1
|
Costanzo MC, Akolkar B, Claussnitzer M, Florez JC, Gloyn AL, Grant SFA, Kaestner KH, Manning AK, Mohlke KL, Parker SCJ, Titchenell PM, Udler MS, Jones MA, Kamphaus TN, Fischer RA, McCarthy MI, Miller MR, Boehnke M, AMP T2D Consortium, AMP CMD Consortium, Flannick J, Burtt NP. Accelerating Medicines Partnership in Type 2 Diabetes and Common Metabolic Diseases: Collaborating to Maximize the Value of Genetic and Genomic Data. Diabetes 2025; 74:1089-1098. [PMID: 40272257 DOI: 10.2337/db25-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025]
Abstract
In the last two decades, significant progress has been made toward understanding the genetic basis of type 2 diabetes. An important supporter of this research has been the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), most recently through the Accelerating Medicines Partnership Program for Type 2 Diabetes (AMP T2D) and Accelerating Medicines Partnership Program for Common Metabolic Diseases (AMP CMD). These public-private partnerships of the National Institutes of Health, multiple biopharmaceutical and life sciences companies, and nonprofit organizations, facilitated and managed by the Foundation for the National Institutes of Health, were designed to improve understanding of therapeutically relevant biological pathways for type 2 diabetes. On the occasion of NIDDK's 75th anniversary, we review the history of NIDDK support for these partnerships, which saw the convergence of research directions prioritized by academic consortia, the pharmaceutical industry, and government funders. Although the NIDDK was not the sole originator or funder of these efforts, its support and leadership have been pivotal to the partnerships' success and have enabled their research to be broadly accessible through the AMP Common Metabolic Diseases Knowledge Portal (CMDKP) and the AMP Common Metabolic Diseases Genome Atlas (CMDGA). Findings from AMP CMD align with NIDDK's mission to conduct research and share results with the goal of improving health and quality of life. ARTICLE HIGHLIGHTS The Accelerating Medicines Partnership Program for Type 2 Diabetes (AMP T2D) and Accelerating Medicines Partnership Program for Common Metabolic Diseases (AMP CMD) were created to accelerate the translation of genetic and genomic data into knowledge about the biology of disease. Their goal was to gain a better understanding of the mechanisms underlying types 1 and 2 diabetes and prediabetes, obesity, cardiovascular disease, kidney disease, and nonalcoholic steatohepatitis. This work identified multiple genes and pathways underlying these diseases. The findings of AMP T2D and AMP CMD have implications for drug development and improved risk prediction, diagnosis, and treatment for common metabolic diseases.
Collapse
Affiliation(s)
- Maria C Costanzo
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Melina Claussnitzer
- Broad Diabetes Initiative and Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Endocrine Division, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA
- Department of Medicine, Mass General Brigham, Boston, MA
| | - Anna L Gloyn
- Department of Pediatrics, Department of Genetics, and Stanford Diabetes Research Center, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alisa K Manning
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stephen C J Parker
- Gilbert S. Omenn Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Miriam S Udler
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA
- Department of Medicine, Mass General Brigham, Boston, MA
| | - Melissa A Jones
- Foundation for the National Institutes of Health, North Bethesda, MD
| | - Tania N Kamphaus
- Foundation for the National Institutes of Health, North Bethesda, MD
| | - Rachel A Fischer
- Foundation for the National Institutes of Health, North Bethesda, MD
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Melissa R Miller
- Internal Medicine Research Unit, Pfizer Research and Development, Pfizer, Cambridge, MA
| | - Michael Boehnke
- Gilbert S. Omenn Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | | | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Noël P Burtt
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
2
|
Ishiguro K, Fujimura A, Shirouzu M. Structural insights into tRNA recognition of the human FTSJ1-THADA complex. Commun Biol 2025; 8:893. [PMID: 40483304 PMCID: PMC12145424 DOI: 10.1038/s42003-025-08278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
tRNA undergoes various post-transcriptional modifications in the anticodon loop. FTSJ1, a protein conserved among most eukaryotes, mediates 2'-O-methylations at position 32 (Nm32) or position 34 (Nm34), complexed with THADA or WDR6, respectively. These methylations are crucial for accurate translation and cellular growth. FTSJ1 mutations are associated with non-syndromic X-linked intellectual disability. Although the structure of the FTSJ1-WDR6 complex in yeast has been solved, the structural details of the FTSJ1-THADA complex formation and substrate recognition remain unclear. Herein, using cryo-electron microscopy, we solve the high-resolution structure of FTSJ1-THADA with or without a tRNA substrate. FTSJ1 binds to THADA via its C-terminal region, with a unique interaction mode distinct from the FTSJ1-WDR6 complex. The tRNA substrate is anchored inside THADA, and key THADA residues for THADA-tRNA interaction are identified via structural and biochemical analyses. These findings demonstrate how FTSJ1 and THADA form a complex to mediate Nm32 modification in various tRNAs.
Collapse
Affiliation(s)
- Kensuke Ishiguro
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama City, Okayama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan.
| |
Collapse
|
3
|
Martin DR, Sardelli G, Burkhard T, Fowkes MM, Minns AF, Moschini R, Del Corso A, de Groot R, Apte SS, Santamaria S. Characterization of ADAMTS9 proteoglycanase activity: comparison with ADAMTS1, ADAMTS4 and ADAMTS5. J Biol Chem 2025:110301. [PMID: 40449594 DOI: 10.1016/j.jbc.2025.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025] Open
Abstract
A Disintegrin-like And Metalloprotease domain with Thrombospondin type I motifs (ADAMTS) 9 has essential, non-redundant roles during embryogenesis. Adamts9 null murine embryos die prior to completing gastrulation. Unusually for a protease, Adamts9 haploinsufficiency results in cardiovascular and ocular anomalies. ADAMTS9 is required for proteostasis of versican, a widely distributed large aggregating proteoglycan abundant in the provisional extracellular matrix during embryogenesis. Despite its importance, ADAMTS9 proteoglycanase activity has undergone limited characterization, especially in comparison to ADAMTS1, ADAMTS4, and ADAMTS5, due to difficulties in expressing and purifying the >200 kDa full-length form of ADAMTS9. Like ADAMTS1, ADAMTS4, and ADAMTS5, ADAMTS9 cleaves versican V1 isoform at E441-A442, but unlike them, cleavages at other sites are unknown. Here, we expressed a truncated ADAMTS9 construct (ADAMTS9 MDTCS) consisting of all ADAMTS 'core domains' present in ADAMTS1, ADAMTS4, and ADAMTS5, and characterized its activity against versican, aggrecan, and the small leucine-rich proteoglycan biglycan. We identified cleavages in versican (V1 and V2 isoforms) and biglycan using a z-score approach based on label-free quantitation of semi- and fully tryptic/GluC peptides. Moreover, using a quantitative assay, we established that ADAMTS9 MDTCS versicanase activity at the E441-A442 site is 175-fold lower than ADAMTS5, 9-fold lower than ADAMTS4, and 5.5-fold higher than ADAMTS1. Finally, we confirmed that ADAMTS9 MDTCS cleaves bovine aggrecan at E392-A393. This analysis of the proteoglycanase activity in the ADAMTS family highlights differences and similarities in cleavage site specificities which could be leveraged to develop selective small molecule inhibitors against current targets of interest, ADAMTS4, ADAMTS5, and ADAMTS7.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, OH 44195, USA
| | - Gemma Sardelli
- Department of Biology, Biochemistry Unit, University of Pisa, 56123 Pisa, Italy; Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tina Burkhard
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Milan M Fowkes
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Alexander F Minns
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, 56123 Pisa, Italy
| | - Antonella Del Corso
- Department of Biology, Biochemistry Unit, University of Pisa, 56123 Pisa, Italy
| | - Rens de Groot
- Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, OH 44195, USA.
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
4
|
Kapellou A, Salata E, Vrachnos DM, Papailia S, Vittas S. Gene-Diet Interactions in Diabetes Mellitus: Current Insights and the Potential of Personalized Nutrition. Genes (Basel) 2025; 16:578. [PMID: 40428400 PMCID: PMC12111186 DOI: 10.3390/genes16050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) remaina significant global health challenge, with its increasing prevalence and associated complications contributing to high morbidity and economic burden. Genetic factors play a crucial role in T2DM susceptibility, yet individual responses to dietary interventions vary widely, emphasizing the importance of gene-diet (G × D) interactions. This review synthesizes the current literature on the genetic basis of T2DM and the role of G × D interactions in shaping individual responses to diet. We examine the genetics implication in T2DM risk and modulation by dietary factors, with a focus on the potential of Nutrigenetics in guiding personalized nutrition (PN) strategies. Moreover, the clinical implications of these interactions for the personalized prevention and management of T2DM are explored, highlighting the promise of tailoring dietary recommendations based on genetic profiles. Critical research gaps, including the need for diverse and longitudinal studies, the integration of multi-omic data, and the inclusion of digital health technologies in PN are discussed. Finally, future directions for the field are outlined, advocating for more inclusive, large-scale studies to optimize PN approaches for diverse populations and improve the efficacy of T2DM prevention and management. This review underscores the potential of an individualized, genetically informed dietary approach in modulating the global burden of T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Spiros Vittas
- iDNA Laboratories, 7 Kavalieratou Taki, 14564 Athens, Greece; (A.K.); (E.S.); (D.M.V.); (S.P.)
| |
Collapse
|
5
|
Suleman S, Ängquist L, Linneberg A, Hansen T, Grarup N. Exploring the genetic intersection between obesity-associated genetic variants and insulin sensitivity indices. Sci Rep 2025; 15:15761. [PMID: 40328835 PMCID: PMC12056085 DOI: 10.1038/s41598-025-98507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Insulin sensitivity (IS) is a key determinant of metabolic health and may share genetic factors with obesity-related traits. Previous large-scale genetic studies have identified variants associated with IS as well as obesity related traits like body mass index (BMI) and waist-to-hip ratio (WHR). Notably, many of these associations are shared across traits, indicating a potential genetic overlap. However, the genetic intersection between IS and obesity-related traits remains underexplored. To explore this gap, we investigated associations between six IS indices, including fasting and post-glucose load measures, and genetic variants linked to BMI and WHR to determine their influence on IS and related cardiometabolic traits. To achieve this, we calculated six IS indices using fasting and oral glucose tolerance test (OGTT) data from 5,007 non-diabetic individuals, grouping them into fasting, OGTT0,120, and OGTT0,30,120 categories. A total of 678 BMI-associated and 265 WHR-associated genetic variants were analysed using linear regression, adjusting for age and sex, with sex-specific analyses for WHR. Analyses were conducted with and without BMI adjustments and corrected for multiple testing (padj). Additionally, we explored the relationship between IS-linked variants and their associations with type 2 diabetes (T2D), coronary artery disease (CAD) and stroke. Among the 678 BMI-associated variants, 100 showed nominal associations (p < 0.05) with at least one IS index; and 20 remained significant after multiple testing correction (padj < 0.05) when not adjusting for BMI. After adjusting for BMI, 70 variants retained nominal associations, and six remained significant (padj < 0.05). In sex-specific analyses of the 265 WHR-associated variants, 12 variants were associated in females when adjusted for BMI, whereas no significant associations were observed in males. Furthermore, BMI- and WHR-associated variants linked to decreased IS, such as those in FTO and VPS13C loci, were also associated with increased T2D and stroke risk, whereas IS-increasing variants, including those in VPS13C and PPARG, were linked to lower T2D and stroke risk, with some, like THADA, showing opposing effects on CAD. This study offers insights into genetic variants that influence both IS and obesity-related traits, revealing BMI- and WHR-associated variants with both positive and negative effects on IS and their potential impact on cardiometabolic health.
Collapse
Affiliation(s)
- Sufyan Suleman
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedicine, Human Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Li P, Ye H, Guo F, Zheng J, Shen W, Xie D, Shi S, Zhang Y, Fa Y, Zhao Z. Construction of cynomolgus monkey type 2 diabetes models by combining genetic prediction model with high-energy diet. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167616. [PMID: 39672349 DOI: 10.1016/j.bbadis.2024.167616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is a significant health concern. Research using non-human primates, which develop T2D with similar symptoms and pancreatic changes as humans, is crucial but limited by long timelines and low success rates. RESULTS We targeted capture sequenced 61 normal and 81 T2D cynomolgus monkeys using a primer panel that captured 269 potential regulatory regions potentially associated with T2D in the cynomolgus monkey genome. 80 variants were identified to be associated with T2D and were used to construct a genetic prediction model. Among 8 machine learning algorithms tested, we found that the best prediction performance was achieve when the model using support vector machine with polynomial kernel as the machine learning algorithm (AUC = 0.933). Including age and sex in this model did not significantly improve the prediction performance. Using the genetic prediction model, we further screened 22 monkeys and found 13 were high risk while 9 were low risk. After feeding the 22 monkeys with high-energy food for 32 weeks, we found all the 9 low risk monkeys did not develop T2D while 4 out of 13 high risk monkeys (31 %) develop T2D. CONCLUSIONS This method greatly increased the success rate of establishing T2D monkey models while decreased the time needed compared to traditional methods. Therefore, we developed a new high-efficiency method to establish T2D monkey models by combining the genetic prediction model and high-energy diet, which will greatly contribute to the research on the clinical characteristics, pathogenesis, complications and potential new treatments.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Huahu Ye
- Academy of Military Medical Sciences, Beijing, China
| | - Feng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianhua Zheng
- Academy of Military Medical Sciences, Beijing, China
| | - Wenlong Shen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Dejian Xie
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Yunzhi Fa
- Academy of Military Medical Sciences, Beijing, China
| | - Zhihu Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
8
|
Blanken CPS, Bayer S, Buchner Carro S, Hauner H, Holzapfel C. Associations Between TCF7L2, PPARγ, and KCNJ11 Genotypes and Insulin Response to an Oral Glucose Tolerance Test: A Systematic Review. Mol Nutr Food Res 2025; 69:e202400561. [PMID: 39828593 PMCID: PMC11791742 DOI: 10.1002/mnfr.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
SCOPE Insulin responses to standardized meals differ between individuals. This variability may in part be explained by genotype. This systematic review evaluates associations between genotype and insulin response to an oral glucose tolerance test (OGTT) in terms of insulin area under the curve (AUC). METHODS AND RESULTS Three electronic databases (Web of Science, Embase, PubMed) were searched for studies investigating associations between insulin AUC after an OGTT and single nucleotide polymorphisms (SNPs) belonging to the transcription factor 7 like 2 (TCF7L2) gene, the peroxisome proliferator-activated receptor gamma (PPARγ) gene, or the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene in persons without diabetes. A total of 5199 articles were identified, of which 38 were included. Among them were family-based studies (9), twin studies (2), and studies with unrelated participants (27). Seventeen articles investigated TCF7L2 (7 SNPs), 14 investigated PPARγ (1 SNP), and 8 investigated KCNJ11 (5 SNPs). For all investigated SNPs, at least half of the reports indicated no statistically significant association with postprandial insulin AUC. CONCLUSION No evidence was found for associations between TCF7L2, PPARγ, and KCNJ11 genotypes and insulin AUC after an OGTT. Future studies should investigate the effect of genetic risk scores on postprandial insulin.
Collapse
Affiliation(s)
- Carmen P. S. Blanken
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sophie Buchner Carro
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| |
Collapse
|
9
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
10
|
Nazeen S, Wang X, Morrow A, Strom R, Ethier E, Ritter D, Henderson A, Afroz J, Stitziel NO, Gupta RM, Luk K, Studer L, Khurana V, Sunyaev SR. NERINE reveals rare variant associations in gene networks across multiple phenotypes and implicates an SNCA-PRL-LRRK2 subnetwork in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631688. [PMID: 39829934 PMCID: PMC11741352 DOI: 10.1101/2025.01.07.631688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation. While single-gene analyses often lack power due to rare variant sparsity, expanding the unit of association to networks offers a powerful alternative, provided it integrates network connections. Here, we introduce NERINE, a hierarchical model-based association test that integrates gene interactions that integrates gene interactions while remaining robust to network inaccuracies. Applied to biobanks, NERINE uncovers compelling network associations for breast cancer, cardiovascular diseases, and type II diabetes, undetected by single-gene tests. For Parkinson's disease (PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and synergizes human genetics with experimental screens targeting cardinal PD pathologies: dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in human neurons and NERINE converge on PRL, revealing an intraneuronal α-synuclein/prolactin stress response that may impact resilience to PD pathologies.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Autumn Morrow
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathan O Stitziel
- Cardiovascular Division, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajat M Gupta
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Vikram Khurana
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Guo C, Ding R, Zhao Z, Guo J, Li F. Enrichment Strategies for Low-Abundant Single Nucleotide Mutations. Chemistry 2025; 31:e202402872. [PMID: 39448543 DOI: 10.1002/chem.202402872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Over the past three decades, significant advancements have been made in mutation enrichment methods, driven by the increasing need for precise and efficient identification of rare genetic variants associated with diseases. Mutation-enrichment methods have emerged to boost sensitivity and enable easy detection of low-frequency mutations. These methods are crucial in genomics research and clinical diagnostics, allowing for the detection of low-frequency mutations within large genomic datasets. This review presents a summary of technological developments in rare mutation enrichment and emphasizes their mechanisms and applications in liquid biopsies.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ruolin Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
12
|
Golomb R, Dahan O, Dahary D, Pilpel Y. Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution. Trends Genet 2025; 41:12-22. [PMID: 39732540 DOI: 10.1016/j.tig.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/30/2024]
Abstract
Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level. Cell-autonomous adaptations (CAAs) are inherited traits that boost organismal fitness by enhancing individual cell function. For instance, the cell-autonomous enhancement of mitochondrial oxygen utilization in hypoxic environments differs from an optimized erythropoiesis response, which involves multiple tissues. We explore the breadth of CAAs across challenges and highlight their counterparts in unicellular organisms. Applying these insights, we mine selection signals in Andean highlanders, revealing novel candidate CAAs. The conservation of CAAs across species may reveal valuable insights into multi-cellular evolution.
Collapse
Affiliation(s)
- Ruthie Golomb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dvir Dahary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
13
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Ren W, Liang Z. Review on GPU accelerated methods for genome-wide SNP-SNP interactions. Mol Genet Genomics 2024; 300:10. [PMID: 39738695 DOI: 10.1007/s00438-024-02214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Detecting genome-wide SNP-SNP interactions (epistasis) efficiently is essential to harnessing the vast data now available from modern biobanks. With millions of SNPs and genetic information from hundreds of thousands of individuals, researchers are positioned to uncover new insights into complex disease pathways. However, this data scale brings significant computational and statistical challenges. To address these, recent approaches leverage GPU-based parallel computing for high-throughput, cost-effective analysis and refine algorithms to improve time and memory efficiency. In this survey, we systematically review GPU-accelerated methods for exhaustive epistasis detection, detailing the statistical models used and the computational strategies employed to enhance performance. Our findings indicate substantial speedups with GPU implementations over traditional CPU approaches. We conclude that while GPU-based solutions hold promise for advancing genomic research, continued innovation in both algorithm design and hardware optimization is necessary to meet future data challenges in the field.
Collapse
Affiliation(s)
- Wenlong Ren
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Zhikai Liang
- Department of Plant Sciences, North Dakota State University, Fargo, 58108, USA
| |
Collapse
|
15
|
Lankinen MA, Nuotio P, Kauppinen S, Koivu N, Tolonen U, Malkki-Keinänen K, Oravilahti A, Kuulasmaa T, Uusitupa M, Schwab U, Laakso M. Effects of Genetic Risk on Incident Type 2 Diabetes and Glycemia: The T2D-GENE Lifestyle Intervention Trial. J Clin Endocrinol Metab 2024; 110:130-138. [PMID: 38888187 PMCID: PMC11651687 DOI: 10.1210/clinem/dgae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT Lifestyle intervention prevents or delays type 2 diabetes (T2D) in subjects at a high risk of T2D. However, it is not known whether genetic variants modify the effect on incident T2D during lifestyle intervention. OBJECTIVE To investigate whether a low or high genetic risk has effects on incident T2D in a group-based lifestyle intervention study. METHODS The T2D-GENE trial involved 973 men from the Metabolic Syndrome in Men (METSIM) cohort, aged 50-75 years, body mass index ≥25 kg/m2, fasting plasma glucose 5.6-6.9 mmol/L, hemoglobin A1c < 48 mmol/mol, and either a low or high genetic risk score for T2D. There were 2 intervention groups, a low (n = 315) and high genetic risk for T2D (n = 313). They were provided with a 3-year group-based intervention with access to a web portal focused on healthy diet and physical activity. There were also corresponding population-based control groups at low (n = 196) and high (n = 149) genetic risk for T2D who had two laboratory visits (0 and 3 years) and general health advice as a part of their METSIM cohort protocol. The primary outcome was incident T2D, and a secondary outcome was glycemia. RESULTS The intervention significantly lowered the risk of T2D among the participants with a high genetic risk for T2D [hazards ratio (HR) 0.30, 95% confidence interval (CI) 0.16-0.56, P < .001) whereas in the low genetic risk group the effect was not significant (HR 0.69, 95% CI 0.36-1.32, P = .262). The intervention effect was not significantly different between the high and low genetic risk groups (P = .135). The intervention significantly ameliorated the worsening of glycemia and decreased weight both in the low and high genetic risk groups. CONCLUSION Our results showed that individuals with a high genetic risk for T2D benefitted from a low-cost group-based intervention focusing on healthy diet and physical activity. Therefore, all individuals at risk of T2D should be encouraged to make lifestyle changes regardless of genetic risk.
Collapse
Affiliation(s)
- Maria Anneli Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petrus Nuotio
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Susanna Kauppinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Noora Koivu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ulla Tolonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katriina Malkki-Keinänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Wellbeing Services County of North Savo, 70210 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
16
|
Jain V, Dabbs‐Brown A, Liu C, Hui Q, Mehta A, Wilson PW, Quyyumi AA, Sun YV. Genome-Wide European Ancestry Study Identifies Coronary Artery Disease-Associated Loci Through Gene-Sex Hormone Interaction. J Am Heart Assoc 2024; 13:e034132. [PMID: 39673284 PMCID: PMC11935546 DOI: 10.1161/jaha.123.034132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Although sex differences in coronary artery disease (CAD) risk have been observed, little is known about the role of sex hormones in CAD genetics. Accounting for sex hormone levels may help identify CAD-risk loci and extend our knowledge of its genetic architecture. METHODS AND RESULTS A total of 365 662 individuals of European ancestry enrolled in the UK Biobank were considered. Genetic interaction of total testosterone, bioavailable testosterone, and SHBG (sex hormone-binding globulin) were evaluated. Gene-environment interactions in millions of samples software was used to conduct sex-stratified genome-wide interaction analysis with prevalent CAD as the outcome. Participant age at enrollment and principal components 1 to 10 were adjusted as covariates. We identified 45 loci in men and 8 loci in women that reached genome-wide significance (P < 5 × 10-8) for CAD. Ten of the loci identified (5 loci in both men and women) were through joint effects and would not have been picked up using a traditional genome-wide association study. Two of the joint effect loci in women were independently identified with significant single nucleotide polymorphism-total testosterone interactions. CONCLUSIONS This genome-wide gene-sex hormone interaction study identified genomic-risk loci that may contribute to the differential CAD risk between men and women, which otherwise would not have been discovered in a traditional genome-wide association study solely including marginal genetic effects.
Collapse
Affiliation(s)
- Vardhmaan Jain
- Division of CardiologyEmory University School of MedicineAtlantaGAUSA
| | - Amonae Dabbs‐Brown
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGAUSA
| | - Chang Liu
- Division of CardiologyEmory University School of MedicineAtlantaGAUSA
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGAUSA
| | - Qin Hui
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGAUSA
| | - Anurag Mehta
- Virginia Commonwealth University Health, Pauley Heart CenterRichmondVAUSA
| | - Peter W.F. Wilson
- Division of CardiologyEmory University School of MedicineAtlantaGAUSA
- Atlanta VA Healthcare SystemDecaturGAUSA
| | - Arshed A. Quyyumi
- Division of CardiologyEmory University School of MedicineAtlantaGAUSA
| | - Yan V. Sun
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGAUSA
- Atlanta VA Healthcare SystemDecaturGAUSA
| |
Collapse
|
17
|
Mao Q, Wang J, Yang Z, Ding R, Lv S, Ji X. The Pathologic Roles and Therapeutic Implications of Ghrelin/GHSR System in Mental Disorders. Depress Anxiety 2024; 2024:5537319. [PMID: 40226675 PMCID: PMC11919235 DOI: 10.1155/2024/5537319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 04/15/2025] Open
Abstract
Ghrelin is a hormone consisting of 28 amino acids. Growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin, which is expressed in the brain, pituitary gland, and adrenal glands, especially in the hypothalamus. The binding of ghrelin to the receptor 1a subtype mediates most of the biological effects of ghrelin. Ghrelin has a close relationship with the onset of psychosis. Ghrelin can affect the onset of psychosis by regulating neurotransmitters such as dopamine, γ-aminobutyric acid (GABA), and 5-hydroxytryptamine (5-HT) through the hypothalamus-pituitary-adrenal (HPA) axis, brain-gut axis, the mesolimbic dopamine system, and other ways. Ghrelin activates neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (ARC) through the GHSR. Ghrelin binds to neurons in the ventral tegmental area (VTA), where it promotes the activity of dopamine neurons in the nucleus accumbens (NAcs) in a GHSR-dependent way, increasing dopamine levels and the reward system. This article summarized the recent research progress of ghrelin in depression, anxiety, schizophrenia, anorexia nervosa (AN), and bulimia nervosa (BN), and emphasized its potential application for psychiatric disorders treatment.
Collapse
Affiliation(s)
- Qianshuo Mao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jinjia Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zihan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475001, Henan, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, 6 Gong-Ming Road, Mazhai Town, Erqi District, Zhengzhou 450064, Henan, China
- Department of Medicine, Huaxian County People's Hospital, Huaxian 456400, Henan, China
| |
Collapse
|
18
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
19
|
Tolonen U, Lankinen M, Laakso M, Schwab U. Healthy dietary pattern is associated with lower glycemia independently of the genetic risk of type 2 diabetes: a cross-sectional study in Finnish men. Eur J Nutr 2024; 63:2521-2531. [PMID: 38864868 PMCID: PMC11490453 DOI: 10.1007/s00394-024-03444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Hyperglycemia is affected by lifestyle and genetic factors. We investigated if dietary patterns associate with glycemia in individuals with high or low genetic risk for type 2 diabetes (T2D). METHODS Men (n = 1577, 51-81 years) without T2D from the Metabolic Syndrome in Men (METSIM) cohort filled a food-frequency questionnaire and participated in a 2-hour oral glucose tolerance test. Polygenetic risk score (PRS) including 76 genetic variants was used to stratify participants into low or high T2D risk groups. We established two data-driven dietary patterns, termed healthy and unhealthy, and investigated their association with plasma glucose concentrations and hyperglycemia risk. RESULTS Healthy dietary pattern was associated with lower fasting and 2-hour plasma glucose, glucose area under the curve, and better insulin sensitivity (Matsuda insulin sensitivity index) and insulin secretion (disposition index) in unadjusted and adjusted models, whereas the unhealthy pattern was not. No interaction was observed between the patterns and PRS on glycemic measures. Healthy dietary pattern was negatively associated with the risk for hyperglycemia in an adjusted model (OR 0.69, 95% CI 0.51-0.95, in the highest tertile), whereas unhealthy pattern was not (OR 1.08, 95% CI 0.79-1.47, in the highest tertile). No interaction was found between diet and PRS on the risk for hyperglycemia (p = 0.69 for healthy diet, p = 0.54 for unhealthy diet). CONCLUSION Our findings suggest that healthy diet is associated with lower glucose concentrations and lower risk for hyperglycemia in men with no interaction with the genetic risk.
Collapse
Affiliation(s)
- Ulla Tolonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland.
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Imamura M, Maeda S. Genetic studies of type 2 diabetes, and microvascular complications of diabetes. Diabetol Int 2024; 15:699-706. [PMID: 39469559 PMCID: PMC11512959 DOI: 10.1007/s13340-024-00727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 10/30/2024]
Abstract
Genome-wide association studies (GWAS) have significantly advanced the identification of genetic susceptibility variants associated with complex diseases. As of 2023, approximately 800 variants predisposing individuals to the risk of type 2 diabetes (T2D) were identified through GWAS, and the majority of studies were predominantly conducted in European populations. Despite the shared nature of the majority of genetic susceptibility loci across diverse ethnic populations, GWAS in non-European populations, including Japanese and East Asian populations, have revealed population-specific T2D loci. Currently, polygenic risk scores (PRSs), encompassing millions of associated variants, can identify individuals with a higher T2D risk than the general population. However, GWAS focusing on microvascular complications of diabetes have identified a limited number of disease-susceptibility loci. Ongoing efforts are crucial to enhance the applicability of PRS for all ethnic groups and unravel the genetic architecture of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| |
Collapse
|
21
|
Gujarati NA, Frimpong BO, Zaidi M, Bronstein R, Revelo MP, Haley JD, Kravets I, Guo Y, Mallipattu SK. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat Commun 2024; 15:8038. [PMID: 39271683 PMCID: PMC11399446 DOI: 10.1038/s41467-024-52306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bismark O Frimpong
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Malaika Zaidi
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Renal Section, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
22
|
Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci 2024; 25:100382. [PMID: 39166173 PMCID: PMC11334705 DOI: 10.1016/j.vas.2024.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Cattle are regarded as highly valuable animals because of their milk, beef, dung, fur, and ability to draft. The scientific community has tried a number of strategies to improve the genetic makeup of bovine germplasm. To ensure higher returns for the dairy and beef industries, researchers face their greatest challenge in improving commercially important traits. One of the biggest developments in the last few decades in the creation of instruments for cattle genetic improvement is the discovery of the genome. Breeding livestock is being revolutionized by genomic selection made possible by the availability of medium- and high-density single nucleotide polymorphism (SNP) arrays coupled with sophisticated statistical techniques. It is becoming easier to access high-dimensional genomic data in cattle. Continuously declining genotyping costs and an increase in services that use genomic data to increase return on investment have both made a significant contribution to this. The field of genomics has come a long way thanks to groundbreaking discoveries such as radiation-hybrid mapping, in situ hybridization, synteny analysis, somatic cell genetics, cytogenetic maps, molecular markers, association studies for quantitative trait loci, high-throughput SNP genotyping, whole-genome shotgun sequencing to whole-genome mapping, and genome editing. These advancements have had a significant positive impact on the field of cattle genomics. This manuscript aimed to review recent advances in genomic technologies for cattle breeding and future prospects in this field.
Collapse
Affiliation(s)
- Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| |
Collapse
|
23
|
Staels W, Berthault C, Bourgeois S, Laville V, Lourenço C, De Leu N, Scharfmann R. Comprehensive alpha, beta, and delta cell transcriptomics reveal an association of cellular aging with MHC class I upregulation. Mol Metab 2024; 87:101990. [PMID: 39009220 PMCID: PMC11327396 DOI: 10.1016/j.molmet.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in β-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased β-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.
Collapse
Affiliation(s)
- W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France; Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - S Bourgeois
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - V Laville
- Stem Cells and Development Unit, Institut Pasteur, Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France; Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - C Lourenço
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - N De Leu
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
24
|
Amitrano F, Krishnan M, Murphy R, Okesene-Gafa KAM, Ji M, Thompson JMD, Taylor RS, Merriman TR, Rush E, McCowan M, McCowan LME, McKinlay CJD. The impact of CREBRF rs373863828 Pacific-variant on infant body composition. Sci Rep 2024; 14:8825. [PMID: 38627436 PMCID: PMC11021527 DOI: 10.1038/s41598-024-59417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
In Māori and Pacific adults, the CREBRF rs373863828 minor (A) allele is associated with increased body mass index (BMI) but reduced incidence of type-2 and gestational diabetes mellitus. In this prospective cohort study of Māori and Pacific infants, nested within a nutritional intervention trial for pregnant women with obesity and without pregestational diabetes, we investigated whether the rs373863828 A allele is associated with differences in growth and body composition from birth to 12-18 months' corrected age. Infants with and without the variant allele were compared using generalised linear models adjusted for potential confounding by gestation length, sex, ethnicity and parity, and in a secondary analysis, additionally adjusted for gestational diabetes. Carriage of the rs373863828 A allele was not associated with altered growth and body composition from birth to 6 months. At 12-18 months, infants with the rs373863828 A allele had lower whole-body fat mass [FM 1.4 (0.7) vs. 1.7 (0.7) kg, aMD -0.4, 95% CI -0.7, 0.0, P = 0.05; FM index 2.2 (1.1) vs. 2.6 (1.0) kg/m2 aMD -0.6, 95% CI -1.2,0.0, P = 0.04]. However, this association was not significant after adjustment for gestational diabetes, suggesting that it may be mediated, at least in part, by the beneficial effect of CREBRF rs373863828 A allele on maternal glycemic status.
Collapse
Affiliation(s)
| | - Mohanraj Krishnan
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Karaponi A M Okesene-Gafa
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Maria Ji
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - John M D Thompson
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Rennae S Taylor
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elaine Rush
- Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Megan McCowan
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Lesley M E McCowan
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Christopher J D McKinlay
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand.
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
25
|
Imamura M, Maeda S. Perspectives on genetic studies of type 2 diabetes from the genome-wide association studies era to precision medicine. J Diabetes Investig 2024; 15:410-422. [PMID: 38259175 PMCID: PMC10981147 DOI: 10.1111/jdi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Genome-wide association studies (GWAS) have facilitated a substantial and rapid increase in the number of confirmed genetic susceptibility variants for complex diseases. Approximately 700 variants predisposing individuals to the risk for type 2 diabetes have been identified through GWAS until 2023. From 2018 to 2022, hundreds of type 2 diabetes susceptibility loci with smaller effect sizes were identified through large-scale GWAS with sample sizes of 200,000 to >1 million. The clinical translation of genetic information for type 2 diabetes includes the development of novel therapeutics and risk predictions. Although drug discovery based on loci identified in GWAS remains challenging owing to the difficulty of functional annotation, global efforts have been made to identify novel biological mechanisms and therapeutic targets by applying multi-omics approaches or searching for disease-associated coding variants in isolated founder populations. Polygenic risk scores (PRSs), comprising up to millions of associated variants, can identify individuals with higher disease risk than those in the general population. In populations of European descent, PRSs constructed from base GWAS data with a sample size of approximately 450,000 have predicted the onset of diseases well. However, European GWAS-derived PRSs have limited predictive performance in non-European populations. The predictive accuracy of a PRS largely depends on the sample size of the base GWAS data. The results of GWAS meta-analyses for multi-ethnic groups as base GWAS data and cross-population polygenic prediction methodology have been applied to establish a universal PRS applicable to small isolated ethnic populations.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of MedicineUniversity of the RyukyusNishihara‐ChoJapan
- Division of Clinical Laboratory and Blood TransfusionUniversity of the Ryukyus HospitalNishihara‐ChoJapan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of MedicineUniversity of the RyukyusNishihara‐ChoJapan
- Division of Clinical Laboratory and Blood TransfusionUniversity of the Ryukyus HospitalNishihara‐ChoJapan
| |
Collapse
|
26
|
Katoh M, Fujii T, Tabuchi Y, Shimizu T, Sakai H. Negative regulation of thyroid adenoma-associated protein (THADA) in the cardiac glycoside-induced anti-cancer effect. J Physiol Sci 2024; 74:23. [PMID: 38561668 PMCID: PMC10985892 DOI: 10.1186/s12576-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.
Collapse
Affiliation(s)
- Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
27
|
Li Y, Wu J, Tang H, Jia X, Wang J, Meng C, Wang W, Liu S, Yuan H, Cai J, Wang J, Lu Y. Long-term PM 2.5 exposure and early-onset diabetes: Does BMI link this risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169791. [PMID: 38176550 DOI: 10.1016/j.scitotenv.2023.169791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Limited studies investigated the association between high-level fine particulate matter (PM2.5) pollution and early-onset diabetes, leaving the possible metabolic mechanisms unclear. We assessed the association of cumulative PM2.5 exposure with diabetes, including early-onset, in high-pollution areas of China and explored whether metabolic factors mediated this association. METHODS 124,204 participants (≥18 years) from 121 counties in Hunan province, China, were enrolled between 2005 and 2020, with follow-up until 2021. The ground-level air pollution concentrations at each participant's residence were calculated using a high-quality dataset in China. The independent association of PM2.5 with incident diabetes and early-onset diabetes was assessed by Cox proportional hazards models. Restricted cubic splines were utilized to establish the exposure-response relationships. The role of metabolism-related mediators was estimated by mediation analysis. RESULTS During a median follow-up of 8.47 (IQR, 6.65-9.82) years, there were 3650 patients with new-onset diabetes. Each 1 μg/m3 increase in the level of cumulative PM2.5 exposure was positively related to an increased incidence of diabetes (HR 1.177, 95 % CI 1.172-1.181) among individuals in the PM2.5 > 50 μg/m3 group after adjusting for multiple variables. The relationship of the PM2.5 dose-response curve for diabetes was non-linear. Significant associations between PM2.5 exposure and early-onset diabetes risk were observed, with this risk showing an increase with the earlier age of early diabetes onset. Males, young individuals (≤45 years), and those with a lower body mass index (BMI <24 kg/m2) appeared to be more susceptible to diabetes. Moreover, change in BMI significantly mediated 31.06 % of the PM2.5-diabetes relationship. CONCLUSIONS Long-term cumulative PM2.5 exposure increased the risk of early-onset diabetes, which is partially mediated by BMI. Sustained air pollution control measures, priority protection of vulnerable individuals, and effective management of BMI should be taken to reduce the burden of diabetes.
Collapse
Affiliation(s)
- Yalan Li
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Wu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haibo Tang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Metabolic and Bariatric Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinru Jia
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjiang Meng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiqi Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
28
|
Wang Y, Pan H, Gong X, Wang Z, Qin X, Zhou S, Zhu C, Hu X, Chen S, Liu H, Jin H, Pang Q, Wu W. CDC123 promotes Hepatocellular Carcinoma malignant progression by regulating CDKAL1. Pathol Res Pract 2024; 254:154987. [PMID: 38237400 DOI: 10.1016/j.prp.2023.154987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.
Collapse
Affiliation(s)
- Yong Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HongTao Pan
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XuanKun Gong
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - ZhiCheng Wang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - XiLiang Qin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Shuai Zhou
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Chao Zhu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - XiaoSi Hu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - ShiLei Chen
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - HuiChun Liu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Hao Jin
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China
| | - Qing Pang
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| | - WenYong Wu
- The Clinical College, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei 230041, Anhui, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
29
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
30
|
Zhang J, Cheng X, Wei Y, Zhang Z, Zhou Q, Guan Y, Yan Y, Wang R, Jia C, An J, He M. Epigenome-wide perspective of cadmium-associated DNA methylation and its mediation role in the associations of cadmium with lipid levels and dyslipidemia risk. Food Chem Toxicol 2024; 184:114409. [PMID: 38128686 DOI: 10.1016/j.fct.2023.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Studies demonstrated the associations of cadmium (Cd) with lipid levels and dyslipidemia risk, but the mechanisms involved need further exploration. OBJECTIVES We aimed to explore the role of DNA methylation (DNAM) in the relationship of Cd with lipid levels and dyslipidemia risk. METHODS Urinary cadmium levels (UCd) were measured by inductively coupled plasma mass spectrometry, serum high-density lipoprotein (HDL), total cholesterol, triglyceride, and low-density lipoprotein were measured with kits, and DNAM was measured using the Infinium MethylationEPIC BeadChip. Robust linear regressions were conducted for epigenome-wide association study. Multivariate linear and logistic regressions were performed to explore the associations of UCd with lipid levels and dyslipidemia risk, respectively. Mediation analyses were conducted to explore potential mediating role of DNAM in the associations of Cd with lipid levels and dyslipidemia risk. RESULTS UCd was negatively associated with HDL levels (p = 0.01) and positively associated with dyslipidemia (p < 0.01). There were 92/11 DMPs/DMRs (FDR<0.05) associated with UCd. Cd-associated DNAM and pathways were connected with cardiometabolic diseases and immunity. Cg07829377 (LINC01060) mediated 42.05%/22.88% of the UCd-HDL/UCd-dyslipidemia associations (p = 0.02 and 0.01, respectively). CONCLUSIONS Cadmium caused site-specific DNAM alterations and the associations of UCd with lipid levels and dyslipidemia risk may be partially mediated by DNAM.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
31
|
Gkouskou KK, Grammatikopoulou MG, Lazou E, Vasilogiannakopoulou T, Sanoudou D, Eliopoulos AG. A genomics perspective of personalized prevention and management of obesity. Hum Genomics 2024; 18:4. [PMID: 38281958 PMCID: PMC10823690 DOI: 10.1186/s40246-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
This review discusses the landscape of personalized prevention and management of obesity from a nutrigenetics perspective. Focusing on macronutrient tailoring, we discuss the impact of genetic variation on responses to carbohydrate, lipid, protein, and fiber consumption. Our bioinformatic analysis of genomic variants guiding macronutrient intake revealed enrichment of pathways associated with circadian rhythm, melatonin metabolism, cholesterol and lipoprotein remodeling and PPAR signaling as potential targets of macronutrients for the management of obesity in relevant genetic backgrounds. Notably, our data-based in silico predictions suggest the potential of repurposing the SYK inhibitor fostamatinib for obesity treatment in relevant genetic profiles. In addition to dietary considerations, we address genetic variations guiding lifestyle changes in weight management, including exercise and chrononutrition. Finally, we emphasize the need for a refined understanding and expanded research into the complex genetic landscape underlying obesity and its management.
Collapse
Affiliation(s)
- Kalliopi K Gkouskou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece.
- GENOSOPHY P.C., Athens, Greece.
| | - Maria G Grammatikopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Theodora Vasilogiannakopoulou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece.
- GENOSOPHY P.C., Athens, Greece.
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
32
|
Nisa KU, Tarfeen N, Mir SA, Waza AA, Ahmad MB, Ganai BA. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J Clin Biochem 2024; 39:18-36. [PMID: 38223007 PMCID: PMC10784448 DOI: 10.1007/s12291-023-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Among the premenopausal women, Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrinopathy affecting the reproductive system and metabolic rhythms leading to disrupted menstrual cycle. Being heterogeneous in nature it is characterized by complex symptomology of oligomennorhoea, excess of androgens triggering masculine phenotypic appearance and/or multiple follicular ovaries. The etiology of this complex disorder remains somewhat doubtful and the researchers hypothesize multisystem links in the pathogenesis of this disease. In this review, we attempt to present several hypotheses that tend to contribute to the etiology of PCOS. Metabolic inflexibility, aberrant pattern of gonadotropin signaling along with the evolutionary, genetic and environmental factors have been discussed. Considered a lifelong endocrinological implication, no universal treatment is available for PCOS so far however; multiple drug therapy is often advised along with simple life style intervention is mainly advised to manage its cardinal symptoms. Here we aimed to present a summarized view of pathophysiological links of PCOS with potential therapeutic strategies.
Collapse
Affiliation(s)
- Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006 India
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Najeebul Tarfeen
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, 190010 India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC), Srinagar, 190010 India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
33
|
Al-Romaiyan A, Persaud SJ, Jones PM. Identification of Potential Plant-Derived Pancreatic Beta-Cell-Directed Agents Using New Custom-Designed Screening Method: Gymnema sylvestre as an Example. Molecules 2023; 29:194. [PMID: 38202777 PMCID: PMC10780566 DOI: 10.3390/molecules29010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Folk medicines are attractive therapeutic agents for treating type 2 diabetes mellitus (T2DM). Most plant extracts that have been suggested to restore β-cells function were tested in vivo. Some only have been tested in vitro to determine whether they have a direct effect on β-cells islets of Langerhans. Currently, there are no defined criteria for screening of β-cell-directed plant-based remedies as potential antidiabetic agents. SUMMARY In this review, we have identified certain criteria/characteristics that can be used to generate a "screening portfolio" to identify plant extracts as potential β-cell-directed agents for the treatment of T2DM. To validate our screening method, we studied the potential therapeutic efficacy of a Gymnema sylvestre (GS) extract using the screening criteria detailed in the review. Six criteria have been identified and validated using OSA®, a GS extract. By using this screening method, we show that OSA® fulfilled most of the criteria identified for an effective β-cell-directed antidiabetic therapy, being an effective insulin-releasing agent at nontoxic concentrations; maintaining β-cell insulin content by stimulating a concomitant increase in insulin gene transcription; maintaining β-cell mass by protecting against apoptosis; and being effective at maintaining normoglycemia in vivo in a mouse model and a human cohort with T2DM. KEY MESSAGES The present review has highlighted the importance of having a screening portfolio for plant extracts that have potential antidiabetic effects in the treatment of T2DM. We propose that this screening method should be adopted for future studies to identify new β-cell-directed antidiabetic plant derived agents.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Jabriya 046302, Kuwait
| | - Shanta J. Persaud
- Department of Diabetes, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK; (S.J.P.); (P.M.J.)
| | - Peter M. Jones
- Department of Diabetes, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK; (S.J.P.); (P.M.J.)
| |
Collapse
|
34
|
An U, Pazokitoroudi A, Alvarez M, Huang L, Bacanu S, Schork AJ, Kendler K, Pajukanta P, Flint J, Zaitlen N, Cai N, Dahl A, Sankararaman S. Deep learning-based phenotype imputation on population-scale biobank data increases genetic discoveries. Nat Genet 2023; 55:2269-2276. [PMID: 37985819 PMCID: PMC10703681 DOI: 10.1038/s41588-023-01558-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2023] [Indexed: 11/22/2023]
Abstract
Biobanks that collect deep phenotypic and genomic data across many individuals have emerged as a key resource in human genetics. However, phenotypes in biobanks are often missing across many individuals, limiting their utility. We propose AutoComplete, a deep learning-based imputation method to impute or 'fill-in' missing phenotypes in population-scale biobank datasets. When applied to collections of phenotypes measured across ~300,000 individuals from the UK Biobank, AutoComplete substantially improved imputation accuracy over existing methods. On three traits with notable amounts of missingness, we show that AutoComplete yields imputed phenotypes that are genetically similar to the originally observed phenotypes while increasing the effective sample size by about twofold on average. Further, genome-wide association analyses on the resulting imputed phenotypes led to a substantial increase in the number of associated loci. Our results demonstrate the utility of deep learning-based phenotype imputation to increase power for genetic discoveries in existing biobank datasets.
Collapse
Affiliation(s)
- Ulzee An
- Computer Science Department, UCLA, Los Angeles, CA, USA.
| | | | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lianyun Huang
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Silviu Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics and Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
- Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Kenneth Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics and Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan Flint
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Noah Zaitlen
- Neurology Department, UCLA, Los Angeles, CA, USA
| | - Na Cai
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Andy Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Sriram Sankararaman
- Computer Science Department, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Singh P, Kuder H, Ritz A. Identification of disease modules using higher-order network structure. BIOINFORMATICS ADVANCES 2023; 3:vbad140. [PMID: 37860106 PMCID: PMC10582521 DOI: 10.1093/bioadv/vbad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Motivation Higher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to reveal new disease-associated modules. Results We propose a higher-order community detection method which identifies community structure in networks with respect to specific higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein-protein interaction networks identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure that enables us to predict new disease-gene associations. Availability and implementation https://github.com/Reed-CompBio/graphlet-clustering.
Collapse
Affiliation(s)
- Pramesh Singh
- Biology Department, Reed College, Portland, OR 97202, United States
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, United States
| | - Hannah Kuder
- Physics Department, Reed College, Portland, OR 97202, United States
| | - Anna Ritz
- Biology Department, Reed College, Portland, OR 97202, United States
| |
Collapse
|
36
|
Orioli L, Canouil M, Sawadogo K, Ning L, Deldicque L, Lause P, de Barsy M, Froguel P, Loumaye A, Deswysen Y, Navez B, Bonnefond A, Thissen JP. Identification of myokines susceptible to improve glucose homeostasis after bariatric surgery. Eur J Endocrinol 2023; 189:409-421. [PMID: 37638789 DOI: 10.1093/ejendo/lvad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
IMPORTANCE AND OBJECTIVE The identification of myokines susceptible to improve glucose homeostasis following bariatric surgery could lead to new therapeutic approaches for type 2 diabetes. METHODS Changes in the homeostasis model assessment (HOMA) test were assessed in patients before and 3 months after bariatric surgery. Changes in myokines expression and circulating levels were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Myokines known to regulate glucose homeostasis were identified using literature (targeted study) and putative myokines using RNA-sequencing (untargeted study). A linear regression analysis adjusted for age and sex was used to search for associations between changes in the HOMA test and changes in myokines. RESULTS In the targeted study, brain-derived neurotrophic factor (BDNF) expression was upregulated (+30%, P = .006) while BDNF circulating levels were decreased (-12%, P = .001). Upregulated BDNF expression was associated with decreased HOMA of insulin resistance (HOMA-IR) (adjusted estimate [95% confidence interval {CI}]: -0.51 [-0.88 to -0.13], P = .010). Decreased BDNF serum levels were associated with decreased HOMA of beta-cell function (HOMA-B) (adjusted estimate [95% CI] = 0.002 [0.00002-0.0031], P = .046). In the untargeted study, upregulated putative myokines included XYLT1 (+64%, P < .001), LGR5 (+57, P< .001), and SPINK5 (+46%, P < .001). Upregulated LGR5 was associated with decreased HOMA-IR (adjusted estimate [95% CI] = -0.50 [-0.86 to -0.13], P = .009). Upregulated XYLT1 and SPINK5 were associated with increased HOMA of insulin sensitivity (HOMA-S) (respectively, adjusted estimate [95% CI] = 109.1 [28.5-189.8], P = .009 and 16.5 [0.87-32.19], P = .039). CONCLUSIONS Improved glucose homeostasis following bariatric surgery is associated with changes in myokines expression and circulating levels. In particular, upregulation of BDNF, XYLT1, SPINK5, and LGR5 is associated with improved insulin sensitivity. These results suggest that these myokines could contribute to improved glucose homeostasis following bariatric surgery. STUDY REGISTRATION NCT03341793 on ClinicalTrials.gov (https://clinicaltrials.gov/).
Collapse
Affiliation(s)
- Laura Orioli
- Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Kiswendsida Sawadogo
- Statistical Support Unit, King Albert II Cancer and Hematology Institute, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Lijiao Ning
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Louise Deldicque
- Institute of NeuroScience, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Pascale Lause
- Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Marie de Barsy
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2BX, United Kingdom
| | - Audrey Loumaye
- Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Yannick Deswysen
- Department of Oeso-gastro-duodenal and Bariatric Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Benoit Navez
- Department of Oeso-gastro-duodenal and Bariatric Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, 59000 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Jean-Paul Thissen
- Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
37
|
Islam MR, Nyholt DR. Cross-trait analyses identify shared genetics between migraine, headache, and glycemic traits, and a causal relationship with fasting proinsulin. Hum Genet 2023; 142:1149-1172. [PMID: 36808568 PMCID: PMC10449981 DOI: 10.1007/s00439-023-02532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
The co-occurrence of migraine and glycemic traits has long been reported in observational epidemiological studies, but it has remained unknown how they are linked genetically. We used large-scale GWAS summary statistics on migraine, headache, and nine glycemic traits in European populations to perform cross-trait analyses to estimate genetic correlation, identify shared genomic regions, loci, genes, and pathways, and test for causal relationships. Out of the nine glycemic traits, significant genetic correlation was observed for fasting insulin (FI) and glycated haemoglobin (HbA1c) with both migraine and headache, while 2-h glucose was genetically correlated only with migraine. Among 1703 linkage disequilibrium (LD) independent regions of the genome, we found pleiotropic regions between migraine and FI, fasting glucose (FG), and HbA1c, and pleiotropic regions between headache and glucose, FI, HbA1c, and fasting proinsulin. Cross-trait GWAS meta-analysis with glycemic traits, identified six novel genome-wide significant lead SNPs with migraine, and six novel lead SNPs with headache (Pmeta < 5.0 × 10-8 and Psingle-trait < 1 × 10-4), all of which were LD-independent. Genes with a nominal gene-based association (Pgene ≤ 0.05) were significantly enriched (overlapping) across the migraine, headache, and glycemic traits. Mendelian randomisation analyses produced intriguing, but inconsistent, evidence for a causal relationship between migraine and headache with multiple glycemic traits; and consistent evidence suggesting increased fasting proinsulin levels may causally decrease the risk of headache. Our findings indicate that migraine, headache, and glycemic traits share a common genetic etiology and provide genetic insights into the molecular mechanisms contributing to their comorbid relationship.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Díez López I. The Assessment of Nutritional Status in Pediatrics: New Tools and Challenges. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1151. [PMID: 37508647 PMCID: PMC10378336 DOI: 10.3390/children10071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Pediatric endocrinology will undergo an extraordinary revolution this century [...].
Collapse
Affiliation(s)
- Ignacio Díez López
- Pediatric Department, Basque Country University, UPV-EHU, 01009 Vitoria, Spain;
- Pediatric Service, University Hospital of Alava, OSI Araba, Osakidetza, 01009 Vitoria, Spain
| |
Collapse
|
39
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
40
|
Aberra YT, Ma L, Björkegren JLM, Civelek M. Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation. eLife 2023; 12:e79834. [PMID: 37326626 PMCID: PMC10275637 DOI: 10.7554/elife.79834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes (T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI identified in genome-wide association studies are predicted to act through adipose tissues, but many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdominal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. We find six genetic signals in five loci associated with protection from T2D but also with increased abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose biology. We then evaluate the relationship between adipose gene expression of eGenes with adipogenesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior literature, we propose models that resolve the discordant associations at two of the five loci. While experimental validation is required to validate predictions, these hypotheses provide potential mechanisms underlying T2D risk stratification within abdominal obesity.
Collapse
Affiliation(s)
- Yonathan Tamrat Aberra
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Karolinska Institutet, HuddingeStockholmSweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
41
|
Vivot K, Meszaros G, Pangou E, Zhang Z, Qu M, Erbs E, Yeghiazaryan G, Quiñones M, Grandgirard E, Schneider A, Clauss-Creusot E, Charlet A, Faour M, Martin C, Berditchevski F, Sumara I, Luquet S, Kloppenburg P, Nogueiras R, Ricci R. CaMK1D signalling in AgRP neurons promotes ghrelin-mediated food intake. Nat Metab 2023; 5:1045-1058. [PMID: 37277610 DOI: 10.1038/s42255-023-00814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.
Collapse
Affiliation(s)
- Karl Vivot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| | - Gergö Meszaros
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Zhirong Zhang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Mengdi Qu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Eric Erbs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Gagik Yeghiazaryan
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, (CECAD), University of Cologne, Cologne, Germany
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Anna Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Etienne Clauss-Creusot
- Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Alexandre Charlet
- Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Maya Faour
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, (CECAD), University of Cologne, Cologne, Germany
| | - Ruben Nogueiras
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
42
|
Zhu H, Ding G, Liu X, Huang H. Developmental origins of diabetes mellitus: Environmental epigenomics and emerging patterns. J Diabetes 2023. [PMID: 37190864 DOI: 10.1111/1753-0407.13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/09/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Mounting epidemiological evidence indicates that environmental exposures in early life have roles in diabetes susceptibility in later life. Additionally, environmentally induced diabetic susceptibility could be transmitted to subsequent generations. Epigenetic modifications provide a potential association with the environmental factors and altered gene expression that might cause disease phenotypes. Here, we bring the increasing evidence that environmental exposures early in development are linked to diabetes through epigenetic modifications. This review first summarizes the epigenetic targets, including metastable epialleles and imprinting genes, by which the environmental factors can modify the epigenome. Then we review the epigenetics changes in response to environmental challenge during critical developmental windows, gametogenesis, embryogenesis, and fetal and postnatal period, with the specific example of diabetic susceptibility. Although the mechanisms are still largely unknown, especially in humans, the new research methods are now gradually available, and the animal models can provide more in-depth study of mechanisms. These have implications for investigating the link of the phenomena to human diabetes, providing a new perspective on environmentally triggered diabetes risk.
Collapse
Affiliation(s)
- Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
43
|
Liu J, Wang L, Cui X, Shen Q, Wu D, Yang M, Dong Y, Liu Y, Chen H, Yang Z, Liu Y, Zhu M, Ma H, Jin G, Qian Y. Polygenic Risk Score, Lifestyles, and Type 2 Diabetes Risk: A Prospective Chinese Cohort Study. Nutrients 2023; 15:2144. [PMID: 37432247 DOI: 10.3390/nu15092144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The aim of this study was to generate a polygenic risk score (PRS) for type 2 diabetes (T2D) and test whether it could be used in identifying high-risk individuals for lifestyle intervention in a Chinese cohort. We genotyped 80 genetic variants among 5024 participants without non-communicable diseases at baseline in the Wuxi Non-Communicable Diseases cohort (Wuxi NCDs cohort). During the follow-up period of 14 years, 440 cases of T2D were newly diagnosed. Using Cox regression, we found that the PRS of 46 SNPs identified by the East Asians was relevant to the future T2D. Participants with a high PRS (top quintile) had a two-fold higher risk of T2D than the bottom quintile (hazard ratio: 2.06, 95% confidence interval: 1.42-2.97). Lifestyle factors were considered, including cigarette smoking, alcohol consumption, physical exercise, diet, body mass index (BMI), and waist circumference (WC). Among high-PRS individuals, the 10-year incidence of T2D slumped from 6.77% to 3.28% for participants having ideal lifestyles (4-6 healthy lifestyle factors) compared with poor lifestyles (0-2 healthy lifestyle factors). When integrating the high PRS, the 10-year T2D risk of low-clinical-risk individuals exceeded that of high-clinical-risk individuals with a low PRS (3.34% vs. 2.91%). These findings suggest that the PRS of 46 SNPs could be used in identifying high-risk individuals and improve the risk stratification defined by traditional clinical risk factors for T2D. Healthy lifestyles can reduce the risk of a high PRS, which indicates the potential utility in early screening and precise prevention.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Lu Wang
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Xuan Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Shen
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Dun Wu
- College of Arts and Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Man Yang
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Yunqiu Dong
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Yongchao Liu
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Hai Chen
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Zhijie Yang
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Yaqi Liu
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Qian
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University (Wuxi Center for Disease Control and Prevention), Wuxi 214023, China
| |
Collapse
|
44
|
Shi R, Lu W, Tian Y, Wang B. Intestinal SEC16B modulates obesity by regulating chylomicron metabolism. Mol Metab 2023; 70:101693. [PMID: 36796587 PMCID: PMC9976576 DOI: 10.1016/j.molmet.2023.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified genetic variants in SEC16 homolog B (SEC16B) locus to be associated with obesity and body mass index (BMI) in various populations. SEC16B encodes a scaffold protein located at endoplasmic reticulum (ER) exit sites that is implicated to participate in the trafficking of COPII vesicles in mammalian cells. However, the function of SEC16B in vivo, especially in lipid metabolism, has not been investigated. METHODS We generated Sec16b intestinal knockout (IKO) mice and assessed the impact of its deficiency on high-fat diet (HFD) induced obesity and lipid absorption in both male and female mice. We examined lipid absorption in vivo by acute oil challenge and fasting/HFD refeeding. Biochemical analyses and imaging studies were performed to understand the underlying mechanisms. RESULTS Our results showed that Sec16b intestinal knockout (IKO) mice, especially female mice, were protected from HFD-induced obesity. Loss of Sec16b in intestine dramatically reduced postprandial serum triglyceride output upon intragastric lipid load or during overnight fasting and HFD refeeding. Further studies showed that intestinal Sec16b deficiency impaired apoB lipidation and chylomicron secretion. CONCLUSIONS Our studies demonstrated that intestinal SEC16B is required for dietary lipid absorption in mice. These results revealed that SEC16B plays important roles in chylomicron metabolism, which may shed light on the association between variants in SEC16B and obesity in human.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
45
|
Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig 2023; 14:503-515. [PMID: 36639962 PMCID: PMC10034958 DOI: 10.1111/jdi.13970] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes results from a complex interaction between genetic and environmental factors. Precision medicine for type 2 diabetes using genetic data is expected to predict the risk of developing diabetes and complications and to predict the effects of medications and life-style intervention more accurately for individuals. Genome-wide association studies (GWAS) have been conducted in European and Asian populations and new genetic loci have been identified that modulate the risk of developing type 2 diabetes. Novel loci were discovered by GWAS in diabetic complications with increasing sample sizes. Large-scale genome-wide association analysis and polygenic risk scores using biobank information is making it possible to predict the development of type 2 diabetes. In the ADVANCE clinical trial of type 2 diabetes, a multi-polygenic risk score was useful to predict diabetic complications and their response to treatment. Proteomics and metabolomics studies have been conducted and have revealed the associations between type 2 diabetes and inflammatory signals and amino acid synthesis. Using multi-omics analysis, comprehensive molecular mechanisms have been elucidated to guide the development of targeted therapy for type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:4738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
47
|
Zhang Y, Han S, Liu C, Zheng Y, Li H, Gao F, Bian Y, Liu X, Liu H, Hu S, Li Y, Chen ZJ, Zhao S, Zhao H. THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic β-cell function and preserving β-cell mass. Nat Commun 2023; 14:1020. [PMID: 36823211 PMCID: PMC9950491 DOI: 10.1038/s41467-023-36680-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Impaired insulin secretion is a hallmark in type 2 diabetes mellitus (T2DM). THADA has been identified as a candidate gene for T2DM, but its role in glucose homeostasis remains elusive. Here we report that THADA is strongly activated in human and mouse islets of T2DM. Both global and β-cell-specific Thada-knockout mice exhibit improved glycemic control owing to enhanced β-cell function and decreased β-cell apoptosis. THADA reduces endoplasmic reticulum (ER) Ca2+ stores in β-cells by inhibiting Ca2+ re-uptake via SERCA2 and inducing Ca2+ leakage through RyR2. Upon persistent ER stress, THADA interacts with and activates the pro-apoptotic complex comprising DR5, FADD and caspase-8, thus aggravating ER stress-induced apoptosis. Importantly, THADA deficiency protects mice from high-fat high-sucrose diet- and streptozotocin-induced hyperglycemia by restoring insulin secretion and preserving β-cell mass. Moreover, treatment with alnustone inhibits THADA's function, resulting in ameliorated hyperglycemia in obese mice. Collectively, our results support pursuit of THADA as a potential target for developing T2DM therapies.
Collapse
Affiliation(s)
- Yuqing Zhang
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Shan Han
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Congcong Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Hao Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, Shandong, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, 100101, Beijing, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Xin Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Shourui Hu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Yuxuan Li
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, 200135, Shanghai, China. .,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, 250012, Jinan, China.
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
| |
Collapse
|
48
|
Mameri A, Côté J. JAZF1: A metabolic actor subunit of the NuA4/TIP60 chromatin modifying complex. Front Cell Dev Biol 2023; 11:1134268. [PMID: 37091973 PMCID: PMC10119425 DOI: 10.3389/fcell.2023.1134268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
The multisubunit NuA4/TIP60 complex is a lysine acetyltransferase, chromatin modifying factor and gene co-activator involved in diverse biological processes. The past decade has seen a growing appreciation for its role as a metabolic effector and modulator. However, molecular insights are scarce and often contradictory, underscoring the need for further mechanistic investigation. A particularly exciting route emerged with the recent identification of a novel subunit, JAZF1, which has been extensively linked to metabolic homeostasis. This review summarizes the major findings implicating NuA4/TIP60 in metabolism, especially in light of JAZF1 as part of the complex.
Collapse
|
49
|
Kulminski AM, Feng F, Loiko E, Nazarian A, Loika Y, Culminskaya I. Prevailing Antagonistic Risks in Pleiotropic Associations with Alzheimer's Disease and Diabetes. J Alzheimers Dis 2023; 94:1121-1132. [PMID: 37355909 PMCID: PMC10666173 DOI: 10.3233/jad-230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
50
|
Jan A, Ali S, Muhammad B, Arshad A, Shah Y, Bahadur H, Khan H, Khuda F, Akbar R, Ijaz K. Decoding type 2 diabetes mellitus genetic risk variants in Pakistani Pashtun ethnic population using the nascent whole exome sequencing and MassARRAY genotyping: A case-control association study. PLoS One 2023; 18:e0281070. [PMID: 36730981 PMCID: PMC9882913 DOI: 10.1371/journal.pone.0281070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Genome-wide association studies have greatly increased the number of T2DM associated risk variants but most of them have focused on populations of European origin. There is scarcity of such studies in developing countries including Pakistan. High prevalence of T2DM in Pakistani population prompted us to design this study. We have devised a two stage (the discovery stage and validation stage) case-control study in Pashtun ethnic population in which 500 T2DM cases and controls each have been recruited to investigate T2DM genetic risk variants. In discovery stage Whole Exome Sequencing (WES) was used to identify and suggest T2DM pathogenic SNPs, based on SIFT and Polyphen scores; whereas in validation stage the selected variants were confirmed for T2DM association using MassARRAY genotyping and appropriate statistical tests. Results of the study showed the target positive association of rs1801282/PPARG (OR = 1.24, 95%Cl = 1.20-1.46, P = 0.010), rs745975/HNF4A (OR = 1.30, 95%Cl = 1.06-1.38, P = 0.004), rs806052/GLIS3 (OR = 1.32, 95%Cl = 1.07-1.66, P = 0.016), rs8192552/MTNR1B (OR = 1.53, 95%Cl = 0.56-1.95, P = 0.012) and rs1805097/IRS-2 (OR = 1.27, 95%Cl = 1.36-1.92, P = 0.045), with T2DM; whereas rs6415788/GLIS3, rs61788900/NOTCH2, rs61788901/NOTCH2 and rs11810554/NOTCH2 (P>0.05) showed no significant association. Identification of genetic risk factors/variants can be used in defining high risk subjects assessment, and disease prevention.
Collapse
Affiliation(s)
- Asif Jan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
- * E-mail: (ZU); (AJ)
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Basir Muhammad
- Atomic Energy Cancer Hospital, Swat Institute of Nuclear Medicine, Oncology & Radiotherapy, Swat, Pakistan
| | - Amina Arshad
- Rashid Latif College of Pharmacy, Lahore, Pakistan
| | - Yasar Shah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haji Bahadur
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Hamayun Khan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Rani Akbar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Kiran Ijaz
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|