1
|
Zhang M, Ju B, Wang X, Zhou S, Zhao H, Wang ZL, Li X. Global knowledge mapping and emerging research trends in non-coding RNAs related to animal and plant male sterility: A visual analysis of CiteSpace maps. Medicine (Baltimore) 2025; 104:e42612. [PMID: 40489841 DOI: 10.1097/md.0000000000042612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2025] Open
Abstract
Animal and plant male sterility is a complex and closely studied phenomenon that significantly impacts species survival and reproduction. Advances in biotechnology and molecular biology have deepened our understanding of gene expression regulation, particularly the role of noncoding RNAs (ncRNAs). This study aims to systematically review and analyze the published literature on ncRNAs in relation to both animal and plant sterility using bibliometric methods. A bibliometric analysis was conducted with CiteSpace 6.2.R6, Scimago Graphica, VOSviewer 1.6.18, and Microsoft Excel 2016 to identify research hotspots, key developments, and emerging trends. Data were retrieved from the Web of Science Core Collection on March 3, 2024, covering publications from 2005 to 2023. The analysis revealed a consistent increase in annual publications on ncRNA research in both plant and animal fields, with China and the United States leading in publication volume. Notable scholars include Professor Abu-Halima, a prominent figure in ncRNA research related to animal male sterility, and Professor Meyers, a key contributor to plant male sterility research. Journals such as PLoS ONE serve as major platforms for disseminating findings on animal male sterility, while The Plant Cell plays a similar role for plant male sterility. Analysis of cited literature and keyword trends highlighted significant themes, including gene regulation and the application of novel technologies. At present, new technologies, model organisms, and gene regulation remain major research hotspots. Meanwhile, disease diagnosis, disease treatment, and crop improvement are emerging as important directions for future research.
Collapse
Affiliation(s)
- Mingzhao Zhang
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Clinical Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Baojun Ju
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Clinical Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiangyu Wang
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Clinical Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shuxi Zhou
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Clinical Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Haobin Zhao
- Department of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zu Long Wang
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- Department of Andrology, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Senousy MA, Shaker OG, Gamal A, Aboraia NM, Ayeldeen G. Serum expression signature of TUG1, MALAT1, miR-483, and miR-141 and their targets TGF-β1 and STAT3 in severe male factor infertility. Sci Rep 2025; 15:18529. [PMID: 40425698 PMCID: PMC12116780 DOI: 10.1038/s41598-025-03231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Long non-coding RNAs and microRNAs have evolved as biomarkers and specific therapeutic targets for male infertility. We investigated the seminal plasma and serum expression profiles of TUG1, MALAT1, miR-483, and miR-141 and their targets TGF-β1 and STAT3 in severe male factor infertility. The potential of their serum levels as minimally invasive, clinically accessible, and more feasible biomarkers and their clinical correlations were explored. Thirty non-obstructive azoospermia (NOA) patients, 30 severe oligozoospermia (SO) patients, and 30 healthy fertile men (controls) were enrolled. Compared to controls, seminal plasma and serum TUG1 and miR-141 were downregulated; meanwhile, miR-483 and STAT3 were upregulated in both NOA and SO patients, while MALAT1 was upregulated in NOA but downregulated in SO patients. Seminal plasma TGF-β1 was higher in NOA patients than in controls and SO patients, while its serum levels were not statistically different between the studied groups. NOA patients showcased higher serum STAT3 mRNA expression than SO patients. Seminal plasma and serum levels of most of the tested markers were correlated among NOA and SO patients. Multivariate logistic analysis unraveled the association of serum TUG1 and miR-141 with NOA risk and serum TUG1 and miR-483 with SO risk. A serum-based panel of TUG1/miR-141 and TUG1/miR-483 discriminated NOA (AUC = 0.93) and SO (AUC = 0.972) from controls, respectively. Serum miR-141 was correlated with the hormonal profile in NOA patients. In SO patients, serum TUG1 was correlated with total testosterone levels and abnormal sperm motility, while serum MALAT1 was inversely correlated with the testicular volume. Conclusively, this study introduces a novel serum-based prediction panel of TUG1/miR-141 and TUG1/miR-483 to help enhance the accuracy of NOA and SO diagnosis. Serum MALAT1 and STAT3 could be useful in stratifying NOA and SO. These findings warrant more future investigations for their possible implication in male infertility diagnostics.
Collapse
Affiliation(s)
- Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al Ainy st., Cairo, 11562, Egypt.
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Gamal
- Andrology, Sexology, and STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nesreen M Aboraia
- Dermatology and STDs Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3271-3296. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
5
|
Bodu M, Hitit M, Donmez H, Kaya A, Ugur MR, Memili E. Exploration of Small Non-Coding RNAs as Molecular Markers of Ram Sperm Fertility. Int J Mol Sci 2025; 26:2690. [PMID: 40141332 PMCID: PMC11942391 DOI: 10.3390/ijms26062690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The identification of molecular markers for fertility is critical for the sustainability of livestock production. We profiled small non-coding RNAs (sncRNAs) in sperm from rams with high fertility (HF) and low fertility (LF) phenotypes to uncover their roles in ram sperm fertility. Rams were categorized into high-fertility (HF, n = 31; 94.5 ± 2.8%) and low-fertility (LF, n = 25; 83.1 ± 5.73%) phenotypes based on pregnancy rates (average 89.4 ± 7.2%). From these, sperm samples of HF (n = 4; pregnancy rate 99.2 ± 1.6%) and LF (n = 4; pregnancy rate 73.6 ± 4.4%) rams underwent sncRNA sequencing. Small RNA sequencing produced 14,962,876 reads in LF rams and 17,401,094 reads in HF rams, showing distinct sncRNA biotypes, including miRNAs, tRNAs, snoRNAs, snRNAs, and rRNAs. Among these, miRNAs comprised 7.12% of reads in LF rams and 3.78% in HF rams, while rRNAs and repeats formed significant proportions in both groups. A total of 1673 known and 627 novel miRNAs were identified, with 227 differentially expressed miRNAs between the HF and LF groups. We showed that key miRNAs, such as oar-miR-200b and oar-miR-370-3p, were upregulated in HF sperm, while downregulated miRNAs in LF, such as oar-miR-26b and oar-let-7d, were associated with impaired sperm function and DNA fragmentation. A functional enrichment analysis of miRNA target genes highlighted pathways related to ribonucleoprotein complex biogenesis, RNA processing, and gene expression regulation. These findings establish the critical role of sperm sncRNAs as regulators of fertility and potential biomarkers in breeding soundness tests for the precision farming of livestock for global food security.
Collapse
Affiliation(s)
- Mustafa Bodu
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya 42005, Türkiye
| | - Mustafa Hitit
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
- Department of Animal Genetic, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu 37100, Türkiye
| | - Huseyin Donmez
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Abdullah Kaya
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin–Madison, Madison, WI 53558, USA;
| | - Muhammet Rasit Ugur
- IVF Michigan Fertility Centers, 37000 Woodward Ave #350, Bloomfield Hills, MI 48304, USA;
| | - Erdoğan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77445, USA;
| |
Collapse
|
6
|
Chen J, Guo JM, Jiang BJ, Sun FY, Qu YC. Impact of physical activity on semen quality: a review of current evidence. Asian J Androl 2025:00129336-990000000-00294. [PMID: 40084407 DOI: 10.4103/aja20252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/13/2025] [Indexed: 03/16/2025] Open
Abstract
A growing global trend indicates a decline in semen quality, with a lack of physical activity identified as one of the contributing factors. Exercise is medication, and numerous studies have explored its effects on semen quality. However, there is no consensus on the most effective type and intensity of exercise for improving semen quality, owing to inconsistent findings across studies. These discrepancies may be attributable to variations in study populations (e.g., healthy versus infertile individuals) and research methodologies (e.g., observational versus interventional studies). This paper reviews the existing literature from the databases PubMed, Web of Science, and Google Scholar, reclassifying articles on their subject and research designs to delineate the relationship between exercise and semen quality. It also summarizes the mechanisms through which exercise influences semen quality, including hormonal regulation, oxidative stress, and inflammatory factors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Artificial Intelligence in Sports (IAIS), Capital University of Physical and Sports, Beijing 100000, China
| | | | | | | | | |
Collapse
|
7
|
Mehta P, Singh R. The composition of human sperm sncRNAome: a cross-country small RNA profiling. Reprod Biol Endocrinol 2025; 23:36. [PMID: 40050854 PMCID: PMC11883963 DOI: 10.1186/s12958-025-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/07/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Over the last decade, numerous studies have implicated sperm-borne small non-coding RNAs (sncRNAs) in fertility and transgenerational inheritance. Spermatozoa contain a variety of small RNAs; however, inter-individual and inter-population variations in the human sperm sncRNA content (sncRNAome) have not yet been ascertained. METHODS We performed sncRNA sequencing in 54 normozoospermic proven fertile Indian donors. We also obtained a second semen sample from 13 donors and a third semen sample from eight donors and repeated sncRNA sequencing. To better understand sperm sncRNAome similarities and variations, sncRNA sequencing data for eligible Chinese (n = 87), US (n = 14), and Spanish (n = 2) normozoospermic (fertile or presumptive fertile) samples were downloaded and analyzed in a uniform manner. sncRNA data were compared within and across populations to identify similarities and differences. RESULTS In Indian samples, rsRNAs (13.71-78.76%), YsRNAs (0.64-76.53%) and tsRNAs (5.63-35.16%) constituted the major fraction and miRNAs, piRNAs, mt-tsRNAs, and other sncRNAs constituted the minor fraction. Across three other populations, rsRNAs (11-80%) and tsRNAs (10-60%) constituted the major fraction, and YsRNAs (0.62-4.28%), miRNAs (0.41-7.37%), piRNAs (1.37-4.36%), mt-tsRNAs (0.14-4.33%), and other sncRNAs constituted the minor fraction. Only 47 miRNAs were consistent across the Indian samples, and only 17 miRNAs were consistent across the four populations. Interestingly, all piRNAs detected in Indian samples were derived from the chromosome 15 piRNA cluster, which were also predominantly present in other populations. tRNA-Gly-GCC contributed approximately 50% of the tsRNA pool across all populations. The mt-tsRNAs also originated majorly from one mt-tRNA that differed across populations. Among the rsRNAs, the maximum number of reads belonged to 28S, followed by 18S, 5S, 5.8S, and 45S in decreasing order. Y4sRNAs were the most abundant YsRNAs, while the second most common contributor differed across populations. CONCLUSIONS The human sperm sncRNAome has a 'core component' that shows small variations and a 'peripheral component' that shows significant variations across individuals and populations. The availability of the normal human sperm sncRNAome would help delineate biologically meaningful variations from sample-to-sample natural/random variations.
Collapse
Affiliation(s)
- Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Cannarella R, Crafa A, Curto R, Mongioì LM, Garofalo V, Cannarella V, Condorelli RA, La Vignera S, Calogero AE. Human sperm RNA in male infertility. Nat Rev Urol 2025; 22:92-115. [PMID: 39256514 DOI: 10.1038/s41585-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vittorio Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Cassuto NG, Boitrelle F, Mouik H, Larue L, Keromnes G, Lédée N, Part-Ellenberg L, Dray G, Ruoso L, Rouen A, De Vos J, Assou S. Genome-Wide microRNA Expression Profiling in Human Spermatozoa and Its Relation to Sperm Quality. Genes (Basel) 2025; 16:53. [PMID: 39858600 PMCID: PMC11765444 DOI: 10.3390/genes16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Sperm samples are separated into bad and good quality samples in function of their phenotype, but this does not indicate their genetic quality. METHODS Here, we used GeneChip miRNA arrays to analyze microRNA expression in ten semen samples selected based on high-magnification morphology (score 6 vs. score 0) to identify miRNAs linked to sperm phenotype. RESULTS We found 86 upregulated and 21 downregulated miRNAs in good-quality sperm (score 6) compared with bad-quality sperm samples (score 0) (fold change > 2 and p-value < 0.05). MiR-34 (FC × 30, p = 8.43 × 10-8), miR-30 (FC × 12, p = 3.75 × 10-6), miR-122 (FC × 8, p = 0.0031), miR-20 (FC × 5.6, p = 0.0223), miR-182 (FC × 4.83, p = 0.0008) and miR-191 (FC × 4, p = 1.61 × 10-6) were among these upregulated miRNAs. In silico prediction algorithms predicted that miRNAs upregulated in good-quality sperm targeted 910 genes involved in key biological functions of spermatozoa, such as cell death and survival, cellular movement, molecular transport, response to stimuli, metabolism, and the regulation of oxidative stress. Genes deregulated in bad-quality sperm were involved in cell growth and proliferation. CONCLUSIONS This study reveals that miRNA profiling may provide potential biomarkers of sperm quality.
Collapse
Affiliation(s)
| | - Florence Boitrelle
- Biology-Reproduction-Epigenetic-Environment-Development BREED, INRAE, Paris Saclay University, UVSQ, 78350 Jouy-en-Josas, France
| | - Hakima Mouik
- Faculty of Medicine and Pharmacy, University of Hassan II, Casablanca 28800, Morocco
| | - Lionel Larue
- IVF ART Diaconesses Hospital, île de France, 75012 Paris, France
| | - Gwenola Keromnes
- IVF ART Diaconesses Hospital, île de France, 75012 Paris, France
| | - Nathalie Lédée
- IVF Center Bluets-Drouot, Les Bluets Hospital, 75012 Paris, France
| | | | - Geraldine Dray
- IVF ART Bluets Hospital, île de France, 75012 Paris, France
| | - Léa Ruoso
- ART Unit, Drouot Laboratory, 75009 Paris, France
| | - Alexandre Rouen
- AP-HP, Hôtel-Dieu, Sleep and Vigilance Center, Université Paris Cité, VIFASOM, ERC 7330, 75006 Paris, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
10
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
11
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
12
|
Babakhanzadeh E, Hoseininasab FA, Khodadadian A, Nazari M, Hajati R, Ghafouri-Fard S. Circular RNAs: novel noncoding players in male infertility. Hereditas 2024; 161:46. [PMID: 39551760 PMCID: PMC11572108 DOI: 10.1186/s41065-024-00346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Infertility is a global problem being associated with emotional and financial burden. Recent studies have shown contribution of a group of non-coding RNAs, namely circular RNAs (circRNAs) to the etiology of some infertility conditions. CircRNA are transcribed from exons and form a circular RNA molecule, being abundant in eukaryotes. Traditionally classified as non-coding RNA, these transcripts are endogenously produced through either non-canonical back-splicing or linear splicing, typically produced from precursor messenger ribonucleic acid (pre-mRNA). While during the canonical splicing process the 3' end of the exon is joined to the 5' end of the succeeding exon to form linear mRNA, during backsplicing, the 3' end to the 5' end of the same exon is joined to make a circular molecule. circRNAs are involved in the regulation of several aspects of spermatogenesis. They appear to influence how stem germ cells grow and divide during the sperm production process. Malfunctions in circRNA activity could contribute to male infertility issues stemming from abnormalities in spermatogenesis. In the current review, we highlight the exciting potential of circRNAs as key players in the male fertility.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Hajati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
14
|
Lu L, Abbott AL. Role of male gonad-enriched microRNAs in sperm production in Caenorhabditis elegans. Genetics 2024; 228:iyae147. [PMID: 39259277 PMCID: PMC12098942 DOI: 10.1093/genetics/iyae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing (RNA-seq) of dissected gonads and functional analysis of new loss-of-function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of individual miRNAs (mir-58.1 and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and a set of miRNAs (mir-49, mir-57, mir-83, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mutants missing mir-58.1, mir-83, mir-235, and mir-4807-4810.1, which may contribute to the observed defects in sperm production. Further, analysis of multiple mutants of these miRNAs suggested genetic interactions between these miRNAs. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
15
|
Abu-Halima M, Fischer U, Al Smadi MA, Ludwig N, Acheli A, Engel A, Abdul-Khaliq H, Meese E. Single Sperm RNA signatures reveal MicroRNA biomarkers for male subfertility. J Assist Reprod Genet 2024; 41:3119-3132. [PMID: 39312032 PMCID: PMC11621271 DOI: 10.1007/s10815-024-03264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE To investigate small RNA profiles in sperm, identify stable miRNA patterns unique to sperm, and assess the behavior of consistently expressed miRNAs in sperm from subfertile men compared to fertile controls. METHODS The small RNA profiles of single sperm from four proven fertile men were analyzed using Small RNA next-generation sequencing (NGS). Subsequently, a specific set of miRNAs was validated using RT-qPCR on additional sperm samples from 65 subfertile men from an infertility clinic and 30 proven fertile men. RESULTS Small RNA sequencing revealed a diverse range of sperm small RNA biotypes, including miRNAs. The mapped read percentage ranged from 22.19% for single sperm to 83.29% for enriched sperm samples used at different RNA concentrations. In single sperm, a smaller proportion of sequences were attributed to piRNAs (2.79%), miRNA (0.94%), tRNA (0.82%), and rRNA (0.47%) compared to enriched sperm samples, where piRNA (41.68%), tRNA (20.31%), miRNA (11.11%), and rRNA (6.54%) were observed. Distinct detection rates and a higher number of detected miRNAs were noted with enriched sperm samples compared to single sperm obtained using either a micromanipulator or microdissection systems. Among the identified miRNAs, 110 were consistently present in all samples. RT-qPCR revealed 15 miRNAs with increased expression and 5 miRNAs with decreased expression in sperm samples from subfertile men compared to proven fertile men. These differentially validated miRNAs were significantly correlated, either positively or negatively, with sperm count, motility, and morphology. CONCLUSION The study extensively examines small RNAs in single sperm, identifying sperm-specific miRNAs that could serve as molecular markers to distinguish between subfertile and fertile men in clinical settings.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany.
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman, Jordan
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Anissa Acheli
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
16
|
Hon JX, Wahab NA, Karim AKA, Mokhtar NM, Mokhtar MH. Exploring the Role of MicroRNAs in Progesterone and Estrogen Receptor Expression in Endometriosis. Biomedicines 2024; 12:2218. [PMID: 39457531 PMCID: PMC11504708 DOI: 10.3390/biomedicines12102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with endometriosis still respond poorly to progestins due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor (PR)-A and PR-B and to determine the target genes of upregulated miRNAs in endometriosis. Methods: In this study, 18 controls, 18 eutopic and 18 ectopic samples were analysed. Profiling and validation of miRNAs associated with functions of endometriosis were performed using next-generation sequencing (NGS) and qRT-PCR. At the same time, the expression of ERα, ERβ, PR-A and PR-B was also determined using qRT-PCR. Target prediction was also performed for miR-199a-3p, miR-1-3p and miR-125b-5p using StarBase. Results: In this study, NGS identified seven significantly differentially expressed miRNAs, of which six miRNAs related to the role of endometriosis were selected for validation by qRT-PCR. The expression of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-5p was upregulated in the ectopic group compared to the eutopic group. Meanwhile, ERα and ERβ were significantly differentially expressed in endometriosis compared to the control group. However, the expressions of PR-A and PR-B showed no significant differences between the groups. The predicted target genes for miR-199a-3p, miR-1-3p and miR-125b-5p are SCD, TAOK1, DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL6. Conclusions: Our findings demonstrated that the expressions of ERα and ERβ might be regulated by miRNAs contributing to progesterone resistance, whereas the binding of miRNAs to target genes could also contribute to the pathogenesis of endometriosis. Therefore, miRNAs could be used as potential biomarkers and for targeted therapy in patients with endometriosis.
Collapse
Affiliation(s)
- Jing-Xian Hon
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| |
Collapse
|
17
|
Trigg NA, Conine CC. Epididymal acquired sperm microRNAs modify post-fertilization embryonic gene expression. Cell Rep 2024; 43:114698. [PMID: 39226174 DOI: 10.1016/j.celrep.2024.114698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Sperm small RNAs have emerged as important non-genetic contributors to embryogenesis and offspring health. A subset of sperm small RNAs is thought to be acquired during epididymal transit. However, the identity of the specific small RNAs transferred remains unclear. Here, we employ Cre/Lox genetics to generate germline- and epididymal-specific Dgcr8 knockout (KO) mice to investigate the dynamics of sperm microRNAs (miRNAs) and their functions post-fertilization. Testicular sperm from germline Dgcr8 KO mice has reduced levels of 116 miRNAs. Enthrallingly, following epididymal transit, the abundance of 72% of these miRNAs is restored. Conversely, sperm from epididymal Dgcr8 KO mice displayed reduced levels of 27 miRNAs. This loss of epididymal miRNAs in sperm was accompanied by transcriptomic changes in embryos fertilized by this sperm, which was rescued by microinjection of epididymal miRNAs. These findings ultimately demonstrate the acquisition of miRNAs from the soma by sperm during epididymal transit and their subsequent regulation of embryonic gene expression.
Collapse
Affiliation(s)
- Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Women's Health and Reproductive Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Women's Health and Reproductive Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
19
|
Zhang LX, Mao J, Zhou YD, Mao GY, Guo RF, Ge HS, Chen X. Evaluation of microRNA expression profiles in human sperm frozen using permeable cryoprotectant-free droplet vitrification and conventional methods. Asian J Androl 2024; 26:366-376. [PMID: 38738948 PMCID: PMC11280198 DOI: 10.4103/aja202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 05/14/2024] Open
Abstract
For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Yan-Dong Zhou
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Guang-Yao Mao
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Run-Fa Guo
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Hong-Shan Ge
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
20
|
Naeimi N, MohseniKouchesfehani H, Mahmoudzadeh-Sagheb H, Movahed S, Moudi B, Asemirad A, Sheibak N, Heidari Z. Downregulation of miR-211 expression in the blood plasma of infertile men compared to the fertile controls. Int J Urol 2024; 31:718-723. [PMID: 38470159 DOI: 10.1111/iju.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Infertility is inability to conceive after 12 months of regular unprotected sex. MiRNA expression changes can serve as potential biomarkers for infertility in males due to impaired spermatogenesis. This research was conducted to measure the expression level of miR-211 in plasma samples as a factor identifying infertility in comparison with the control group. METHODS In this study, blood plasma were taken from the infertile men (n = 103) nonobstructive azoospermia (NOA) or severe oligozoospermia (SO) and the control group (n = 121). The expression of circulating miR-211 in plasma was assessed by qRT-PCR. A relative quantification strategy was adopted using the 2-ΔΔCT method to calculate the target miR-211 expression level in both study groups. RESULTS Plasma miR-211 levels were significantly lower in infertile men compared to the control group (0.544 ± 0.028 and 1.203 ± 0.035, respectively, p < 0.001). Pearson's correlation analysis showed that miR-211 expression level has a positive and significant correlation with sperm parameters, including sperm concentration, sperm total motility, progressive motility, and normal morphology (p < 0.001). CONCLUSIONS Decreased expression of miR-211 in blood plasma seems to be associated with male infertility. This experiment showed that miR-211 can be considered as a biomarker for evaluation, diagnosis, and confirmation of the results of semen analysis in male infertility.
Collapse
Affiliation(s)
- Nasim Naeimi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Movahed
- Department of Urology, School of Medicine Ali Ibne Abitaleb Hospital Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemirad
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nadia Sheibak
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
21
|
Ing NH, Konganti K, Ghaffar N, Johnson CD, Forrest DW, Love CC, Varner DD. Specific microRNAs in stallion spermatozoa are potential biomarkers of high functionality. Reprod Domest Anim 2024; 59:e14674. [PMID: 39005151 DOI: 10.1111/rda.14674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Males of some species, from horses to humans, require medical help for subfertility problems. There is an urgent need for novel molecular assays that reflect spermatozoal function. In the last 25 years, studies examined RNAs in spermatozoa as a window into gene expression during their development and, more recently, for their functions in early embryo development. In clinics, more dense spermatozoa are isolated by density gradient centrifugation before use in artificial insemination to increase pregnancy rates. The objectives of the current study were to discover and quantify the microRNAs in stallion spermatozoa and identify those with differential expression levels in more dense versus less dense spermatozoa. First, spermatozoa from seven stallions were separated into more dense and less dense populations by density gradient centrifugation. Next, small RNAs were sequenced from each of the 14 RNA samples. We identified 287 different mature microRNAs within the 11,824,720 total mature miRNA reads from stallion spermatozoa. The most prevalent was miR-10a/b-5p. The less dense spermatozoa had fewer mature microRNAs and more microRNA precursor sequences than more dense spermatozoa, perhaps indicating that less dense spermatozoa are less mature. Two of the most prevalent microRNAs in more dense stallion spermatozoa were predicted to target mRNAs that encode proteins that accelerate mRNA decay. Nine microRNAs were more highly expressed in more dense spermatozoa. Three of those microRNAs were predicted to target mRNAs that encode proteins involved in protein decay. Both mRNA and protein decay are very active in late spermiogenesis but not in mature spermatozoa. The identified microRNAs may be part of the mechanism to shut down those processes. The microRNAs with greater expression in more dense spermatozoa may be useful biomarkers for spermatozoa with greater functional capabilities.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Noushin Ghaffar
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M University, College Station, Texas, USA
| | - David W Forrest
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Charles C Love
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
22
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife 2024; 13:RP90203. [PMID: 38639482 PMCID: PMC11031087 DOI: 10.7554/elife.90203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Jaaved Mohammed
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San AntonioSan AntonioUnited States
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
23
|
Podgrajsek R, Bolha L, Pungert T, Pizem J, Jazbec K, Malicev E, Stimpfel M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and miRNA Expression. Int J Mol Sci 2024; 25:4157. [PMID: 38673743 PMCID: PMC11050687 DOI: 10.3390/ijms25084157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Tjasa Pungert
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Joze Pizem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Mamuris Z. Elucidating the Role of OXPHOS Variants in Asthenozoospermia: Insights from Whole Genome Sequencing and an In Silico Analysis. Int J Mol Sci 2024; 25:4121. [PMID: 38612930 PMCID: PMC11012272 DOI: 10.3390/ijms25074121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Infertility is a global health challenge that affects an estimated 72.4 million people worldwide. Between 30 and 50% of these cases involve male factors, showcasing the complex nature of male infertility, which can be attributed to both environmental and genetic determinants. Asthenozoospermia, a condition characterized by reduced sperm motility, stands out as a significant contributor to male infertility. This study explores the involvement of the mitochondrial oxidative phosphorylation (OXPHOS) system, crucial for ATP production and sperm motility, in asthenozoospermia. Through whole-genome sequencing and in silico analysis, our aim was to identify and characterize OXPHOS gene variants specific to individuals with asthenozoospermia. Our analysis identified 680,099 unique variants, with 309 located within OXPHOS genes. Nine of these variants were prioritized due to their significant implications, such as potential associations with diseases, effects on gene expression, protein function, etc. Interestingly, none of these variants had been previously associated with male infertility, opening up new avenues for research. Thus, through our comprehensive approach, we provide valuable insights into the genetic factors that influence sperm motility, laying the foundation for future research in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
25
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
26
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
27
|
Fathi M, Ghafouri-Fard S. Impacts of non-coding RNAs in the pathogenesis of varicocele. Mol Biol Rep 2024; 51:322. [PMID: 38393415 DOI: 10.1007/s11033-024-09280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Two classes of non-coding RNAs, namely lncRNAs and miRNAs have been reported to be involved in the pathogenesis of varicocele. MIR210HG, MLLT4-AS1, gadd7, and SLC7A11-AS1 are among lncRNAs whose expression has been changed in patients with varicocele in association with the sperm quality. Animal studies have also suggested contribution of NONRATG001060, NONRATG002949, NONRATG013271, NONRATG027523 and NONRATG023747 lncRNAs in this pathology. Meanwhile, expression of some miRNAs, such as miR-210-3p, miR-21, miR-34a, miR-122a, miR-181a, miR-34c and miR-192a has been altered in this condition. Some of these transcripts have the potential to predict the sperm quality. We summarize the impacts of lncRNAs and miRNAs in the pathogenesis of varicocele.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Mehta P, Singh R. Small RNAs: an ideal choice as sperm quality biomarkers. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1329760. [PMID: 38406667 PMCID: PMC10884189 DOI: 10.3389/frph.2024.1329760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Spermatozoa were classically known as vehicles for the delivery of the paternal genome to the oocyte. However, in 1962, spermatozoa were discovered to carry significant amounts of RNA in them, which raised questions about the significance of these molecules in such a highly specialized cell. Scientific research in the last six decades has investigated the biological significance of sperm RNAs by various means. Irrespective of what sperm RNAs do, their presence in spermatozoa has attracted attention for their exploitation as biomarkers of fertility. Research in this direction started in the year 2000 and is still underway. A major hurdle in this research is the definition of the standard human sperm RNAome. Only a few normozoospermic samples have been analyzed to define the normal sperm RNAome. In this article, we provide a perspective on the suitability of sperm RNAs as biomarkers of fertility and the importance of defining the normal sperm RNAome before we can succeed in identifying RNA-based biomarkers of sperm quality and fertility. The identification of sperm RNA biomarkers of fertility can be exploited for quality screening of donor sperm samples, explain infertility in idiopathic cases, and RNA therapeutics for the treatment of male infertility.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Zhao Y, Qin J, Sun J, He J, Sun Y, Yuan R, Li Z. Motility-related microRNAs identified in pig seminal plasma exosomes by high-throughput small RNA sequencing. Theriogenology 2024; 215:351-360. [PMID: 38150851 DOI: 10.1016/j.theriogenology.2023.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Boar fertility is a key determinant of the production efficiency of the whole pig breeding industry and boar sperm motility is the seminal parameter with the greatest impact on the fecundity of a sow. Exosomes are small, extracellular vesicles found in many body fluids. Seminal plasma exosomes, which are secreted by the epididymis, prostate, seminal vesicles, and testes, contain a large number of miRNAs, the types and levels of which can reflect the physiological state of source cells. It has been shown that the expression profile of seminal plasma exosomal miRNA differs between low-motility semen and normal semen. The aim of this study was to investigate the relationship between semen motility and exosomal miRNA profiles to obtain information that would allow to predict boar fertility, as well as contribute to the understanding of the mechanisms by which exosomal miRNAs regulate semen motility. Three high-motility (semen motility >90 %) and three low-motility (semen motility <80 %) semen samples were collected from Landrace and Yorkshire boars, respectively, and seminal plasma exosomes were extracted by ultracentrifugation. Exosome characterization was performed using transmission electron microscopy, NTA, and Western blot. The expression profiles of exosomal miRNAs associated with semen motility in the two boar breeds were subsequently determined by small RNA sequencing. The results showed that 297 known miRNAs and 295 novel RNAs were co-expressed in the four groups. Notably, six miRNAs (ssc-miR-122-5p, ssc-miR-486, ssc-miR-451, ssc-miR-345-3p, ssc-miR-362, and ssc-miR-500-5p) were found to be differentially expressed in both boar breeds. Enrichment analysis of the target genes of the differentially expressed miRNAs showed that they were mainly involved in biological processes such as regulation of transcription from RNA polymerase II promoter, regulation of gene expression, and intracellular signal transduction and signaling pathways such as the PI3K-Akt, MAPK, and Ras signaling pathways. The six differentially expressed miRNAs identified in this study have significant potential as noninvasive markers of boar semen motility. Meanwhile, the results of the enrichment analysis provide novel insights into the mechanisms underlying the regulation of semen motility.
Collapse
Affiliation(s)
- Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi Autonomous Region, China; Guangxi Yangxiang Co., LTD, Guigang, 537000, Guangxi Autonomous Region, China
| | - Jiali Qin
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong province, China; Guangxi Yangxiang Co., LTD, Guigang, 537000, Guangxi Autonomous Region, China
| | - Jingshuai Sun
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong province, China
| | - Jian He
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong province, China
| | - Yanmei Sun
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong province, China
| | - Renqiang Yuan
- Guangxi Yangxiang Co., LTD, Guigang, 537000, Guangxi Autonomous Region, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong province, China.
| |
Collapse
|
31
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The Rapidly Evolving X-linked miR-506 Family Finetunes Spermatogenesis to Enhance Sperm Competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544876. [PMID: 37398484 PMCID: PMC10312769 DOI: 10.1101/2023.06.14.544876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Galdiero M, Trotta C, Schettino MT, Cirillo L, Sasso FP, Petrillo F, Petrillo A. Normospermic Patients Infected With Ureaplasma parvum: Role of Dysregulated miR-122-5p, miR-34c-5, and miR-141-3p. Pathog Immun 2024; 8:16-36. [PMID: 38223489 PMCID: PMC10783813 DOI: 10.20411/pai.v8i2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ureaplasma parvum (UP) is a causative agent of non-gonococcal urethritis, involved in the pathogenesis of prostatitis and epididymitis, and it could impair human fertility. Although UP infection is a frequent cause of male infertility the study evidence assessing their prevalence and the association in patients with infertility is still scarce. The molecular processes leading to defects in spermatozoa quality are not completely investigated. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. Methods Therefore, the study design was to demonstrate that miRNAs in body fluids like sperm could be utilized as non-invasive diagnostic biomarkers for pathological and physiological conditions such as infertility. A post-hoc bioinformatics analysis was carried out to predict the pathways modulated by the miRNAs dysregulated in the differently motile spermatozoa. Results Here it is shown that normospermic patients infected by UP had spermatozoa with increased quantity of superoxide anions, reduced expression of miR-122-5p, miR-34c-5, and increased miR-141-3p compared with non-infected normospermic patients. This corresponded to a reduction of sperm motility in normospermic infected patients compared with normospermic non-infected ones. A target gene prediction presumed that an essential role of these miRNAs resided in the regulation of lipid kinase activity, accounting for the changes in the constitution of spermatozoa membrane lipids caused by UP. Conclusions Altogether, the data underline the influence of UP on epigenetic mechanisms regulating spermatozoa motility.
Collapse
Affiliation(s)
- Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Carolo Trotta
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Maria Teresa Schettino
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Luigi Cirillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples Italy
| | | | - Francesco Petrillo
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | | |
Collapse
|
33
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
34
|
Joshi M, Sethi S, Mehta P, Kumari A, Rajender S. Small RNAs, spermatogenesis, and male infertility: a decade of retrospect. Reprod Biol Endocrinol 2023; 21:106. [PMID: 37924131 PMCID: PMC10625245 DOI: 10.1186/s12958-023-01155-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), being the top regulators of gene expression, have been thoroughly studied in various biological systems, including the testis. Research over the last decade has generated significant evidence in support of the crucial roles of sncRNAs in male reproduction, particularly in the maintenance of primordial germ cells, meiosis, spermiogenesis, sperm fertility, and early post-fertilization development. The most commonly studied small RNAs in spermatogenesis are microRNAs (miRNAs), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), and transfer RNA-derived small RNAs (ts-RNAs). Small non-coding RNAs are crucial in regulating the dynamic, spatial, and temporal gene expression profiles in developing germ cells. A number of small RNAs, particularly miRNAs and tsRNAs, are loaded on spermatozoa during their epididymal maturation. With regard to their roles in fertility, miRNAs have been studied most often, followed by piRNAs and tsRNAs. Dysregulation of more than 100 miRNAs has been shown to correlate with infertility. piRNA and tsRNA dysregulations in infertility have been studied in only 3-5 studies. Sperm-borne small RNAs hold great potential to act as biomarkers of sperm quality and fertility. In this article, we review the role of small RNAs in spermatogenesis, their association with infertility, and their potential as biomarkers of sperm quality and fertility.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shruti Sethi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anamika Kumari
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
35
|
Lu L, Abbott AL. Male gonad-enriched microRNAs function to control sperm production in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561762. [PMID: 37873419 PMCID: PMC10592766 DOI: 10.1101/2023.10.10.561762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing of dissected gonads and functional analysis of new loss of function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of 3 individual miRNAs (mir-58.1, mir-83, and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and 5 additional miRNAs (mir-49, mir-57, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mir-58.1, mir-83, mir-235, and mir-4807-4810.1 mutants that may contribute to the reduced number of sperm. Further, analysis of multiple mutants of these miRNAs suggested complex genetic interactions between these miRNAs for sperm production. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| | - Allison L. Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
| |
Collapse
|
36
|
Douet C, Grasseau I, Vitorino Carvalho A. Avian sperm-borne RNAs: optimisation of a new isolation protocol. Br Poult Sci 2023; 64:641-649. [PMID: 37266980 DOI: 10.1080/00071668.2023.2220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
1. Sperm-borne RNAs are involved in sperm and embryonic protein translation, the regulation of early development and the epigenetic inheritance of the paternal phenotype. Sperm-borne RNA purification protocols generally include a cell purification stage to discard contamination by somatic cells. In avian species, no protocol is currently available to isolate all the populations composing sperm-borne RNAs.2. This study evaluated the presence of somatic cells in semen samples of chickens and quails using visual examination after fluorescent nuclei staining. The efficiency of somatic cell lysis buffer (SCLB) on chicken liver cells and its impacts on chicken sperm cell integrity was explored. Three different approaches were tested to isolate RNA: two developed for mammalian sperm cells and a commercial kit for somatic cells. The efficiency and reliability of each approach was determined based on RNA quality and purity. Eventually, the presence of miRNA and mRNA in purified avian sperm-borne RNAs was investigated by RT-(q)PCR.3. No somatic cells were found in chicken and quail semen. The SCLB totally lysed chicken liver cells but also induced sperm cell necrosis. Consequently, this treatment wasn't performed on samples prior to RNA isolation. Among the tested RNA purification protocols, the commercial one was the least variable and isolated RNA with the highest purity levels. No DNA contamination was observed. Furthermore, the samples contained miRNA and mRNA already known as present in mammalian sperm cells (gga-miR-100-5p, gga-miR-191-5p, GAPDH and PLCZ1), but mRNAs associated with leucocytes (CD4) and Sertoli cells (SOX4, CLDN11) were not detected. This protocol was successfully applied to quail sperm cells.4. Altogether, the study reveals that it is unnecessary to pre-treat samples to remove somatic cell contamination before RNA purification and successfully describes an isolation protocol for sperm-borne RNAs, including small non-coding and long coding RNAs, in two distinct avian species highly valuable as biological models.
Collapse
Affiliation(s)
- C Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - I Grasseau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
37
|
Khadhim MM, Manshd AA. Association between microRNA expression and risk of male idiopathic infertility in Iraq. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230341. [PMID: 37729366 PMCID: PMC10508938 DOI: 10.1590/1806-9282.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The World Health Organization defines infertility as the inability to get pregnant after 12 months of unprotected sexual activity. This study was conducted to estimate the levels of gene expression for two mature miRNAs (i.e., miR-122 and miR-34c-5p) to evaluate susceptibility to male infertility. METHODS This study included 50 male patients with idiopathic infertility who were admitted to hospital from the period November 2021 to May 2022 and another group consisting of 50 apparently healthy individuals used as controls. RESULTS miR-122 level was significantly highest in azoospermia and followed by oligospermia, 39.22 (31.88) versus 37.34 (20.45), respectively. In addition, there was a very significant difference in miR-34c-5p levels between the study groups (p<0.05). CONCLUSION Two miRNAs, namely, miR-34c-5p and miR-122, can be used as predictive and diagnostic biomarkers for infertility.
Collapse
Affiliation(s)
- Manal Mohammed Khadhim
- Al-Qadisiyah University, College of Medicine, Department of Medical Microbiology – Diwaniya, Iraq
| | - Abbas Ali Manshd
- Directorate of Education Al-Muthanna, Ministry of Education – Baghdad, Iraq
| |
Collapse
|
38
|
Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring's health. Panminerva Med 2023; 65:166-178. [PMID: 37335245 DOI: 10.23736/s0031-0808.23.04871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
Collapse
Affiliation(s)
- Nicolás Garrido
- Global Andrology Forum, Moreland Hills, OH, USA
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Florence Boitrelle
- Global Andrology Forum, Moreland Hills, OH, USA
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA -
- American Center for Reproductive Medicine, Cleveland, OH, USA
| |
Collapse
|
39
|
Abu-Halima M, Becker LS, Al Smadi MA, Abdul-Khaliq H, Raeschle M, Meese E. Sperm Motility Annotated Genes: Are They Associated with Impaired Fecundity? Cells 2023; 12:cells12091239. [PMID: 37174638 PMCID: PMC10177407 DOI: 10.3390/cells12091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm motility is a prerequisite for achieving pregnancy, and alterations in sperm motility, along with sperm count and morphology, are commonly observed in subfertile men. The aim of the study was to determine whether the expression level of genes annotated with the Gene Ontology (GO) term 'sperm motility' differed in sperm collected from healthy men and men diagnosed with oligoasthenozoospermia. Reverse transcription quantitative real-time PCR (RT-qPCR), quantitative mass spectrometry (LC-MS/MS), and enrichment analyses were used to validate a set of 132 genes in 198 men present at an infertility clinic. Out of the 132 studied sperm-motility-associated genes, 114 showed differentially expressed levels in oligoasthenozoospermic men compared to those of normozoospermic controls using an RT-qPCR analysis. Of these, 94 genes showed a significantly lower expression level, and 20 genes showed a significantly higher expression level. An MS analysis of sperm from an independent cohort of healthy and subfertile men identified 692 differentially expressed proteins, of which 512 were significantly lower and 180 were significantly higher in oligoasthenozoospermic men compared to those of the normozoospermic controls. Of the 58 gene products quantified with both techniques, 48 (82.75%) showed concordant regulation. Besides the sperm-motility-associated proteins, the unbiased proteomics approach uncovered several novel proteins whose expression levels were specifically altered in abnormal sperm samples. Among these deregulated proteins, there was a clear overrepresentation of annotation terms related to sperm integrity, the cytoskeleton, and energy-related metabolism, as well as human phenotypes related to spermatogenesis and sperm-related abnormalities. These findings suggest that many of these proteins may serve as diagnostic markers of male infertility. Our study reveals an extended number of sperm-motility-associated genes with altered expression levels in the sperm of men with oligoasthenozoospermia. These genes and/or proteins can be used in the future for better assessments of male factor infertility.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman 11733, Jordan
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Markus Raeschle
- Department of Molecular Genetics, TU Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
40
|
Becker LS, Al Smadi MA, Raeschle M, Rishik S, Abdul-Khaliq H, Meese E, Abu-Halima M. Proteomic Landscape of Human Sperm in Patients with Different Spermatogenic Impairments. Cells 2023; 12:cells12071017. [PMID: 37048090 PMCID: PMC10093380 DOI: 10.3390/cells12071017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Although the proteome of sperm has been characterized, there is still a lack of high-throughput studies on dysregulated proteins in sperm from subfertile men, with only a few studies on the sperm proteome in asthenozoospermic and oligoasthenozoospermic men. Using liquid chromatography–mass spectrometry (LC-MS/MS) along with bioinformatics analyses, we investigated the proteomic landscape of sperm collected from subfertile men (n = 22), i.e., asthenozoospermic men (n = 13), oligoasthenozoospermic men (n = 9) and normozoospermic controls (n = 31). We identified 4412 proteins in human sperm. Out of these, 1336 differentially abundant proteins were identified in 70% of the samples. In subfertile men, 32 proteins showed a lower abundance level and 34 showed a higher abundance level when compared with normozoospermic men. Compared to normozoospermic controls, 95 and 8 proteins showed a lower abundance level, and 86 and 1 proteins showed a higher abundance level in asthenozoospermic and oligoasthenozoospermic men, respectively. Sperm motility and count were negatively correlated with 13 and 35 and positively correlated with 37 and 20 differentially abundant proteins in asthenozoospermic and oligoasthenozoospermic men, respectively. The combination of the proteins APCS, APOE, and FLOT1 discriminates subfertile males from normozoospermic controls with an AUC value of 0.95. Combined APOE and FN1 proteins discriminate asthenozoospermic men form controls with an AUC of 1, and combined RUVBL1 and TFKC oligoasthenozoospermic men with an AUC of 0.93. Using a proteomic approach, we revealed the proteomic landscape of sperm collected from asthenozoospermic or oligoasthenozoospermic men. Identified abundance changes of several specific proteins are likely to impact sperm function leading to subfertility. The data also provide evidence for the usefulness of specific proteins or protein combinations to support future diagnosis of male subfertility.
Collapse
Affiliation(s)
- Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Correspondence: (L.S.B.); (M.A.-H.)
| | - Mohammad A. Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman 11733, Jordan
| | - Markus Raeschle
- Department of Molecular Genetics, TU Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Shusruto Rishik
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence: (L.S.B.); (M.A.-H.)
| |
Collapse
|
41
|
Expression of SPAG7 and its regulatory microRNAs in seminal plasma and seminal plasma-derived extracellular vesicles of patients with subfertility. Sci Rep 2023; 13:3645. [PMID: 36871032 PMCID: PMC9985644 DOI: 10.1038/s41598-023-30744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Seminal plasma contains a variety of extracellular vesicles (EVs) that deliver RNAs including microRNAs (miRNAs) molecules. However, the roles of these EVs along with their delivered RNAs and their interactions with male infertility are not clear. Sperm-associated antigen 7 (SPAG 7) is expressed in male germ cells and plays a crucial role in several biological functions associated with sperm production and maturation. In this study, we aimed to identify the post-transcriptional regulation of SPAG7 in seminal plasma (SF-Native) and seminal plasma-derived extracellular vesicles (SF-EVs) collected from 87 men undergoing infertility treatment. Among the multiple binding sites for miRNAs within its 3'UTR of SPAG7, we identified the binding of four miRNAs (miR-15b-5p, miR-195-5p, miR-424-5p, and miR-497-5p) to the 3'UTR of SPAG7 by the dual luciferase assays. Analyzing sperm, we found reduced mRNA expression levels of SPAG7 in SF-EVs and SF-Native samples from oligoasthenozoospermic men. By contrast, two miRNAs (miR-424-5p and miR-497-5p) form the SF-Native samples, and four miRNAs (miR-195-5p, miR-424-5p, miR-497-5p, and miR-6838-5p) from the SF-EVs samples showed significantly higher expression levels in oligoasthenozoospermic men. The expression levels of miRNAs and SPAG7 were significantly correlated with basic semen parameters. These findings contribute significantly to our understanding of regulatory pathways in male fertility by showing a direct link between upregulated miRNA, notably miR-424, and downregulated SPAG7 both in seminal plasma and in plasma-derived EVs likely contributing to oligoasthenozoospermia.
Collapse
|
42
|
Saberiyan M, Karimi E, Safi A, Movahhed P, Dehdehi L, Haririan N, Mirfakhraie R. Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility. Reprod Sci 2023; 30:62-71. [PMID: 35178677 DOI: 10.1007/s43032-022-00885-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/09/2022] [Indexed: 01/06/2023]
Abstract
Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs involved in several cellular and biological processes, including gene expression regulation, microRNA function, transcription regulation, and translation modification. Therefore, these non-coding RNAs have important roles in the pathogenesis of various diseases. Male infertility is mainly due to abnormal sperm parameters such as motility, morphology, and concentration. Recent studies have confirmed the role of circRNAs in spermatogenesis, and the expression of several circRNAs is confirmed in seminal plasma, spermatozoa, and testicular tissue. It is suggested that deregulation of circRNAs is involved in different types of male infertility, including azoospermia, oligozoospermia, and asthenozoospermia. In the present review, we aimed to discuss the potential roles of circRNAs in spermatogenesis failure, sperm defects, and male infertility. Due to their conserved and special structure and tissue-specific expression pattern, circRNAs can be applied as reliable noninvasive molecular biomarkers, therapeutic and pharmaceutical targets in male infertility.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Karimi
- Department of Medical Genetics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Young Researchers and Elite Club, Islamic Azad University, Najafabad Branch, , Najafabad, Iran
| | - Parvaneh Movahhed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dehdehi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Haririan
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St, Velenjak Ave, Chamran highway, 19395-4719, Tehran, Iran.
| |
Collapse
|
43
|
Li HM, Wan XY, Zhao JY, Liang XM, Dai Y, Li HG. Promising novel biomarkers and therapy targets: The application of cell-free seminal nucleotides in male reproduction research. Transl Res 2022; 256:73-86. [PMID: 36586533 DOI: 10.1016/j.trsl.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Liquid biopsy has the advantage of diagnosing diseases in a non-invasive manner. Seminal plasma contains secretions from the bilateral testes, epididymides, seminal vesicles, bulbourethral glands, and the prostate. These organs are relatively small and contain delicate tubes that are prone to damage by invasive diagnosis. Cell-free seminal nucleic acids test is a newly emerged item in liquid biopsy. Here, we present a comprehensive overview of all known cell-free DNA and cell-free RNAs (mRNA, miRNA, lncRNA, circRNA, piRNA, YRNA, tsRNA, etc.) and discuss their roles as biomarker candidates in liquid biopsy. With great advantages, including high stability, sensitivity, representability, and non-invasiveness, cell-free DNA/RNAs may be developed as promising biomarkers for the screening, diagnosis, prognosis, and follow-up of diseases in semen-secreting organs. Moreover, RNAs in semen may participate in important processes, including sperm maturation, early embryo development, and transgenerational disease inheritance, which may be developed as potential treatment targets for future clinical use.
Collapse
Affiliation(s)
- Hui-Min Li
- Guilin Medical University, Guilin, 541004, P. R. China
| | - Xiao-Yan Wan
- Department of Obstetrics and gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, P. R. China
| | - Jie-Yi Zhao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu-Ming Liang
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Yun Dai
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China.
| |
Collapse
|
44
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
45
|
Association between Sperm Morphology and Altered Sperm microRNA Expression. BIOLOGY 2022; 11:biology11111671. [PMID: 36421385 PMCID: PMC9687816 DOI: 10.3390/biology11111671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Sperm morphology is usually determined subjectively, and studies focused exclusively on sperm morphology are scarce. There is a global tendency to find objective markers of spermatozoa quality, including sperm morphology, as this will allow for a more personalized approach to managing and treating male infertility. MicroRNAs (miRNAs) are widely recognized as promising putative and objective biomarkers. In our study, we included 15 patients with normal sperm morphology and 13 patients with abnormal sperm morphology. We determined the expression profiles of 13 different miRNAs in the sperm of these participants and revealed that 9 miRNAs could serve as potential biomarkers of sperm morphology in spermatozoa. Abstract Evaluation of male infertility has been based on semen analysis for years. As this method can be subjective at times, there is a scientific tendency to discover stable and quantifiable biomarkers. This study included 28 couples who underwent an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle. The couples were assigned into two groups, according to sperm morphology. Couples where the males were normozoospermic were placed in the control group (15 participants), while couples where males had teratozoospermia were placed in the study group (13 participants). Thirteen candidate miRNAs were selected for qPCR analysis, based on our literature search. We determined significant under-expression of nine miRNAs (miR-10a-5p/-15b-5p/-26a-5p/-34b-3p/-122-5p/-125b-5p/-191-5p/-296-5p and let-7a-5p) in spermatozoa from patients with teratozoospermia compared to the controls, whereas expression levels of four miRNAs (miR-92a-3p/-93-3p/-99b-5p/-328-3p) did not significantly differ between the study and control groups. The expression levels of all 13 included miRNAs were significantly positively correlated with each other and significantly positively associated with spermatozoa morphology, excluding miR-99b-5p. There were no other significant associations between miRNA expression and sperm quality parameters. Only expression levels of miR-99b-5p were significantly positively correlated with good-quality day 3 embryo rate (ρ = 0.546; p = 0.003), while other variables of the IVF/ICSI cycle outcome showed no significant associations with miRNA expression profiles. This is one of the rare studies providing an insight directly into miRNA profiles in regard to sperm morphology. We identified nine miRNAs that could serve as biomarkers of spermatozoa quality in regard to teratozoospermia.
Collapse
|
46
|
Yahaya TO, Bashar DM, Oladele EO, Umar J, Anyebe D, Izuafa A. Epigenetics in the etiology and management of infertility. World J Med Genet 2022; 10:7-21. [DOI: 10.5496/wjmg.v10.i2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic disruptions have been implicated in some cases of infertility and can serve as therapeutic targets. However, the involvement of epigenetics in infertility has not received adequate attention.
AIM This study aimed to determine the epigenetic basis of infertility in order to enhance public knowledge.
METHODS Relevant articles on the subject were collected from PubMed, RCA, Google Scholar, SpringerLink, and Scopus. The articles were pooled together and duplicates were removed using Endnote software.
RESULTS Available information shows that epigenetic mechanisms, mainly DNA methylation, histone modification, and microRNA interference are necessary for normal gametogenesis and embryogenesis. As a result, epigenetic disruptions in genes that control gametogenesis and embryogenesis, such as DDX3X, ADH4, AZF, PLAG1, D1RAS3, CYGB, MEST, JMJD1A, KCNQ1, IGF2, H19, and MTHFR may result in infertility. Aberrant DNA methylation during genomic imprinting and parental epigenetic mark erasures, in particular, may affect the DNA epigenomes of sperm and oocytes, resulting in reproductive abnormalities. Histone epigenetic dysregulation during oocyte development and histone-protamine replacement in the sperm may also cause reproductive abnormalities. Furthermore, overexpression or repression of certain microRNAs embedded in the ovary, testis, embryo, as well as granulosa cells and oocytes may impair reproduction. Male infertility is characterized by spermatogenesis failure, which includes oligozoospermia, asthenozoospermia, and teratozoospermia, while female infertility is characterized by polycystic ovary syndrome. Some epigenetic modifications can be reversed by deactivating the regulatory enzymes, implying that epigenetic reprogramming could help treat infertility in some cases. For some disorders, epigenetic drugs are available, but none have been formulated for infertility.
CONCLUSION Some cases of infertility have an epigenetic etiology and can be treated by reversing the same epigenetic mechanism that caused it. As a result, medical practitioners are urged to come up with epigenetic treatments for infertility that have an epigenetic cause.
Collapse
Affiliation(s)
| | - Danlami M Bashar
- Department of Microbiology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Esther O Oladele
- Biology Unit, Distance Learning Institute, University of Lagos, Lagos State 23401, Nigeria
| | - Ja'afar Umar
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Daniel Anyebe
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Abdulrazaq Izuafa
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| |
Collapse
|
47
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
48
|
Ghasemi S, Shafiee M, Ferns GA, Tavakol-Afshari J, Saeedi M, Raji S, Mobarra N. Differentiation of Human Wharton Jelly Mesenchymal Stem Cells into Germ-Like Cells; emphasis on evaluation of Germ-long non-coding RNAs. Mol Biol Rep 2022; 49:11901-11912. [PMID: 36241921 DOI: 10.1007/s11033-022-07961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The proliferation and differentiation of stem cells into Germ-Like Cells (GLCs) is mediated by several growth factors and specific genes, of which some are related to long non-coding RNAs (lncRNAs). We have developed a modified differentiation process and identified a panel of GermlncRNAs related to GLCs. METHODS Human Wharton Jelly Mesenchymal Stem Cells were treated with 25 ng/ml Bone Morphogenetic Protein (BMP)-4 and 10- 5 M all-trans retinoic acid to differentiate them into germ-like cells. To confirm the differentiation, changes in the expression of Oct-4, C-kit, Stella, and Vasa genes were assessed using quantitative Real-Time PCR (qPCR) and immunocytochemistry. QPCR was also used before and after differentiation to evaluate the changes in a lncRNA panel, using a 96-well array. Statistical analysis of the data was performed by SPSS 21. RESULTS After 21 days of induction, the HWJ-MSCs derived germ-like cells were formed. Also, qPCR and immunocytochemistry showed that the pluripotent Oct4 marker was expressed in the undifferentiated HWJ-MSCs, but its expression gradually decreased in the differentiated cells. C-kit was expressed on days 7, 14, and 21 of differentiation. Both GLC markers of Stella and Vasa genes/proteins were present only in differentiated cells. Of the 44 lncRNA genes array, 36 of them showed an increase and eight genes showed a decrease. CONCLUSION Our study showed that BMP4 and RA are effective in inducing HWJ-MSCs differentiation into GLCs. In addition, our study for the first time showed changes in the lncRNAs expression during the differentiation of HWJ-MSCs into GLCs by using BMP4 and RA.
Collapse
Affiliation(s)
- Samira Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shafiee
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Jalil Tavakol-Afshari
- Department of Immunology, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Raji
- Persian Cohort Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Mobarra
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University Of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Moon N, Morgan C, Bale TL. Rebuttal from Nickole Moon, Christopher Morgan and Tracy L. Bale. J Physiol 2022; 600:4417-4418. [PMID: 36190177 PMCID: PMC10100273 DOI: 10.1113/jp283563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nickole Moon
- Department of Psychiatry, University of Colorado, Aurora, CO, USA
| | | | - Tracy L Bale
- Department of Psychiatry, University of Colorado, Aurora, CO, USA
| |
Collapse
|
50
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|