1
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
2
|
BORA J, MALIK S, KISHORE S, RUSTAGI S, AHMAD F, FAGOONEE S, PELLICANO R, HAQUE S. Therapeutic applications of CRISPR-Cas9 in diabetes mellitus: a perspective review. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 35. [DOI: 10.23736/s2724-542x.23.02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
3
|
Bora J, Dey A, Lyngdoh AR, Dhasmana A, Ranjan A, Kishore S, Rustagi S, Tuli HS, Chauhan A, Rath P, Malik S. A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3459-3481. [PMID: 37522916 DOI: 10.1007/s00210-023-02631-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Diabetes mellitus (D.M.) is a common metabolic disorder caused mainly by combining two primary factors, which are (1) defects in insulin production by the pancreatic β-cells and (2) responsiveness of insulin-sensitive tissues towards insulin. Despite the rapid advancement in medicine to suppress elevated blood glucose levels (hyperglycemia) and insulin resistance associated with this hazard, a demand has undoubtedly emerged to find more effective and curative dimensions in therapeutic approaches against D.M. The administration of diabetes treatment that emphasizes insulin production and sensitivity may result in unfavorable side effects, reduced adherence, and potential treatment ineffectiveness. Recent progressions in genome editing technologies, for instance, in zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR-Cas)-associated nucleases, have greatly influenced the gene editing technology from concepts to clinical practices. Improvements in genome editing technologies have also opened up the possibility to target and modify specific genome sequences in a cell directly. CRISPR/Cas9 has proven effective in utilizing ex vivo gene editing in embryonic stem cells and stem cells derived from patients. This application has facilitated the exploration of pancreatic beta-cell development and function. Furthermore, CRISPR/Cas9 enables the creation of innovative animal models for diabetes and assesses the effectiveness of different therapeutic strategies in treating the condition. We, therefore, present a critical review of the therapeutic approaches of the genome editing tool CRISPR-Cas9 in treating D.M., discussing the challenges and limitations of implementing this technology.
Collapse
Affiliation(s)
- Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India
| | - Ankita Dey
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Antonia R Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, 344090, Russia
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India.
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India.
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India.
| |
Collapse
|
4
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
5
|
Ni H, Xi J, Tang J, Yan Y, Chu Y, Zhou J. Therapeutic Potential of Extracellular Vesicles from Different Stem Cells in Chronic Wound Healing. Stem Cell Rev Rep 2023; 19:1596-1614. [PMID: 37178227 DOI: 10.1007/s12015-023-10540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Wound healing has long been a complex problem, especially in chronic wounds. Although debridement, skin grafting, and antimicrobial dressings have been used to treat chronic wounds, their treatment period is long, expensive, and has specific rejection reactions. The poor treatment results of traditional methods have caused psychological stress to patients and a substantial economic burden to society. Extracellular vesicles (EVs) are nanoscale vesicles secreted by cells. They play an essential role in intercellular communication. Numerous studies have confirmed that stem cell-derived extracellular vesicles (SC-EVs) can inhibit overactive inflammation, induce angiogenesis, promote re-epithelization, and reduce scar formation. Therefore, SC-EVs are expected to be a novel cell-free strategy for chronic wound treatment. We first summarize the pathological factors that hinder wound healing and discuss how SC-EVs accelerate chronic wound repair. And then, we also compare the advantages and disadvantages of different SC-EVs for chronic wound treatment. Finally, we discuss the limitations of SC-EVs usage and provide new thoughts for future SC-EVs research in chronic wound treatment.
Collapse
Affiliation(s)
- Haoxi Ni
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianbo Xi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
| | - Jianjun Tang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of General Surgery, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Ying Chu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| | - Jing Zhou
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| |
Collapse
|
6
|
Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomater Res 2023; 27:67. [PMID: 37420273 DOI: 10.1186/s40824-023-00382-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 07/09/2023] Open
Abstract
Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering strategies have been used to advance iPSC-based personalized medicine by categorizing the development process into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step in the development of iPSC-based personalized medicine.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shahidul Ahmed Khan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
7
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
8
|
Fung C, Wilding B, Schittenhelm RB, Bryson-Richardson RJ, Bird PI. Expression of the Z Variant of α1-Antitrypsin Suppresses Hepatic Cholesterol Biosynthesis in Transgenic Zebrafish. Int J Mol Sci 2023; 24:ijms24032475. [PMID: 36768797 PMCID: PMC9917206 DOI: 10.3390/ijms24032475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.
Collapse
Affiliation(s)
- Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne 3800, Australia
| | | | - Phillip I. Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| |
Collapse
|
9
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
10
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
11
|
Horiuchi S, Kuroda Y, Komizu Y, Ishida S. Consideration of Commercially Available Hepatocytes as Cell Sources for Liver-Microphysiological Systems by Comparing Liver Characteristics. Pharmaceutics 2022; 15:pharmaceutics15010055. [PMID: 36678684 PMCID: PMC9867117 DOI: 10.3390/pharmaceutics15010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, microphysiological systems (MPS) have been developed to shorten the test period and reduce animal experiments for drug development. We examined cell sources for the liver-MPS, i.e., MPS mimicking liver function. For liver-MPS, liver-like cells with high liver functions are required. Cryo-preserved hepatocytes (cryoheps), the gold standard hepatocytes for in vitro drug development, present several disadvantages, including differences between lots due to individual donor variations or a limited cell supply from the same donor. As such, alternatives for cryoheps are sought. Hepatocyte-like cells derived from human induced pluripotent stem cells (hiPSC-Heps), hepatocytes derived from liver-humanized mice (PXB-cells), and human liver cancer cells (HepG2 cells) were examined as source candidates for liver-MPS. Gene expression levels of the major cytochrome P450 of hiPSC-Heps, PXB cells, and HepG2 cells were compared with 22 lots of cryoheps, and the activities of hiPSC-Heps were compared with 8 lots of cryopreserved hepatocytes. A focused DNA microarray was used for the global gene analysis of the liver-like characteristics of hiPSC-Heps, PXB-cells, cryoheps, and HepG2 cells. Gene expression data from the focused microarray were analyzed by principal component analysis, hierarchical clustering, and enrichment analysis. The results indicated the characteristics of individual hepatocyte cell source and raised their consideration points as an alternative cell source candidate for liver-MPS. The study contributes to the repetitive utilization of a robust in vitro hepatic assay system over long periods with stable functionality.
Collapse
Affiliation(s)
- Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yukie Kuroda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuji Komizu
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, Kumamoto 860-0082, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, Kumamoto 860-0082, Japan
- Correspondence: ; Tel.: +81-96-326-3696
| |
Collapse
|
12
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022; 18:2757-2780. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/09/2022]
Abstract
Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Motomura T, Faccioli LA, Diaz-Aragon R, Kocas-Kilicarslan ZN, Haep N, Florentino RM, Amirneni S, Cetin Z, Peri BS, Morita K, Ostrowska A, Takeishi K, Soto-Gutierrez A, Tafaleng EN. From a Single Cell to a Whole Human Liver: Disease Modeling and Transplantation. Semin Liver Dis 2022; 42:413-422. [PMID: 36044927 PMCID: PMC9718640 DOI: 10.1055/a-1934-5404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the underlying cause may vary across countries and demographic groups, liver disease is a major cause of morbidity and mortality globally. Orthotopic liver transplantation is the only definitive treatment for liver failure but is limited by the lack of donor livers. The development of drugs that prevent the progression of liver disease and the generation of alternative liver constructs for transplantation could help alleviate the burden of liver disease. Bioengineered livers containing human induced pluripotent stem cell (iPSC)-derived liver cells are being utilized to study liver disease and to identify and test potential therapeutics. Moreover, bioengineered livers containing pig hepatocytes and endothelial cells have been shown to function and survive after transplantation into pig models of liver failure, providing preclinical evidence toward future clinical applications. Finally, bioengineered livers containing human iPSC-derived liver cells have been shown to function and survive after transplantation in rodents but require considerable optimization and testing prior to clinical use. In conclusion, bioengineered livers have emerged as a suitable tool for modeling liver diseases and as a promising alternative graft for clinical transplantation. The integration of novel technologies and techniques for the assembly and analysis of bioengineered livers will undoubtedly expand future applications in basic research and clinical transplantation.
Collapse
Affiliation(s)
- Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lanuza A.P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bhaavna S. Peri
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazutoyo Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Takeishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Chunduri V, Maddi S. Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review. ADMET & DMPK 2022; 11:1-32. [PMID: 36778905 PMCID: PMC9909725 DOI: 10.5599/admet.1513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Drug discovery and development have become a very time-consuming and expensive process. Preclinical animal models have become the gold standard for studying drug pharmacokinetic and toxicity parameters. However, the involvement of a huge number of animal subjects and inter-species pathophysiological variations between animals and humans has provoked a lot of debate, particularly because of ethical concerns. Although many efforts are being established by biotech and pharmaceutical companies for screening new chemical entities in vitro before preclinical trials, failures during clinical trials are still involved. Currently, a large number of two- dimensional (2D) in vitro assays have been developed and are being developed by researchers for the screening of compounds. Although these assays are helpful in screening a huge library of compounds and have shown perception, there is a significant lack in predicting human Absorption, Distribution, Metabolism, Excretion and Toxicology (ADME-Tox). As a result, these assays cannot completely replace animal models. The recent inventions in three-dimensional (3D) cell culture-based assays like organoids and micro-physiological systems have shown great potential alternative tools for predicting the compound pharmacokinetic and pharmacodynamic fate in humans. In this comprehensive review, we have summarized some of the most commonly used 2D in vitro assays and emphasized the achievements in next-generation 3D cell culture-based systems for predicting the compound ADME-Tox.
Collapse
|
15
|
Carberry CK, Ferguson SS, Beltran AS, Fry RC, Rager JE. Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicol In Vitro 2022; 83:105412. [PMID: 35688329 PMCID: PMC9296547 DOI: 10.1016/j.tiv.2022.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen S Ferguson
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, USA
| | - Adriana S Beltran
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2022; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
18
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
19
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
20
|
Shukla AK, Gao G, Kim BS. Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering. MICROMACHINES 2022; 13:155. [PMID: 35208280 PMCID: PMC8876961 DOI: 10.3390/mi13020155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are essentially produced by the genetic reprogramming of adult cells. Moreover, iPSC technology prevents the genetic manipulation of embryos. Hence, with the ensured element of safety, they rarely cause ethical concerns when utilized in tissue engineering. Several cumulative outcomes have demonstrated the functional superiority and potency of iPSCs in advanced regenerative medicine. Recently, an emerging trend in 3D bioprinting technology has been a more comprehensive approach to iPSC-based tissue engineering. The principal aim of this review is to provide an understanding of the applications of 3D bioprinting in iPSC-based tissue engineering. This review discusses the generation of iPSCs based on their distinct purpose, divided into two categories: (1) undifferentiated iPSCs applied with 3D bioprinting; (2) differentiated iPSCs applied with 3D bioprinting. Their significant potential is analyzed. Lastly, various applications for engineering tissues and organs have been introduced and discussed in detail.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
21
|
Yao J, Yu Y, Nyberg SL. Induced Pluripotent Stem Cells for the Treatment of Liver Diseases: Novel Concepts. Cells Tissues Organs 2022; 211:368-384. [PMID: 32615573 PMCID: PMC7775900 DOI: 10.1159/000508182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Millions of people worldwide with incurable liver disease die because of inadequate treatment options and limited availability of donor organs for liver transplantation. Regenerative medicine as an innovative approach to repairing and replacing cells, tissues, and organs is undergoing a major revolution due to the unprecedented need for organs for patients around the world. Induced pluripotent stem cells (iPSCs) have been widely studied in the field of liver regeneration and are considered to be the most promising candidate therapies. This review will conclude the current state of efforts to derive human iPSCs for potential use in the modeling and treatment of liver disease.
Collapse
Affiliation(s)
- Jia Yao
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Clinical Research and Project Management Office, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing, China
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Corresponding Author: Scott L. Nyberg, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA, Tel: Rochester, MN 55905, USA, Fax: (507) 284-2511,
| |
Collapse
|
22
|
Tian L, Wang Y, Jang YY. Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood) 2021; 247:360-367. [PMID: 34861115 DOI: 10.1177/15353702211061376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.
Collapse
Affiliation(s)
- Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichen Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoon Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2021; 17:267-279. [PMID: 34819011 DOI: 10.2174/1574888x16666211124095527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.
Collapse
Affiliation(s)
- Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Biotechnology, Stem Cell Physiology, Höltystr 10, 31535 Neustadt. Germany
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Thirumala Rao Talluri
- Equine Production Campus, ICAR- National Research Centre on Equines, Bikaner-334001, Rajasthan. India
| |
Collapse
|
24
|
Werder RB, Kaserman JE, Packer MS, Lindstrom-Vautrin J, Villacorta-Martin C, Young LE, Aratyn-Schaus Y, Gregoire F, Wilson AA. Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Mol Ther 2021; 29:3219-3229. [PMID: 34217893 PMCID: PMC8571173 DOI: 10.1016/j.ymthe.2021.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is most commonly caused by the Z mutation, a single-base substitution that leads to AAT protein misfolding and associated liver and lung disease. In this study, we apply adenine base editors to correct the Z mutation in patient induced pluripotent stem cells (iPSCs) and iPSC-derived hepatocytes (iHeps). We demonstrate that correction of the Z mutation in patient iPSCs reduces aberrant AAT accumulation and increases its secretion. Adenine base editing (ABE) of differentiated iHeps decreases ER stress in edited cells, as demonstrated by single-cell RNA sequencing. We find ABE to be highly efficient in iPSCs and do not identify off-target genomic mutations by whole-genome sequencing. These results reveal the feasibility and utility of base editing to correct the Z mutation in AATD patient cells.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Joseph E Kaserman
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
25
|
González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. Int J Mol Sci 2021; 22:10355. [PMID: 34638696 PMCID: PMC8509008 DOI: 10.3390/ijms221910355] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in programmable nucleases including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) have propelled genome editing from explorative research to clinical and industrial settings. Each technology, however, features distinct modes of action that unevenly impact their applicability across the entire genome and are often tested under significantly different conditions. While CRISPR-Cas is currently leading the field due to its versatility, quick adoption, and high degree of support, it is not without limitations. Currently, no technology can be regarded as ideal or even applicable to every case as the context dictates the best approach for genetic modification within a target organism. In this review, we implement a four-pillar framework (context, feasibility, efficiency, and safety) to assess the main genome editing platforms, as a basis for rational decision-making by an expanding base of users, regulators, and consumers. Beyond carefully considering their specific use case with the assessment framework proposed here, we urge stakeholders interested in genome editing to independently validate the parameters of their chosen platform prior to commitment. Furthermore, safety across all applications, particularly in clinical settings, is a paramount consideration and comprehensive off-target detection strategies should be incorporated within workflows to address this. Often neglected aspects such as immunogenicity and the inadvertent selection of mutants deficient for DNA repair pathways must also be considered.
Collapse
Affiliation(s)
- Nicolás González Castro
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Jan Bjelic
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Gunya Malhotra
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Cong Huang
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Salman Hasan Alsaffar
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
- Biotechnology Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| |
Collapse
|
26
|
Ferrari E, Rasponi M. Liver-Heart on chip models for drug safety. APL Bioeng 2021; 5:031505. [PMID: 34286172 PMCID: PMC8282347 DOI: 10.1063/5.0048986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Current pre-clinical models to evaluate drug safety during the drug development process (DDP) mainly rely on traditional two-dimensional cell cultures, considered too simplistic and often ineffective, or animal experimentations, which are costly, time-consuming, and not truly representative of human responses. Their clinical translation thus remains limited, eventually causing attrition and leading to high rates of failure during clinical trials. These drawbacks can be overcome by the recently developed Organs-on-Chip (OoC) technology. OoC are sophisticated in vitro systems capable of recapitulating pivotal architecture and functionalities of human organs. OoC are receiving increasing attention from the stakeholders of the DDP, particularly concerning drug screening and safety applications. When a drug is administered in the human body, it is metabolized by the liver and the resulting compound may cause unpredicted toxicity on off-target organs such as the heart. In this sense, several liver and heart models have been widely adopted to assess the toxicity of new or recalled drugs. Recent advances in OoC technology are making available platforms encompassing multiple organs fluidically connected to efficiently assess and predict the systemic effects of compounds. Such Multi-Organs-on-Chip (MOoC) platforms represent a disruptive solution to study drug-related effects, which results particularly useful to predict liver metabolism on off-target organs to ultimately improve drug safety testing in the pre-clinical phases of the DDP. In this review, we focus on recently developed liver and heart on chip systems for drug toxicity testing. In addition, MOoC platforms encompassing connected liver and heart tissues have been further reviewed and discussed.
Collapse
Affiliation(s)
- Erika Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
27
|
From Cells to Organs: The Present and Future of Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:135-149. [PMID: 34327664 DOI: 10.1007/5584_2021_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regenerative medicine promises a bright future where damaged body parts can be restored, rejuvenated, and replaced. The application of regenerative medicine is interdisciplinary and covers nearly all fields of medical sciences and molecular engineering. This review provides a road map on how regenerative medicine is applied on the levels of cell, tissue, and organ and summarizes the advantages and limitation of human pluripotent stem cells in disease modeling and regenerative application.
Collapse
|
28
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
29
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
30
|
Zhang L, Pu K, Liu X, Bae SDW, Nguyen R, Bai S, Li Y, Qiao L. The Application of Induced Pluripotent Stem Cells Against Liver Diseases: An Update and a Review. Front Med (Lausanne) 2021; 8:644594. [PMID: 34277651 PMCID: PMC8280311 DOI: 10.3389/fmed.2021.644594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Liver diseases are a major health concern globally, and are associated with poor survival and prognosis of patients. This creates the need for patients to accept the main alternative treatment of liver transplantation to prevent progression to end-stage liver disease. Investigation of the molecular mechanisms underpinning complex liver diseases and their pathology is an emerging goal of stem cell scope. Human induced pluripotent stem cells (hiPSCs) derived from somatic cells are a promising alternative approach to the treatment of liver disease, and a prospective model for studying complex liver diseases. Here, we review hiPSC technology of cell reprogramming and differentiation, and discuss the potential application of hiPSC-derived liver cells, such as hepatocytes and cholangiocytes, in refractory liver-disease modeling and treatment, and drug screening and toxicity testing. We also consider hiPSC safety in clinical applications, based on genomic and epigenetic alterations, tumorigenicity, and immunogenicity.
Collapse
Affiliation(s)
- Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xiaojun Liu
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Suyang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yi Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| |
Collapse
|
31
|
Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, Huebsch N, Okochi H, Hancock MJ, Siemons B, Boggess SC, Goswami I, Miller EW, Willenbring H, Healy KE. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Front Pharmacol 2021; 12:667010. [PMID: 34025426 PMCID: PMC8138446 DOI: 10.3389/fphar.2021.667010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS—both created with the same hiPSC line—to study drug–drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Alexander Laemmle
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.,Institute of Clinical Chemistry and Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Verena Charwat
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Laure Dumont
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Caleb S Lee
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Nathaniel Huebsch
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, United States
| | | | - Brian Siemons
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Steven C Boggess
- Department of Chemistry, University of California Berkeley, Berkeley, CA, United States
| | - Ishan Goswami
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| | - Holger Willenbring
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Kevin E Healy
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
32
|
Tafaleng EN, Malizio MR, Fox IJ, Soto-Gutierrez A. Synthetic human livers for modeling metabolic diseases. Curr Opin Gastroenterol 2021; 37:224-230. [PMID: 33769378 PMCID: PMC8223234 DOI: 10.1097/mog.0000000000000726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In this review, we will explore recent advances in human induced pluripotent stem cell (iPSC)-based modeling of metabolic liver disease and biofabrication of synthetic human liver tissue while also discussing the emerging concept of synthetic biology to generate more physiologically relevant liver disease models. RECENT FINDING iPSC-based platforms have facilitated the study of underlying cellular mechanisms and potential therapeutic strategies for a number of metabolic liver diseases. Concurrently, rapid progress in biofabrication and gene editing technologies have led to the generation of human hepatic tissue that more closely mimic the complexity of the liver. SUMMARY iPSC-based liver tissue is rapidly becoming available for modeling liver physiology due to its ability to recapitulate the complex three-dimensional architecture of the liver and recapitulate interactions between the different cell types and their surroundings. These mini livers have also been used to recapitulate liver disease pathways using the tools of synthetic biology, such as gene editing, to control gene circuits. Further development in this field will undoubtedly bolster future investigations not only in disease modeling and basic research, but also in personalized medicine and autologous transplantation.
Collapse
Affiliation(s)
- Edgar N. Tafaleng
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | - Michelle R. Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | - Ira J. Fox
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries. Int J Mol Sci 2021; 22:ijms22041875. [PMID: 33668611 PMCID: PMC7917825 DOI: 10.3390/ijms22041875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.
Collapse
|
34
|
Wang L, Ye Z, Jang YY. Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Exp Biol Med (Maywood) 2021; 246:861-875. [PMID: 33467883 DOI: 10.1177/1535370220985808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.
Collapse
Affiliation(s)
- Lin Wang
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhaohui Ye
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yoon-Young Jang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Oliveira AG, Fiorotto R. Novel approaches to liver disease diagnosis and modeling. Transl Gastroenterol Hepatol 2021; 6:19. [PMID: 33824923 PMCID: PMC7829068 DOI: 10.21037/tgh-20-109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lack of a prompt and accurate diagnosis remains on top of the list of challenges faced by patients with rare liver diseases. Although rare liver diseases affect a significant percentage of the population as a group, when taken singularly they represent unique diseases and the approaches used for diagnosis of common liver diseases are insufficient. However, the development of new methods for the acquisition of molecular and clinical data (i.e., genomic, proteomics, metabolomics) and computational tools for their analysis and integration, together with advances in modeling diseases using stem cell-based technology [i.e., induced pluripotent stem cells (iPSCs) and tissue organoids] represent a promising and powerful tool to improve the clinical management of these patients. This is the goal of precision medicine, a novel approach of modern medicine that aims at delivering a specific treatment based on disease-specific biological insights and individual profile. This review will discuss the application and advances of these technologies and how they represent a new opportunity in hepatology.
Collapse
Affiliation(s)
- André G. Oliveira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
36
|
Parafati M, Bae SH, Kirby RJ, Fitzek M, Iyer P, Engkvist O, Smith DM, Malany S. Pluripotent Stem Cell-Derived Hepatocytes Phenotypic Screening Reveals Small Molecules Targeting the CDK2/4-C/EBPα/DGAT2 Pathway Preventing ER-Stress Induced Lipid Accumulation. Int J Mol Sci 2020; 21:ijms21249557. [PMID: 33334026 PMCID: PMC7765409 DOI: 10.3390/ijms21249557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a large impact on global health. At the onset of disease, NAFLD is characterized by hepatic steatosis defined by the accumulation of triglycerides stored as lipid droplets. Developing therapeutics against NAFLD and progression to non-alcoholic steatohepatitis (NASH) remains a high priority in the medical and scientific community. Drug discovery programs to identify potential therapeutic compounds have supported high throughput/high-content screening of in vitro human-relevant models of NAFLD to accelerate development of efficacious anti-steatotic medicines. Human induced pluripotent stem cell (hiPSC) technology is a powerful platform for disease modeling and therapeutic assessment for cell-based therapy and personalized medicine. In this study, we applied AstraZeneca’s chemogenomic library, hiPSC technology and multiplexed high content screening to identify compounds that significantly reduced intracellular neutral lipid content. Among 13,000 compounds screened, we identified hits that protect against hiPSC-derived hepatic endoplasmic reticulum stress-induced steatosis by a mechanism of action including inhibition of the cyclin D3-cyclin-dependent kinase 2-4 (CDK2-4)/CCAAT-enhancer-binding proteins (C/EBPα)/diacylglycerol acyltransferase 2 (DGAT2) pathway, followed by alteration of the expression of downstream genes related to NAFLD. These findings demonstrate that our phenotypic platform provides a reliable approach in drug discovery, to identify novel drugs for treatment of fatty liver disease as well as to elucidate their underlying mechanisms.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.P.); (S.H.B.)
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Sang Hyo Bae
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.P.); (S.H.B.)
| | - R. Jason Kirby
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, UK;
| | - Preeti Iyer
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, 431 83 Mölndal, Sweden; (P.I.); (O.E.)
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, 431 83 Mölndal, Sweden; (P.I.); (O.E.)
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge SG8 6HB, UK;
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.P.); (S.H.B.)
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Correspondence: ; Tel.: +352-273-6400
| |
Collapse
|
37
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
38
|
iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020; 21:ijms21176215. [PMID: 32867371 PMCID: PMC7503935 DOI: 10.3390/ijms21176215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the most common treatment for patients suffering from liver failure that is caused by congenital diseases, infectious agents, and environmental factors. Despite a high rate of patient survival following transplantation, organ availability remains the key limiting factor. As such, research has focused on the transplantation of different cell types that are capable of repopulating and restoring liver function. The best cellular mix capable of engrafting and proliferating over the long-term, as well as the optimal immunosuppression regimens, remain to be clearly well-defined. Hence, alternative strategies in the field of regenerative medicine have been explored. Since the discovery of induced pluripotent stem cells (iPSC) that have the potential of differentiating into a broad spectrum of cell types, many studies have reported the achievement of iPSCs differentiation into liver cells, such as hepatocytes, cholangiocytes, endothelial cells, and Kupffer cells. In parallel, an increasing interest in the study of self-assemble or matrix-guided three-dimensional (3D) organoids have paved the way for functional bioartificial livers. In this review, we will focus on the recent breakthroughs in the development of iPSCs-based liver organoids and the major drawbacks and challenges that need to be overcome for the development of future applications.
Collapse
|
39
|
Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J Clin Med 2020; 9:E2577. [PMID: 32784514 PMCID: PMC7463867 DOI: 10.3390/jcm9082577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions-cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)-alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.
Collapse
Affiliation(s)
- Lucía Bañuls
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Daniel Pellicer
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Silvia Castillo
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Paediatrics Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - María Mercedes Navarro-García
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - María Magallón
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Cruz González
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Pneumology Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Francisco Dasí
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| |
Collapse
|
40
|
Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2020; 51:340-349. [PMID: 32754843 DOI: 10.1007/s00595-020-02092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
41
|
Kaserman JE, Hurley K, Dodge M, Villacorta-Martin C, Vedaie M, Jean JC, Liberti DC, James MF, Higgins MI, Lee NJ, Washko GR, San Jose Estepar R, Teckman J, Kotton DN, Wilson AA. A Highly Phenotyped Open Access Repository of Alpha-1 Antitrypsin Deficiency Pluripotent Stem Cells. Stem Cell Reports 2020; 15:242-255. [PMID: 32619491 PMCID: PMC7363960 DOI: 10.1016/j.stemcr.2020.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Individuals with the genetic disorder alpha-1 antitrypsin deficiency (AATD) are at risk of developing lung and liver disease. Patient induced pluripotent stem cells (iPSCs) have been found to model features of AATD pathogenesis but only a handful of AATD patient iPSC lines have been published. To capture the significant phenotypic diversity of the patient population, we describe here the establishment and characterization of a curated repository of AATD iPSCs with associated disease-relevant clinical data. To highlight the utility of the repository, we selected a subset of iPSC lines for functional characterization. Selected lines were differentiated to generate both hepatic and lung cell lineages and analyzed by RNA sequencing. In addition, two iPSC lines were targeted using CRISPR/Cas9 editing to accomplish scarless repair. Repository iPSCs are available to investigators for studies of disease pathogenesis and therapeutic discovery.
Collapse
Affiliation(s)
- Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Killian Hurley
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark Dodge
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jyh-Chang Jean
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Derek C Liberti
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marianne F James
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Michelle I Higgins
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Nora J Lee
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | - Darrell N Kotton
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
42
|
Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 2020. [PMID: 32384610 DOI: 10.3390/genes11050511.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.
Collapse
|
43
|
Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hänchen V, Lee-Kirsch MA, Buchholz F. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 2020; 11:E511. [PMID: 32384610 PMCID: PMC7288465 DOI: 10.3390/genes11050511] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.
Collapse
Affiliation(s)
- Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Aksana Schneider
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
- Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Katrin Neumann
- Stem Cell Engineering Facility, Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany;
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Vanessa Hänchen
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| |
Collapse
|
44
|
Cotovio JP, Fernandes TG. Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering (Basel) 2020; 7:E36. [PMID: 32283585 PMCID: PMC7356351 DOI: 10.3390/bioengineering7020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.
Collapse
Affiliation(s)
| | - Tiago G. Fernandes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
45
|
Bulutoglu B, Rey-Bedón C, Mert S, Tian L, Jang YY, Yarmush ML, Usta OB. A comparison of hepato-cellular in vitro platforms to study CYP3A4 induction. PLoS One 2020; 15:e0229106. [PMID: 32106230 PMCID: PMC7046200 DOI: 10.1371/journal.pone.0229106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro studies of drug toxicity and drug-drug interactions are crucial for drug development efforts. Currently, the utilization of primary human hepatocytes (PHHs) is the de facto standard for this purpose, due to their functional xenobiotic response and drug metabolizing CYP450 enzyme metabolism. However, PHHs are scarce, expensive, require laborious maintenance, and exhibit lot-to-lot heterogeneity. Alternative human in vitro platforms include hepatic cell lines, which are easy to access and maintain, and induced pluripotent stem cell (iPSC) derived hepatocytes. In this study, we provide a direct comparison of drug induced CYP3A4 and PXR expression levels of PHHs, hepatic cell lines Huh7 and HepG2, and iPSC derived hepatocyte like cells. Confluently cultured Huh7s exhibited an improved CYP3A4 expression and were inducible by up to 4.9-fold, and hepatocytes differentiated from human iPSCs displayed a 3.3-fold CYP3A4 induction. In addition, an increase in PXR expression levels was observed in both hepatic cell lines and iPSC derived hepatocytes upon rifampicin treatment, whereas a reproducible increase in PXR expression was not achieved in PHHs. Our results indicate that both hepatoma originated cell lines and iPSCs may provide alternative sources to primary hepatocytes, providing reliable and reproducible results for CYP3A4/PXR metabolism, upon in vitro maturation. This study may serve as a guide for the selection of suitable and feasible in vitro platforms for drug-drug interaction and toxicology studies.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Camilo Rey-Bedón
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Safak Mert
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| |
Collapse
|
46
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
47
|
Wan H, Gu C, Gan Y, Wei X, Zhu K, Hu N, Wang P. Sensor-free and Sensor-based Heart-on-a-chip Platform: A Review of Design and Applications. Curr Pharm Des 2019; 24:5375-5385. [PMID: 30734671 DOI: 10.2174/1381612825666190207170004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
Drug efficacy and toxicity are key factors of drug development. Conventional 2D cell models or animal models have their limitations for the efficacy or toxicity assessment in preclinical assays, which induce the failure of candidate drugs or withdrawal of approved drugs. Human organs-on-chips (OOCs) emerged to present human-specific properties based on their 3D bioinspired structures and functions in the recent decade. In this review, the basic definition and superiority of OOCs will be introduced. Moreover, a specific OOC, heart-on-achip (HOC) will be focused. We introduce HOC modeling in the sensor-free and sensor-based way and illustrate the advantages of sensor-based HOC in detail by taking examples of recent studies. We provide a new perspective on the integration of HOC technology and biosensing to develop a new sensor-based HOC platform.
Collapse
Affiliation(s)
- Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
48
|
Corbett JL, Duncan SA. iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front Med (Lausanne) 2019; 6:265. [PMID: 31803747 PMCID: PMC6873655 DOI: 10.3389/fmed.2019.00265] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the largest organs in the body and is responsible for a diverse repertoire of metabolic processes. Such processes include the secretion of serum proteins, carbohydrate and lipid metabolism, bile acid and urea synthesis, detoxification of drugs and metabolic waste products, and vitamin and carbohydrate storage. Currently, liver disease is one of the most prevalent causes of mortality in the USA with congenital liver defects contributing to a significant proportion of these deaths. Historically the study of liver disease has been hampered by a shortage of organ donors, the subsequent scarcity of healthy tissue, and the failure of animal models to fully recapitulate human liver function. In vitro culture of hepatocytes has also proven difficult because primary hepatocytes rapidly de-differentiate in culture. Recent advances in stem cell technology have facilitated the generation of induced pluripotent stem cells (iPSCs) from various somatic cell types from patients. Such cells can be differentiated to a liver cell fate, essentially providing a limitless supply of cells with hepatocyte characteristics that can mimic the pathophysiology of liver disease. Furthermore, development of the CRISPR-Cas9 system, as well as advancement of miniaturized differentiation platforms has facilitated the development of high throughput models for the investigation of hepatocyte differentiation and drug discovery. In this review, we will explore the latest advances in iPSC-based disease modeling and drug screening platforms and examine how this technology is being used to identify new pharmacological interventions, and to advance our understanding of liver development and mechanisms of disease. We will cover how iPSC technology is being used to develop predictive models for rare diseases and how information gained from large in vitro screening experiments can be used to directly inform clinical investigation.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
49
|
Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerg Top Life Sci 2019; 3:631-643. [PMID: 33523179 DOI: 10.1042/etls20190091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Synthetic biology is a relatively new field of science that combines aspects of biology and engineering to create novel tools for the construction of biological systems. Using tools within synthetic biology, stem cells can then be reprogrammed and differentiated into a specified cell type. Stem cells have already proven to be largely beneficial in many different therapies and have paved the way for tissue engineering and regenerative medicine. Although scientists have made great strides in tissue engineering, there still remain many questions to be answered in regard to regeneration. Presented here is an overview of synthetic biology, common tools built within synthetic biology, and the way these tools are being used in stem cells. Specifically, this review focuses on how synthetic biologists engineer genetic circuits to dynamically control gene expression while also introducing emerging topics such as genome engineering and synthetic transcription factors. The findings mentioned in this review show the diverse use of stem cells within synthetic biology and provide a foundation for future research in tissue engineering with the use of synthetic biology tools. Overall, the work done using synthetic biology in stem cells is in its early stages, however, this early work is leading to new approaches for repairing diseased and damaged tissues and organs, and further expanding the field of tissue engineering.
Collapse
|
50
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|