1
|
Ulbrich M, Seward CH, Ivanov AI, Ward BM, Butler JS, Dziejman M. VopX, a novel Vibrio cholerae T3SS effector, modulates host actin dynamics. mBio 2025; 16:e0301824. [PMID: 39878476 PMCID: PMC11898728 DOI: 10.1128/mbio.03018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Pathogenic Vibrio cholerae strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative V. cholerae strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol. Effectors VopF and VopM directly interact with the host actin and contribute to colonization. Our previous studies using the Saccharomyces cerevisiae model system identified VopX as a third effector that alters cytoskeletal dynamics. Herein, we used complementary approaches to translate yeast findings to a mammalian system and determined the target and mechanism of VopX activity. VopX overexpression in HeLa cells caused dramatic cell rounding. Co-culture of strain AM-19226 with polarized Caco-2/BBE monolayers increased formation of stress fibers and focal adhesions, as well as Caco-2/BBE adherence to extracellular matrix in a VopX-dependent manner. Finally, we demonstrate in vitro that VopX can act as a guanine nucleotide exchange factor for RhoA, which functions upstream of a mitogen-activated protein kinase (MAPK) signaling pathway regulating cytoskeletal dynamics. Our results suggest that VopX activity initiates a signaling cascade resulting in enhanced cell-extracellular matrix adhesion, potentially preventing detachment of host cells, and facilitating sustained bacterial colonization during infection. VopX function is therefore part of a unique pathogenic strategy employed by T3SS-positive V. cholerae, which involves multiple cytoskeletal remodeling mechanisms to support a productive infection. IMPORTANCE Despite different infection strategies, enteric pathogens commonly employ a T3SS to colonize the human host and cause disease. Effector proteins are unique to each T3SS-encoding bacterial species and generally lack conserved amino acid sequences. However, T3SS effectors from diverse pathogens target and manipulate common host cell structures and signaling proteins, such as the actin cytoskeleton and MAPK pathway components. T3SS-encoding Vibrio cholerae strains and effectors have been relatively recently identified, and the mechanisms used to mediate colonization and secretory diarrhea are poorly understood. Two V. cholerae effectors that modify the host actin cytoskeleton were shown to be important for colonization. We therefore sought to determine the target(s) and mechanism of a third actin-reorganizing effector, VopX, based on results obtained from a yeast model system. We recapitulated actin-based phenotypes in multiple mammalian model systems, leading us to identify the molecular function of the V. cholerae VopX effector protein.
Collapse
Affiliation(s)
- Megan Ulbrich
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher H. Seward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Izzoddeen A, Abualgasim H, Abasher M, Elnoor H, Magbol M, Fadlelmoula S, Abolgassim A, Dafaalla AH, Elgamry K, Banaga A, Magboul B, M Osman M, Mahmoud E. Cholera in conflict: outbreak analysis and response lessons from Gadaref state, Sudan (2023-2024). BMC Public Health 2025; 25:881. [PMID: 40045292 PMCID: PMC11884073 DOI: 10.1186/s12889-025-22128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cholera is an acute, severe, illness caused by infection with Vibrio cholerae. Cholera outbreaks are closely linked to armed conflicts and humanitarian emergencies. This study describes the cholera outbreak amidst conflict in Gadaref state, discusses the possible factors mediated its spread and proposes future improvements in preparedness and response measures. METHODS A retrospective analytical study was conducted using national surveillance records of cholera cases, supported by interviews with key informants involved in preparedness and response, along with a review of state reports, to identify possible factors contributing to the spread and to evaluate the response. RESULT The outbreak was confirmed after the isolation of Vibrio cholerae of O1 serotype, with both Inaba and Ogawa serogroups. A total of 2,047 cholera cases records reviewed. The mean age was 16.8 (SD, 15.8) with an equal gender distribution. The case fatality ratio was 2.4% and the overall attack (AR) rate was 7.38 cases per 10,000 population, with the highest in Medeinat Gadaref locality (21.07/10,000). Interviews and reports review suggest that the outbreak was likely imported to villages near Ethiopian border before spreading to other parts of Gadaref. Atbara seasonal river, was the identified source of infection at the beginning. A disrupted health system due to conflict, delays in response teams' deployment, and late implementation of control measures were identified as factors contributing to response delay and expansion of the outbreak. Oral cholera vaccine campaign was implemented in five localities, followed by an observable decline in cases. CONCLUSION Cholera remains a recurrent risk that has been further exacerbated by the armed conflict. The reporting of index cases from a border village highlights the need to strengthen surveillance at points of entry. Investment in case management and risk communication is necessary to improve clinical outcomes. The use of Oral Cholera Vaccine was associated with a decline in cases; however, further field studies are recommended to analyze its actual contribution in limiting the outbreak. The government's primary role in leading and financing preparedness and response interventions has been limited by the conflict, urging investment in community-led interventions, while moving to more strategic outbreak preparedness and response financing mechanisms remains a priority, with partner support being essential in conflict settings.
Collapse
Affiliation(s)
- Ahmad Izzoddeen
- Field Epidemiology Training Program, Khartoum, Sudan
- Federal, Ministry of Health, Khartoum, Sudan
| | | | | | - Hala Elnoor
- Federal, Ministry of Health, Khartoum, Sudan
| | - Mustafa Magbol
- Faculty of Medicine, Al-Zaiem Al-Azhari University, Khartoum, Sudan.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cubillejo I, Theis KR, Panzer J, Luo X, Banerjee S, Thummel R, Withey JH. Vibrio cholerae Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response. Biomedicines 2025; 13:226. [PMID: 39857809 PMCID: PMC11761238 DOI: 10.3390/biomedicines13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by Vibrio cholerae, which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior. Zebrafish are an established cholera model that can maintain a complex, mature gut microbiome during infection. Larval zebrafish, which have immature gut microbiomes, provide the advantage of high-throughput analyses for established behavioral models. Methods: We identified the effects of V. cholerae O1 El Tor C6706 colonization at 5 days post-fertilization (dpf) on larval zebrafish behavior by tracking startle responses at 10 dpf. We also characterized the larval gut microbiome using 16S rRNA sequencing. V. cholerae-infected or uninfected control groups were exposed to either an alternating light/dark stimuli or a single-tap stimulus, and average distance and velocity were tracked. Results: While there was no significant difference in the light/dark trial, we report a significant decrease in distance moved for C6706-colonized larvae during the single-tap trial. Conclusion: This suggests that early V. cholerae colonization of the larval gut microbiome has a dampening effect on sensorimotor function, supporting the idea of a link between the gut microbiome and behavior.
Collapse
Affiliation(s)
- Isabella Cubillejo
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Jonathan Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| |
Collapse
|
4
|
Xu J, Abe K, Kodama T, Sultana M, Chac D, Markiewicz SM, Matsunami H, Kuba E, Tsunoda S, Alam M, Weil AA, Nakamura S, Yamashiro T. The role of morphological adaptability in Vibrio cholerae's motility. mBio 2025; 16:e0246924. [PMID: 39611848 PMCID: PMC11708025 DOI: 10.1128/mbio.02469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Vibrio cholerae, the causative agent of cholera, displays remarkable adaptability to diverse environmental conditions through morphological changes that enhance its pathogenicity and influence the global epidemiology of the disease. This study examines the motility differences between filamentous and comma-shaped forms of the V. cholerae O1 strain under various viscosity conditions. Utilizing the El Tor strain, we induced filamentous transformation and conducted a comparative analysis with the canonical comma-shaped morphology. Our methodology involved assessing motility patterns, swimming speeds, rotation rates, kinematics, and reversal frequencies using dark-field microscopy and high-speed imaging techniques. The results show that filamentous V. cholerae cells retain enhanced motility in viscous environments, indicating an evolutionary adaptation for survival in varied habitats, particularly the human gastrointestinal tract. Filamentous forms exhibited increased reversal behavior at mucin interfaces, suggesting an advantage in penetrating the mucus layer. Furthermore, the presence of filamentous cells in bile-supplemented medium underscores their relevance in natural infection scenarios. IMPORTANCE This study highlights the enhanced motility of filamentous Vibrio cholerae in viscous environments, an adaptation that may provide a survival advantage in the human gastrointestinal tract. By demonstrating increased reversal behavior at mucin interfaces, filamentous V. cholerae cells exhibit a superior ability to penetrate the mucus layer, which is crucial for effective colonization and infection. Filamentous cells in bile-supplemented media further underscores their potential role in disease pathogenesis. These findings offer critical insights into the morphological flexibility of V. cholerae and its potential implications for infection dynamics, paving the way for more effective strategies in managing and preventing cholera outbreaks.
Collapse
Affiliation(s)
- Jun Xu
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marzia Sultana
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hideyuki Matsunami
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erika Kuba
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shiyu Tsunoda
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Munirul Alam
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
5
|
Zhang CX, Arnold SLM. Potential and challenges in application of physiologically based pharmacokinetic modeling in predicting diarrheal disease impact on oral drug pharmacokinetics. Drug Metab Dispos 2025; 53:100014. [PMID: 39884815 DOI: 10.1124/dmd.122.000964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a physiologically relevant approach that integrates drug-specific and system parameters to generate pharmacokinetic predictions for target populations. It has gained immense popularity for drug-drug interaction, organ impairment, and special population studies over the past 2 decades. However, an application of PBPK modeling with great potential remains rather overlooked-prediction of diarrheal disease impact on oral drug pharmacokinetics. Oral drug absorption is a complex process involving the interplay between physicochemical characteristics of the drug and physiological conditions in the gastrointestinal tract. Diarrhea, a condition common to numerous diseases impacting many worldwide, is associated with physiological changes in many processes critical to oral drug absorption. In this Minireview, we outline key processes governing oral drug absorption, provide a high-level overview of key parameters for modeling oral drug absorption in PBPK models, examine how diarrheal diseases may impact these processes based on literature findings, illustrate the clinical relevance of diarrheal disease impact on oral drug absorption, and discuss the potential and challenges of applying PBPK modeling in predicting disease impacts. SIGNIFICANCE STATEMENT: Pathophysiological changes resulting from diarrheal diseases can alter important factors governing oral drug absorption, contributing to suboptimal drug exposure and treatment failure. Physiologically based pharmacokinetic (PBPK) modeling is an in silico approach that has been increasingly adopted for drug-drug interaction potential, organ impairment, and special population assessment. This Minireview highlights the potential and challenges of using physiologically based pharmacokinetic modeling as a tool to improve our understanding of how diarrheal diseases impact oral drug pharmacokinetics.
Collapse
Affiliation(s)
- Cindy X Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Samuel L M Arnold
- Department of Pharmaceutics, University of Washington, Seattle, Washington.
| |
Collapse
|
6
|
Jacqueline C, Román Soto S, Herrera-Leon S. Non-toxigenic cases of Vibrio cholerae in Spain from 2012 to 2022. Microb Genom 2024; 10:001315. [PMID: 39661068 PMCID: PMC11633944 DOI: 10.1099/mgen.0.001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Non-toxigenic non-O1/non-O139 Vibrio cholerae (NVC) isolates are associated with diarrhoeal disease globally. NVC-related infections are on the rise, representing one of the most striking examples of emerging human diseases linked to climate change. This study aims to give a better picture of the evolution of NCV incidence in Spain from 2012 to 2022. In this context, we realized a descriptive analysis and a logistic regression using the isolates submitted to the National Center of Microbiology (NCM) during this period. To elucidate the heterogeneity of sporadic clinical strains of NVC among patients residing in Spain, we conducted whole-genome sequencing (WGS) of a selection of isolates. First, we observed an increase in the number of isolates sent to the NCM after 2019, which was not concomitant to a change in the national surveillance protocol. Furthermore, the number of cases and hospitalizations increased with age. Second, we found a high diversity of NVC strains, which suggested that the usefulness of WGS studies might be limited in waterborne outbreak situations to find the infectious source. Finally, we characterized the genetic determinants responsible for antimicrobial resistance and virulence and found that 21% of the isolates were resistant to β-lactamases. To the best of our knowledge, the present study is the first in Spain to report genomic data on non-toxigenic cases at the national level. Because of the high percentage of hospitalization observed for NVC cases (40%), it might be beneficial to test for V. cholerae in all the suspected cases.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
- European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sergio Román Soto
- Laboratorio de Microbiología Clínica y Biología Molecular, Hospital Comarcal de Melilla, Rusadir, Spain
| | - Silvia Herrera-Leon
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
7
|
Jahan I, Ganbaatar B, Lee CW, Shin SH, Yang S. Antibacterial and antibiofilm features of mutSMAP-18 against Vibrio cholerae. Heliyon 2024; 10:e40108. [PMID: 39559243 PMCID: PMC11570489 DOI: 10.1016/j.heliyon.2024.e40108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cholera continues to be a pointed global health issue, prominently in developing nations, where the disease's severe diarrheal symptoms pose substantial public health risks. With the escalating spread of antibiotic resistance among V. cholerae strains, alternative therapeutic approaches are imperative. Antimicrobial peptides are increasingly recognized for their potential, with research focusing on finding the most effective options. We explored the antibacterial and antibiofilm properties of analogues of sheep myeloid antimicrobial peptide-18 (SMAP-18) against V. cholerae in this investigation. Our prior research demonstrated that substituting glycine with alanine at different positions within SMAP-18 altered its structure and antimicrobial activity. Among these altered analogues, our focus was on a mutant variant (mutSMAP-18), characterized by glycine-to-alanine substitutions at positions 2, 7, and 13. Our results indicated that mutSMAP-18 exhibited heightened antimicrobial and antibiofilm activities against V. cholerae compared to SMAP-18. We conducted several mechanistic investigations to check the membrane integrity using DNA-binding dye, SYTOX Green or measuring calcein dye leakage and analyzing flow cytometry by fluorescence-activated cell sorting (FACScan). From these tests, we elucidated that SMAP-18 primarily functions intracellularly, while mutSMAP-18 targets the bacterial membrane. Additionally, scanning electron microscopy (SEM) images illustrated membrane disruption at lower concentrations for mutSMAP-18. Notably, mutSMAP-18 demonstrated significant antibiofilm properties against V. cholerae. Overall, these findings offer valuable perspectives for developing novel antibacterial therapies targeting the pathogenic V. cholerae.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byambasuren Ganbaatar
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sung-Heui Shin
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sungtae Yang
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| |
Collapse
|
8
|
Luo Y, Payne M, Kaur S, Octavia S, Lan R. Genomic evidence of two-staged transmission of the early seventh cholera pandemic. Nat Commun 2024; 15:8504. [PMID: 39353924 PMCID: PMC11445481 DOI: 10.1038/s41467-024-52800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The seventh cholera pandemic started in 1961 in Indonesia and spread across the world in three waves in the decades that followed. Here, we utilised genomic evidence to detail the first wave of the seventh pandemic. Genomes of 22 seventh pandemic Vibrio cholerae isolates from 1961 to 1979 were completely sequenced. Together with 152 publicly available genomes from the same period, they fell into seven phylogenetic clusters (CL1-CL7). By multilevel genome typing (MGT), all were assigned to MGT2 ST1 (Wave 1) except three isolates in CL7 which were typed as MGT2 ST2 (Wave 2). The Wave 1 seventh pandemic expanded in two stages, with Stage 1 (CL1-CL5) spread across Asia and Stage 2 (CL6 and CL7) spread to the Middle East and Africa. Three non-synonymous mutations, one each, in three regulatory genes, csrD (global regulator), acfB (chemotaxis), and luxO (quorum sensing) may have critically contributed to its pandemicity. The three MGT2 ST2 isolates in CL7 were the progenitors of Wave 2 and evolved from within Wave 1 with acquisition of a novel IncA/C plasmid. Our findings provide new insight into the evolution and transmission of the early seventh pandemic, which may aid future cholera prevention and control.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Rakibova Y, Dunham DT, Seed KD, Freddolino L. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. mSphere 2024; 9:e0001124. [PMID: 38920383 PMCID: PMC11288032 DOI: 10.1128/msphere.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches they occupy. H-NS, the histone-like nucleoid structuring protein, is the best-studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. IMPORTANCE New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. A proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Singh JP, Kumar S, Akgül A, Hassani MK. Cholera disease dynamics with vaccination control using delay differential equation. Sci Rep 2024; 14:17421. [PMID: 39075130 PMCID: PMC11286863 DOI: 10.1038/s41598-024-66580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
The COVID-19 pandemic came with many setbacks, be it to a country's economy or the global missions of organizations like WHO, UNICEF or GTFCC. One of the setbacks is the rise in cholera cases in developing countries due to the lack of cholera vaccination. This model suggested a solution by introducing another public intervention, such as adding Chlorine to water bodies and vaccination. A novel delay differential model of fractional order was recommended, with two different delays, one representing the latent period of the disease and the other being the delay in adding a disinfectant to the aquatic environment. This model also takes into account the population that will receive a vaccination. This study utilized sensitivity analysis of reproduction number to analytically prove the effectiveness of control measures in preventing the spread of the disease. This analysis provided the mathematical evidence for adding disinfectants in water bodies and inoculating susceptible individuals. The stability of the equilibrium points has been discussed. The existence of stability switching curves is determined. Numerical simulation showed the effect of delay, resulting in fluctuations in some compartments. It also depicted the impact of the order of derivative on the oscillations.
Collapse
Affiliation(s)
- Jaskirat Pal Singh
- Department of Mathematics and Statistics, Central University of Punjab, Bathinda, 151401, India
| | - Sachin Kumar
- Department of Mathematics and Statistics, Central University of Punjab, Bathinda, 151401, India.
| | - Ali Akgül
- Department of Mathematics, Siirt University Art and Science Faculty, 56100, Siirt, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
11
|
Valerio MGP, Laher B, Phuka J, Lichand G, Paolotti D, Leal Neto O. Participatory Disease Surveillance for the Early Detection of Cholera-Like Diarrheal Disease Outbreaks in Rural Villages in Malawi: Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e49539. [PMID: 39012690 PMCID: PMC11289577 DOI: 10.2196/49539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/16/2024] [Accepted: 05/16/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cholera-like diarrheal disease (CLDD) outbreaks are complex and influenced by environmental factors, socioeconomic conditions, and population dynamics, leading to limitations in traditional surveillance methods. In Malawi, cholera is considered an endemic disease. Its epidemiological profile is characterized by seasonal patterns, often coinciding with the rainy season when contamination of water sources is more likely. However, the outbreak that began in March 2022 has extended to the dry season, with deaths reported in all 29 districts. It is considered the worst outbreak in the past 10 years. OBJECTIVE This study aims to evaluate the feasibility and outcomes of participatory surveillance (PS) using interactive voice response (IVR) technology for the early detection of CLDD outbreaks in Malawi. METHODS This longitudinal cohort study followed 740 households in rural settings in Malawi for 24 weeks. The survey tool was designed to have 10 symptom questions collected every week. The proxies' rationale was related to exanthematic, ictero-hemorragica for endemic diseases or events, diarrhea and respiratory/targeting acute diseases or events, and diarrhea and respiratory/targeting seasonal diseases or events. This work will focus only on the CLDD as a proxy for gastroenteritis and cholera. In this study, CLDD was defined as cases where reports indicated diarrhea combined with either fever or vomiting/nausea. RESULTS During the study period, our data comprised 16,280 observations, with an average weekly participation rate of 35%. Maganga TA had the highest average of completed calls, at 144.83 (SD 10.587), while Ndindi TA had an average of 123.66 (SD 13.176) completed calls. Our findings demonstrate that this method might be effective in identifying CLDD with a notable and consistent signal captured over time (R2=0.681404). Participation rates were slightly higher at the beginning of the study and decreased over time, thanks to the sensitization activities rolled out at the CBCCs level. In terms of the attack rates for CLDD, we observed similar rates between Maganga TA and Ndindi TA, at 16% and 15%, respectively. CONCLUSIONS PS has proven to be valuable for the early detection of epidemics. IVR technology is a promising approach for disease surveillance in rural villages in Africa, where access to health care and traditional disease surveillance methods may be limited. This study highlights the feasibility and potential of IVR technology for the timely and comprehensive reporting of disease incidence, symptoms, and behaviors in resource-limited settings.
Collapse
Affiliation(s)
| | - Beverly Laher
- Kamuzu University of Health Sciences, Lilongwe, Malawi
| | - John Phuka
- Kamuzu University of Health Sciences, Lilongwe, Malawi
| | - Guilherme Lichand
- Graduate School of Education, Stanford University, Stanford, CA, United States
| | | | - Onicio Leal Neto
- Department of Epidemiology and Biostatistics, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
George CM, Namunesha A, Felicien W, Endres K, Luo W, Bisimwa L, Williams C, Bisimwa JC, Sanvura P, Perin J, Bengehya J, Maheshe G, Sack DA, Cikomola C, Mwishingo A. Evaluation of a rapid diagnostic test for detection of Vibrio cholerae O1 in the Democratic Republic of the Congo: Preventative intervention for cholera for 7 days (PICHA7 program). Trop Med Int Health 2024; 29:594-598. [PMID: 38773948 DOI: 10.1111/tmi.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
OBJECTIVE Globally, there are estimated to be 2.9 million cholera cases annually. Early detection of cholera outbreaks is crucial for resource allocation for case management and for targeted interventions to be delivered to stop the spread of cholera. In resource limited settings such as Eastern Democratic Republic of the Congo (DRC), there is often limited laboratory capacity for analysing stool samples for cholera by bacterial culture. Therefore, rapid diagnostic tests (RDTs) for cholera present a promising tool to rapidly test stool samples in a health facility setting for cholera. Our objective is to evaluate the Crystal VC O1 RDT for cholera detection compared with bacterial culture and polymerase chain reaction (PCR) for Vibrio cholerae. METHODS From March 2020 to December 2022, stool samples were collected from 644 diarrhoea patients admitted to 94 health facilities in Bukavu in Eastern DRC. Patient stool samples were analysed by Crystal VC O1 RDT for cholera and by bacterial culture and PCR for V. cholerae O1. RESULTS Twenty six percent of diarrhoea patients (166/644) had stool samples positive for cholera by RDT, and 24% (152/644) had stool samples positive for V. cholerae O1 by bacterial culture or PCR. The overall specificity and sensitivity of the Crystal VC O1 RDT by direct testing was 94% (95% confidence interval [CI]: 92%-96%) and 90% (95% CI, 84%-94%), respectively, when compared with either a positive result by bacterial culture or PCR. CONCLUSION Our findings suggest that the Crystal VC O1 RDT presents a promising tool for cholera surveillance in this cholera endemic setting in sub-Saharan Africa.
Collapse
Affiliation(s)
- Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alves Namunesha
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Willy Felicien
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wensheng Luo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lucien Bisimwa
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Camille Williams
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jean-Claude Bisimwa
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Presence Sanvura
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Jamie Perin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Justin Bengehya
- Bureau de l'Information Sanitaire, Surveillance Epidémiologique et Recherche Scientifique Division, Provinciale de la Santé/Sud Kivu, Ministère de la Santé Publique, Hygiène et Prévention, Bukavu, Democratic Republic of the Congo
| | - Ghislain Maheshe
- Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cirhuza Cikomola
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Alain Mwishingo
- Center for Tropical Diseases & Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| |
Collapse
|
13
|
Anteneh LM, Lokonon BE, Kakaï RG. Modelling techniques in cholera epidemiology: A systematic and critical review. Math Biosci 2024; 373:109210. [PMID: 38777029 DOI: 10.1016/j.mbs.2024.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Diverse modelling techniques in cholera epidemiology have been developed and used to (1) study its transmission dynamics, (2) predict and manage cholera outbreaks, and (3) assess the impact of various control and mitigation measures. In this study, we carry out a critical and systematic review of various approaches used for modelling the dynamics of cholera. Also, we discuss the strengths and weaknesses of each modelling approach. A systematic search of articles was conducted in Google Scholar, PubMed, Science Direct, and Taylor & Francis. Eligible studies were those concerned with the dynamics of cholera excluding studies focused on models for cholera transmission in animals, socio-economic factors, and genetic & molecular related studies. A total of 476 peer-reviewed articles met the inclusion criteria, with about 40% (32%) of the studies carried out in Asia (Africa). About 52%, 21%, and 9%, of the studies, were based on compartmental (e.g., SIRB), statistical (time series and regression), and spatial (spatiotemporal clustering) models, respectively, while the rest of the analysed studies used other modelling approaches such as network, machine learning and artificial intelligence, Bayesian, and agent-based approaches. Cholera modelling studies that incorporate vector/housefly transmission of the pathogen are scarce and a small portion of researchers (3.99%) considers the estimation of key epidemiological parameters. Vaccination only platform was utilized as a control measure in more than half (58%) of the studies. Research productivity in cholera epidemiological modelling studies have increased in recent years, but authors used diverse range of models. Future models should consider incorporating vector/housefly transmission of the pathogen and on the estimation of key epidemiological parameters for the transmission of cholera dynamics.
Collapse
Affiliation(s)
- Leul Mekonnen Anteneh
- Laboratoire de Biomathématiques et d'Estimations Forestières, University of Abomey-Calavi, Cotonou, Benin.
| | - Bruno Enagnon Lokonon
- Laboratoire de Biomathématiques et d'Estimations Forestières, University of Abomey-Calavi, Cotonou, Benin
| | - Romain Glèlè Kakaï
- Laboratoire de Biomathématiques et d'Estimations Forestières, University of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
14
|
Rakibova Y, Dunham DT, Seed KD, Freddolino PL. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573743. [PMID: 38260642 PMCID: PMC10802314 DOI: 10.1101/2023.12.30.573743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches it occupies. H-NS, the histone-like nucleoid structuring protein, is the best studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified a few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. Importance New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. Proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - P. Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Kim Y, Shin B, Kim SE, Cajuste B, Kwon JA. A retrospective study on cholera understanding and WASH (water, sanitation, and hygiene) behavior among adolescents in three regions of La Gonâve, Haiti. J Infect Public Health 2024; 17:443-449. [PMID: 38266516 DOI: 10.1016/j.jiph.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUNDS This study assesses the impact of Water, Sanitation, and Hygiene (WASH) interventions on cholera understanding and hygiene practices in La Gonâve Island, Haiti. It examines the changes after implementing interventions in seven villages across the Downtown, Mountain, and Seaside regions. METHODS A retrospective investigation surveyed 210 school students from each region using a validated questionnaire. It assessed knowledge, attitudes, practices (KAP), and environmental aspects related to cholera and hygiene. Data analysis involved descriptive statistics and chi-square tests. RESULTS The study highlights significant disparities in education levels, toilet ownership, and healthcare access. Challenges in finding public toilets (86.67%) and accessing water sources (67.78%) are consistent across regions, with Seaside facing financial constraints (85.00%) and water cost concerns (91.67%). Attitudes toward hygiene vary, with the Mountain region having the highest 'Never' responses for handwashing (38.89%), and Downtown leading in water treatment practices (11.67%). There is a strong willingness to share health knowledge, particularly in Downtown (100.00%). Seaside (83.33%) and Downtown (73.33%) revealed a higher cholera awareness, while nearly half of Mountain students lacked knowledge (54.44%). CONCLUSIONS This study highlights significant disparities in WASH practices among La Gonâve's adolescents in Downtown, Mountain, and Seaside regions. Urgent interventions are crucial for improving sanitation, ensuring clean water access, and implementing targeted hygiene education, especially in the resource-constrained Mountain and Seaside areas. The findings underscore the vital roles of adolescents and schools in disseminating knowledge, with further research needed to explore intervention differences.
Collapse
Affiliation(s)
- Yuna Kim
- Global Care International, Seoul, the Republic of Korea
| | - Bohye Shin
- The Department of Health Convergence, Graduate School of Ewha Womans University, Seoul, the Republic of Korea
| | | | - Bernard Cajuste
- Oaktree Ministry, Baie-Tortue, Anse-à-Galets, Gonave Island, Haiti
| | - Jeoung A Kwon
- National Cancer Control Institute, National Cancer Center, Goyang, the Republic of Korea; Institute of Health Services Research, Yonsei University, Seoul, the Republic of Korea.
| |
Collapse
|
16
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
17
|
Saif-Ur-Rahman KM, Mamun R, Hasan M, Meiring JE, Khan MA. Oral killed cholera vaccines for preventing cholera. Cochrane Database Syst Rev 2024; 1:CD014573. [PMID: 38197546 PMCID: PMC10777452 DOI: 10.1002/14651858.cd014573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Cholera causes acute watery diarrhoea and death if not properly treated. Outbreaks occur in areas with poor sanitation, including refugee camps. Several vaccines have been developed and tested over the last 50 years. This is an update of a Cochrane review, originally published in 1998, which explored the effects of all vaccines for preventing cholera. This review examines oral vaccines made from killed bacteria. OBJECTIVES To assess the effectiveness and safety of the available World Health Organization (WHO)-prequalified oral killed cholera vaccines among children and adults. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL, MEDLINE; Embase; LILACS; and two trials registers (February 2023). SELECTION CRITERIA We included randomized controlled trials (RCTs), including cluster-RCTs. There were no restrictions on the age and sex of the participants or the setting of the study. We considered any available WHO-prequalified oral killed cholera vaccine as an intervention. The control group was given a placebo, another vaccine, or no vaccine. The outcomes were related to vaccine effectiveness and safety. We included articles published in English only. DATA COLLECTION AND ANALYSIS Two review authors independently applied the inclusion criteria and extracted data from included studies. We assessed the risk of bias using the Cochrane ROB 1 assessment tool. We used the generic inverse variance and a random-effects model meta-analysis to estimate the pooled effect of the interventions. We assessed the certainty of the evidence using the GRADE approach. For vaccine effectiveness (VE), we converted the overall risk ratio (RR) to vaccine effectiveness using the formula: VE = (1 - RR) x 100%. MAIN RESULTS Five RCTs, reported in 12 records, with 462,754 participants, met the inclusion criteria. We identified trials on whole-cell plus recombinant vaccine (WC-rBS vaccine (Dukoral)) from Peru and trials on bivalent whole-cell vaccine (BivWC (Shanchol)) vaccine from India and Bangladesh. We did not identify any trials on other BivWC vaccines (Euvichol/Euvichol-Plus), or Hillchol. Two doses of Dukoral with or without a booster dose reduces cases of cholera at two-year follow-up in a general population of children and adults, and at five-month follow-up in an adult male population (overall VE 76%; RR 0.24, 95% confidence interval (CI) 0.08 to 0.65; 2 trials, 16,423 participants; high-certainty evidence). Two doses of Shanchol reduces cases of cholera at one-year follow-up (overall VE 37%; RR 0.63, 95% CI 0.47 to 0.85; 2 trials, 241,631 participants; high-certainty evidence), at two-year follow-up (overall VE 64%; RR 0.36, 95% CI 0.16 to 0.81; 2 trials, 168,540 participants; moderate-certainty evidence), and at five-year follow-up (overall VE 80%; RR 0.20, 95% CI 0.15 to 0.26; 1 trial, 54,519 participants; high-certainty evidence). A single dose of Shanchol reduces cases of cholera at six-month follow-up (overall VE 40%; RR 0.60, 95% CI 0.47 to 0.77; 1 trial, 204,700 participants; high-certainty evidence), and at two-year follow-up (overall VE 39%; RR 0.61, 95% CI 0.53 to 0.70; 1 trial, 204,700 participants; high-certainty evidence). A single dose of Shanchol also reduces cases of severe dehydrating cholera at six-month follow-up (overall VE 63%; RR 0.37, 95% CI 0.28 to 0.50; 1 trial, 204,700 participants; high-certainty evidence), and at two-year follow-up (overall VE 50%; RR 0.50, 95% CI 0.42 to 0.60; 1 trial, 204,700 participants; high-certainty evidence). We found no differences in the reporting of adverse events due to vaccination between the vaccine and control/placebo groups. AUTHORS' CONCLUSIONS Two doses of Dukoral reduces cases of cholera at two-year follow-up. Two doses of Shanchol reduces cases of cholera at five-year follow-up, and a single dose of Shanchol reduces cases of cholera at two-year follow-up. Overall, the vaccines were safe and well-tolerated. We found no trials on other BivWC vaccines (Euvichol/Euvichol-Plus). However, BivWC products (Shanchol, Euvichol/Euvichol-Plus) are considered to produce comparable vibriocidal responses. Therefore, it is reasonable to apply the results from Shanchol trials to the other BivWC products (Euvichol/Euvichol-Plus).
Collapse
Affiliation(s)
- K M Saif-Ur-Rahman
- Health Systems and Population Studies Division, icddr,b, Dhaka, Bangladesh
- College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland and Cochrane Ireland, University of Galway, Galway, Ireland
| | - Razib Mamun
- Department of Public Health and Health Systems, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Md Hasan
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- Department of Community Health Science, Max Rady College of Medicine, University of Manitoba, Manitoba, Canada
| | - James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Md Arifuzzaman Khan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Central Queensland Public Health Unit, Central Queensland Hospital and Health Service, Department of Health, Queensland, Australia
| |
Collapse
|
18
|
Ofek T, Trabelcy B, Izhaki I, Halpern M. Vibrio cholerae O1 Inhabit Intestines and Spleens of Fish in Aquaculture Ponds. MICROBIAL ECOLOGY 2023; 87:20. [PMID: 38148362 DOI: 10.1007/s00248-023-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Vibrio cholerae is the causative agent of cholera, an acute diarrheal disease that spreads locally and globally in epidemics and pandemics. Although it was discovered that fish harbor V. cholerae strains in their intestines, most investigations revealed non-toxic V. cholerae serogroups in fish. Due to the rarity of toxigenic V. cholerae serogroups, it is difficult to cultivate these strains from environmental samples. Hence, here we aimed to uncover evidence of the occurrence of toxigenic V. cholerae in the intestines and spleens of various fish species. By using molecular detection tools, we show that V. cholerae O1 and strains positive for the cholera toxin inhabit both healthy and diseased fish intestines and spleens, suggesting that fish may serve as intermediate vectors of toxigenic V. cholerae. No significant differences were found between the abundance of toxigenic V. cholerae (either O1 or cholera toxin positive strains) in the healthy and the diseased fish intestines or spleens. In conclusion, a variety of fish species may serve as potential vectors and reservoirs of toxigenic V. cholerae as they form a link between the other reservoirs of V. cholerae (chironomids, copepods, and waterbirds). Similarly, they may aid in the spread of this bacterium between water bodies.
Collapse
Affiliation(s)
- Tamir Ofek
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
- Central Fish Health Laboratory, Fishery and Aquaculture Department, Ministry of Agriculture and Rural Development, Nir David, 1080300, Israel
| | - Beny Trabelcy
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, 3600600, Israel.
| |
Collapse
|
19
|
Kabir MM, Imam MR, Farzana Z, Hossain CF. Complete genome sequence of the pandrug-resistant Vibrio cholerae strain KBR06 isolated from a cholera patient in Bangladesh. Microbiol Resour Announc 2023; 12:e0057723. [PMID: 37966233 PMCID: PMC10720518 DOI: 10.1128/mra.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Vibrio cholerae poses a serious hazard to global health and causes cholera disease in humans. Here, we present the full-genome sequence of a pandrug-resistant V. cholerae strain KBR06 isolated from a cholera patient in Bangladesh that exhibited intermediate resistance to only two antibiotics out of 39 among 14 antibiotic categories.
Collapse
Affiliation(s)
- Md. Mohiuddin Kabir
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Md. Rayhan Imam
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Zinat Farzana
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka, Bangladesh
| | | |
Collapse
|
20
|
Luo Y, Payne M, Kaur S, Octavia S, Jiang J, Lan R. Emergence and genomic insights of non-pandemic O1 Vibrio cholerae in Zhejiang, China. Microbiol Spectr 2023; 11:e0261523. [PMID: 37819129 PMCID: PMC10871787 DOI: 10.1128/spectrum.02615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE It is well recognized that only Vibrio cholerae O1 causes cholera pandemics. However, not all O1 strains cause pandemic-level disease. In this study, we analyzed non-pandemic O1 V. cholerae isolates from the 1960s to the 1990s from China and found that they fell into three lineages, one of which shared the most recent common ancestor with pandemic O1 strains. Each of these non-pandemic O1 lineages has unique properties that contribute to their capacity to cause cholera. The findings of this study enhanced our understanding of the emergence and evolution of both pandemic and non-pandemic O1 V. cholerae.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Hassoun S, Leasu F, Manu P, Rogozea LM, Dinu E, Cocuz ME. Pharmacological Management of Cholera: A Century of Expert Opinions in Cecil Textbook of Medicine. Am J Ther 2023; 30:e519-e525. [PMID: 37921679 DOI: 10.1097/mjt.0000000000001679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
BACKGROUND Cholera is a potentially lethal diarrheal disease produced by Vibrio cholerae serotypes O1 El Tor and O139. Known since antiquity, the condition causes epidemics in many areas, particularly in Asia, Africa, and South America. Left untreated, the mortality may reach 50%. The crucial therapeutic intervention is intravenous or oral rehydration and correction of acidosis, dyselectrolytemia, and renal impairment. Antibiotic use represents the main pharmacological intervention. STUDY QUESTION What are the milestones of the antibiotics use recommended by experts for the pharmacological management of cholera in the past century? STUDY DESIGN To determine the changes in the experts' approach to the management of cholera and particularly the use of antibiotics as presented in a widely used textbook in the United States. DATA SOURCES The chapters describing the management of cholera in the 26 editions of Cecil Textbook of Medicine published from 1927 through 2020. RESULTS Sulfonamides were recommended in 1947, followed by the introduction of tetracyclines, chloramphenicol, and furazolidone in 1955. The options were restricted in 2000 to doxycycline. In the past decade, patients infected with strains known to have a degree a resistance to tetracyclines were treated with azithromycin or ciprofloxacin. Antibiotic use decreases the volume of stool and the duration of diarrhea but has not been considered lifesaving. Drugs with antimotility, antiemetic, or antisecretory properties are not useful. CONCLUSIONS The utility of antibiotic use in cholera has been endorsed by experts, but only as an adjunct to rapid and complete fluid and electrolyte replacement.
Collapse
Affiliation(s)
- Sama Hassoun
- Medical Service, South Oaks Hospital, Amityville, NY
| | | | - Peter Manu
- Medical Service, South Oaks Hospital, Amityville, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | | | - Eleonora Dinu
- Medical Service, South Oaks Hospital, Amityville, NY
| | | |
Collapse
|
22
|
Hraib M, Alaidi S, Jouni S, Saad S, Muna M, Alaidi N, Alshehabi Z. Cholera: An Overview with Reference to the Syrian Outbreak. Avicenna J Med 2023; 13:199-205. [PMID: 38144913 PMCID: PMC10736186 DOI: 10.1055/s-0043-1775762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Cholera is an acute type of diarrheal disease caused by intestinal infection with the toxin-producing bacteria Vibrio cholerae. The disease is still endemic in almost 69 countries, accounting for around 2.86 million cases and 95,000 deaths annually. Cholera is associated with poor infrastructure, and lack of access to sanitation and clean drinking water. The current cholera outbreak in Syria is associated with more than 10 years of conflict, which has devastated infrastructures and health services. There were 132,782 suspected cases reported between August 25, 2022 and May 20, 2023 in all 14 governorates, including 104 associated deaths. The recent earthquake in the region has complicated the situation, with an increase in cholera cases, and hindrance to a response to the disease. Climate change has driven a number of large cholera outbreaks around the world this year. The World Health Organization prequalifies three oral cholera vaccines. Cholera treatment mainly depends on rehydration, with the use of antibiotics in more severe infections. This review gives an overview of cholera bacteriology, pathogenesis, epidemiology, clinical manifestations, diagnosis, management, and prevention in light of global climate change and the ongoing outbreak in Syria, which poses a significant public health threat that requires urgent attention.
Collapse
Affiliation(s)
- Munawar Hraib
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Sara Alaidi
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Sarah Jouni
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Sana Saad
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Mohammad Muna
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Nour Alaidi
- Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syria
| |
Collapse
|
23
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
25
|
Kayembe HC, Bompangue D, Linard C, Mandja BA, Batumbo D, Matunga M, Muwonga J, Moutschen M, Situakibanza H, Ozer P. Drivers of the dynamics of the spread of cholera in the Democratic Republic of the Congo, 2000-2018: An eco-epidemiological study. PLoS Negl Trop Dis 2023; 17:e0011597. [PMID: 37639440 PMCID: PMC10491302 DOI: 10.1371/journal.pntd.0011597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The dynamics of the spread of cholera epidemics in the Democratic Republic of the Congo (DRC), from east to west and within western DRC, have been extensively studied. However, the drivers of these spread processes remain unclear. We therefore sought to better understand the factors associated with these spread dynamics and their potential underlying mechanisms. METHODS In this eco-epidemiological study, we focused on the spread processes of cholera epidemics originating from the shores of Lake Kivu, involving the areas bordering Lake Kivu, the areas surrounding the lake areas, and the areas out of endemic eastern DRC (eastern and western non-endemic provinces). Over the period 2000-2018, we collected data on suspected cholera cases, and a set of several variables including types of conflicts, the number of internally displaced persons (IDPs), population density, transportation network density, and accessibility indicators. Using multivariate ordinal logistic regression models, we identified factors associated with the spread of cholera outside the endemic eastern DRC. We performed multivariate Vector Auto Regressive models to analyze potential underlying mechanisms involving the factors associated with these spread dynamics. Finally, we classified the affected health zones using hierarchical ascendant classification based on principal component analysis (PCA). FINDINGS The increase in the number of suspected cholera cases, the exacerbation of conflict events, and the number of IDPs in eastern endemic areas were associated with an increased risk of cholera spreading outside the endemic eastern provinces. We found that the increase in suspected cholera cases was influenced by the increase in battles at lag of 4 weeks, which were influenced by the violence against civilians with a 1-week lag. The violent conflict events influenced the increase in the number of IDPs 4 to 6 weeks later. Other influences and uni- or bidirectional causal links were observed between violent and non-violent conflicts, and between conflicts and IDPs. Hierarchical clustering on PCA identified three categories of affected health zones: densely populated urban areas with few but large and longer epidemics; moderately and accessible areas with more but small epidemics; less populated and less accessible areas with more and larger epidemics. CONCLUSION Our findings argue for monitoring conflict dynamics to predict the risk of geographic expansion of cholera in the DRC. They also suggest areas where interventions should be appropriately focused to build their resilience to the disease.
Collapse
Affiliation(s)
- Harry César Kayembe
- Department of Basic Sciences, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
- Department of Environmental Sciences and Management, UR SPHERES, Faculty of Sciences, Université de Liège, Arlon, Belgium
| | - Didier Bompangue
- Department of Basic Sciences, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
- Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, Besançon, France
| | | | - Bien-Aimé Mandja
- Department of Basic Sciences, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Doudou Batumbo
- Department of Basic Sciences, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Muriel Matunga
- Graduate School Public Health Department, Adventist International Institute of Advanced Studies, Silang, Cavite, Philippines
| | - Jérémie Muwonga
- Department of Medical Biology, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Michel Moutschen
- Department of Clinical Sciences, Immunopathology—Infectious Diseases and General Internal Medicine, Université de Liège, Liege, Belgium
| | - Hippolyte Situakibanza
- Department of Internal Medicine, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
- Department of Parasitology and Tropical Medicine, Faculty of Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pierre Ozer
- Department of Environmental Sciences and Management, UR SPHERES, Faculty of Sciences, Université de Liège, Arlon, Belgium
| |
Collapse
|
26
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Kaur G, Salem-Bango L, Nery ALMDS, Solomon EC, Ihemezue E, Kelly C, Altare C, Azman AS, Spiegel PB, Lantagne D. Implementation considerations in case-area targeted interventions to prevent cholera transmission in Northeast Nigeria: A qualitative analysis. PLoS Negl Trop Dis 2023; 17:e0011298. [PMID: 37115769 PMCID: PMC10171589 DOI: 10.1371/journal.pntd.0011298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cholera outbreaks primarily occur in areas lacking adequate water, sanitation, and hygiene (WASH), and infection can cause severe dehydration and death. As individuals living near cholera cases are more likely to contract cholera, case-area targeted interventions (CATI), where a response team visits case and neighbor households and conducts WASH and/or epidemiological interventions, are increasingly implemented to interrupt cholera transmission. As part of a multi-pronged evaluation on whether CATIs reduce cholera transmission, we compared two organizations' standard operating procedures (SOPs) with information from key informant interviews with 26 staff at national/headquarters and field levels who implemented CATIs in Nigeria in 2021. While organizations generally adhered to SOPs during implementation, deviations related to accessing case household and neighbor household selection were made due to incomplete line lists, high population density, and insufficient staffing and materials. We recommend reducing the CATI radius, providing more explicit context-specific guidance in SOPs, adopting more measures to ensure sufficient staffing and supplies, improving surveillance and data management, and strengthening risk communication and community engagement. The qualitative results herein will inform future quantitative analysis to provide recommendations for overall CATI implementation in future cholera responses in fragile contexts.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lindsay Salem-Bango
- Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | | | | | - Christine Kelly
- Tufts University School of Engineering, Medford, Maryland, United States of America
| | - Chiara Altare
- Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Paul B Spiegel
- Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Daniele Lantagne
- Tufts University School of Engineering, Medford, Maryland, United States of America
| |
Collapse
|
29
|
Sagar P, Aseem A, Banjara SK, Veleri S. The role of food chain in antimicrobial resistance spread and One Health approach to reduce risks. Int J Food Microbiol 2023; 391-393:110148. [PMID: 36868045 DOI: 10.1016/j.ijfoodmicro.2023.110148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
The incidence of antimicrobial resistance (AMR) is rapidly spreading worldwide. It is depleting the repertoire of antibiotics in use but the pace of development of new antibiotics is stagnant for decades. Annually, millions of people are killed by AMR. This alarming situation urged both scientific and civil bodies to take steps to curb AMR as a top priority. Here we review the various sources of AMR in the environment, especially focusing on the food chain. Food chain inculcates pathogens with AMR genes and serves as a conduit for its transmission. In certain countries, the antibiotics are more used in livestock than in humans. It is also used in agriculture crops of high value products. The indiscriminate use of antibiotics in livestock and agriculture increased rapid emergence of AMR pathogens. In addition, in many countries nosocomial settings are spewing AMR pathogens, which is a serious health hazard. Both the developed and low and middle income countries (LMIC) face the phenomenon of AMR. Therefore, a comprehensive approach for monitoring all sectors of life is required to identify the emerging trend of AMR in environment. AMR genes' mode of action must be understood to develop strategies to reduce risk. The new generation sequencing technologies, metagenomics and bioinformatics capabilities can be resorted to quickly identify and characterize AMR genes. The sampling for AMR monitoring can be done from multiples nodes of the food chain as envisioned and promoted by the WHO, FAO, OIE and UNEP under the One Health approach to overcome threat of AMR pathogens.
Collapse
Affiliation(s)
- Prarthi Sagar
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | - Ajmal Aseem
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.
| |
Collapse
|
30
|
Jubyda FT, Nahar KS, Barman I, Johura FT, Islam MT, Sultana M, Ullah W, Tasnim J, Biswas SR, Monir MM, George CM, Camilli A, Ahmed N, Ross AG, Clemens JD, Alam M. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathog 2023; 15:17. [PMID: 37046358 PMCID: PMC10090749 DOI: 10.1186/s13099-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Despite the advancement in our understanding of cholera and its etiological agent, Vibrio cholerae, the prevention and treatment of the disease are often hindered due to rapid changes in drug response pattern, serotype, and the major genomic islands namely, the CTX-prophage, and related genetic characteristics. In the present study, V. cholerae (n = 172) associated with endemic cholera in Dhaka during the years 2015-2021 were analyzed for major phenotypic and genetic characteristics, including drug resistance patterns. RESULTS Results revealed that the V. cholerae strains belonged to serogroup O1 biotype El Tor carrying El Tor -specific genes rtxC, tcpA El Tor, and hlyA El Tor, but possessed classical-biotype cholera toxin. Serotypes of V. cholerae strains differed temporally in predominance with Inaba during 2015-2017, and again in 2020-2021, while Ogawa was the predominant serotype in 2018-2019. Also, ctxB1 was predominant in V. cholerae associated with cholera during 2015-2017, while ctxB7 was predominant in 2018, and in the subsequent years, as observed until 2021. V. cholerae strains differed in their antibiotic resistance pattern with a majority (97%) being multi-drug resistant (MDR) and belonging to six sub-groups. Notably, one of these MDR strains was resistant to eleven of the eighteen antibiotics tested, with resistance to fourth-generation cephalosporin (cefepime), and aztreonam. This extreme drug resistant (XDR) strain carried resistance-related genes namely, extended-spectrum β-lactamases (ESBL), blaOXA-1 and blaPER-3. CONCLUSION The observed temporal switching of serotypes, as well as the ctxB genotype, and the emergence of MDR/XDR V. cholerae and their association with endemic cholera in Dhaka underscore the need for routine monitoring of the pathogen for proper patient management.
Collapse
Affiliation(s)
- Fatema Tuz Jubyda
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Kazi Sumaita Nahar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Indrajeet Barman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Fatema-Tuz Johura
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Tarequl Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Marzia Sultana
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Wali Ullah
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Jarin Tasnim
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Sahitya Ranjan Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Mamun Monir
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | | | | | - Niyaz Ahmed
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | - Allen G Ross
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Charles Sturt University, Orange, NSW, Australia
| | - John D Clemens
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Munirul Alam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
31
|
Lau DYL, Aguirre Sánchez JR, Baker-Austin C, Martinez-Urtaza J. What Whole Genome Sequencing Has Told Us About Pathogenic Vibrios. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:337-352. [PMID: 36792883 DOI: 10.1007/978-3-031-22997-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.
Collapse
Affiliation(s)
- Dawn Yan Lam Lau
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jose Roberto Aguirre Sánchez
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK.,Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK. .,Department of Genetics and Microbiology, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
32
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
33
|
Chakraborty S, Velagic M, Connor S. Development of a simple, rapid, and sensitive molecular diagnostic assay for cholera. PLoS Negl Trop Dis 2023; 17:e0011113. [PMID: 36745674 PMCID: PMC9934353 DOI: 10.1371/journal.pntd.0011113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/16/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
Cholera continues to inflict high rates of morbidity and mortality. Prompt identification of cholera cases facilitates rapid outbreak responses in the short term while providing reliable surveillance data to guide long-term policies and interventions. Microbiological stool culture, the current recognized gold standard for diagnosing cholera, has significant limitations. Rapid diagnostic tests (RDTs) represent promising alternatives for diagnosing cholera in areas with limited laboratory infrastructure. However, studies conducted with the current cholera RDTs demonstrated wide variations in sensitivity and specificity. To address this gap in the diagnosis of cholera, we developed a simple, rapid, and sensitive diagnostic assay, "Rapid LAMP based Diagnostic Test (RLDT)." With a novel, simple sample preparation method directly from the fecal samples along with lyophilized reaction strips and using established Loop-mediated Isothermal Amplification (LAMP) platform, cholera toxin gene (ctxA) and O1 (O1rfb) gene could be detected in less than an hour. Cholera RLDT assay is cold chain and electricity-free. To avoid any end-user bias, a battery-operated, handheld reader was used to read the RLDT results. The performance specifications of the cholera RLDT assay, including analytical sensitivity and specificity, were evaluated using direct fecal samples, dried fecal samples on filter paper, and environmental water samples spiked with cholera strain. The limit of detection (LOD) was ~104 CFU/gm of stool for both ctxA and O1 genes, corresponding to about 1 CFU of Vibrio cholerae per reaction within 40 minutes. The LOD was 10 bacteria per ml of environmental water when tested with RLDT directly, without enrichment. Being simple, RLDT has the potential to be applied in resource-poor endemic settings for rapid, sensitive, and reliable diagnosis of cholera.
Collapse
Affiliation(s)
- Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Mirza Velagic
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sean Connor
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
34
|
Velleman Y, Blair L, Fleming F, Fenwick A. Water-, Sanitation-, and Hygiene-Related Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
35
|
Liu M, Wang H, Liu Y, Tian M, Wang Z, Shu RD, Zhao MY, Chen WD, Wang H, Wang H, Fu Y. The phospholipase effector Tle1 Vc promotes Vibrio cholerae virulence by killing competitors and impacting gene expression. Gut Microbes 2023; 15:2241204. [PMID: 37526354 PMCID: PMC10395195 DOI: 10.1080/19490976.2023.2241204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Vibrio cholerae utilizes the Type VI secretion system (T6SS) to gain an advantage in interbacterial competition by delivering anti-prokaryotic effectors in a contact-dependent manner. However, the impact of T6SS and its secreted effectors on physiological behavior remains poorly understood. In this study, we present Tle1Vc, a phospholipase effector in atypical pathogenic V. cholerae E1 that is secreted by T6SS via its interaction with VgrG1E1. Tle1Vc contains a DUF2235 domain and belongs to the Tle1 (type VI lipase effector) family. Bacterial toxicity assays, lipase activity assays and site-directed mutagenesis revealed that Tle1Vc possessed phospholipase A1 activity and phospholipase A2 activity, and that Tle1Vc-induced toxicity required a serine residue (S356) and two aspartic acid residues (D417 and D496). Cells intoxication with Tle1Vc lead to membrane depolarization and alter membrane permeability. Tli1tox-, a cognate immunity protein, directly interacts with Tle1Vc to neutralize its toxicity. Moreover, Tle1Vc can kill multiple microorganisms by T6SS and promote in vivo fitness of V. cholerae through mediating antibacterial activity. Tle1Vc induces bacterial motility by increasing the expression of flagellar-related genes independently of functional T6SS and the tit-for-tat (TFT) response, where Pseudomonas aeruginosa uses its T6SS-H1 cluster to counterattack other offensive attackers. Our study also demonstrated that the physical puncture of E1 T6SS can induce a moderate TFT response, which is essential to the Tle1Vc-mediated strong TFT response, maximizing effector functions. Overall, our study characterized the antibacterial mechanism of phospholipase effector Tle1Vc and its multiple physiological significance.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Run-Dong Shu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei-Di Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Bader C, Taylor M, Banerjee T, Teter K. The cytopathic activity of cholera toxin requires a threshold quantity of cytosolic toxin. Cell Signal 2023; 101:110520. [PMID: 36371029 PMCID: PMC9722578 DOI: 10.1016/j.cellsig.2022.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
After binding to the surface of a target cell, cholera toxin (CT) moves to the endoplasmic reticulum (ER) by retrograde transport. In the ER, the catalytic CTA1 subunit dissociates from the rest of the toxin and is transferred to the cytosol where it is degraded by a ubiquitin-independent proteasomal mechanism. However, CTA1 persists long enough to induce excessive cAMP production through the activation of Gsα. It is generally believed that only one or a few molecules of cytosolic CTA1 are necessary to elicit a cytopathic effect, yet no study has directly correlated the levels of cytosolic toxin to the extent of intoxication. Here, we used the technology of surface plasmon resonance to quantify the cytosolic pool of CTA1. Our data demonstrate that only 4% of surface-bound CTA1 is found in the cytosol after 2 h of intoxication. This represented around 2600 molecules of cytosolic toxin per cell, and it was sufficient to produce a robust cAMP response. However, we did not detect elevated cAMP levels in cells containing less than 700 molecules of cytosolic toxin. Thus, a threshold quantity of cytosolic CTA1 is required to elicit a cytopathic effect. When translocation to the cytosol was blocked soon after toxin exposure, the pool of CTA1 already in the cytosol was degraded and was not replenished. The cytosolic pool of CTA1 thus remained below its functional threshold, preventing the initiation of a cAMP response. These observations challenge the paradigm that extremely low levels of cytosolic toxin are sufficient for toxicity, and they provide experimental support for the development of post-intoxication therapeutic strategies.
Collapse
Affiliation(s)
- Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Tuhina Banerjee
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
37
|
Malaeb D, Sallam M, Younes S, Mourad N, Sarray El Dine A, Obeid S, Hallit S, Hallit R. Knowledge, Attitude, and Practice in a Sample of the Lebanese Population Regarding Cholera. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316243. [PMID: 36498316 PMCID: PMC9735709 DOI: 10.3390/ijerph192316243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 05/12/2023]
Abstract
The evaluation of knowledge, attitude, and practices towards an emerging disease is an essential component of public health preventive measures during an outbreak. In October 2022, an outbreak of cholera was reported in Lebanon, which is the first to be reported in the Middle Eastern country for 30 years. This study aimed to explore the level of knowledge as well as attitude and practice of the general public in Lebanon towards cholera. A self-administered structured questionnaire was distributed via an online link to individuals living in Lebanon during October-November 2022. The survey instrument comprised items to assess the sociodemographic data; questions on knowledge about cholera symptoms, transmission, and prevention; as well as attitude and practice questions. Our study involved 553 participants, with a median age of 24 years and a majority of females (72.5%). The results showed that the majority of respondents correctly identified diarrhea as a symptom of cholera and recognized the spread via contaminated water and food. Having a university level education compared with secondary school or less (adjusted odds ratio (aOR) = 2.09), being married compared with single (aOR = 1.67), and working in the medical field compared with unemployed (aOR = 4.19) were significantly associated with higher odds of having good cholera knowledge. Having good knowledge compared with having a poor level of cholera knowledge (aOR = 1.83) and older age (aOR = 1.03) were significantly associated with higher odds of having a good attitude towards cholera. The current study showed an overall high knowledge score on cholera among the Lebanese population. Nevertheless, gaps in cholera knowledge were identified and should be addressed, particularly among workers in the medical field. Thus, we recommend targeted health education to the general population that aims to strengthen the health resilience in the community.
Collapse
Affiliation(s)
- Diana Malaeb
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
- Correspondence: (M.S.); (S.H.); Tel.: +962-79-184-5186 (M.S.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa, Lebanon
| | - Nisreen Mourad
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese International University, Bekaa, Lebanon
| | - Abir Sarray El Dine
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Sahar Obeid
- Department of Social and Education Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
- Research Department, Psychiatric Hospital of the Cross, Jal Eddib, Lebanon
- Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
- Correspondence: (M.S.); (S.H.); Tel.: +962-79-184-5186 (M.S.)
| | - Rabih Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
- Department of Infectious Disease, Bellevue Medical Center, Mansourieh, Lebanon
- Department of Infectious Disease, Notre Dame des Secours, University Hospital Center, Byblos, Lebanon
| |
Collapse
|
38
|
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring and surveillance activities carried out in 2021 in 27 MSs, the United Kingdom (Northern Ireland) and nine non-MSs. Key statistics on zoonoses and zoonotic agents in humans, food, animals and feed are provided and interpreted historically. In 2021, the first and second most reported zoonoses in humans were campylobacteriosis and salmonellosis, respectively. Cases of campylobacteriosis and salmonellosis increased in comparison with 2020, but decreased compared with previous years. In 2021, data collection and analysis at the EU level were still impacted by the COVID-19 pandemic and the control measures adopted in the MSs, including partial or total lockdowns. Sixteen MSs and the United Kingdom (Northern Ireland) achieved all the established targets in poultry populations for reduction in Salmonella prevalence for the relevant serovars. Salmonella samples from carcases of various animal species and samples for Campylobacter quantification from broiler carcases were more frequently positive when performed by the competent authorities than when own-checks were conducted. Yersiniosis was the third most reported zoonosis in humans, followed by Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes infections. L. monocytogenes and West Nile virus infections were the most severe zoonotic diseases, with the most hospitalisations and highest case fatality rates. Overall, MSs reported more foodborne outbreaks and cases in 2021 than in 2020. S. Enteritidis remained the most frequently reported causative agent for foodborne outbreaks. Salmonella in 'eggs and egg products' and in 'mixed foods' were the agent/food pairs of most concern. Outbreaks linked to 'vegetables and juices and products thereof' rose considerably compared with previous years. This report also provides updates on brucellosis, Coxiella burnetii (Q fever), echinococcosis, rabies, toxoplasmosis, trichinellosis, tuberculosis due to Mycobacterium bovis or M. caprae, and tularaemia.
Collapse
|
39
|
Ding Y, Hao J, Zeng Z, Jinbo Liu. Identification and genomic analysis of a Vibrio cholerae strain isolated from a patient with bloodstream infection. Heliyon 2022; 8:e11572. [PMID: 36439761 PMCID: PMC9681642 DOI: 10.1016/j.heliyon.2022.e11572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae is a bacterium ubiquitous in aquatic environments which can cause widespread infection worldwide. V. cholerae gradually became a rare species of bacteria in clinical microbiology laboratories with the control of the cholera epidemic. In this study, we isolated a V. cholerae strain, named VCHL017, from the blood of an elderly patient without gastrointestinal symptoms. The patient had a history of hookworm infection and multiple myeloma. Furthermore, she was immunocompromised, and received long-term chemotherapy and antimicrobial agents. VCHL017 was inoculated on blood agar and thiosulfate citrate bile salt sucrose plates (TCBS) to observe morphological characteristics. Then this isolate was identified by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF MS). The minimum inhibitory concentrations (MICs) for cefazolin, ceftazidime, cefepime, meropenem, tetracycline, ciprofloxacin, chloramphenicol, and gentamicin of VCHL017 were determined by the microbroth dilution method. PCR and serum agglutination tests were used to determine whether the serogroups of the isolate belonged to the O1/O139 and cholera toxin encoding genes. Finally, the genomic features and phylogeny of VCHL017 were analyzed by whole genome sequencing (WGS). VCHL017 was a non-O1/O139 V cholerae strain that did not carry the ctxA gene. Antimicrobial susceptibility tests revealed that VCHL017 was susceptive to chloramphenicol and tetracycline. Although it did not carry the genes encoding the cholera toxin, WGS indicated that VCHL017 carried a variety of other virulence factors. By calculating the average nucleotide identity (ANI), we precisely identified the species of VCHL017 as V. cholerae. There are also A171S and A202S missense mutations in gyrA of VCHL017. The phylogenetic analysis indicated that VCHL017 was closely related to V. cholerae strains isolated from aquatic environments. Our results suggest that continuous monitoring is necessary for non-O1/O139 V cholerae strains isolated from outside the digestive tract, which could be pathogenic through multiple virulence factors.
Collapse
Affiliation(s)
| | | | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
40
|
Zohura F, Thomas ED, Masud J, Bhuyian MSI, Parvin T, Monira S, Faruque ASG, Alam M, George CM. Formative Research for the Development of the CHoBI7 Cholera Rapid Response Program for Cholera Hotspots in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13352. [PMID: 36293930 PMCID: PMC9603179 DOI: 10.3390/ijerph192013352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Cholera is a severe form of acute watery diarrhea that if left untreated can result in death. Globally, there are 2.9 million cholera cases annually. Individuals living in close proximity to cholera cases are at a higher risk for developing cholera compared to the general population. Targeted water, sanitation, and hygiene (WASH) interventions have the potential to reduce cholera transmission in cholera hotspots around cholera cases. The objective of this study was to expand the scope of the Cholera-Hospital-Based-Intervention-for-7-Days (CHoBI7) program, focused on cholera patient households, for delivery in cholera hotspots in urban slums in Dhaka, Bangladesh. Thirty-one semi-structured interviews were conducted in cholera hotspots around cholera patients, and three intervention planning workshops were conducted to inform modifications needed to the CHoBI7 program. After exploratory interviews, a two-phase, iterative pilot study was conducted for 9 months to test the developed CHoBI7 Cholera Rapid Response program among 180 participants to further inform modifications to intervention content and delivery. Findings from pilot participant interviews highlighted the need to adapt intervention content for delivery at the compound-rather than household-level, given an environment with multiple households sharing a water source, toilets, and kitchen facilities. This was addressed by conducting a "ring session" for intervention delivery in cholera hotspots for households to discuss how to improve their shared facilities together and encourage a compound-level commitment to promoted WASH behaviors and placement of soapy water bottles in shared spaces. Based on the low number of soapy water bottles observed in communal spaces during the first iteration of the pilot, we also added context-specific examples using the narratives of families in mobile messages to encourage WASH behavioral recommendations. Formative research identified important considerations for the modifications needed to tailor the CHoBI7 program for delivery in cholera hotspots in urban Bangladesh.
Collapse
Affiliation(s)
- Fatema Zohura
- Research, Training and Management International, Dhaka 1216, Bangladesh
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Elizabeth D. Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jahed Masud
- Research, Training and Management International, Dhaka 1216, Bangladesh
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Md Sazzadul Islam Bhuyian
- Research, Training and Management International, Dhaka 1216, Bangladesh
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Tahmina Parvin
- Research, Training and Management International, Dhaka 1216, Bangladesh
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Shirajum Monira
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Abu S. G. Faruque
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, icddr,b, Dhaka 1212, Bangladesh
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Chae SR, Lukupulo H, Kim S, Walker T, Hardy C, Abade A, Urio LJ, Mghamba J, Quick R. An Assessment of Household Knowledge and Practices during a Cholera Epidemic- Dar es Salaam, Tanzania, 2016. Am J Trop Med Hyg 2022; 107:766-772. [PMID: 36067990 PMCID: PMC9651532 DOI: 10.4269/ajtmh.21-0597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/05/2022] [Indexed: 12/30/2022] Open
Abstract
From August 15, 2015 to March 5, 2016, Tanzania reported 16,521 cholera cases and 251 deaths, with 4,596 cases and 44 deaths in its largest city, Dar es Salaam. To evaluate outbreak response efforts, we conducted a household survey with drinking water testing in the five most affected wards in Dar es Salaam. We interviewed 641 households 6 months after the beginning of the outbreak. Although most respondents knew that cholera causes diarrhea (90%) and would seek care if suspecting cholera (95%), only 45% were aware of the current outbreak in the area and only 5% would use oral rehydration salts (ORS) if ill. Of 200 (31%) respondents reporting no regular water treatment, 46% believed treatment was unnecessary and 18% believed treatment was too expensive. Fecal contamination was found in 45% of water samples and was associated with water availability (P = 0.047). Only 11% of samples had detectable free chlorine residual, which was associated with water availability (P = 0.025), reported current water treatment (P = 0.006), and observed free chlorine product in the household (P = 0.015). The provision of accessible, adequately chlorinated water supply, and implementation of social mobilization campaigns advocating household water treatment and use of ORS should be prioritized to address gaps in cholera prevention and treatment activities.
Collapse
Affiliation(s)
- Sae-Rom Chae
- Division of Foodborne and Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia;,Address correspondence to Sae-Rom Chae, Division of Foodborne and Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA. E-mail:
| | - Haji Lukupulo
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Sunkyung Kim
- Division of Foodborne and Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tiffany Walker
- Division of Foodborne and Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Colleen Hardy
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ahmed Abade
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Loveness J. Urio
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Janneth Mghamba
- Ministry of Health, Community Development, Gender, Elderly and Children, United Republic of Tanzania, Dar es Salaam, Tanzania
| | - Robert Quick
- Division of Foodborne and Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
42
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
43
|
Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi SI, Ghosh A, Dutta S, Mukhopadhyay AK. Altered Molecular Attributes and Antimicrobial Resistance Patterns of Vibrio cholerae O1 El Tor Strains Isolated from the Cholera Endemic Regions of India. J Appl Microbiol 2022; 133:3605-3616. [PMID: 36000378 DOI: 10.1111/jam.15794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to document the comparative analysis of differential hyper-virulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analyzed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel PCR was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that has caused Yemen cholera outbreak. All the strains from Western India were belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both the regions. CONCLUSIONS This study showed hyper-virulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and non-hemolytic traits that may spread and cause serious disease outcome in future. SIGNIFICANCE AND IMPACT OF THE STUDY The outcomes of this study can help to improve the understanding of the hyper-pathogenic property of recently circulating pandemic V. cholerae strains in India. A special attention is also needed on the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defense in the treatment of cholera.
Collapse
Affiliation(s)
- Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
44
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
45
|
Santajit S, Kong-ngoen T, Tunyong W, Pumirat P, Ampawong S, Sookrung N, Indrawattana N. Occurrence, antimicrobial resistance, virulence, and biofilm formation capacity of Vibrio spp. and Aeromonas spp. isolated from raw seafood marketed in Bangkok, Thailand. Vet World 2022; 15:1887-1895. [PMID: 36185513 PMCID: PMC9394122 DOI: 10.14202/vetworld.2022.1887-1895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Bacteria of the genera Vibrio and Aeromonas cause seafood-borne zoonoses, which may have a significant impact on food safety, economy, and public health worldwide. The presence of drug-resistant and biofilm-forming phenotypes in the food chain increases the risk for consumers. This study aimed to investigate the characteristics, virulence, biofilm production, and dissemination of antimicrobial-resistant pathogens isolated from seafood markets in Bangkok, Thailand. Materials and Methods A total of 120 retail seafood samples were collected from 10 local markets in Bangkok and peripheral areas. All samples were cultured and the Vibrio and Aeromonas genera were isolated using selective agar and biochemical tests based on standard protocols (ISO 21872-1: 2017). The antibiotic susceptibility test was conducted using the disk diffusion method. The presence of hemolysis and protease production was also investigated. Polymerase chain reaction (PCR) was used to determine the presence of the hlyA gene. Furthermore, biofilm formation was characterized by microtiter plate assay and scanning electron microscopy. Results The bacterial identification test revealed that 35/57 (61.4%) belonged to the Vibrio genus and 22/57 (38.6%) to the Aeromonas genus. The Kirby-Bauer test demonstrated that 61.4% of the isolates were resistant to at least one antibiotic and 45.61% had a high multiple antibiotic resistance index (≥0.2). PCR analysis indicated that 75.44% of the bacteria harbored the hlyA gene. Among them, 63.16% exhibited the hemolysis phenotype and 8.77% showed protease activity. The biofilm formation assay demonstrated that approximately 56.14% of all the isolates had the potential to produce biofilms. The moderate biofilm production was the predominant phenotype. Conclusion The results of this study provide evidence of the multiple drug resistance phenotype and biofilm formation capacity of Vibrio and Aeromonas species contaminating raw seafood. Effective control measures and active surveillance of foodborne zoonoses are crucial for food safety and to decrease the occurrence of diseases associated with seafood consumption.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Tha Sala, 80160, Thailand
| | - Thida Kong-ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
46
|
String GM, Huang A, Lantagne D. Laboratory evaluation of the efficacy of bucket chlorination guidelines at inactivating Vibrio cholerae for waters of varying quality. JOURNAL OF WATER AND HEALTH 2022; 20:1071-1083. [PMID: 35902989 DOI: 10.2166/wh.2022.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bucket chlorination, where chlorine is dosed directly into water collection containers, is a point-of-source water treatment intervention commonly implemented in cholera outbreaks. There is little previous data on chlorine efficacy against Vibrio cholerae in different waters and appropriate dosage regimes. We evaluated V. cholerae reduction and free chlorine residual (FCR) in waters with four turbidities (1/5/10/50 NTU), two total organic carbon (TOC) concentrations (0.4, 1 mg/L), and two dosing schemes (fixed-dose of 2 or 4 mg/L, variable-dose based on jar testing) treated with three chlorine types (HTH, NaOCl, NaDCC). We found that chlorine was efficacious at reducing V. cholerae by ≥2.75 to ≥3.63 log reduction value (LRV); variably dosed reactors were dosed higher, met ≥0.5 mg/L FCR at 30 min, and had higher LRVs (p=0.024) than fixed doses; and low TOC reactors had more samples ≥0.2 mg/L FRC at 4 h (p=0.007). Our results are conservative, as internationally recommended additives to create test water increased chlorine demand, highlighting the challenge of replicating field conditions in laboratory testing. Overall, we found that chlorine can efficaciously reduce V. cholerae; we recommend further research on appropriate chlorine demand for test waters; and we recommend establishing appropriate chlorine doses based on source water and taste/odor acceptability in bucket chlorination programs.
Collapse
Affiliation(s)
| | - Annie Huang
- Tufts University School of Arts and Sciences, Medford, MA, USA
| | - Daniele Lantagne
- Tufts University School of Engineering, Medford, MA, USA E-mail:
| |
Collapse
|
47
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
48
|
Ahmad Zamri N, Rusli MEF, Mohamad Yusof L, Rosli R. Immunization with a bicistronic DNA vaccine modulates systemic IFN-γ and IL-10 expression against Vibrio cholerae infection. J Med Microbiol 2022; 71. [PMID: 35635780 DOI: 10.1099/jmm.0.001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cholera is an acute enteric infection caused by Vibrio cholerae, particularly in areas lacking access to clean water. Despite the global effort to improve water quality in these regions, the burden of cholera in recent years has not yet declined. Interest has therefore extended in the use of bicistronic DNA vaccine encoding ctxB and tcpA genes of V. cholerae as a potential vaccine.Hypothesis/Gap Statement. The potential of a bicistronic DNA vaccine, pVAX-ctxB-tcpA has not been determined in vitro and in vivo.Aim. The goal of present study was to evaluate in vitro expression and in vivo potential of pVAX-ctxB-tcpA vaccine against V. cholerae.Methodology. The pVAX-ctxB-tcpA was transiently transfected into mammalian COS-7 cells, and the in vitro expression was assessed using fluorescence and Western blot analyses. Next, the vaccine was encapsulated into sodium alginate using water-in-oil emulsification and evaluated for its efficiency in different pH conditions. Subsequently, oral vaccination using en(pVAX-ctxB-tcpA) was performed in vivo. The animals were challenged with V. cholerae O1 El Tor after 2 weeks of vaccination using the Removable Intestinal Tie-Adult Rabbit Diarrhoea (RITARD) model. Following the infection challenge, the rabbits were monitored for evidence of symptoms, and analysed for systemic cytokine expression level (TNF-α, IFN-γ, IL-6 and IL-10) using quantitative real-time polymerase chain reaction.Results. The in vitro expression of pVAX-ctxB-tcpA was successfully verified via fluorescence and Western blot analyses. Meanwhile, in vivo analysis demonstrated that the en(pVAX-ctxB-tcpA) was able to protect the RITARD model against V. cholerae infection due to a lack of evidence on the clinical manifestations of cholera following bacterial challenge. Furthermore, the bicistronic group showed an upregulation of systemic IFN-γ and IL-10 following 12 days of vaccination, though not significant, suggesting the possible activation of both T-helper 1 and 2 types of response. However, upon bacterial challenge, the gene expression of all cytokines did not change.Conclusion. Our findings suggest that the bicistronic plasmid DNA vaccine, pVAX-ctxB-tcpA, showed a potential role in inducing immune response against cholera through upregulation of in vitro gene and protein expression as well as in vivo cytokine gene expression, particularly IFN-γ and IL-10.
Collapse
Affiliation(s)
- Najwa Ahmad Zamri
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Ehsan Fitri Rusli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
49
|
B.M. Chandranaik, Vardhaman Patil, D. Rathnamma, G. S. Mamatha, K.S. Umashankar, D.N. Nagaraju, S.M. Byregowda. Drought may severely reduce the ability of wild Asian Elephants Elephas maximus (Mammalia: Proboscidea: Elephantidae) to resist opportunistic infections. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7835.14.5.20951-20963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The present study was conducted to assess the microbial quality of water in forest waterholes in different seasons and its possible impact on wild animals, at Bandipur and Nagarahole Tiger Reserve forests in the state of Karnataka, India, during the year 2012 which evidenced drought, and the year 2014 which witnessed normal rainfall in these forests. The forests recorded the death of 39 wild elephants during April and May of 2012. One ailing elephant was confirmed to have high fever, diarrhoea, leucocytosis, and symptoms of colic. Water samples collected from major waterholes during the peak drought showed higher numbers of coliforms and several species of opportunistic bacteria including species of Vibrio and Campylobacter. In the year 2014–15, with normal rainfall, the death of less than 10 wild elephants was documented during April to May, 2015. We collected water samples from 20 major waterholes every month from June 2014 to May 2015 and assessed the water quality. We found that the microbial water quality improved in rainy season (June–September), started deterioration in winter (October–January) and became poor in summer (February–May). Though, the water during the summer of 2014–15 was equally of poor microbial quality as seen during peaks of droughts, the elephant deaths were relatively lower, signifying the role of normal rainfall in forests which provides the availability of fodder and water, which determines the general body condition and ability to resist opportunistic infections. We discuss the measures suggested and implemented from this study and their utilities at ground level.
Collapse
|
50
|
Do C, Evans GJ, DeAguero J, Escobar GP, Lin HC, Wagner B. Dysnatremia in Gastrointestinal Disorders. Front Med (Lausanne) 2022; 9:892265. [PMID: 35646996 PMCID: PMC9136014 DOI: 10.3389/fmed.2022.892265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023] Open
Abstract
The primary solute of the milieu intérieur is sodium and accompanying anions. The solvent is water. The kidneys acutely regulate homeostasis in filtration, secretion, and resorption of electrolytes, non-electrolytes, and minerals while balancing water retention and clearance. The gastrointestinal absorptive and secretory functions enable food digestion and water absorption needed to sustain life. Gastrointestinal perturbations including vomiting and diarrhea can lead to significant volume and electrolyte losses, overwhelming the renal homeostatic compensatory mechanisms. Dysnatremia, potassium and acid-base disturbances can result from gastrointestinal pathophysiologic processes. Understanding the renal and gastrointestinal contributions to homeostatis are important for the clinical evaluation of perturbed volume disturbances.
Collapse
Affiliation(s)
- Catherine Do
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Gretta J. Evans
- University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Joshua DeAguero
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Henry C. Lin
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States
| | - Brent Wagner
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States,*Correspondence: Brent Wagner
| |
Collapse
|