswaldGermany
| | - Ilja M. Nolte
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Giulia Pianigiani
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Aurora Santin
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE)Wake Forest School of MedicineWinston SalemUSA
| | - Paola Tesolin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Simona Vaccargiu
- Institute for Genetic and Biomedical Research, National Research Council of ItalyCagliariItaly
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
- Research Unit Molecular EpidemiologyInstitute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
| | - Pim van der Harst
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cardiology, Heart and Lung DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niek Verweij
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Dan E. Arking
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Alessandro De Grandi
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Dennis O. Mook‐Kanamori
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Public Health and Primary CareLeiden University Medical CenterLeidenThe Netherlands
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - Michele Orini
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | | | - Cristian Pattaro
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Annette Peters
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Mario Pirastu
- Institute for Genetic and Biomedical Research, Sassari Unit, National Research Council of ItalySassariItaly
| | - Peter P. Pramstaller
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of NeurologyUniversity of LübeckGermany
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Mortiz Sinner
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Harold Snieder
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - James F. Wilson
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - W. James Gauderman
- Department of population and public health sciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Pier D. Lambiase
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Andrew Tinker
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Helen R. Warren
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Patricia B. Munroe
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| |
Collapse
|
17
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, et alGarcía-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Muñoz Maniega S, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BW, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van 't Ent D, van Bokhoven H, van der Meer D, van der Wee NJ, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311922. [PMID: 39371125 PMCID: PMC11451674 DOI: 10.1101/2024.08.13.24311922] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signalling and brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adrian I Campos
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Zuriel Ceja
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brittany L Mitchell
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katrina L Grasby
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jackson G Thorp
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Ingrid Agartz
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, 0407, Norway
- Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, SE-11364, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Molecular & Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, D15, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Kew, VIC, 3101, Australia
- National Ageing Research Institute, Parkville, VIC, 3052, Australia
| | - Philippe Amouyel
- Universite Lille, U1167 - RID-AGE - LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, Lille, F-59000, France
- Institut National de la Sante et de la Recherche Medicale, U1167, Lille, F-59000, France
- Centre Hospitalier Universitaire de Lille, Department of Public Health, Lille, F-59000, Franch
- Institut Pasteur de Lille UMR1167, Lille, F-59000, France
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0407, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, 0407, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | - Alejandro Arias Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway, Oslo, 0455, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
| | - Marco Pm Boks
- Brain Center University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neurocience, VU Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, 93053, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
- Altrecht Mental Health Institute, Utrecht, 3512PG, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), {Georgia State, Georgia Tech, Emory}, Atlanta, GA, 30303, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Department of Biomedicine, University of Basel, Basel, CH-4031, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, 4031, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, 41013, Spain
| | - Fabrice Crivello
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, 33076, France
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, 92093, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, BS8 BN, United Kingdom
| | - Eco Jc de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10538, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Stéphanie Debette
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, F-33000, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, United Kingdom
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, 0450, Norway
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, 01307, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Department of Psychology, Oslo New University College, Oslo, 0456, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, 91190, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HE, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Evan Fletcher
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, 68159, Germany
- Goethe-University Frankfurt, Frankfurt am Main, 60528, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, D-69115, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, 7030, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, 7006, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, 0450, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Andreas Heinz
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - David F Hoehn
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- Accare Child Study Center, Groningen, 9723 HE, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE) - site Rostock/Greifswald, Greifswald, 17489, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, 17475, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, 3015 CN , The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, 7925, South Africa
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, SE-11364, Sweden
| | - Rene S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, United Kingdom
| | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, 33076, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, 98104-2420, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Nicholas G Martin
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, 911
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, 14152, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics program, Amsterdam, 1081 HV, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, D-40225, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Bertram Müller-Myhsok
- Statistics Genetics Group, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17489, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, 17489, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- General internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, 1100 DD, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, 1070, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, M5G 0A4, Canada
| | - Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Health Systems and Population Health, Seattle, WA, 98195-9458, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, 80804, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, 14197, Germany
| | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/ CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Sevilla, 41013, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | | | - Arvin Saremi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, F-33000, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Orygen, Parkville, VIC, 3052, Australia
| | - Helena Schmidt
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Center for Signaling, Metabolism & Aging, Medical University Graz, Graz, 8010, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, 8023, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, 04107, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, 200031, P.R. China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, 10017, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Mediciine, University of Eastern Finland, Kuopio, 70100, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7250, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Arthur W Toga
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, E-39005, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, 39011, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- The National Centre of Excellence in Intellectual Disability Health,, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Dennis van 't Ent
- Department of Biological Psychology & Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Nic Ja van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla - IDIVAL, Santander, 39008, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, 39008, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, 41013, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Michael W Weiner
- University of California San Francisco, San Francisco, CA, 94121, USA
- Northern California Institute for Research & Education (NCIRE), San Francisco, CA, 94121, USA
- Veterans Administration Medical Center, San Francisco, CA, 94121, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, 14183, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, 20892-1276, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Sarah E Medland
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel E Rentería
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
18
|
Ge YJ, Fu Y, Gong W, Cheng W, Yu JT. Genetic architecture of brain morphology and overlap with neuropsychiatric traits. Trends Genet 2024; 40:706-717. [PMID: 38702264 DOI: 10.1016/j.tig.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Weikang Gong
- School of Data Science, Fudan University, Shanghai, China; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Bao J, Lee BN, Wen J, Kim M, Mu S, Yang S, Davatzikos C, Long Q, Ritchie MD, Shen L. Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes. Annu Rev Biomed Data Sci 2024; 7:391-418. [PMID: 38848574 PMCID: PMC11525791 DOI: 10.1146/annurev-biodatasci-102423-121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Brian N Lee
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Mansu Kim
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
20
|
Motsinger-Reif AA, Reif DM, Akhtari FS, House JS, Campbell CR, Messier KP, Fargo DC, Bowen TA, Nadadur SS, Schmitt CP, Pettibone KG, Balshaw DM, Lawler CP, Newton SA, Collman GW, Miller AK, Merrick BA, Cui Y, Anchang B, Harmon QE, McAllister KA, Woychik R. Gene-environment interactions within a precision environmental health framework. CELL GENOMICS 2024; 4:100591. [PMID: 38925123 PMCID: PMC11293590 DOI: 10.1016/j.xgen.2024.100591] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.
Collapse
Affiliation(s)
- Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - C Ryan Campbell
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kyle P Messier
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David C Fargo
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Tiffany A Bowen
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Srikanth S Nadadur
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Charles P Schmitt
- Office of the Scientific Director, Office of Data Science, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kristianna G Pettibone
- Program Analysis Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Balshaw
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Cindy P Lawler
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shelia A Newton
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Gwen W Collman
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Aubrey K Miller
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Quaker E Harmon
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rick Woychik
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
21
|
Milbourn H, McCartney D, Richmond A, Campbell A, Flaig R, Robertson S, Fawns-Ritchie C, Hayward C, Marioni RE, McIntosh AM, Porteous DJ, Whalley HC, Sudlow C. Generation Scotland: an update on Scotland's longitudinal family health study. BMJ Open 2024; 14:e084719. [PMID: 38908846 PMCID: PMC11340249 DOI: 10.1136/bmjopen-2024-084719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
PURPOSE Generation Scotland (GS) is a large family-based cohort study established as a longitudinal resource for research into the genetic, lifestyle and environmental determinants of physical and mental health. It comprises extensive genetic, sociodemographic and clinical data from volunteers in Scotland. PARTICIPANTS A total of 24 084 adult participants, including 5501 families, were recruited between 2006 and 2011. Within the cohort, 59% (approximately 14 209) are women, with an average age at recruitment of 49 years. Participants completed a health questionnaire and attended an in-person clinic visit, where detailed baseline data were collected on lifestyle information, cognitive function, personality traits and mental and physical health. Genotype array data are available for 20 026 (83%) participants, and blood-based DNA methylation (DNAm) data for 18 869 (78%) participants. Linkage to routine National Health Service datasets has been possible for 93% (n=22 402) of the cohort, creating a longitudinal resource that includes primary care, hospital attendance, prescription and mortality records. Multimodal brain imaging is available in 1069 individuals. FINDINGS TO DATE GS has been widely used by researchers across the world to study the genetic and environmental basis of common complex diseases. Over 350 peer-reviewed papers have been published using GS data, contributing to research areas such as ageing, cancer, cardiovascular disease and mental health. Recontact studies have built on the GS cohort to collect additional prospective data to study chronic pain, major depressive disorder and COVID-19. FUTURE PLANS To create a larger, richer, longitudinal resource, 'Next Generation Scotland' launched in May 2022 to expand the existing cohort by a target of 20 000 additional volunteers, now including anyone aged 12+ years. New participants complete online consent and questionnaires and provide postal saliva samples, from which genotype and salivary DNAm array data will be generated. The latest cohort information and how to access data can be found on the GS website (www.generationscotland.org).
Collapse
Affiliation(s)
- Hannah Milbourn
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Daniel McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Anne Richmond
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Robin Flaig
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Sarah Robertson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Chloe Fawns-Ritchie
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
- Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Cathie Sudlow
- Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| |
Collapse
|
22
|
Kwak SH, Hernandez-Cancela RB, DiCorpo DA, Condon DE, Merino J, Wu P, Brody JA, Yao J, Guo X, Ahmadizar F, Meyer M, Sincan M, Mercader JM, Lee S, Haessler J, Vy HMT, Lin Z, Armstrong ND, Gu S, Tsao NL, Lange LA, Wang N, Wiggins KL, Trompet S, Liu S, Loos RJ, Judy R, Schroeder PH, Hasbani NR, Bos MM, Morrison AC, Jackson RD, Reiner AP, Manson JE, Chaudhary NS, Carmichael LK, Chen YDI, Taylor KD, Ghanbari M, van Meurs J, Pitsillides AN, Psaty BM, Noordam R, Do R, Park KS, Jukema JW, Kavousi M, Correa A, Rich SS, Damrauer SM, Hajek C, Cho NH, Irvin MR, Pankow JS, Nadkarni GN, Sladek R, Goodarzi MO, Florez JC, Chasman DI, Heckbert SR, Kooperberg C, Dupuis J, Malhotra R, de Vries PS, Liu CT, Rotter JI, Meigs JB, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Time-to-Event Genome-Wide Association Study for Incident Cardiovascular Disease in People With Type 2 Diabetes. Diabetes Care 2024; 47:1042-1047. [PMID: 38652672 PMCID: PMC11116923 DOI: 10.2337/dc23-2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs77142250 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Daniel A. DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | | | - Jordi Merino
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Data Science and Biostatistics, Julius Global Health, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariah Meyer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Murat Sincan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Josep M. Mercader
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sujin Lee
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ha My T. Vy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhaotong Lin
- Department of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Nicole D. Armstrong
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL
| | - Shaopeng Gu
- Department of Internal Medicine, Sanford Health, Sioux Falls, SD
| | - Noah L. Tsao
- Corporal Michael J. Crescenz VA Medical Center and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ningyuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI
| | - Ruth J.F. Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Renae Judy
- Corporal Michael J. Crescenz VA Medical Center and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
| | - Philip H. Schroeder
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Maxime M. Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Ohio State University, Columbus, OH
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ninad S. Chaudhary
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL
| | | | - Yii-Der Ida Chen
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA
| | - Kent D. Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA
| | - Catherine Hajek
- Department of Internal Medicine, Sanford Health, Sioux Falls, SD
| | - Nam H. Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Marguerite R. Irvin
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Girish N. Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sladek
- Department of Medicine and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jose C. Florez
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Daniel I. Chasman
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jerome I. Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA
| | - James B. Meigs
- Broad Metabolism Program and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of General Internal Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
23
|
Knol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, et alKnol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, Sim K, Stein DJ, Bowden DW, Cairns MJ, Hariri AR, Cheung CL, Andersson S, Villringer A, Paus T, Cichon S, Calhoun VD, Crivello F, Launer LJ, White T, Koudstaal PJ, Houlden H, Fornage M, Matsuda F, Grabe HJ, Ikram MA, Debette S, Thompson PM, Seshadri S, Adams HHH. Genetic variants for head size share genes and pathways with cancer. Cell Rep Med 2024; 5:101529. [PMID: 38703765 PMCID: PMC11148644 DOI: 10.1016/j.xcrm.2024.101529] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/18/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.
Collapse
Affiliation(s)
- Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sandra van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Marie-Gabrielle Duperron
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK; Department of Neurosurgery, Klinikum rechts der Isar, University of Munich, Munich, Germany; Neurosurgical Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mikolaj A Pawlak
- Department of Neurology, Poznań University of Medical Sciences, Poznań, Poland; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cora E Lewis
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Disease, Leipzig, Germany
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gloria H Y Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alyssa R Amod
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Max Lam
- North Region, Institute of Mental Health, Singapore, Singapore; Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ami Tsuchida
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France; Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Mariël W A Teunissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nil Aygün
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yash Patel
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Dan Liang
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gwenaëlle Catheline
- University of Bordeaux, CNRS, INCIA, UMR 5287, team NeuroImagerie et Cognition Humaine, Bordeaux, France; EPHE-PSL University, Bordeaux, France
| | - Charlotte A M Cecil
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shareefa Dalvie
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team SEPIA, UMR 1219, Bordeaux, France
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Maria Enlund-Cerullo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Judith M Ford
- San Francisco Veterans Administration Medical Center, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, Bordeaux, France
| | - Per Hoffmann
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Keane Lim
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Fabio Macciardi
- Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Bernard Mazoyer
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France; Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Psychology, University of Queensland, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - Ryan Muetzel
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Thomas W Mühleisen
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Unit 2, Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adrian Preda
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Yann Quidé
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jason L Stein
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - David J Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - B Gwen Windham
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics MUMC+, GROW School of Oncology and Developmental Biology, and MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Quentin Le Grand
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dan J Stein
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany; SAMRC Unit on Risk and Resilience, University of Cape Town, Cape Town, South Africa
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sture Andersson
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) {Georgia State, Georgia Tech, Emory}, Atlanta, GA, USA
| | - Fabrice Crivello
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France; Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Hieab H H Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
24
|
Brock DC, Wang M, Hussain HMJ, Rauch DE, Marra M, Pennesi ME, Yang P, Everett L, Ajlan RS, Colbert J, Porto FBO, Matynia A, Gorin MB, Koenekoop RK, Lopez I, Sui R, Zou G, Li Y, Chen R. Comparative analysis of in-silico tools in identifying pathogenic variants in dominant inherited retinal diseases. Hum Mol Genet 2024; 33:945-957. [PMID: 38453143 PMCID: PMC11102593 DOI: 10.1093/hmg/ddae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.
Collapse
Affiliation(s)
- Daniel C Brock
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David E Rauch
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Lesley Everett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Radwan S Ajlan
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Jason Colbert
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Rua dos Otoni, 735/507 - Santa Efigênia, Belo Horizonte, MG 30150270, Brazil
- Department of Ophthalmology, Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111 - Santa Efigênia, Belo Horizonte, MG 30150221, Brazil
- Centro Oftalmológico de Minas Gerais, R. Santa Catarina, 941 - Lourdes, Belo Horizonte, MG 30180070, Brazil
| | - Anna Matynia
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77004, United States
| | - Michael B Gorin
- Jules Stein Eye Institute, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, United States
- Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, WC67+HW Dongcheng, Beijing 100005, China
| | - Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, F4RJ+43 Xixia District, Yinchuan, Ningxia, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
25
|
de Vries PS, Reventun P, Brown MR, Heath AS, Huffman JE, Le NQ, Bebo A, Brody JA, Temprano-Sagrera G, Raffield LM, Ozel AB, Thibord F, Jain D, Lewis JP, Rodriguez BAT, Pankratz N, Taylor KD, Polasek O, Chen MH, Yanek LR, Carrasquilla GD, Marioni RE, Kleber ME, Trégouët DA, Yao J, Li-Gao R, Joshi PK, Trompet S, Martinez-Perez A, Ghanbari M, Howard TE, Reiner AP, Arvanitis M, Ryan KA, Bartz TM, Rudan I, Faraday N, Linneberg A, Ekunwe L, Davies G, Delgado GE, Suchon P, Guo X, Rosendaal FR, Klaric L, Noordam R, van Rooij F, Curran JE, Wheeler MM, Osburn WO, O'Connell JR, Boerwinkle E, Beswick A, Psaty BM, Kolcic I, Souto JC, Becker LC, Hansen T, Doyle MF, Harris SE, Moissl AP, Deleuze JF, Rich SS, van Hylckama Vlieg A, Campbell H, Stott DJ, Soria JM, de Maat MPM, Almasy L, Brody LC, Auer PL, Mitchell BD, Ben-Shlomo Y, Fornage M, Hayward C, Mathias RA, Kilpeläinen TO, Lange LA, Cox SR, März W, Morange PE, Rotter JI, Mook-Kanamori DO, Wilson JF, van der Harst P, Jukema JW, Ikram MA, Blangero J, Kooperberg C, Desch KC, Johnson AD, Sabater-Lleal M, Lowenstein CJ, Smith NL, Morrison AC. A genetic association study of circulating coagulation factor VIII and von Willebrand factor levels. Blood 2024; 143:1845-1855. [PMID: 38320121 PMCID: PMC11443575 DOI: 10.1182/blood.2023021452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
ABSTRACT Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.
Collapse
Affiliation(s)
- Paul S. de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Paula Reventun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael R. Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Adam S. Heath
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA
| | - Ngoc-Quynh Le
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Allison Bebo
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | | | - Laura M. Raffield
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Florian Thibord
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Deepti Jain
- Department of Biostatistics, Genetic Analysis Center, School of Public Health, University of Washington, Seattle, WA
| | - Joshua P. Lewis
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Benjamin A. T. Rodriguez
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kent D. Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Ming-Huei Chen
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - German D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Marcus E. Kleber
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom E. Howard
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Alex P. Reiner
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marios Arvanitis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Traci M. Bartz
- Departments of Biostatistics and Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Gail Davies
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Graciela E. Delgado
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pierre Suchon
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Marsha M. Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - William O. Osburn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Andrew Beswick
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Departments of Epidemiology and Health Systems and Population Health, Seattle, WA
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Juan Carlos Souto
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lewis C. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, VT
| | - Sarah E. Harris
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Angela P. Moissl
- Institute of Nutritional Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health Halle-Jena-Leipzig, Jena, Germany
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, Evry, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - David J. Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Jose Manuel Soria
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence C. Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Paul L. Auer
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland, Baltimore, MD
- Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Myriam Fornage
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Rasika A. Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Simon R. Cox
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Winfried März
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Pierre-Emmanuel Morange
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Jerome I. Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Pim van der Harst
- Division of Heart and Lungs, Department of Cardiology, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | | | - Karl C. Desch
- Department of Pediatrics, University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, MI
| | - Andrew D. Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
- Department of Medicine, Cardiovascular Medicine Unit, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic and Information Center, Seattle, WA
| | - Alanna C. Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
26
|
Sargurupremraj M, Soumaré A, Bis JC, Surakka I, Jürgenson T, Joly P, Knol MJ, Wang R, Yang Q, Satizabal CL, Gudjonsson A, Mishra A, Bouteloup V, Phuah CL, van Duijn CM, Cruchaga C, Dufouil C, Chêne G, Lopez OL, Psaty BM, Tzourio C, Amouyel P, Adams HH, Jacqmin-Gadda H, Ikram MA, Gudnason V, Milani L, Winsvold BS, Hveem K, Matthews PM, Longstreth WT, Seshadri S, Launer LJ, Debette S. Genetic Complexities of Cerebral Small Vessel Disease, Blood Pressure, and Dementia. JAMA Netw Open 2024; 7:e2412824. [PMID: 38776079 PMCID: PMC11112447 DOI: 10.1001/jamanetworkopen.2024.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.
Collapse
Affiliation(s)
- Muralidharan Sargurupremraj
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio
| | - Aicha Soumaré
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Tuuli Jürgenson
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pierre Joly
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Maria J. Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ruiqi Wang
- School of Public Health, Boston University and the National Heart, Lung, and Blood Institute Framingham Heart Study, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Qiong Yang
- School of Public Health, Boston University and the National Heart, Lung, and Blood Institute Framingham Heart Study, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio
- School of Public Health, Boston University and the National Heart, Lung, and Blood Institute Framingham Heart Study, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Aniket Mishra
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Vincent Bouteloup
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Chia-Ling Phuah
- Department of Neurology, Washington University School of Medicine & Barnes-Jewish Hospital, St Louis, Missouri
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, Missouri
| | - Cornelia M. van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Carole Dufouil
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Geneviève Chêne
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
- Department of Public Health, CHU de Bordeaux, Bordeaux, France
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Health Systems and Population Health, University of Washington, Seattle
| | - Christophe Tzourio
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
- Department of Public Health, CHU de Bordeaux, Bordeaux, France
| | - Philippe Amouyel
- INSERM U1167, University of Lille, Institut Pasteur de Lille, Lille, France
- Department of Epidemiology and Public Health, CHRU de Lille, Lille, France
| | - Hieab H. Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Hélène Jacqmin-Gadda
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bendik S. Winsvold
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Paul M. Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
| | - W. T. Longstreth
- Department of Epidemiology, University of Washington, Seattle
- Department of Neurology, University of Washington, Seattle
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio
- School of Public Health, Boston University and the National Heart, Lung, and Blood Institute Framingham Heart Study, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, University of Bordeaux, Inserm, UMR 1219, Bordeaux, France
- School of Public Health, Boston University and the National Heart, Lung, and Blood Institute Framingham Heart Study, Boston, Massachusetts
- Institute for Neurodegenerative Diseases, Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
27
|
Valančienė J, Melaika K, Šliachtenko A, Šiaurytė-Jurgelėnė K, Ekkert A, Jatužis D. Stroke genetics and how it Informs novel drug discovery. Expert Opin Drug Discov 2024; 19:553-564. [PMID: 38494780 DOI: 10.1080/17460441.2024.2324916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficient etiopathology-based treatment. It is partly due to the complexity and heterogenicity of the disease. It is estimated that around one-third of ischemic stroke is heritable, emphasizing the importance of genetic factors identification and targeting for therapeutic purposes. AREAS COVERED In this review, the authors provide an overview of the current knowledge of stroke genetics and its value in diagnostics, personalized treatment, and prognostication. EXPERT OPINION As the scale of genetic testing increases and the cost decreases, integration of genetic data into clinical practice is inevitable, enabling assessing individual risk, providing personalized prognostic models and identifying new therapeutic targets and biomarkers. Although expanding stroke genetics data provides different diagnostics and treatment perspectives, there are some limitations and challenges to face. One of them is the threat of health disparities as non-European populations are underrepresented in genetic datasets. Finally, a deeper understanding of underlying mechanisms of potential targets is still lacking, delaying the application of novel therapies into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | - Kamilė Šiaurytė-Jurgelėnė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Dalius Jatužis
- Center of Neurology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
28
|
Patel K, Xie Z, Yuan H, Islam SMS, Xie Y, He W, Zhang W, Gottlieb A, Chen H, Giancardo L, Knaack A, Fletcher E, Fornage M, Ji S, Zhi D. Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging. Commun Biol 2024; 7:414. [PMID: 38580839 PMCID: PMC10997628 DOI: 10.1038/s42003-024-06096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants' T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Collapse
Affiliation(s)
- Khush Patel
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ziqian Xie
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hao Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Yaochen Xie
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Wei He
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Wanheng Zhang
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Han Chen
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Luca Giancardo
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Alexander Knaack
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Evan Fletcher
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Myriam Fornage
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Shuiwang Ji
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Degui Zhi
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Duncan MS, Diaz-Zabala H, Jaworski J, Tindle HA, Greevy RA, Lipworth L, Hung RJ, Freiberg MS, Aldrich MC. Interaction between Continuous Pack-Years Smoked and Polygenic Risk Score on Lung Cancer Risk: Prospective Results from the Framingham Heart Study. Cancer Epidemiol Biomarkers Prev 2024; 33:500-508. [PMID: 38227004 PMCID: PMC10988206 DOI: 10.1158/1055-9965.epi-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer risk attributable to smoking is dose dependent, yet few studies examining a polygenic risk score (PRS) by smoking interaction have included comprehensive lifetime pack-years smoked. METHODS We analyzed data from participants of European ancestry in the Framingham Heart Study Original (n = 454) and Offspring (n = 2,470) cohorts enrolled in 1954 and 1971, respectively, and followed through 2018. We built a PRS for lung cancer using participant genotyping data and genome-wide association study summary statistics from a recent study in the OncoArray Consortium. We used Cox proportional hazards regression models to assess risk and the interaction between pack-years smoked and genetic risk for lung cancer adjusting for European ancestry, age, sex, and education. RESULTS We observed a significant submultiplicative interaction between pack-years and PRS on lung cancer risk (P = 0.09). Thus, the relative risk associated with each additional 10 pack-years smoked decreased with increasing genetic risk (HR = 1.56 at one SD below mean PRS, HR = 1.48 at mean PRS, and HR = 1.40 at one SD above mean PRS). Similarly, lung cancer risk per SD increase in the PRS was highest among those who had never smoked (HR = 1.55) and decreased with heavier smoking (HR = 1.32 at 30 pack-years). CONCLUSIONS These results suggest the presence of a submultiplicative interaction between pack-years and genetics on lung cancer risk, consistent with recent findings. Both smoking and genetics were significantly associated with lung cancer risk. IMPACT These results underscore the contributions of genetics and smoking on lung cancer risk and highlight the negative impact of continued smoking regardless of genetic risk.
Collapse
Affiliation(s)
- Meredith S. Duncan
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Diaz-Zabala
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James Jaworski
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilary A. Tindle
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Internal Medicine, Vanderbilt University Medical Center, Nashville Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
30
|
Koohi F, Harshfield EL, Shatunov A, Markus HS. Does Thrombosis Play a Causal Role in Lacunar Stroke and Cerebral Small Vessel Disease? Stroke 2024; 55:934-942. [PMID: 38527140 PMCID: PMC10962440 DOI: 10.1161/strokeaha.123.044937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 03/27/2024]
Abstract
BACKGROUND The importance of thromboembolism in the pathogenesis of lacunar stroke (LS), resulting from cerebral small vessel disease (cSVD), is debated, and although antiplatelets are widely used in secondary prevention after LS, there is limited trial evidence from well-subtyped patients to support this approach. We sought to evaluate whether altered anticoagulation plays a causal role in LS and cSVD using 2-sample Mendelian randomization. METHODS From a recent genome-wide association study (n=81 190), we used 119 genetic variants associated with venous thrombosis at genome-wide significance (P<5*10-8) and with a linkage disequilibrium r2<0.001 as instrumental variables. We also used genetic associations with stroke from the GIGASTROKE consortium (62 100 ischemic stroke cases: 10 804 cardioembolic stroke, 6399 large-artery stroke, and 6811 LS). In view of the lower specificity for LS with the CT-based phenotyping mainly used in GIGASTROKE, we also used data from patients with magnetic resonance imaging-confirmed LS (n=3199). We also investigated associations with more chronic magnetic resonance imaging features of cSVD, namely, white matter hyperintensities (n=37 355) and diffusion tensor imaging metrics (n=36 533). RESULTS Mendelian randomization analyses showed that genetic predisposition to venous thrombosis was associated with an increased odds of any ischemic stroke (odds ratio [OR], 1.19 [95% CI, 1.13-1.26]), cardioembolic stroke (OR, 1.32 [95% CI, 1.21-1.45]), and large-artery stroke (OR, 1.41 [95% CI, 1.26-1.57]) but not with LS (OR, 1.07 [95% CI, 0.99-1.17]) in GIGASTROKE. Similar results were found for magnetic resonance imaging-confirmed LS (OR, 0.94 [95% CI, 0.81-1.09]). Genetically predicted risk of venous thrombosis was not associated with imaging markers of cSVD. CONCLUSIONS These findings suggest that altered thrombosis plays a role in the risk of cardioembolic and large-artery stroke but is not a causal risk factor for LS or imaging markers of cSVD. This raises the possibility that antithrombotic medication may be less effective in cSVD and underscores the necessity for further trials in well-subtyped cohorts with LS to evaluate the efficacy of different antithrombotic regimens in LS.
Collapse
Affiliation(s)
- Fatemeh Koohi
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, United Kingdom
| | - Eric L. Harshfield
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, United Kingdom
| | - Alexey Shatunov
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, United Kingdom
| | - Hugh S. Markus
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, United Kingdom
| |
Collapse
|
31
|
Gallego-Fabrega C, Temprano-Sagrera G, Cárcel-Márquez J, Muiño E, Cullell N, Lledós M, Llucià-Carol L, Martin-Campos JM, Sobrino T, Castillo J, Millán M, Muñoz-Narbona L, López-Cancio E, Ribó M, Alvarez-Sabin J, Jiménez-Conde J, Roquer J, Tur S, Obach V, Arenillas JF, Segura T, Serrano-Heras G, Marti-Fabregas J, Freijo-Guerrero M, Moniche F, Castellanos MDM, Morrison AC, Smith NL, de Vries PS, Fernández-Cadenas I, Sabater-Lleal M. A multitrait genetic study of hemostatic factors and hemorrhagic transformation after stroke treatment. J Thromb Haemost 2024; 22:936-950. [PMID: 38103737 PMCID: PMC11103592 DOI: 10.1016/j.jtha.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the only pharmacologic intervention available in the ischemic stroke acute phase. This treatment is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic transformations (HTs), which worsen the patient's prognosis. OBJECTIVES To investigate the association between genetically determined natural hemostatic factors' levels and increased risk of HT after r-tPA treatment. METHODS Using data from genome-wide association studies on the risk of HT after r-tPA treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor [VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), we performed local and global genetic correlation estimation multitrait analyses and colocalization and 2-sample Mendelian randomization analyses between hemostatic factors and HT. RESULTS Local correlations identified a genomic region on chromosome 16 with shared covariance: fibrinogen-HT, P = 2.45 × 10-11. Multitrait analysis between fibrinogen-HT revealed 3 loci that simultaneously regulate circulating levels of fibrinogen and risk of HT: rs56026866 (PLXND1), P = 8.80 × 10-10; rs1421067 (CHD9), P = 1.81 × 10-14; and rs34780449, near ROBO1 gene, P = 1.64 × 10-8. Multitrait analysis between VWF-HT showed a novel common association regulating VWF and risk of HT after r-tPA at rs10942300 (ZNF366), P = 1.81 × 10-14. Mendelian randomization analysis did not find significant causal associations, although a nominal association was observed for FXI-HT (inverse-variance weighted estimate [SE], 0.07 [-0.29 to 0.00]; odds ratio, 0.87; 95% CI, 0.75-1.00; raw P = .05). CONCLUSION We identified 4 shared loci between hemostatic factors and HT after r-tPA treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain. https://twitter.com/FabregaGallego
| | - Gerard Temprano-Sagrera
- Genomics of Complex Disease Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Neurology Unit, Hospital Universitari MútuaTerrassa, Terrassa, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jesús M Martin-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Department of Neurology, Hospital Clínico Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Mònica Millán
- Department of Neuroscience, Hospital Universitario Hermanos Trias y Pujol (HUGTP), Badalona, Spain
| | - Lucía Muñoz-Narbona
- Department of Neuroscience, Hospital Universitario Hermanos Trias y Pujol (HUGTP), Badalona, Spain
| | - Elena López-Cancio
- Stroke Unit, Neurology Department, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marc Ribó
- Stroke Unit, Hospital Universitario Valle de Hebrón (HUVH), Barcelona, Spain
| | - Jose Alvarez-Sabin
- Department of Neurology, Hospital Universitario Valle de Hebrón (HUVH), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jordi Jiménez-Conde
- Department of Neurology, Neurovascular Research Group, Instituto de investigaciones médicas Hospital del Mar (IMIM) Hospital del Mar, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Neurovascular Research Group, Instituto de investigaciones médicas Hospital del Mar (IMIM) Hospital del Mar, Barcelona, Spain
| | - Silvia Tur
- Department of Neurology, Hospital Universitario Son Espases (HUSE), Mallorca, Spain
| | - Victor Obach
- Department of Neurology, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | - Juan F Arenillas
- Department of Neurology, Hospital Clínico Universitario, University of Valladolid, Valladolid, Spain
| | - Tomas Segura
- Department of Neurology, Complejo Hospitalario Universitario de Albacete (CHUA), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | - Gemma Serrano-Heras
- Research Unit, Complejo Hospital Universitario de Albacete (CHUA), Albacete, Spain
| | - Joan Marti-Fabregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | - Francisco Moniche
- Department of Neurology, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Maria Del Mar Castellanos
- Department of Neurology, Hospital Universitario de A Coruña (CHUAC), Biomedical Research Institute, A Coruña, Spain
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA; Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain.
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Perwad F, Akwo EA, Vartanian N, Suva LJ, Friedman PA, Robinson-Cohen C. Multi-trait Analysis of GWAS for circulating FGF23 Identifies Novel Network Interactions Between HRG-HMGB1 and Cardiac Disease in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303051. [PMID: 38496593 PMCID: PMC10942519 DOI: 10.1101/2024.03.04.24303051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.
Collapse
Affiliation(s)
- Farzana Perwad
- University of California San Francisco, San Francisco, CA
| | - Elvis A Akwo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
33
|
Guirette M, Lan J, McKeown NM, Brown MR, Chen H, de Vries PS, Kim H, Rebholz CM, Morrison AC, Bartz TM, Fretts AM, Guo X, Lemaitre RN, Liu CT, Noordam R, de Mutsert R, Rosendaal FR, Wang CA, Beilin LJ, Mori TA, Oddy WH, Pennell CE, Chai JF, Whitton C, van Dam RM, Liu J, Tai ES, Sim X, Neuhouser ML, Kooperberg C, Tinker LF, Franceschini N, Huan T, Winkler TW, Bentley AR, Gauderman WJ, Heerkens L, Tanaka T, van Rooij J, Munroe PB, Warren HR, Voortman T, Chen H, Rao DC, Levy D, Ma J. Genome-Wide Interaction Analysis With DASH Diet Score Identified Novel Loci for Systolic Blood Pressure. Hypertension 2024; 81:552-560. [PMID: 38226488 PMCID: PMC10922535 DOI: 10.1161/hypertensionaha.123.22334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The Dietary Approaches to Stop Hypertension (DASH) diet score lowers blood pressure (BP). We examined interactions between genotype and the DASH diet score in relation to systolic BP. METHODS We analyzed up to 9 420 585 single nucleotide polymorphisms in up to 127 282 individuals of 6 population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (n=35 660) and UK Biobank (n=91 622) and performed European population-specific and cross-population meta-analyses. RESULTS We identified 3 loci in European-specific analyses and an additional 4 loci in cross-population analyses at Pinteraction<5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency, 0.03) and the DASH diet score (Pinteraction=4e-8; P for heterogeneity, 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (Pinteraction=9.4e-7) and 0.20±0.06 mm Hg (Pinteraction=0.001) in Cohorts for Heart and Aging Research in Genomic Epidemiology and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P=4e-273) and cis-DNA methylation quantitative trait loci variants (P=1e-300). Although the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by single nucleotide polymorphisms potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. CONCLUSIONS We demonstrated gene-DASH diet score interaction effects on systolic BP in several loci. Studies with larger diverse populations are needed to validate our findings.
Collapse
Affiliation(s)
- Mélanie Guirette
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (M.G., J.L., J.M.)
| | - Jessie Lan
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (M.G., J.L., J.M.)
| | - Nicola M McKeown
- Programs of Nutrition, Department of Health Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, MA (N.M.M.)
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (M.R.B., H.C., P.S.d.V., A.C.M.)
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (M.R.B., H.C., P.S.d.V., A.C.M.)
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (M.R.B., H.C., P.S.d.V., A.C.M.)
| | - Hyunju Kim
- Department of Epidemiology (H.K., A.M.F.), Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (C.M.R.)
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (M.R.B., H.C., P.S.d.V., A.C.M.)
| | - Traci M Bartz
- Departments of Biostatistics and Medicine (T.M.B.), Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Amanda M Fretts
- Department of Epidemiology (H.K., A.M.F.), Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Xiuqing Guo
- The Lundquist Institute at Harbor-University of California, Los Angeles, Torrance, CA (X.G.)
| | - Rozenn N Lemaitre
- Department of Medicine (R.N.L.), Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, MA (C.-T.L.)
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics (R.N.), Leiden University Medical Center, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology (R.d.M., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology (R.d.M., F.R.R.), Leiden University Medical Center, the Netherlands
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, NSW, Australia (C.A.W., C.E.P)
- Mothers' and Babies' Research Program, Hunter Medical Research Institute, NSW, Australia (C.A.W., C.E.P.)
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Crawley (L.J.B., T.A.M.)
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Crawley (L.J.B., T.A.M.)
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (W.H.O.)
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, NSW, Australia (C.A.W., C.E.P)
- Mothers' and Babies' Research Program, Hunter Medical Research Institute, NSW, Australia (C.A.W., C.E.P.)
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (J.F.C., C.W., R.M.v.D., E.S.T., X.S.)
| | - Clare Whitton
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (J.F.C., C.W., R.M.v.D., E.S.T., X.S.)
- School of Population Health, Curtin University, Perth, Western Australia, Australia (C.W.)
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (J.F.C., C.W., R.M.v.D., E.S.T., X.S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University (R.M.v.D.)
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (J.L.)
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (J.F.C., C.W., R.M.v.D., E.S.T., X.S.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (E.S.T.)
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (J.F.C., C.W., R.M.v.D., E.S.T., X.S.)
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA (M.L.N., C.K., L.F.T.)
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA (M.L.N., C.K., L.F.T.)
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA (M.L.N., C.K., L.F.T.)
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (N.F.)
| | - TianXiao Huan
- Framingham Heart Study and Population Sciences Branch, National Heart, Lung, and Blood Institute, MA (T.H., D.L.)
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Germany (T.W.W.)
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (A.R.B.)
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California (W.J.G.)
| | - Luc Heerkens
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands (L.H.)
| | - Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD (T.T.)
| | - Jeroen van Rooij
- Department of Internal Medicine (J.v.R.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.B.M., H.R.W.)
| | - Helen R Warren
- Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.B.M., H.R.W.)
| | - Trudy Voortman
- Department of Epidemiology (T.V.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Honglei Chen
- Department of Epidemiology and Biostatistics College of Human Medicine, Michigan State University, East Lansing (H.C.)
| | - D C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R.)
| | - Daniel Levy
- Framingham Heart Study and Population Sciences Branch, National Heart, Lung, and Blood Institute, MA (T.H., D.L.)
| | - Jiantao Ma
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (M.G., J.L., J.M.)
| |
Collapse
|
34
|
Polcwiartek C, Andersen MP, Christensen HC, Torp-Pedersen C, Sørensen KK, Kragholm K, Graff C. The Danish Nationwide Electrocardiogram (ECG) Cohort. Eur J Epidemiol 2024; 39:325-333. [PMID: 38407726 PMCID: PMC10995054 DOI: 10.1007/s10654-024-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
The electrocardiogram (ECG) is a non-invasive diagnostic tool holding significant clinical importance in the diagnosis and risk stratification of cardiac disease. However, access to large-scale, population-based digital ECG data for research purposes remains limited and challenging. Consequently, we established the Danish Nationwide ECG Cohort to provide data from standard 12-lead digital ECGs in both pre- and in-hospital settings, which can be linked to comprehensive Danish nationwide administrative registers on health and social data with long-term follow-up. The Danish Nationwide ECG Cohort is an open real-world cohort including all patients with at least one digital pre- or in-hospital ECG in Denmark from January 01, 2000, to December 31, 2021. The cohort includes data on standardized and uniform ECG diagnostic statements and ECG measurements including global parameters as well as lead-specific measures of waveform amplitudes, durations, and intervals. Currently, the cohort comprises 2,485,987 unique patients with a median age at the first ECG of 57 years (25th-75th percentiles, 40-71 years; males, 48%), resulting in a total of 11,952,430 ECGs. In conclusion, the Danish Nationwide ECG Cohort represents a novel and extensive population-based digital ECG dataset for cardiovascular research, encompassing both pre- and in-hospital settings. The cohort contains ECG diagnostic statements and ECG measurements that can be linked to various nationwide health and social registers without loss to follow-up.
Collapse
Affiliation(s)
- Christoffer Polcwiartek
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, Aalborg, DK-9000, Denmark.
| | - Mikkel Porsborg Andersen
- Department of Cardiology, Nordsjællands Hospital, Hillerød, Denmark
- Prehospital Center, Region Zealand, Næstved, Denmark
| | - Helle Collatz Christensen
- Prehospital Center, Region Zealand, Næstved, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristian Kragholm
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, Aalborg, DK-9000, Denmark
- Unit of Clinical Biostatistics and Epidemiology, Aalborg University Hospital, Aalborg, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
35
|
Moqri M, Herzog C, Poganik JR, Ying K, Justice JN, Belsky DW, Higgins-Chen AT, Chen BH, Cohen AA, Fuellen G, Hägg S, Marioni RE, Widschwendter M, Fortney K, Fedichev PO, Zhavoronkov A, Barzilai N, Lasky-Su J, Kiel DP, Kennedy BK, Cummings S, Slagboom PE, Verdin E, Maier AB, Sebastiano V, Snyder MP, Gladyshev VN, Horvath S, Ferrucci L. Validation of biomarkers of aging. Nat Med 2024; 30:360-372. [PMID: 38355974 PMCID: PMC11090477 DOI: 10.1038/s41591-023-02784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.
Collapse
Affiliation(s)
- Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jamie N Justice
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Brian H Chen
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, USA
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Lasky-Su
- Department of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas P Kiel
- Musculoskeletal Research Center, Hinda and Arthur Marcus Institute for Aging Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
| | - Steven Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
36
|
Paus T. Population Neuroscience: Principles and Advances. Curr Top Behav Neurosci 2024; 68:3-34. [PMID: 38589637 DOI: 10.1007/7854_2024_474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In population neuroscience, three disciplines come together to advance our knowledge of factors that shape the human brain: neuroscience, genetics, and epidemiology (Paus, Human Brain Mapping 31:891-903, 2010). Here, I will come back to some of the background material reviewed in more detail in our previous book (Paus, Population Neuroscience, 2013), followed by a brief overview of current advances and challenges faced by this integrative approach.
Collapse
Affiliation(s)
- Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
37
|
Ge YJ, Wu BS, Zhang Y, Chen SD, Zhang YR, Kang JJ, Deng YT, Ou YN, He XY, Zhao YL, Kuo K, Ma Q, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Feng JF, Tan L, Dong Q, Schumann G, Cheng W, Yu JT. Genetic architectures of cerebral ventricles and their overlap with neuropsychiatric traits. Nat Hum Behav 2024; 8:164-180. [PMID: 37857874 DOI: 10.1038/s41562-023-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kevin Kuo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Beijing, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer 79 Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Emilsson V, Jonsson BG, Austin TR, Gudmundsdottir V, Axelsson GT, Frick EA, Jonmundsson T, Steindorsdottir AE, Loureiro J, Brody JA, Aspelund T, Launer LJ, Thorgeirsson G, Kortekaas KA, Lindeman JH, Orth AP, Lamb JR, Psaty BM, Kizer JR, Jennings LL, Gudnason V. Proteomic prediction of incident heart failure and its main subtypes. Eur J Heart Fail 2024; 26:87-102. [PMID: 37936531 DOI: 10.1002/ejhf.3086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
AIM To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Thomas R Austin
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Gudmundur Thorgeirsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kirsten A Kortekaas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Anthony P Orth
- Novartis Institutes for Biomedical Research, San Diego, CA, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Jorge R Kizer
- Division of Cardiology, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
39
|
Ching CRK, Kang MJY, Thompson PM. Large-Scale Neuroimaging of Mental Illness. Curr Top Behav Neurosci 2024; 68:371-397. [PMID: 38554248 DOI: 10.1007/7854_2024_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.
Collapse
Affiliation(s)
- Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Melody J Y Kang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
40
|
Zhang Y, Jiang M, Gao Y, Xu Y, Zhou Y, Wu D, Zhou C, Liu G, Li M, Ji X. Causal Effect of Lipoprotein-Associated Phospholipase A2 Activity on Ischemic Stroke: A Mendelian Randomization Study. Cerebrovasc Dis 2023; 53:579-587. [PMID: 38113871 PMCID: PMC11446331 DOI: 10.1159/000535286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The relationship between ischemic stroke (IS) and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is still unclear, and there is a dearth of stratified research on the relationship between Lp-PLA2 activity and different IS subtypes. Therefore, Mendelian randomization (MR) was used in this study to examine the relationship between genetically proxied Lp-PLA2 activity and the risks of IS and its subtypes. METHODS Based on information from a meta-analysis of genome-wide association studies, which included 13,664 European people, five single nucleotide polymorphisms related to Lp-PLA2 activity were chosen as instrumental variables. Summary statistics information about the MEGESTROKE consortium with the European group (40,585 cases and 406,111 controls) include any IS (AIS; n = 34,217), large-artery stroke (LAS; n = 4,373), cardioembolic stroke (CES; n = 7,193), and small-vessel stroke (SVS; n = 5,386). In order to determine the causal relationships between Lp-PLA2 activity and IS as well as its subtypes, the inverse-variance-weighted (IVW) approach was chosen as the primary analysis. Significant estimates were then tested by sensitivity analysis to rule out heterogeneity and pleiotropy. RESULTS IVW showed that Lp-PLA2 activity was causally associated with LAS (odds ratio = 3.25, 95% confidence interval = 1.65-6.41, p = 0.0007) but not with other subtypes of stroke. Sensitivity analysis for causal estimates between Lp-PLA2 activity and LAS showed no significant heterogeneity or pleiotropy. CONCLUSIONS These MR analyses support a causal effect of Lp-PLA2 activity on LAS but not on AIS, CES, or SVS, which suggests that serum Lp-PLA2 activity might be a biomarker for prediction of LAS.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yifan Zhou
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Saks DG, Smith EE, Sachdev PS. National and international collaborations to advance research into vascular contributions to cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100195. [PMID: 38226362 PMCID: PMC10788430 DOI: 10.1016/j.cccb.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Cerebrovascular disease is the second most common cause of cognitive disorders, usually referred to as vascular contributions to cognitive impairment and dementia (VCID) and makes some contribution to about 70 % of all dementias. Despite its importance, research into VCID has lagged as compared to cognitive impairment due to Alzheimer's disease. There is an increasing appreciation that closing this gap requires large national and international collaborations. This paper highlights 24 notable large-scale national and international efforts to advance research into VCID (MarkVCID, DiverseVCID, DISCOVERY, COMPASS-ND, HBC, RHU SHIVA, UK DRI Vascular Theme, STROKOG, Meta VCI Map, ISGC, ENIGMA-Stroke Recovery, CHARGE, SVDs@target, BRIDGET, CADASIL Consortium, CADREA, AusCADASIL, DPUK, DPAU, STRIVE, HARNESS, FINESSE, VICCCS, VCD-CRE Delphi). These collaborations aim to investigate the effects on cognition from cerebrovascular disease or impaired cerebral blood flow, the mechanisms of action, means of prevention and avenues for treatment. Consensus groups have been developed to harmonise global approaches to VCID, standardise terminology and inform management and treatment, and data sharing is becoming the norm. VCID research is increasingly a global collaborative enterprise which bodes well for rapid advances in this field.
Collapse
Affiliation(s)
- Danit G Saks
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
43
|
Guirette M, Lan J, McKeown N, Brown MR, Chen H, DE Vries PS, Kim H, Rebholz CM, Morrison AC, Bartz TM, Fretts AM, Guo X, Lemaitre RN, Liu CT, Noordam R, DE Mutsert R, Rosendaal FR, Wang CA, Beilin L, Mori TA, Oddy WH, Pennell CE, Chai JF, Whitton C, VAN Dam RM, Liu J, Tai ES, Sim X, Neuhouser ML, Kooperberg C, Tinker L, Franceschini N, Huan T, Winkler TW, Bentley AR, Gauderman WJ, Heerkens L, Tanaka T, van Rooij J, Munroe PB, Warren HR, Voortman T, Chen H, Rao DC, Levy D, Ma J. Genome-Wide Interaction Analysis with DASH Diet Score Identified Novel Loci for Systolic Blood Pressure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298402. [PMID: 37986948 PMCID: PMC10659476 DOI: 10.1101/2023.11.10.23298402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP). Methods We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses. Results We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. Conclusion We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.
Collapse
Affiliation(s)
- Mélanie Guirette
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jessie Lan
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nicola McKeown
- Programs of Nutrition, Department of Health Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S DE Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyunju Kim
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Amanda M Fretts
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Xiuqing Guo
- The Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée DE Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, NSW, Australia
- Hunter Medical Research Institute, NSW, Australia
| | - Lawrence Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Crawley, Western Australia, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Crawley, Western Australia, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia Saw Swee Hock, School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, NSW, Australia
- Hunter Medical Research Institute, NSW, Australia
| | - Jin Fang Chai
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Clare Whitton
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Rob M VAN Dam
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - E Shyong Tai
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xueling Sim
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lesley Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tianxiao Huan
- Framingham Heart Study and Population Sciences Branch, NHLBI, Framingham, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg; Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California; CA, USA
| | - Luc Heerkens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen R Warren
- Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Honglei Chen
- Department of Epidemiology and Biostatistics College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - D C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Levy
- Framingham Heart Study and Population Sciences Branch, NHLBI, Framingham, MA, USA
| | - Jiantao Ma
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
44
|
Tin A, Fohner AE, Yang Q, Brody JA, Davies G, Yao J, Liu D, Caro I, Lindbohm JV, Duggan MR, Meirelles O, Harris SE, Gudmundsdottir V, Taylor AM, Henry A, Beiser AS, Shojaie A, Coors A, Fitzpatrick AL, Langenberg C, Satizabal CL, Sitlani CM, Wheeler E, Tucker-Drob EM, Bressler J, Coresh J, Bis JC, Candia J, Jennings LL, Pietzner M, Lathrop M, Lopez OL, Redmond P, Gerszten RE, Rich SS, Heckbert SR, Austin TR, Hughes TM, Tanaka T, Emilsson V, Vasan RS, Guo X, Zhu Y, Tzourio C, Rotter JI, Walker KA, Ferrucci L, Kivimäki M, Breteler MMB, Cox SR, Debette S, Mosley TH, Gudnason VG, Launer LJ, Psaty BM, Seshadri S, Fornage M. Identification of circulating proteins associated with general cognitive function among middle-aged and older adults. Commun Biol 2023; 6:1117. [PMID: 37923804 PMCID: PMC10624811 DOI: 10.1038/s42003-023-05454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.
Collapse
Grants
- N01 HC095163 NHLBI NIH HHS
- RC2 HL102419 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- U01 HL096812 NHLBI NIH HHS
- MC_UU_00006/1 Medical Research Council
- UF1 NS125513 NINDS NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- N01AG12100 NIA NIH HHS
- N01HC95160 NHLBI NIH HHS
- R01 AG054076 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- BB/F019394/1 Biotechnology and Biological Sciences Research Council
- RF1 AG059421 NIA NIH HHS
- R01 HL131136 NHLBI NIH HHS
- N01 HC095168 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 AG015928 NIA NIH HHS
- HHSN268201800004I NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- N01 AG012100 NIA NIH HHS
- HHSN268201500001C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- N01 HC085082 NHLBI NIH HHS
- U01 HL096917 NHLBI NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01 HL085251 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- R01 NS087541 NINDS NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- R01 HL086694 NHLBI NIH HHS
- R01 AG054628 NIA NIH HHS
- U01 HL096902 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- N01 HC095162 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01 HC085086 NHLBI NIH HHS
- N01HC55222 NHLBI NIH HHS
- R01 AG049607 NIA NIH HHS
- R01 AG065596 NIA NIH HHS
- N01 HC095165 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- MR/R024227/1 Medical Research Council
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01 HC095169 NHLBI NIH HHS
- HHSN268201800003I NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201800007I NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- R01 HL144483 NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01 AG056477 NIA NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01 HC095159 NHLBI NIH HHS
- U01 AG058589 NIA NIH HHS
- N01HC95159 NHLBI NIH HHS
- N01 HC095161 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01 AG058969 NIA NIH HHS
- HHSN271201200022C NIDA NIH HHS
- N01 HC025195 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- U01 HL096814 NHLBI NIH HHS
- P30 AG066509 NIA NIH HHS
- R01 HL132320 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- P30 AG066546 NIA NIH HHS
- R01 AG033040 NIA NIH HHS
- MR/S011676/1 Medical Research Council
- U01 AG052409 NIA NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- K01 AG071689 NIA NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01 AG026307 NIA NIH HHS
- R01 AG020098 NIA NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- N01HC85082 NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- N01 HC095166 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- UH2 NS100605 NINDS NIH HHS
- N01HC25195 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- U01 HL096899 NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- P30 AG072947 NIA NIH HHS
- R01 AG025941 NIA NIH HHS
- Chief Scientist Office
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- R01 HL087641 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01 HC085080 NHLBI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- N01 HC095167 NHLBI NIH HHS
- HHSN268201800005I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- HHSN268201800006I NHLBI NIH HHS
- N01 HC095164 NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- N01 HC095160 NHLBI NIH HHS
- The ARIC study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Funding was also supported by 5RC2HL102419, R01NS087541 and R01HL131136. Neurocognitive data were collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This Cardiovascular Heath Study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, R01HL144483, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629, R01AG15928, and R01AG20098 from the National Institute on Aging (NIA). AEF is supported by K01AG071689. The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195, HHSN268201500001I and 75N92019D00031). This work was also supported by grant R01AG063507, R01AG054076, R01AG049607, R01AG059421, R01AG033040, R01AG066524, P30AG066546, U01 AG052409, U01 AG058589 from from the National Institute on Aging and R01 AG017950, UH2/3 NS100605, UF1 NS125513 from National Institute of Neurological Disorders and Stroke and R01HL132320. AGES has been funded by NIA contracts N01-AG012100 and HSSN271201200022C, NIH Grant No. 1R01AG065596-01A1, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). M. R. Duggan, T. Tanaka, J. Candia, K. A. Walker, L. Ferrucci, L.J. Launer, O. Meirelles are funded by the National Institute on Aging Intramural Research Program. This study was funded, in part, by the National Institute on Aging Intramural Research Program. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). The LBC1921 was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and The Chief Scientist Office of the Scottish Government. Genotyping was funded by the BBSRC (BB/F019394/1). LBC1936 is supported by the Biotechnology and Biological Sciences Research Council, and the Economic and Social Research Council [BB/W008793/1], Age UK (Disconnected Mind project), and the University of Edinburgh. Genotyping was funded by the BBSRC (BB/F019394/1). The Olink® Neurology Proteomics assay was supported by a National Institutes of Health (NIH) research grant R01AG054628. Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The Three City (3C) Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de données biologiques.” Ilana Caro received a grant from the EUR digital public health. This PhD program is supported within the framework of the PIA3 (Investment for the future). Project reference 17-EURE-0019.
Collapse
Affiliation(s)
- Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ilana Caro
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Joni V Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Osorio Meirelles
- National Institute on Aging, National Institutes of Health, Laboratory of Epidemiology and Population Science, Bethesda, MD, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University of London, London, UK
| | - Alexa S Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Family Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Maik Pietzner
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Valur Emilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yineng Zhu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Christophe Tzourio
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Stephanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
45
|
Newman AB, Visser M, Kritchevsky SB, Simonsick E, Cawthon PM, Harris TB. The Health, Aging, and Body Composition (Health ABC) Study-Ground-Breaking Science for 25 Years and Counting. J Gerontol A Biol Sci Med Sci 2023; 78:2024-2034. [PMID: 37431156 PMCID: PMC10613019 DOI: 10.1093/gerona/glad167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The Health, Aging, and Body Composition Study is a longitudinal cohort study that started just over 25 years ago. This ground-breaking study tested specific hypotheses about the importance of weight, body composition, and weight-related health conditions for incident functional limitation in older adults. METHODS Narrative review with analysis of ancillary studies, career awards, publications, and citations. RESULTS Key findings of the study demonstrated the importance of body composition as a whole, both fat and lean mass, in the disablement pathway. The quality of the muscle in terms of its strength and its composition was found to be a critical feature in defining sarcopenia. Dietary patterns and especially protein intake, social factors, and cognition were found to be critical elements for functional limitation and disability. The study is highly cited and its assessments have been widely adopted in both observational studies and clinical trials. Its impact continues as a platform for collaboration and career development. CONCLUSIONS The Health ABC provides a knowledge base for the prevention of disability and promotion of mobility in older adults.
Collapse
Affiliation(s)
- Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marjolein Visser
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Eleanor Simonsick
- National Institute on Aging, Translational Gerontology Branch Biomedical Research Center, Baltimore, Maryland, USA
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, University of California, San Francisco, California, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program NIA, NIH, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
47
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby W, Ganesh S, Lannery K, Shuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals new insights into determinants of incident clonal hematopoiesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.05.23295093. [PMID: 37732181 PMCID: PMC10508802 DOI: 10.1101/2023.09.05.23295093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Clonal hematopoiesis (CH), characterized by blood cells predominantly originating from a single mutated hematopoietic stem cell, is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CH is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CH. We found that age at baseline, sex, and dyslipidemia significantly influence the incidence of CH, while ASCVD and other traditional risk factors for ASCVD did not exhibit such associations. Our study also revealed associations between germline genetic variants and incident CH, prioritizing genes in CH development. Our comprehensive longitudinal assessment yields novel insights into the factors contributing to incident CH in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Shuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C. Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YDI, Westra J, Steffen LM, Brown CD, Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant SFA, Chilton FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American cohorts. Commun Biol 2023; 6:852. [PMID: 37587153 PMCID: PMC10432561 DOI: 10.1038/s42003-023-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
- Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jenna Veenstra
- Departments of Biology and Statistics, Dordt University, Sioux Center, IA, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Hallmark
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences; Program in Personalized and Genomic Medicine; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- University of Illinois, Chicago, Chicago, IL, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
49
|
Sargurupremraj M, Soumare A, Bis JC, Surakka I, Jurgenson T, Joly P, Knol MJ, Wang R, Yang Q, Satizabal CL, Gudjonsson A, Mishra A, Bouteloup V, Phuah CL, van Duijn CM, Cruchaga C, Dufouil C, Chêne G, Lopez O, Psaty BM, Tzourio C, Amouyel P, Adams HH, Jacqmin-Gadda H, Ikram MA, Gudnason V, Milani L, Winsvold BS, Hveem K, Matthews PM, Longstreth WT, Seshadri S, Launer LJ, Debette S. Complexities of cerebral small vessel disease, blood pressure, and dementia relationship: new insights from genetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.08.23293761. [PMID: 37790435 PMCID: PMC10543241 DOI: 10.1101/2023.08.08.23293761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Importance There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear. Objective To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for potential epidemiological biases inherent to late-onset conditions like dementia. Design Setting and Participants This study first explored the association of genetically determined WMH, BP levels and stroke risk with AD using summary-level data from large genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) framework. Second, leveraging individual-level data from large longitudinal population-based cohorts and biobanks with prospective dementia surveillance, the association of weighted genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was explored using Cox-proportional hazard and multi-state models. The data analysis was performed from July 26, 2020, through July 24, 2022. Exposures Genetically determined levels of WMH volume and BP (systolic, diastolic and pulse blood pressures) and genetic liability to stroke. Main outcomes and measures The summary-level MR analyses focused on the outcomes from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including self-reported parental history of dementia as a proxy for AD diagnosis (ADmeta, n-cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed dementia in secondary analyses. Results In the two-sample MR analyses, WMH showed strong evidence for a causal association with increased risk of ADmeta (OR, 1.16; 95%CI:1.05-1.28; P=.003) and AD (OR, 1.28; 95%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure for the latter. Genetically predicted BP traits showed evidence for a protective association with both clinically defined AD and ADmeta, with evidence for confounding by shared genetic instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed suggestive association with incident all-cause-dementia (HR, 1.02; 95%CI:1.00-1.04; P=.06). BP and stroke wGRSs were strongly associated with mortality but there was no evidence for selective survival bias during follow-up. In secondary analyses, polygenic scores with more liberal instrument definition showed association of both WMH and stroke with all-cause-dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with dementia outcomes were markedly attenuated after adjusting for interim stroke. Conclusion These findings provide converging evidence that WMH is a leading vascular contributor to dementia risk, which may better capture the brain damage caused by BP (and other etiologies) than BP itself and should be targeted in priority for dementia prevention in the population.
Collapse
Affiliation(s)
- Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX
| | - Aicha Soumare
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tuuli Jurgenson
- Estonian Genome Centre, Institute of Genomics, University of Tartu
| | - Pierre Joly
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | | | - Ruiqi Wang
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Qiong Yang
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Vincent Bouteloup
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Chia-Ling Phuah
- Department of Neurology, Washington University School of Medicine & Barnes-Jewish Hospital, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University in St Louis, Missouri, USA
| | | | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University in St Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Geneviève Chêne
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Department of Epidemiology and Public Health, Pasteur Institute of Lille, France
| | | | - Hélène Jacqmin-Gadda
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur,Iceland
- University of Iceland, Faculty of Medicine, 101 Reykjavik , Iceland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute, London, UK
- Data Science Institute, Imperial College London
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
50
|
Mayo KR, Basford MA, Carroll RJ, Dillon M, Fullen H, Leung J, Master H, Rura S, Sulieman L, Kennedy N, Banks E, Bernick D, Gauchan A, Lichtenstein L, Mapes BM, Marginean K, Nyemba SL, Ramirez A, Rotundo C, Wolfe K, Xia W, Azuine RE, Cronin RM, Denny JC, Kho A, Lunt C, Malin B, Natarajan K, Wilkins CH, Xu H, Hripcsak G, Roden DM, Philippakis AA, Glazer D, Harris PA. The All of Us Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research. Annu Rev Biomed Data Sci 2023; 6:443-464. [PMID: 37561600 PMCID: PMC11157478 DOI: 10.1146/annurev-biodatasci-122120-104825] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The All of Us Research Program's Data and Research Center (DRC) was established to help acquire, curate, and provide access to one of the world's largest and most diverse datasets for precision medicine research. Already, over 500,000 participants are enrolled in All of Us, 80% of whom are underrepresented in biomedical research, and data are being analyzed by a community of over 2,300 researchers. The DRC created this thriving data ecosystem by collaborating with engaged participants, innovative program partners, and empowered researchers. In this review, we first describe how the DRC is organized to meet the needs of this broad group of stakeholders. We then outline guiding principles, common challenges, and innovative approaches used to build the All of Us data ecosystem. Finally, we share lessons learned to help others navigate important decisions and trade-offs in building a modern biomedical data platform.
Collapse
Affiliation(s)
- Kelsey R Mayo
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melissa A Basford
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert J Carroll
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Moira Dillon
- Verily Life Sciences, South San Francisco, California, USA
| | - Heather Fullen
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jesse Leung
- Verily Life Sciences, South San Francisco, California, USA
| | - Hiral Master
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shimon Rura
- Verily Life Sciences, South San Francisco, California, USA
| | - Lina Sulieman
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Nan Kennedy
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Banks
- Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - David Bernick
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Asmita Gauchan
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lee Lichtenstein
- Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Brandy M Mapes
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kayla Marginean
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steve L Nyemba
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Andrea Ramirez
- The All of Us Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Charissa Rotundo
- Vanderbilt University Medical Center Enterprise Cybersecurity, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri Wolfe
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Weiyi Xia
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Romuladus E Azuine
- The All of Us Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Joshua C Denny
- The All of Us Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Abel Kho
- Department of Medicine and Institute for Augmented Intelligence in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher Lunt
- The All of Us Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradley Malin
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Karthik Natarajan
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Consuelo H Wilkins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hua Xu
- Section of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Dan M Roden
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - David Glazer
- Verily Life Sciences, South San Francisco, California, USA
| | - Paul A Harris
- Deparment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|