1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Aljagthmi AA, Abdel-Aziz AK. Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation. Stem Cell Res Ther 2025; 16:60. [PMID: 39924510 PMCID: PMC11809095 DOI: 10.1186/s13287-024-04126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a promising approach in regenerative medicine and serves as a standard treatment for different malignant and non-malignant conditions. Despite its widespread applications, HSCT is associated with various complications that compromise patients' lives and pose considerable risks of morbidity and mortality. Understanding the molecular physiology of HSCs is fundamental to ultimately enhance the mobilization, engraftment and differentiation of HSCs, thus unleashing the full therapeutic potential of HSCT in the treated patients. This review outlines the current understanding of HSC biology and its relevance to the clinical challenges associated with HSCT. Furthermore, we critically discuss the pros and cons of the preclinical murine models exploited in the HSCT field. Understanding the molecular physiology of HSCs will ultimately unleash the full therapeutic potential of HSCT. HSCs derived from induced pluripotent stem cells (iPSCs) might present an attractive tool which could be exploited preclinically and clinically. Nonetheless, further studies are warranted to systematically evaluate their potential in terms of improving the therapeutic outcome and minimizing the adverse effects of HSCT.
Collapse
Affiliation(s)
- Amjad Ahmed Aljagthmi
- Research center, King Faisal Specialist Hospital and Research Centre, Jeddah, 21499, Kingdom of Saudi Arabia.
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
4
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Leung CK, Zhu P, Loke I, Tang KF, Leung HC, Yeung CF. Development of a quantitative prediction algorithm for human cord blood-derived CD34 + hematopoietic stem-progenitor cells using parametric and non-parametric machine learning models. Sci Rep 2024; 14:25085. [PMID: 39443591 PMCID: PMC11500098 DOI: 10.1038/s41598-024-75731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The transplantation of CD34+ hematopoietic stem-progenitor cells (HSPCs) derived from cord blood serves as the standard treatment for selected hematological, oncological, metabolic, and immunodeficiency disorders, of which the dose is pivotal to the clinical outcome. Based on numerous maternal and neonatal parameters, we evaluated the predictive power of mathematical pipelines to the proportion of CD34+ cells in the final cryopreserved cord blood product adopting both parametric and non-parametric algorithms. Twenty-four predictor variables associated with the cord blood processing of 802 processed cord blood units randomly sampled in 2020-2022 were retrieved and analyzed. Prediction models were developed by adopting the parametric (multivariate linear regression) and non-parametric (random forest and back propagation neural network) statistical models to investigate the data patterns for determining the single outcome (i.e., the proportion of CD34+ cells). The multivariate linear regression model produced the lowest root-mean-square deviation (0.0982). However, the model created by the back propagation neural network produced the highest median absolute deviation (0.0689) and predictive power (56.99%) in comparison to the random forest and multivariate linear regression. The predictive model depending on a combination of continuous and discrete maternal with neonatal parameters associated with cord blood processing can predict the CD34+ dose in the final product for clinical utilization. The back propagation neural network algorithm produces a model with the highest predictive power which can be widely applied to assisting cell banks for optimal cord blood unit selection to ensure the highest chance of transplantation success.
Collapse
Affiliation(s)
- Chi-Kwan Leung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore.
| | - Pengcheng Zhu
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Ian Loke
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Kin Fai Tang
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Ho-Chuen Leung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Chin-Fung Yeung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| |
Collapse
|
6
|
Bień A, Vermeulen J, Bączek G, Pięta M, Pięta B. Cord blood banking: Balancing hype and hope in stem cell therapy. Eur J Midwifery 2024; 8:EJM-8-59. [PMID: 39376486 PMCID: PMC11456975 DOI: 10.18332/ejm/192930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Agnieszka Bień
- Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joeri Vermeulen
- Department of Life sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Eschsur-Alzette, Grand Duchy of Luxembourg
- Department of Public Health, Biostatistics and Medical Informatics Research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Grażyna Bączek
- Department of Obstetrics and Gynecology Didactics, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | | | - Beata Pięta
- Department of Mother and Child Health, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Gluckman E, Sureda A. Half a century of healing: celebrating the 50th anniversary of EBMT. Bone Marrow Transplant 2024; 59:1341-1348. [PMID: 39095547 PMCID: PMC11452336 DOI: 10.1038/s41409-024-02366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
EBMT is a non-profit organization with a clear mission: "to save the lives of patients with blood cancers and other life-threatening diseases by advancing the fields of blood and marrow transplantation and cell therapy worldwide through science, education and advocacy". In 1974, EBMT was established by European physicians in St. Moritz to share bone marrow transplantation (BMT) experiences and foster collaboration. Founding members included Jon Van Rood, Bruno Speck, and Eliane Gluckman. By 1989, the group expanded significantly, emphasizing mutual trust and collaboration. EBMT played a crucial role in standardizing transplant procedures, improving outcomes, and expanding access to BMT through donor registries and advancements in HLA mismatched transplants. The organization has grown to include over 7000 members worldwide and has significantly expanded its educational and training initiatives. EBMT continues to adapt to new challenges and advances in the field, including the integration of new therapies and personalized medicine. As of 2024, EBMT remains committed to its mission, embracing diversity and inclusion, and advocating for patient-centered care.
Collapse
Affiliation(s)
- Eliane Gluckman
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-L'Hospitalet, Instituto de Investigación Biomédica de Bellvitge, Universitat de Barcelona, Barcelona, 08908, Spain.
| |
Collapse
|
8
|
van Besien K, Liu H, Margevicius S, Fu P, Artz A, Chaekal OK, Metheny L, Shore T, Kosuri S, Mayer S, Gomez-Arteaga A, Kwon M. Haplo-cord transplant. Realizing the potential of umbilical cord blood grafts. - A review of techniques and analysis of outcomes. Leuk Lymphoma 2024; 65:1384-1397. [PMID: 38949786 DOI: 10.1080/10428194.2024.2361353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
The combination of cord blood transplant with progenitor cells from partially HLA-matched adult donors (haplo-cord transplant) has been used over the past two decades. In Europe and the US the adult donor graft is CD34 selected and provides early hematopoiesis, but durable engraftment derives from the cord blood graft (CD34 selected haplo-cord). Neutrophil recovery is prompt and rates of acute and chronic GVHD are low. Recent Chinese studies combine cord blood grafts with T-replete haplo-identical grafts (unmodified haplo-cord). The haplo graft usually establishes dominance and UCB chimerism is rarely detected. Comparison studies suggest considerably decreased rates of relapse and improved outcomes, compared with either haplo-identical transplant or CBU transplant, particularly in patients with advanced leukemia. A recent prospective randomized study confirms this. Haplo-cord mitigates the engraftment delay of UCB transplant. The unique biology of UCB grafts results in low GVHD and improved GVL especially beneficial in high-risk disease.
Collapse
Affiliation(s)
- Koen van Besien
- Division of Hematology and Cell Therapy, UH Seidman Cancer Center and Case Western Comprehensive Cancer Center, Cleveland, OH, USA
- Stem Cell Transplant Program, Weill Cornell Medical School and New York Presbyterian Hospital, New York City, NY, USA
| | - Hongtao Liu
- Hematology/Oncology Department, University of Chicago Medical Center, Chicago, IL, USA
| | - Seunghee Margevicius
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Artz
- Hematology/Oncology Department, University of Chicago Medical Center, Chicago, IL, USA
| | - Ok-Kyong Chaekal
- Division of Hematology and Cell Therapy, UH Seidman Cancer Center and Case Western Comprehensive Cancer Center, Cleveland, OH, USA
| | - Leland Metheny
- Division of Hematology and Cell Therapy, UH Seidman Cancer Center and Case Western Comprehensive Cancer Center, Cleveland, OH, USA
| | - Tsiporah Shore
- Stem Cell Transplant Program, Weill Cornell Medical School and New York Presbyterian Hospital, New York City, NY, USA
| | - Satyayit Kosuri
- Hematology/Oncology Department, University of Chicago Medical Center, Chicago, IL, USA
| | - Sebastian Mayer
- Stem Cell Transplant Program, Weill Cornell Medical School and New York Presbyterian Hospital, New York City, NY, USA
| | - Alexandra Gomez-Arteaga
- Stem Cell Transplant Program, Weill Cornell Medical School and New York Presbyterian Hospital, New York City, NY, USA
| | - Mi Kwon
- Servicio de Hematología Hospital General. Univ. Gregorio Marañon, Madrid, Spain
| |
Collapse
|
9
|
Thanh-Ha LT, Nhat-Tung P, Thi-Thao C, Van-Phuc T, The-Dung N, Cong-Luc L, Kien-Thach N, My-Trinh NT, Van-Tinh N. Cord Blood Banking in Vietnam: Historical Perspective, Status, and Future Developments 2023. Biopreserv Biobank 2024. [PMID: 39258757 DOI: 10.1089/bio.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
10
|
Mayani H. Umbilical Cord Blood Hematopoietic Cells: From Biology to Hematopoietic Transplants and Cellular Therapies. Arch Med Res 2024; 55:103042. [PMID: 39003965 DOI: 10.1016/j.arcmed.2024.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells that are biologically superior to their adult counterparts. UCB cells can be stored for several years without compromising their numbers or function. Today, public and private UCB banks have been established in several countries around the world. After 35 years since the first UCB transplant (UCBT), more than 50,000 UCBTs have been performed worldwide. In pediatric patients, UCBT is comparable to or superior to bone marrow transplantation. In adult patients, UCB can be an alternative source of hematopoietic cells when an HLA-matched unrelated adult donor is not available and when a transplant is urgently needed. Delayed engraftment (due to reduced absolute numbers of hematopoietic cells) and higher costs have led many medical institutions not to consider UCB as a first-line cell source for hematopoietic transplants. As a result, the use of UCB as a source of hematopoietic stem and progenitor cells for transplantation has declined over the past decade. Several approaches are being investigated to make UCBTs more efficient, including improving the homing capabilities of primitive UCB cells and increasing the number of hematopoietic cells to be infused. Several of these approaches have already been applied in the clinic with promising results. UCB also contains immune effector cells, including monocytes and various lymphocyte subsets, which, together with stem and progenitor cells, are excellent candidates for the development of cellular therapies for hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
11
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
Penny TR, Jenkin G, Miller SL, McDonald CA. Umbilical cord blood derived cell expansion: a potential neuroprotective therapy. Stem Cell Res Ther 2024; 15:234. [PMID: 39075614 PMCID: PMC11287950 DOI: 10.1186/s13287-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson's disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Ropa J, Van't Hof W. The fulfilled promise and unmet potential of umbilical cord blood. Curr Opin Hematol 2024; 31:168-174. [PMID: 38602152 DOI: 10.1097/moh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Here, we review classic and emerging uses of umbilical cord blood and highlight strategies to improve its utility, focusing on selection of the appropriate units and cell types for the intended applications. RECENT LITERATURE Recent studies have shown advancements in cord blood cell utility in a variety of cellular therapies and have made strides in elucidating manners to select the best units for therapy and target new ways to improve the various cell subpopulations for their respective applications. SUMMARY Umbilical cord blood is a proven source of cells for hematopoietic cell transplantation and research and is an important potential source for additional cellular therapies. However, cord blood utility is limited by low "doses" of potent cells that can be obtained from individual units, a limitation that is specific to cord blood as a donor source. In addition to traditional CD34 + progenitor cells, cord blood lymphocytes are being pursued as therapeutic entities with their own unique properties and characteristics. Thus, selection of ideal units depends on the intended therapeutic entity and target, and identification of differential potency parameters is critical to drive effective banking strategies accommodating successful clinical use of cord blood in broader cell therapy settings.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
14
|
Watanabe-Okochi N, Odajima T, Ito M, Yamada N, Shinozaki M, Minemoto M, Ishimaru F, Muroi K, Takanashi M. Criteria for storage of cord blood units at Japan's largest cord blood bank. Vox Sang 2024. [PMID: 38839078 DOI: 10.1111/vox.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND OBJECTIVES In Japan, cord blood transplantations exceed those done with adult-sourced unrelated stem cells. This study analyses cord blood (CB) storage criteria to maintain high-quality CB units. MATERIALS AND METHODS The Kanto-Koshinetsu Cord Blood Bank received 29,795 units from 2014 to 2021, mostly >60 mL, and 5486 (18.4%) were stored as transplantable units. We investigated the mother's gestational period, CB volume, total nucleated cells (TNCs), CD34+ cells, total colony-forming units (CFUs), time from collection to reception and cryopreservation, cell viability, and the reasons for not storing a unit. RESULTS The average time from collection to reception of 29,795 units was 18.0 h. The most common reason for not storing a CB unit was low cell numbers (pre-processing TNC count <1.2 billion), accounting for 67.9% of the units received. There was no correlation between the CB volume and the CD34+ cell count. The shorter the gestational period, the lower the TNC count, but the higher the CD34+ cell count. There was no correlation between the time from collection to cryopreservation, within a 36-h time limit, and the CD34+ cell recovery rate. CONCLUSION We could accept units with a TNC count <1.2 billion and a CB volume <60 mL from a gestational period of 38 weeks or less if we did a pre-processing CD34+ cell count. This would secure more units rich in CD34+ cells.
Collapse
Affiliation(s)
| | - Takeshi Odajima
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Miyuki Ito
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Naoya Yamada
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Manami Shinozaki
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Mutsuko Minemoto
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Fumihiko Ishimaru
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Kazuo Muroi
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Minoko Takanashi
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
15
|
Pucci G, Foti G, Surace R, Monteleone R, Princi D, Fabrizi E, Quattrone G, Miniero R, Liverani A, Talarico V. Evaluation of factors affecting total nucleated cells in umbilical cord blood collected for the Calabria Cord Blood Bank. Minerva Pediatr (Torino) 2024; 76:363-371. [PMID: 33305918 DOI: 10.23736/s2724-5276.20.06096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Total nucleated cell (TNC) count is the most important biological feature to consider in assessing the quality of umbilical cord blood (UCB) for hematopoietic stem cell (HSC) transplantation. Certain obstetric factors have been reported to increase TNC count in UCB units collected for transplantation. The aim of our study was to analyze how various maternal, neonatal and obstetric factors affected TNC count in the UCBs we collected for our cord blood bank in southern Italy. METHODS We performed a retrospective analysis of 634 medical records of UCBs collected by Calabria Cord Blood Bank (CCBB), Reggio Calabria, Italy, between January 1, 2010, and December 31, 2016. We analyzed various maternal, neonatal and obstetric variables factors and related this factor with the characteristic of TNC. RESULTS We found that the average number of TNCs was significantly greater in vaginal delivery than in caesarean delivery. We also found that TNCs were higher in the 40th week of pregnancy and when Apgar 1' scores were ≤9. The effect of a newborn's gender was less evident on TNC count. CONCLUSIONS Knowledge of factors predictive of a higher TNC count would help cord blood banks more efficiently identify donors likely to yield high-quality UCBs for transplantation.
Collapse
Affiliation(s)
- Giulia Pucci
- Calabria Cord Blood Bank, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - Giovanni Foti
- Calabria Cord Blood Bank, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - Rosangela Surace
- Calabria Cord Blood Bank, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - Renza Monteleone
- Calabria Cord Blood Bank, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - Domenica Princi
- Calabria Cord Blood Bank, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - Enrico Fabrizi
- Department of Economic and Social Sciences (DISES), Sacro Cuore University of Piacenza, Piacenza, Italy
| | - Giuseppe Quattrone
- Department of Economic and Social Sciences (DISES), Sacro Cuore University of Piacenza, Piacenza, Italy
| | - Roberto Miniero
- Department of Pediatrics, Pugliese-Ciaccio Hospital of Catanzaro, Catanzaro, Italy
| | | | - Valentina Talarico
- Department of Pediatrics, Pugliese-Ciaccio Hospital of Catanzaro, Catanzaro, Italy -
| |
Collapse
|
16
|
Röhsig LM, Nardi NB. Impact of COVID-19 pandemic on cord blood banking and transplantation. Cell Tissue Bank 2024; 25:605-611. [PMID: 38168846 DOI: 10.1007/s10561-023-10122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Umbilical cord blood is a rich source of hematopoietic stem cells that has been used for transplantation for over 30 years, especially when there is no compatible hematopoietic stem cell donor available. Its use has decreased more recently, since the development of methods to improve haploidentical transplants has allowed the use of mobilized peripheral blood as a source of hematopoietic stem cells. Public cord blood banks collect, process and store cord blood samples from voluntary donations. In addition, many public banks are involved in research to enhance hematopoietic stem cell therapies and develop new treatments for haematological and genetic diseases. The COVID-19 pandemic, which emerged in 2019, has had a profound and wide-ranging impact on human health and treatment. The area of hematopoietic stem cell transplantation was deeply affected by reductions in bone marrow, peripheral blood and cord blood donations; logistical challenges; exposure of healthcare workers and other challenges. The present study reviews the impact of the COVID-19 pandemic on cord blood banking and transportation around the world with a special focus on Brazil.
Collapse
Affiliation(s)
- Liane Marise Röhsig
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil
- Unit of Cellular Processing Center, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
McCann SR. Storage of wine and blood. Bone Marrow Transplant 2024; 59:715-716. [PMID: 38514814 DOI: 10.1038/s41409-024-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
|
18
|
Saha A, Palchaudhuri R, Lanieri L, Hyzy S, Riddle MJ, Panthera J, Eide CR, Tolar J, Panoskaltsis-Mortari A, Gorfinkel L, Tkachev V, Gerdemann U, Alvarez-Calderon F, Palato ER, MacMillan ML, Wagner JE, Kean LS, Osborn MJ, Kiem HP, Scadden DT, Olson LM, Blazar BR. Alloengraftment without significant toxicity or GVHD in CD45 antibody-drug conjugate-conditioned Fanconi anemia mice. Blood 2024; 143:2201-2216. [PMID: 38447038 PMCID: PMC11143525 DOI: 10.1182/blood.2023023549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.
Collapse
Affiliation(s)
- Asim Saha
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | | | | | - Megan J. Riddle
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jamie Panthera
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy R. Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Lev Gorfinkel
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Victor Tkachev
- Massachusetts General Hospital Center for Transplantation Sciences, Mass General Brigham and Massachusetts General Hospital, Boston, MA
| | - Ulrike Gerdemann
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Margaret L. MacMillan
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leslie S. Kean
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Hans-Peter Kiem
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | | | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
19
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
20
|
Naelitz BD, Khooblall PS, Parekh NV, Vij SC, Rotz SJ, Lundy SD. The effect of red blood cell disorders on male fertility and reproductive health. Nat Rev Urol 2024; 21:303-316. [PMID: 38172196 DOI: 10.1038/s41585-023-00838-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Prajit S Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seth J Rotz
- Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
21
|
Rafii H, Volt F, Bierings M, Dalle JH, Ayas M, Rihani R, Faraci M, de Simone G, Sengeloev H, Passweg J, Cavazzana M, Costello R, Maertens J, Biffi A, Johansson JE, Montoro J, Guepin GR, Diaz MA, Sirvent A, Kenzey C, Rivera Franco MM, Cappelli B, Scigliuolo GM, Rocha V, Ruggeri A, Risitano A, De Latour RP, Gluckman E. Umbilical Cord Blood Transplantation for Fanconi Anemia With a Special Focus on Late Complications: a Study on Behalf of Eurocord and SAAWP-EBMT. Transplant Cell Ther 2024; 30:532.e1-532.e16. [PMID: 38452872 DOI: 10.1016/j.jtct.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Hematopoietic cell transplantation (HCT) remains the sole available curative treatment for Fanconi anemia (FA), with particularly favorable outcomes reported after matched sibling donor (MSD) HCT. This study aimed to describe outcomes, with a special focus on late complications, of FA patients who underwent umbilical cord blood transplantation (UCBT). In this retrospective analysis of allogeneic UCBT for FA performed between 1988 and 2021 in European Society for Blood and Marrow Transplantation (EBMT)-affiliated centers, a total of 205 FA patients underwent UCBT (55 related and 150 unrelated) across 77 transplant centers. Indications for UCBT were bone marrow failure in 190 patients and acute leukemia/myelodysplasia in 15 patients. The median age at transplantation was 9 years (range, 1.2 to 43 years), with only 20 patients aged >18 years. Among the donor-recipient pairs, 56% (n = 116) had a 0 to 1/6 HLA mismatch. Limited-field radiotherapy was administered to 28% (n = 58) and 78% (n = 160) received a fludarabine (Flu)-based conditioning regimen. Serotherapy consisted of antithymocyte globulin (n = 159; 78%) or alemtuzumab (n = 12; 6%). The median follow-up was 10 years for related UCBT and 7 years for unrelated UCBT. Excellent outcomes were observed in the setting of related UCBT, including a 60-day cumulative incidence (CuI) of neutrophil recovery of 98.1% (95% confidence interval [CI], 93.9% to 100%), a 100-day CuI of grade II-IV acute graft-versus-host disease (GVHD) of 17.3% (95% CI, 9.5% to 31.6%), and a 5-year CuI of chronic GVHD (cGVHD) of 22.7% (95% CI, 13.3% to 38.7%; 13% extensive). Five-year overall survival (OS) was 88%. In multivariate analysis, none of the factors included in the model predicted a better OS. In unrelated UCBT, the 60-day CuI of neutrophil recovery was 78.7% (95% CI, 71.9% to 86.3%), the 100-day CuI of grade II-IV aGVHD was 31.4% (95% CI, 24.6% to 40.2%), and the 5-year CuI of cGVHD was 24.3% (95% CI, 17.8% to 32.2%; 12% extensive). Five-year OS was 44%. In multivariate analysis, negative recipient cytomegalovirus serology, Flu-based conditioning, age <9 years at UCBT, and 0 to 1/6 HLA mismatch were associated with improved OS. A total of 106 patients, including 5 with acute leukemia/myelodysplasia, survived for >2 years after UCBT. Nine of these patients developed subsequent neoplasms (SNs), including 1 donor-derived acute myelogenous leukemia and 8 solid tumors, at a median of 9.7 years (range, 2.3 to 21.8 years) post-UCBT (1 related and 8 unrelated UCBT). In a subset of 49 patients with available data, late nonmalignant complications affecting various organ systems were observed at a median of 8.7 years (range, 2.7 to 28.8 years) post-UCBT. UCB is a valid source of stem cells for transplantation in patients with FA, with the best results observed after related UCBT. After unrelated UCBT, improved survival was observed in patients who underwent transplantation at a younger age, with Flu-based conditioning, and with better HLA parity. The incidence of organ-specific complications and SNs was relatively low. The incidence of SNs, mostly squamous cell carcinoma, increases with time. Rigorous follow-up and lifelong screening are crucial in survivors of UCBT for FA.
Collapse
Affiliation(s)
- Hanadi Rafii
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Marc Bierings
- Princess Maxima Center, University Hospital for Children, Utrecht, Netherlands
| | - Jean-Hugues Dalle
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Université Paris Cité, APHP, Paris, France
| | - Mouhab Ayas
- Department of Pediatric Hematology Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawad Rihani
- Pediatric Blood, Marrow and Cellular Therapy Program, King Hussein Cancer Centre, Amman, Jordan
| | - Maura Faraci
- Hematopoetic Stem Cell Unit, Department of Hematology-Oncology, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Giuseppina de Simone
- Hematology and Stem Cell Transplant Unit, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, Napoli, Italy
| | - Henrik Sengeloev
- Bone Marrow Transplant Unit L 4043, National University Hospital, Copenhagen, Denmark
| | - Jakob Passweg
- Hematology Department, University Hospital of Basel, Basel, Switzerland
| | | | - Regis Costello
- Centre Hospitalier Universitaire La Conception, Marseille, France
| | - Johan Maertens
- Departement of Hematology,University Hospital Gasthuisberg, Leuven, Belgium
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | | | | | | | | | - Anne Sirvent
- Pediatric Onco-Hematology Unit, CHU A de Villeneuve, Montpellier, France
| | - Chantal Kenzey
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Monica M Rivera Franco
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco
| | - Vanderson Rocha
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Hematology, Transfusion, and Cell Therapy Service and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Hospital das Clínicas, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | - Annalisa Ruggeri
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Risitano
- University of Naples, Avellino, Italy; AORN San Giuseppe Moscati, Avellino, Italy
| | - Regis Peffault De Latour
- Bone Marrow Transplant Unit, Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eliane Gluckman
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco.
| |
Collapse
|
22
|
Zhu D, Barabadi M, McDonald C, Kusuma G, Inocencio IM, Lim R. Implications of maternal-fetal health on perinatal stem cell banking. Gene Ther 2024; 31:65-73. [PMID: 37880336 PMCID: PMC10940157 DOI: 10.1038/s41434-023-00426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Cell based therapies are being assessed for their therapeutic potential across a variety of diseases. Gestational tissues are attractive sources for cell therapy. The large number of births worldwide ensures sufficient access to gestational tissues, however, limited information has been reported around the impact of birth trends, delivery methods and pregnancy conditions on perinatal stem cell banking. This review describes the current state of banking of gestational tissues and their derived perinatal stem cells, discusses why the changes in birth trends and delivery methods could affect gestational tissue banking practices, and further explores how common pregnancy complications can potentially influence perinatal stem cell banking.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia.
| | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Gina Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Ishmael Miguel Inocencio
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| |
Collapse
|
23
|
Watanabe M, Konuma T, Imahashi N, Terakura S, Seo S, Morishima S, Uchida N, Doki N, Tanaka M, Nishida T, Kawakita T, Eto T, Takahashi S, Sawa M, Uehara Y, Kim SW, Ishimaru F, Ichinohe T, Fukuda T, Atsuta Y, Kanda J. Scoring system for optimal cord blood unit selection for single cord blood transplantation. Cytotherapy 2024; 26:286-298. [PMID: 38149949 DOI: 10.1016/j.jcyt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND We conducted a retrospective study to categorize the cord blood unit (CBU)s to identify the optimal units. METHODS A total of 8503 adults (female, n = 3592; male, n = 4911) receiving their first single cord blood transplantation (CBT) in 2000-2019 were analyzed. Factors associated with CBUs affecting overall survival (OS) and neutrophil engraftment were selected to create ranked categorization for each outcome, followed by comparison with transplantation using HLA-matched bone marrow (BMT)/peripheral blood stem cell (PBSCT) from unrelated (n = 6052) and related donors (n = 4546). RESULTS Sex-mismatch, CD34+ cell and CFU-GM counts were selected in the OS analysis. Considering the strong interaction between sex mismatch and CD34+ cell counts, we analyzed females and males separately. For females, female CBU with CD34+ cell counts {greater than or equal to} 0.5 × 10e5/kg and CFU-GM counts {greater than or equal to} 15 × 10e3/kg offered the best OS (Group I), followed by other groups with any (Groups II-IV) or all (Group V) of the risk factors. Group I consistently showed favorable OS (Group IV: HR1.22, P = 0.027; Group V: HR1.31, P = 0.047), comparable to those of rBMT/PBSCT (OS: HR1.02, P = 0.654) and uBM/PBSCT in patients with higher rDRI (HR1.07, P = 0.353). Male patients lacked significant factors affecting OS. Categorization for neutrophil engraftment consisting of CD34+ cell and CFU-GM counts, sex-mismatch, presence of donor-specific antibodies, and the number of HLA-mismatches was effective but not predicted OS. CONCLUSION Our ranked categorizations sufficiently predicted female OS and engraftment. The best-ranked CBUs offered preferable outcomes comparable to conventional BM/PB donors in female but not in male patients.
Collapse
Affiliation(s)
- Mizuki Watanabe
- Department of Hematology, Kyoto University Hospital, Kyoto, Japan; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Konuma
- Department of Hematology and Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Imahashi
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Aichi, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Satoshi Takahashi
- Division of Clinical Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Aichi, Japan
| | - Yasufumi Uehara
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Sung-Won Kim
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Fumihiko Ishimaru
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukuda
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Aichi, Japan
| | - Junya Kanda
- Department of Hematology, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
24
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
25
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
26
|
Chen X, Liu F, Ren Y, Zhang L, Wan Y, Yang W, Chen X, Zhang L, Zou Y, Chen Y, Zhu X, Guo Y. Outcome of first or second transplantation using unrelated umbilical cord blood without ATG conditioning regimen for pediatric bone marrow failure disorders. Blood Cells Mol Dis 2024; 104:102793. [PMID: 37659255 DOI: 10.1016/j.bcmd.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Unrelated umbilical cord blood transplantation (UCBT) for bone marrow failure (BMF) disorders using conditioning regimens without Anti-Thymocyte Globulin (ATG) has been used as an alternative transplantation for emerging patients without matched-sibling donors. Experience with this transplant modality in children is limited, especially as a secondary treatment for transplant failure patients. PROCEDURE We retrospectively reviewed 17 consecutive bone marrow failure patients who underwent unrelated umbilical cord blood transplantation in our center and received conditioning regimens of Total Body Irradiation (TBI) or Busulfan (BU) + Fludarabine (FLU) + Cyclophosphamide (CY). RESULTS Among the 17 BMF patients, 15 patients were treated with first cord blood transplantation and another 2 with secondary cord blood transplantation because of graft failure after first haploidentical stem cell transplantation at days +38 and +82. All patients engrafted with a median donor cell chimerism of 50 % at days +7 (range, 16 %-99.95 %) and finally rose to 100 % at days +30. Median time to neutrophil engraftment was 19 days (range, 12-30) and time to platelet engraftment was 32 days (range, 18-61). Pre-engraftment syndrome (PES) was found in 16 patients (94.11 %, 16/17). Cumulative incidence of grades II to IV acute GVHD was 58.8 % (95 % CI: 32.7-84.9 %), and 17.6 % (95 % CI: 2.6-37.9 %) of patients developed chronic GVHD. The 3-year overall survival (OS) and failure-free survival (FFS) rates were 92.86 ± 6.88 %. CONCLUSION UCBT is an effective alternative treatment for bone marrow failure pediatric patients. TBI/BU + FLU + CY regimen ensure a high engraftment rate for unrelated umbilical cord blood transplantation, which overcomes the difficulty of graft failure. Secondary salvage use of cord blood transplantation may still be useful for patients who have failed after other transplantation.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Liu
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuanyuan Ren
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Luyang Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Wan
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
27
|
Qimudesiren, Yin W, Wang Y, Qing G, Bao J, Chaomurilige, Chen S, Qian L. Hematopoietic Stem Cell Transplantation in the Management of Myelodysplastic Syndrome: A Retrospective, Current, and Future Perspective. Cell Transplant 2024; 33:9636897241284283. [PMID: 39374074 PMCID: PMC11483824 DOI: 10.1177/09636897241284283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal disorder that affects hematopoietic stem cells (HSCs), primarily occurring in the elderly population. Lower-risk MDS is characterized by a decrease in blood cells, whereas higher-risk MDS is associated with an increased risk of transformation to acute myeloid leukemia (AML). Currently, the treatment of MDS is still unsatisfactory, although demethylating agents, azacitidine (AZA), and decitabine (Dec) have been successfully used to treat MDS and improve survival rates. However, hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for MDS patients, effectively increasing patient survival and quality of life. Nevertheless, treatment-related toxicity, graft-versus-host disease, infectious complications, and relapse are still major post-transplant issues. In this review, through a retrospective analysis of past and present HSCT for the treatment of MDS, we provide insights for the future.
Collapse
Affiliation(s)
- Qimudesiren
- School of Clinical Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Wenjie Yin
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
| | - Yuhong Wang
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
| | - Guo Qing
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
| | - Jinhua Bao
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
| | - Chaomurilige
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
- School of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shana Chen
- Department of Hematology, International Mongolian Hospital of Inner Mongolia, Hohhot, China
| | - Liren Qian
- Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Li C, Shin H, Bhavanasi D, Liu M, Yu X, Peslak SA, Liu X, Alvarez-Dominguez JR, Blobel GA, Gregory BD, Huang J, Klein PS. Expansion of human hematopoietic stem cells by inhibiting translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568925. [PMID: 38077058 PMCID: PMC10705409 DOI: 10.1101/2023.11.28.568925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.
Collapse
Affiliation(s)
- Chenchen Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Shin
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dheeraj Bhavanasi
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mai Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott A. Peslak
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian Huang
- Coriell Institute for Medical Research; Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Peter S. Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Broxmeyer HE, Luchsinger LL, Weinberg RS, Jimenez A, Frenet EM, Van't Hof W, Capitano ML, Hillyer CD, Kaplan MH, Cooper S, Ropa J. Insights into highly engraftable hematopoietic cells from 27-year cryopreserved umbilical cord blood. Cell Rep Med 2023; 4:101259. [PMID: 37913777 PMCID: PMC10694620 DOI: 10.1016/j.xcrm.2023.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Alexandra Jimenez
- Comprehensive Cell Solutions, New York Blood Center, New York, NY 10065, USA; National Cord Blood Program, Long Island City, NY 11101, USA
| | - Emeline Masson Frenet
- Comprehensive Cell Solutions, New York Blood Center, New York, NY 10065, USA; National Cord Blood Program, Long Island City, NY 11101, USA
| | | | - Maegan L Capitano
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James Ropa
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Hurley K, Clow R, Jadhav A, Azzam EI, Wang Y. Mitigation of acute radiation syndrome (ARS) with human umbilical cord blood. Int J Radiat Biol 2023; 100:317-334. [PMID: 37967239 DOI: 10.1080/09553002.2023.2277372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE The growing concern over potential unintended nuclear accidents or malicious activities involving nuclear/radiological devices cannot be overstated. Exposure to whole-body doses of radiation can result in acute radiation syndrome (ARS), colloquially known as "radiation sickness," which can severely damage various organ systems. Long-term health consequences, such as cancer and cardiovascular disease, can develop many years post-exposure. Identifying effective medical countermeasures and devising a strategic medical plan represents an urgent, unmet need. Various clinical studies have investigated the therapeutic use of umbilical cord blood (UCB) for a range of illnesses, including ARS. The objective of this review is to thoroughly discuss ARS and its sub-syndromes, and to highlight recent findings regarding the use of UCB for radiation injury. UCB, a rich source of stem cells, boasts numerous advantages over other stem cell sources, like bone marrow, owing to its ease of collection and relatively low risk of severe graft-versus-host disease. Preclinical studies suggest that treatment with UCB, and often UCB-derived mesenchymal stromal cells (MSCs), results in improved survival, accelerated hematopoietic recovery, reduced gastrointestinal tract damage, and mitigation of radiation-induced pneumonitis and pulmonary fibrosis. Interestingly, recent evidence suggests that UCB-derived exosomes and their microRNAs (miRNAs) might assist in treating radiation-induced damage, largely by inhibiting fibrotic pathways. CONCLUSION UCB holds substantial potential as a radiation countermeasure, and future research should focus on establishing treatment parameters for ARS victims.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Rachel Clow
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ashok Jadhav
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Edouard I Azzam
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
31
|
de Molla VC, Barbosa MCR, Junior AM, Gonçalves MV, Guirao EKF, Yamamoto M, Arrais-Rodrigues C. Natural killer cells 56 bright16 - have higher counts in the umbilical cord blood than in the adult peripheral blood. Hematol Transfus Cell Ther 2023; 45:419-427. [PMID: 36100550 PMCID: PMC10627873 DOI: 10.1016/j.htct.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/05/2022] [Accepted: 07/03/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION AND HYPOTHESIS Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cells for allogeneic hematopoietic stem cell transplantation in the absence of a compatible donor. The UCB transplantation has a lower incidence of chronic graft versus host disease (GvHD), but is associated with slower engraftment and slower immune reconstitution, compared to other sources. Dendritic cells (DCs) and Natural Killer cells (NKs) play a central role in the development of GvHD and the graft versus leukemia (GvL) effect, as well as in the control of infectious complications. METHOD We quantified by multiparametric flow cytometry monocytes, lymphocytes, NK cells, and DCs, including their subsets, in UCB samples from 54 healthy newborns and peripheral blood (PB) from 25 healthy adult volunteers. RESULTS In the UCB samples, there were higher counts of NK cells 56bright16- (median 0.024 × 109/L), compared to the PB samples (0.012 × 109/L, p < 0.0001), NK 56dim16bright (median 0.446 × 109/L vs. 0.259 × 109/L for PB samples, p = 0.001) and plasmacytoid dendritic cells (pDCs, median 0.008 × 109/L for UCB samples vs. 0.006 × 109/L for PB samples, p = 0.03). Moreover, non-classic monocyte counts were lower in UCB than in PB (median 0.024 × 109/L vs. 0.051 × 109/L, respectively, p < 0.0001). CONCLUSION In conclusion, there were higher counts of NK cells and pDCs and lower counts of non-classic monocytes in UCB than in PB from healthy individuals. These findings might explain the lower incidence and severity of chronic GvHD, although maintaining the GvL effect, in UCB transplant recipients, compared to other stem cell sources.
Collapse
Affiliation(s)
- Vinicius Campos de Molla
- Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil; Hospital 9 de Julho, São Paulo, Brazil
| | | | | | | | | | - Mihoko Yamamoto
- Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Celso Arrais-Rodrigues
- Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil; Hospital 9 de Julho, São Paulo, Brazil
| |
Collapse
|
32
|
Borrill R, Poulton K, Wynn R. Immunology of cord blood T-cells favors augmented disease response during clinical pediatric stem cell transplantation for acute leukemia. Front Pediatr 2023; 11:1232281. [PMID: 37780051 PMCID: PMC10534014 DOI: 10.3389/fped.2023.1232281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been an important and efficacious treatment for acute leukemia in children for over 60 years. It works primarily through the graft-vs.-leukemia (GVL) effect, in which donor T-cells and other immune cells act to eliminate residual leukemia. Cord blood is an alternative source of stem cells for transplantation, with distinct biological and immunological characteristics. Retrospective clinical studies report superior relapse rates with cord blood transplantation (CBT), when compared to other stem cell sources, particularly for patients with high-risk leukemia. Xenograft models also support the superiority of cord blood T-cells in eradicating malignancy, when compared to those derived from peripheral blood. Conversely, CBT has historically been associated with an increased risk of transplant-related mortality (TRM) and morbidity, particularly from infection. Here we discuss clinical aspects of CBT, the unique immunology of cord blood T-cells, their role in the GVL effect and future methods to maximize their utility in cellular therapies for leukemia, honing and harnessing their antitumor properties whilst managing the risks of TRM.
Collapse
Affiliation(s)
- Roisin Borrill
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kay Poulton
- Transplantation Laboratory, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Robert Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Favaro P, Glass DR, Borges L, Baskar R, Reynolds W, Ho D, Bruce T, Tebaykin D, Scanlon VM, Shestopalov I, Bendall SC. Unravelling human hematopoietic progenitor cell diversity through association with intrinsic regulatory factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555623. [PMID: 37693547 PMCID: PMC10491219 DOI: 10.1101/2023.08.30.555623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Pathology, Stanford University
- These authors contributed equally
| | - David R. Glass
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Present address: Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Luciene Borges
- Department of Pathology, Stanford University
- Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
- These authors contributed equally
| | - Reema Baskar
- Department of Pathology, Stanford University
- Present address: Genome Institute of Singapore
| | | | - Daniel Ho
- Department of Pathology, Stanford University
| | | | | | - Vanessa M. Scanlon
- Department of Laboratory Medicine, Yale School of Medicine
- Present address: Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health
| | | | - Sean C. Bendall
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Lead author
| |
Collapse
|
34
|
Gandhi AP, Newell LF, Maziarz RT. A new beginning: can omidubicel emerge as the next, viable alternative donor source? Ther Adv Hematol 2023; 14:20406207231192146. [PMID: 37664800 PMCID: PMC10469227 DOI: 10.1177/20406207231192146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
Umbilical cord blood (UCB) transplantation (CBT) has been an important alternative donor option for patients lacking matched related donor (MRD) or unrelated donor (URD) grafts. Only 30% of patients with high-risk hematologic malignancies have a human leukocyte antigen (HLA)-identical sibling; subjects without a MRD option are referred for HLA-matched URD selection, or utilize alternative donor sources such as HLA-mismatched URD, UCB, or haploidentical donor grafts. While CBT demonstrates an excellent graft-versus-leukemia (GVL) effect, use of UCB as a graft source is limited due to a lower cell dose that can result in delayed engraftment and an immature immune system with increased infectious risk as a consequence. Together, increased transplant related mortality (TRM) has been associated with UCB allografts. Omidubicel is an ex vivo expanded single cord blood product that has demonstrated rapid engraftment, improved immune reconstitution, and reduced infectious complications in clinical trials. Omidubicel has now been granted U.S. Food & Drug Administration approval to enhance neutrophil recovery and decrease infectious risk. This review will focus on CBT, benefits and barriers to using this alternative donor source, and finally the potential advancements with incorporation of omidubicel in the transplant setting for malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Arpita P. Gandhi
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Laura F. Newell
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Richard T. Maziarz
- Knight Cancer Institute, Oregon Health and Science University, Mail code: OC14HO, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
35
|
Devi S, Bongale AM, Tefera MA, Dixit P, Bhanap P. Fresh Umbilical Cord Blood-A Source of Multipotent Stem Cells, Collection, Banking, Cryopreservation, and Ethical Concerns. Life (Basel) 2023; 13:1794. [PMID: 37763198 PMCID: PMC10533013 DOI: 10.3390/life13091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 09/29/2023] Open
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic cells that can be used to replace bone marrow components. Many blood disorders and systemic illnesses are increasingly being treated with stem cells as regenerative medical therapy. Presently, collected blood has been stored in either public or private banks for allogenic or autologous transplantation. Using a specific keyword, we used the English language to search for relevant articles in SCOPUS and PubMed databases over time frame. According to our review, Asian countries are increasingly using UCB preservation for future use as regenerative medicine, and existing studies indicate that this trend will continue. This recent literature review explains the methodology of UCB collection, banking, and cryopreservation for future clinical use. Between 2010 and 2022, 10,054 UCB stem cell samples were effectively cryopreserved. Furthermore, we have discussed using Mesenchymal Stem Cells (MSCs) as transplant medicine, and its clinical applications. It is essential for healthcare personnel, particularly those working in labor rooms, to comprehend the protocols for collecting, transporting, and storing UCB. This review aims to provide a glimpse of the details about the UCB collection and banking processes, its benefits, and the use of UCB-derived stem cells in clinical practice, as well as the ethical concerns associated with UCB, all of which are important for healthcare professionals, particularly those working in maternity wards; namely, the obstetrician, neonatologist, and anyone involved in perinatal care. This article also highlights the practical and ethical concerns associated with private UCB banks, and the existence of public banks. UCB may continue to grow to assist healthcare teams worldwide in treating various metabolic, hematological, and immunodeficiency disorders.
Collapse
Affiliation(s)
- Seeta Devi
- Department of Obstetrics and Gynecological Nursing, Symbiosis College of Nursing, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India;
| | - Anupkumar M. Bongale
- Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| | | | | | - Prasad Bhanap
- HoD OBG Department, Symbiosis Medical College for Women (SMCW), Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| |
Collapse
|
36
|
Kilicdag H, Anuk Ince D, Ecevit A. Editorial: Umbilical cord milking-benefits and potential harmful effects. Front Pediatr 2023; 11:1210388. [PMID: 37351313 PMCID: PMC10283007 DOI: 10.3389/fped.2023.1210388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
|
37
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
38
|
Szabolcs P, Mazor RD, Yackoubov D, Levy S, Stiff P, Rezvani A, Hanna R, Wagner J, Keating A, Lindemans CA, Karras N, McGuirk J, Hamerschlak N, López I, Sanz G, Valcarcel D, Horwitz ME. Immune Reconstitution Profiling Suggests Antiviral Protection After Transplantation with Omidubicel: a Phase 3 Substudy. Transplant Cell Ther 2023:S2666-6367(23)01256-3. [PMID: 37120136 DOI: 10.1016/j.jtct.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment for hematological malignancies and non-malignant disorders. Rapid immune reconstitution (IR) following allogeneic HCT has been shown to be associated with improved clinical outcomes and lower infection rates. A global phase 3 trial (NCT02730299) of omidubicel, an advanced cell therapy manufactured from an appropriately human leukocyte antigen-matched single umbilical cord blood (UCB) unit, showed faster hematopoietic recovery, reduced rates of infection, and shorter hospitalizations in patients randomized to omidubicel compared with those randomized to standard UCB. OBJECTIVE This optional, prospective substudy of the phase 3 trial characterized the IR kinetics following HCT with omidubicel compared with UCB in a systematic and detailed manner. STUDY DESIGN In this substudy, 37 patients from 14 global sites were included (omidubicel: n=17, UCB: n=20). Peripheral blood samples were collected over 10 predefined time points from 7 to 365 days post-HCT. Flow cytometry immunophenotyping, T cell receptor excision circle quantification, and T cell receptor sequencing were employed to evaluate the longitudinal IR kinetics post-transplant and their association with clinical outcomes. RESULTS Patient characteristics in the two comparator cohorts were overall statistically similar, except for age and total body irradiation (TBI) based conditioning regimens. The median age (range) for patients who received omidubicel or UCB was 30 (13-62) years and 43 (19-55) years, respectively. The percentages of patients receiving TBI based conditioning regimens were 47% and 70% for omidubicel and UCB recipients, respectively. Graft characteristics differed in their cellular composition. Omidubicel recipients received a 33-fold higher median dose of CD34+ stem cells, while receiving one third of the median CD3+ lymphocyte dose infused to UCB transplanted patients. Compared with UCB, omidubicel recipients exhibited faster IR of all measured lymphoid and myelomonocytic subpopulations, predominantly in the first 14 days post-transplant. This effect involved circulating natural killer (NK) cells, helper T cells, monocytes, and dendritic cells, with superior long-term B cell recovery from Day 28. One-week post-HCT, omidubicel recipients exhibited 4.1 and 7.7 -fold increases in the median helper T and NK cell counts respectively, compared to their UCB transplanted counterparts. By three weeks post-HCT, omidubicel transplanted patients were 3-fold more likely to achieve clinically relevant helper T and NK cell counts of 100 cells/ µL or above. Similar to UCB, omidubicel yielded a balanced cellular subpopulation composition and diverse T cell receptor repertoire in the short to long term. Omidubicel's CD34+ cell content correlated with faster IR by Day 7 post-HCT, which in turn coincided with earlier hematopoietic recovery. Lastly, early NK and helper T cell reconstitution correlated with a decreased rate of post-HCT viral infections, suggesting a plausible explanation for this phenomenon among omidubicel recipients in the phase 3 study. CONCLUSIONS Our findings suggest that omidubicel efficiently promotes IR across multiple immune cells, including CD4+ T cells, B cells, NK cells, and dendritic cell subtypes as early as 7 days post-transplant, potentially endowing recipients of omidubicel with early protective immunity.
Collapse
Affiliation(s)
- Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | - John Wagner
- University of Minnesota, Minneapolis, Minnesota
| | - Amy Keating
- Denver Children's Hospital, Denver, Colorado
| | | | - Nicole Karras
- City of Hope National Medical Center, Duarte, California
| | - Joseph McGuirk
- University of Kansas Medical Center, Kansas City, Kansas
| | | | - Ivan López
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Guillermo Sanz
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Mitchell E Horwitz
- Adult Stem Cell Transplant Program, Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
39
|
Sanchez-Petitto G, Rezvani K, Daher M, Rafei H, Kebriaei P, Shpall EJ, Olson A. Umbilical Cord Blood Transplantation: Connecting Its Origin to Its Future. Stem Cells Transl Med 2023; 12:55-71. [PMID: 36779789 PMCID: PMC9985112 DOI: 10.1093/stcltm/szac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/16/2022] [Indexed: 02/14/2023] Open
Abstract
Transplantation of umbilical cord blood (UCB) is an attractive alternative source of hematopoietic stem cells (HSCs). The unique properties of cord blood and its distinct immune tolerance and engraftment kinetics compared to bone marrow (BM) and peripheral blood progenitor cells, permit a wider disparity in human leukocyte antigen levels between a cord blood donor and recipient after an unrelated umbilical cord blood transplant (UCBT). In addition, it is readily available and has a lowered risk of graft-versus-host disease (GvHD), with similar long-term clinical outcomes, compared to BM transplants. However, the relatively low number of cells administered by UCB units, as well as the associated delayed engraftment and immune reconstitution, pose limitations to the wide application of UCBT. Research into several aspects of UCBT has been evaluated, including the ex vivo expansion of cord blood HSCs and the process of fucosylation to enhance engraftment. Additionally, UCB has also been used in the treatment of several neurodegenerative and cardiovascular disorders with varying degrees of success. In this article, we will discuss the biology, clinical indications, and benefits of UCBT in pediatric and adult populations. We will also discuss future directions for the use of cord blood.
Collapse
Affiliation(s)
- Gabriela Sanchez-Petitto
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - May Daher
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hind Rafei
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Amanda Olson
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
40
|
Sakurai M, Ishitsuka K, Ito R, Wilkinson AC, Kimura T, Mizutani E, Nishikii H, Sudo K, Becker HJ, Takemoto H, Sano T, Kataoka K, Takahashi S, Nakamura Y, Kent DG, Iwama A, Chiba S, Okamoto S, Nakauchi H, Yamazaki S. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 2023; 615:127-133. [PMID: 36813966 DOI: 10.1038/s41586-023-05739-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kantaro Ishitsuka
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Adam C Wilkinson
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Takaharu Kimura
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiji Mizutani
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Hans Jiro Becker
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Takemoto
- Department of Neuroscience, Drug Discovery and Disease Research Laboratory, Shionogi; Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsubasa Sano
- Pharma Solutions, Nutrition and Health, BASF Japan, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - David G Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
41
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
42
|
Mayani H. Cellular Therapies: Yesterday, Today, and Tomorrow. Stem Cells Dev 2023; 32:163-169. [PMID: 36727603 DOI: 10.1089/scd.2022.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular therapy (CT) can be defined as the transference into a person of healthy cells to correct defective functions. Yesterday (1950-2010), CT consisted mostly of hematopoietic transplants for the treatment of a variety of hematological disorders. Interestingly, during that period of time other cell types with therapeutic potential-including certain lymphoid populations and other nonhematopoietic cells-were discovered and characterized; thus, CT became a promising discipline for the treatment of a broader diversity of diseases. Today (2011-2023), CT has significantly grownup through preclinical studies and clinical trials, and it is currently progressing toward its consolidation as one of the pillars of medicine in the 21st century. Indeed, different types of stem cells (e.g., hematopoietic, mesenchymal, neural, and pluripotent), as well as different lymphoid and myeloid cell populations (e.g., TILs, CAR-Ts, CAR-NKs, and DUOC-01) are being used in clinical settings or are being tested in clinical trials. For the past decade, several CT modalities have been developed, and today, many of them are being used in the clinic. Tomorrow (2024-2040), already established CT modalities will surely be improved and applied more frequently, and novel therapies (that will include cell types such as iPSCs) will enter and expand within the clinical ground. It is noteworthy, however, that despite significant advancements and achievements, problems still need to be solved and obstacles need to be overcome. Technical, ethical, and economic issues persist and they need to be addressed. Undoubtedly, exciting times of challenges and opportunities are coming ahead in the CT arena.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| |
Collapse
|
43
|
Bhartiya D, Jha N, Tripathi A, Tripathi A. Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging. Front Cell Dev Biol 2023; 10:1061022. [PMID: 36684436 PMCID: PMC9846763 DOI: 10.3389/fcell.2022.1061022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
The concept of dedifferentiation and reprogramming of mature somatic cells holds much promise for the three-front "war" against tissue damage, cancer, and aging. It was hoped that reprogramming human somatic cells into the induced pluripotent state, along with the use of embryonic stem cells, would transform regenerative medicine. However, despite global efforts, clinical applications remain a distant dream, due to associated factors such as genomic instability, tumorigenicity, immunogenicity, and heterogeneity. Meanwhile, the expression of embryonic (pluripotent) markers in multiple cancers has baffled the scientific community, and it has been suggested that somatic cells dedifferentiate and "reprogram" into the pluripotent state in vivo to initiate cancer. It has also been suggested that aging can be reversed by partial reprogramming in vivo. However, better methods are needed; using vectors or Yamanaka factors in vivo, for example, is dangerous, and many potential anti-aging therapies carry the same risks as those using induced pluripotent cells, as described above. The present perspective examines the potential of endogenous, pluripotent very small embryonic-like stem cells (VSELs). These cells are naturally present in multiple tissues; they routinely replace diseased tissue and ensure regeneration to maintain life-long homeostasis, and they have the ability to differentiate into adult counterparts. Recent evidence suggests that cancers initiate due to the selective expansion of epigenetically altered VSELs and their blocked differentiation. Furthermore, VSEL numbers have been directly linked to lifespan in studies of long- and short-lived transgenic mice, and VSEL dysfunction has been found in the ovaries of aged mice. To conclude, a greater interest in VSELs, with their potential to address all three fronts of this war, could be the "light at the end of the tunnel."
Collapse
|
44
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
45
|
Gudauskaitė G, Kairienė I, Ivaškienė T, Rascon J, Mobasheri A. Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:111-126. [PMID: 35995905 DOI: 10.1007/5584_2022_726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.
Collapse
Affiliation(s)
- Greta Gudauskaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ignė Kairienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ali Mobasheri
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
46
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
47
|
Leung CK. An overview of cord blood stem cell transplantation in Hong Kong. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Haematopoietic stem cell graft derived from cord blood is standard therapy for several haematological malignancies and other diseases. The study reports cases of public and private (family) cord blood biobanking services and the related hematopoietic stem cell transplantation ever performed in Hong Kong. The published original research papers and review articles from inception to Nov 2022 have been searched for on Pubmed, Microsoft Academic Search, and Google Scholar to identify reports on existing or terminated cord blood biobanking and transplantation service in Hong Kong. Moreover, all data publicly available on the official websites of the local cord blood banks and local mainstream media has been analysed. The public Hong Kong Red Cross Blood Transfusion Service delivers the highest quantity of haematopoietic stem cell transplants. Among the private sector, HealthBaby releases the most cord blood units for clinical use in diseases in both autologous and allogeneic administration, followed by Cordlife HK. Both public and private (family) cord blood biobanks have been and continue to contribute to the Hong Kong cord blood donor registry. However, the growth of the cord blood inventory is detrimental to donor-recipient matching for lifesaving therapy.
Collapse
|
48
|
Fu H, Dong S, Li K. Study on promoting the regeneration of grafted fat by cell-assisted lipotransfer. Regen Ther 2022; 22:7-18. [PMID: 36582606 PMCID: PMC9762074 DOI: 10.1016/j.reth.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cell-assisted lipotransfer (CAL), a modified adipose-derived stromal/stem cells (ADSCs)-based approach for autologous fat grafting that is an ideal option for soft tissue augmentation, has many shortcomings in terms of retention and adverse effects. The objective of our study was to improve the treatment efficacy of CAL by adding fibroblasts. Methods ADSCs and fibroblasts were isolated from human adipose and dermal tissues, with fibroblasts identified by immunofluorescence and ADSCs identified by the multilineage differentiation method. We performed cell proliferation, apoptosis, migration, adipogenic, and hemangioendothelial differentiation experiments, qPCR and Western blotting analysis in co-cultures of fibroblasts and ADSCs. Subsequently, we conducted animal experiments with BALB/c nude mice. Masson's staining, immunofluorescence staining and ultrasound were used to analyze the occurrence of adverse reactions of the grafted fat, and CT and three-dimensional reconstruction were used to accurately evaluate the volume of the grafted fat. Results We found that the co-culture of fibroblasts and ADSCs promoted their mutual proliferation, adipogenic differentiation, hemangioendothelial differentiation and proliferation and migration of HUVECs. Fibroblasts inhibit the apoptosis of ADSCs. Moreover, in animal experiments, the autografted adipose group combined with ADSCs and fibroblasts had the least occurrence of oily cysts, and fat had the best form of survival. Conclusions We enhanced adipocyte regeneration and angiogenesis in ADSCs and fibroblast cells after adding fibroblasts to conventional CAL autologous fat grafts. In turn, the volume retention rate of the grafted fat is improved, and the adverse reactions are reduced.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha 410004, Hunan, China,Corresponding author. The Affiliated Changsha Central Hospital, 161 Shaoshan South Road, Changsha 410004, China.
| |
Collapse
|
49
|
Niederwieser C, Kröger N. Transplantation in CML in the TKI era: who, when, and how? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:114-122. [PMID: 36485123 PMCID: PMC9820642 DOI: 10.1182/hematology.2022000329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular therapy with tyrosine kinase inhibitors (TKIs) has significantly reduced the indication for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia (CML). Treatment-free remission can be obtained in about 50% of patients with an optimal response. However, cure rates up to 90% are restricted to patients receiving HSCT. Timing is essential since HSCT in the early stages of the disease has the best outcome. Patients in a more advanced phase (AdP) than chronic-phase (chP) CML undergo HSCT with suboptimal outcomes, and the gap between chP and AdP disease is widening. First-line therapy should start with first- or second-generation (G) TKIs. Patients failing treatment (BCR-ABL1 transcripts of greater than 10% at 3 and 6 months and greater than 1% at 12 months) should be switched to second-line TKIs, and HSCT should be considered. Patients not responding to 2G-TKI therapy as well as patients in an accelerated phase (AP) or blast crisis (BC) are candidates for HSCT. Therapy resistant BCR-ABL1 mutations, high-risk additional cytogenetic abnormalities, and molecular signs of leukemia progression should trigger the indication for HSCT. Patients who, despite dose adjustments, do not tolerate or develop severe adverse events, including vascular events, to multiple TKIs are also candidates for HSCT. In AdP CML, TKIs do not show long-lasting results, and the outcome of HSCT is less optimal without pretransplant therapy. In these patients the induction of chP2 with TKIs, either alone (AP) or in combination with intensive chemotherapy (BC), followed by HSCT should be pursued.
Collapse
Affiliation(s)
- Christian Niederwieser
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
50
|
Madrigal JA, de Chavez MR, Mayani H. Advanced Cell Therapy: Beyond the last Frontier in the Treatment of Cancer. A Historical Perspective Emphasizing the Work of Nobel Prize Laureates. Arch Med Res 2022; 53:747-752. [PMID: 36460549 DOI: 10.1016/j.arcmed.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
During the last five decades different therapies have been developed for the treatment of cancer, and as a result, patients can now live longer and better lives. Among such therapies, hematopoietic cell transplantation and immunotherapy have played key roles. In this short article, we present our particular point of view on the development of these two cellular therapies. We have focused on a historical perspective emphasizing the work of some of the Nobel Prize winners whose studies constituted cornerstones in our knowledge of the biology of cancer and in our fight against this devastating disease.
Collapse
Affiliation(s)
- J Alejandro Madrigal
- Royal Free Hospital, London, UK; University College London Cancer Institute, London, UK; Academia Nacional de Medicina, Ciudad de México, México.
| | | | - Hector Mayani
- Unidad de Investigación Oncológica, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|