1
|
Knowles EEM, Peralta JM, Rodrigue AL, Mathias SR, Mollon J, Leandro AC, Curran JE, Blangero J, Glahn DC. Differential gene expression study in whole blood identifies candidate genes for psychosis in African American individuals. Schizophr Res 2025; 280:85-94. [PMID: 40267851 DOI: 10.1016/j.schres.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/10/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association has identified regions of the genome that mediate risk for psychosis. It is possible that variants in these regions confer risk by altering gene expression. This work has predominantly been conducted in individuals of European descent and has focused narrowly on schizophrenia rather than psychosis as a syndrome. In the present study we investigated alterations in gene expression in African American individuals with a range of psychotic diagnoses to increase understanding of the etiology in an underserved population. We performed RNA-seq in whole bloody to survey the transcriptome in 126 patients with a psychosis-spectrum disorder and 217 healthy controls and applied differential gene expression analyses across the genome while controlling for age, sex, population stratification and batch. We found 18 differentially expressed genes (DEGs), some of the locations of the corresponding genes overlap with previously implicated regions for psychosis, but many of which were novel associations. Enrichment analysis of nominally significant genes (p < 0.05) revealed overrepresentation of biological processes relating to platelet, immune and cellular function, and sensory perception. Weighted gene co-expression network analysis, applied to identify modules of co-expressed genes associated with psychosis, revealed 10 modules, one of which was significantly associated with psychosis. This module was significantly enriched for DEGs, and for platelet function. These results support the potential role of immune function in the etiology of psychosis, identify novel candidate gene expression phenotypes that correspond to both established and new genomic regions, in individuals of African American ancestry.
Collapse
Affiliation(s)
- E E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - J M Peralta
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - A L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - S R Mathias
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J Mollon
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A C Leandro
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - J E Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - J Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - D C Glahn
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
2
|
Ghoreyshi N, Heidari R, Farhadi A, Chamanara M, Farahani N, Vahidi M, Behroozi J. Next-generation sequencing in cancer diagnosis and treatment: clinical applications and future directions. Discov Oncol 2025; 16:578. [PMID: 40253661 PMCID: PMC12009796 DOI: 10.1007/s12672-025-01816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 04/22/2025] Open
Abstract
Next-generation sequencing (NGS) has emerged as a pivotal technology in the field of oncology, transforming the approach to cancer diagnosis and treatment. This paper provides a comprehensive overview of the integration of NGS into clinical settings, emphasizing its significant contributions to precision medicine. NGS enables detailed genomic profiling of tumors, identifying genetic alterations that drive cancer progression and facilitating personalized treatment plans targeting specific mutations, thereby improving patient outcomes. This capability facilitates the development of personalized treatment plans targeting specific mutations, leading to improved patient outcomes and the potential for better prognosis. The application of NGS extends beyond identifying actionable mutations; it is instrumental in detecting hereditary cancer syndromes, thus aiding in early diagnosis and preventive strategies. Furthermore, NGS plays a crucial role in monitoring minimal residual disease, offering a sensitive method to detect cancer recurrence at an early stage. Its use in guiding immunotherapy by identifying biomarkers that predict response to treatment is also highlighted. Ethical issues related to genetic testing, such as concerns around patient consent and data privacy, are also important considerations that need to be addressed for the broader implementation of NGS. These include the complexities of data interpretation, the need for robust bioinformatics support, cost considerations, and ethical issues related to genetic testing. Addressing these challenges is essential for the widespread adoption of NGS. Looking forward, advancements such as single-cell sequencing and liquid biopsies promise to further enhance the precision of cancer diagnostics and treatment. This review emphasizes the transformative impact of NGS in oncology and advocates for its incorporation into routine clinical practice to promote molecularly driven cancer care.
Collapse
Affiliation(s)
- Nima Ghoreyshi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Chamanara
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Nastaran Farahani
- Department of Genetics and Biotechnology, Faculty of Life Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mahmood Vahidi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Javad Behroozi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Libzon S, Gafner M, Lev D, Waiserberg N, Gindes L, Leibovitz Z, Ben‐Sira L, Lerman‐Sagie T. Parental magnetic resonance imaging for the evaluation of fetuses with brain anomalies. Dev Med Child Neurol 2025; 67:463-474. [PMID: 39259028 PMCID: PMC11875520 DOI: 10.1111/dmcn.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/12/2024]
Abstract
AIM To evaluate the role of parental magnetic resonance imaging (MRI) in assessing fetuses with suspected brain anomalies and its use in prenatal counselling. METHOD A retrospective, multicentre chart review was conducted on fetuses who underwent brain MRI because of suspected brain abnormalities between January 2008 and December 2022, with one or both parents who underwent brain MRI (MRI-Trio) as part of prenatal counselling. Clinical and demographic data were collected, including fetal and parental MRI findings, prenatal counselling outcomes, genetic testing results, family and previous pregnancy history, neurological examinations of the born children up to 24 months of age, and autopsy reports of fetuses from terminated pregnancies. MRI-Trio concordance was defined as at least one abnormal brain feature identified with similarity in the fetus and the parents. The live-born children were assessed postnatally through either neurodevelopmental evaluations or telephone interviews. RESULTS Sixty pregnancies were included (41.7% with concordant and 58.3% with discordant MRI-Trio). Forty-two children were born (70%) and 17 pregnancies were terminated (28.3%). One case of in utero fetal death (1.7%) was reported. The most common brain findings were multiple anomalies (n = 26, 43.3%), isolated disorders of the corpus callosum (n = 17, 28.3%), atypical periventricular pseudocysts (n = 6, 10%), and anomalies of the anterior complex (n = 4, 6.7%). MRI-Trio enabled better prognostication. When MRI-Trio was concordant, counselling was more favourable (n = 22, 36.6%) and the majority of live-born children exhibited typical development (p < 0.001). INTERPRETATION MRI-Trio is a valuable tool for identifying dominantly inherited brain anomalies that may not hold developmental significance or are associated with favourable outcomes, acknowledging the potential for variable penetrance, which may result in more severe presentations. Concordant MRI-Trio findings can enhance the accuracy of prenatal counselling, potentially reducing the incidence of termination of pregnancy.
Collapse
Affiliation(s)
- Stephanie Libzon
- Multidisciplinary Fetal Neurology Center, Wolfson Medical CenterHolonIsrael
- Department of Physical Therapy, School of Health Professions, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Michal Gafner
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of Pediatrics BSchneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Dorit Lev
- Multidisciplinary Fetal Neurology Center, Wolfson Medical CenterHolonIsrael
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Nilly Waiserberg
- Department of Physical Therapy, School of Health Professions, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Liat Gindes
- Multidisciplinary Fetal Neurology Center, Wolfson Medical CenterHolonIsrael
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Zvi Leibovitz
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Obstetrics & Gynecology Ultrasound UnitBnai Zion Medical CenterHaifaIsrael
| | - Liat Ben‐Sira
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Radiology, Department of RadiologyTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Tally Lerman‐Sagie
- Multidisciplinary Fetal Neurology Center, Wolfson Medical CenterHolonIsrael
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
4
|
Frees M, Carter JN, Wheeler MT, Reuter C. The current landscape of clinical exome and genome reanalysis in the U.S. J Genet Couns 2025; 34:e1968. [PMID: 39285507 DOI: 10.1002/jgc4.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 03/30/2025]
Abstract
The majority of patients undergoing exome or genome sequencing receive a nondiagnostic result. Periodic reanalysis is known to increase diagnostic yield from exome sequencing, yet laboratory reanalysis practices are obscure. We sought to define the landscape of exome and genome reanalysis across clinical laboratories. Genetic testing registries were queried to identify eligible clinical genetic laboratories offering exome and/or genome sequencing in the United States. A survey administered to lab representatives investigated reanalysis offerings, policies, perceived uptake, bioinformatic steps, and billing options. The analysis consisted of descriptive statistics. Survey data were collected from 30 of 32 eligible laboratories (93%), comprising 28 exome products and 13 genome products. Reanalysis was widely available for both exomes (n = 27/28, 96%) and genomes (n = 12/13, 92%). Most participating laboratories required ordering providers to initiate reanalysis (n = 24/28, 86%). Most respondents estimated providers initiated reanalysis in less than 10% of all exomes (n = 12/22) or genomes (n = 6/9) sequenced. The approach to reanalysis varied greatly by laboratory. Laboratory approaches to exome and genome reanalysis are highly variable and typically require provider initiation. This could contribute to low reanalysis uptake and increased administrative burden on providers. Further work should emphasize development of clinical exome and genome reanalysis standards.
Collapse
Affiliation(s)
- Michelle Frees
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Division of Genomic Medicine, UC Davis Medical Center, Sacramento, California, USA
| | - Jennefer N Carter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Inherited Cardiovascular Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Inherited Cardiovascular Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Chloe Reuter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Inherited Cardiovascular Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Kansal R. Rapid Whole-Genome Sequencing in Critically Ill Infants and Children with Suspected, Undiagnosed Genetic Diseases: Evolution to a First-Tier Clinical Laboratory Test in the Era of Precision Medicine. CHILDREN (BASEL, SWITZERLAND) 2025; 12:429. [PMID: 40310077 PMCID: PMC12025730 DOI: 10.3390/children12040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
The completion of the Human Genome Project in 2003 has led to significant advances in patient care in medicine, particularly in diagnosing and managing genetic diseases and cancer. In the realm of genetic diseases, approximately 15% of critically ill infants born in the U.S.A. are diagnosed with genetic disorders, which comprise a significant cause of mortality in neonatal and pediatric intensive care units. The introduction of rapid whole-genome sequencing (rWGS) as a first-tier test in critically ill children with suspected, undiagnosed genetic diseases is a breakthrough in the diagnosis and subsequent clinical management of such infants and older children in intensive care units. Rapid genome sequencing is currently being used clinically in the USA, the UK, the Netherlands, Sweden, and Australia, among other countries. This review is intended for students and clinical practitioners, including non-experts in genetics, for whom it provides a historical background and a chronological review of the relevant published literature for the progression of pediatric diagnostic genomic sequencing leading to the development of pediatric rWGS in critically ill infants and older children with suspected but undiagnosed genetic diseases. Factors that will help to develop rWGS as a clinical test in critically ill infants and the limitations are briefly discussed, including an evaluation of the clinical utility and accessibility of genetic testing, education for parents and providers, cost-effectiveness, ethical challenges, consent issues, secondary findings, data privacy concerns, false-positive and false-negative results, challenges in variant interpretation, costs and reimbursement, the limited availability of genetic counselors, and the development of evidence-based guidelines, which would all need to be addressed to facilitate the implementation of pediatric genomic sequencing in an effective widespread manner in the era of precision medicine.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Perelli RM, Dewars ER, Cope H, Behura AS, Ponek AQ, Sala AM, Zhang Z, Muralidharan P, Moya-Mendez ME, Berkman A, Monaco GG, Sullivan MC, Ezekian JE, Yang Q, Sun B, Kurzlechner LM, Asokan T, Breglio AM, Jay Campbell M, Spector ZZ, Rehder CW, Undiagnosed Diseases Network, Tang PC, James CA, Calkins H, Shashi V, Landstrom AP. TAX1BP3 Causes TRPV4-Mediated Autosomal Recessive Arrhythmogenic Cardiomyopathy. Circ Res 2025; 136:667-684. [PMID: 39963794 PMCID: PMC11949706 DOI: 10.1161/circresaha.124.325180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is one of the leading causes of sudden cardiac death in children, young adults, and athletes and is characterized by the fibro-fatty replacement of the myocardium, predominantly of the right ventricle. Sixty percent of patients with ACM have a known genetic cause, but for the remainder, the pathogenesis is unknown. This lack of mechanistic understanding has slowed the development of disease-modifying therapies, and children with ACM have a high degree of morbidity and mortality. METHODS Induced pluripotent stem cells (iPSCs) from 3 family members were differentiated into cardiac myocytes (CMs). Calcium imaging was conducted by labeling calcium with CAL-520 and confocal imaging to capture calcium sparks after iPSC-CMs were electrically paced. A cardiac-specific, inducible knockout mouse (Tax1bp3-/-) was made and intracardiac electrophysiology studies conducted to observe arrhythmia inducibility following pacing. RESULTS We identified a kindred with multiple members affected by ACM cosegregating with biallelic variants in the gene TAX1BP3, which encodes the protein TAX1BP3 (Tax1-binding protein 3). iPSC-CMs derived from this kindred demonstrated increased intracellular lipid droplets, induction of TRPV4 (transient receptor potential vanilloid type 4) expression, and inducible TRPV4 current. This was associated with depletion of the intracellular sarcoplasmic reticulum Ca2+ store and increased RyR2 (ryanodine receptor 2)-mediated store Ca2+ leak and delayed afterdepolarizations, a known mechanism of Ca2+-mediated arrhythmogenesis. Similarly, Tax1bp3 cardiac-specific knockout mice had increased Ca2+ leak and were predisposed to ventricular arrhythmias compared with wild-type mice. Ca2+ leak in both the iPSC-CMs and mouse ventricular myocytes was rescued by small molecule TRPV4 inhibition. This strategy also effectively reduced Ca2+ leak in a PKP2 (plakophilin 2) p.His773AlafsX8 iPSC-CM model of ACM. CONCLUSIONS We conclude that TAX1BP3 is associated with rare autosomal recessive ACM through TRPV4-mediated Ca2+ leak from RyR2. Further, TRPV4 current inhibition has the potential to be a new therapeutic target for ACM.
Collapse
Affiliation(s)
- Robin M. Perelli
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Enya R. Dewars
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Heidi Cope
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Alexander S. Behura
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Anna Q. Ponek
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Angelina M. Sala
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zhushan Zhang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Padmapriya Muralidharan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mary E. Moya-Mendez
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Amy Berkman
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Gabrielle G. Monaco
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Molly C. Sullivan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jordan E. Ezekian
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Qixin Yang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Bo Sun
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Leonie M. Kurzlechner
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Tulsi Asokan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Andrew M. Breglio
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - M. Jay Campbell
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zebulon Z. Spector
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Catherine W. Rehder
- Department of Pathology and Duke University Health Systems Clinical Laboratories, Durham, North Carolina, United States
| | | | - Paul C. Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Cynthia A. James
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Hugh Calkins
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Vandana Shashi
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Andrew P. Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
7
|
Burrill N, Schindewolf E, Pilchman L, Wright R, Crane H, Gebb J, Khalek N, Soni S, Paidas Teefey C, Oliver ER, Linn R, Moldenhauer JS. Whole Exome Sequencing in a Population of Fetuses With Structural Anomalies. Prenat Diagn 2025; 45:310-317. [PMID: 39743338 DOI: 10.1002/pd.6735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE To investigate the exome sequencing (ES) detection rate among fetuses with congenital anomalies and describe the rates in the setting of multiple versus isolated anomalies, perinatal autopsy, and family history of a previously affected child. METHODS A single-center retrospective chart review was conducted on 397 anomalous fetuses that underwent ES from May 2012 through December 2023. Medical record review included demographics, imaging, and genetic testing. RESULTS The overall ES diagnostic rate was 34.3%. The rate of diagnosis was 31.6% in fetuses with a single anomaly and 42.6% in fetuses with 4 or more major organ systems involved. Of the fetuses with a single anomaly, lymphatic, craniofacial, skeletal, and neurological anomalies had the highest diagnostic rate on ES. 38.6% of deceased fetuses who underwent autopsy had a genetic diagnosis. Additionally, families who had a previously affected child had a 45.5% diagnostic rate. CONCLUSIONS ES is an important tool that should be offered in pregnancies affected with congenital abnormalities or at the time of fetal demise or termination. The diagnostic rate of ES in the prenatal setting is also highly dependent on comprehensive phenotyping. With diagnostic ES results, reproductive technology and testing options are available in subsequent pregnancies.
Collapse
Affiliation(s)
- Natalie Burrill
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erica Schindewolf
- Undiagnosed Disease Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa Pilchman
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Renee Wright
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haley Crane
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Juliana Gebb
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nahla Khalek
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelly Soni
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Paidas Teefey
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward R Oliver
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Linn
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie S Moldenhauer
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Khang R, Lee H, Kim J, Moon D, Jang S, Lee E, Song Y, Ryu SW, Lee S, Han H, Kim S, Jang S, Sohn YB, Kim WS, Lee JE, Kim J, Cho Y, Lee BL, Lim HH, Kook H, Kang KS, Kwon S, Lee J, Seo GH, Oh SH, Cheon CK. Genome Sequencing of Rare Disease Patients Through the Korean Regional Rare Disease Diagnostic Support Program. Hum Mutat 2025; 2025:6096758. [PMID: 40226308 PMCID: PMC11987077 DOI: 10.1155/humu/6096758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
Affecting fewer than 20,000 people as defined in South Korea, rare diseases pose significant diagnostic challenges due to their diverse manifestations and genetic heterogeneity. Genome sequencing (GS) offers a promising solution by enabling simultaneous screening for thousands of rare genetic disorders. This study explores the diagnostic utility and necessity of GS within the government-funded Korean Regional Rare Disease Diagnostic Support Program (KR-RDSP), a collaborative initiative involving 11 regional rare disease centers across Korea. The program was launched as a proof-of-concept study in 2023 to equip the genetic clinics with a diagnostic tool to expedite the diagnoses for rare disease patients who reside outside the urban Seoul region where diagnostic resources are limited. The study leveraged GS to diagnose a cohort of 400 patients exhibiting a wide spectrum of symptoms. The overall diagnostic yield was 36.3% (145/400), with 4.8% (7/145) of the diagnosed patients being reported with variants that could not have been identified by chromosomal microarray or exome sequencing (ES), highlighting the added value of comprehensive genomic analysis. The implementation of a centralized GS analysis system streamlined the diagnostic process, enabling timely reporting within a reasonable turnaround time of ≤ 35 days. Segregation analysis by Sanger sequencing played a crucial role in confirming or reclassifying variant pathogenicity by elucidating inheritance patterns. Here, we summarize diagnostic statistics from the 400 GS dataset gathered from June 2023 to December 2023 and show interesting and informative case examples that illustrate the diagnostic efficacy of GS, highlighting its ability to uncover elusive genetic etiologies and provide personalized treatment insights. The study also highlights the successful implementation of the program for the 11 regional rare disease centers across Korea with a practical workflow, comprehensive testing, comparable diagnostic yield to previous reports, and, most importantly, reasonable turnaround time.
Collapse
Affiliation(s)
- Rin Khang
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Hane Lee
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Jihye Kim
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Dongseok Moon
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Seokhui Jang
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Eugene Lee
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Yongjun Song
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Seung Woo Ryu
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Sohyun Lee
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Heonjong Han
- Research and Development Center, 3billion Inc., Seoul, Republic of Korea
| | - Sukwon Kim
- Research and Development Center, 3billion Inc., Seoul, Republic of Korea
| | - Sohyun Jang
- Research and Development Center, 3billion Inc., Seoul, Republic of Korea
| | - Young Bae Sohn
- Rare Disease Center of Southern Gyeonggi Region, Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Won Seop Kim
- Rare Disease Center of Chungbuk Region, Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Ji-Eun Lee
- Rare Disease Center of Northwestern Gyeonggi Province, Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Juwon Kim
- Rare Disease Center of Gangwon Region, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Yonggon Cho
- Jeonbuk Regional Center for Rare Diseases, Department of Laboratory Medicine, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Bo Lyun Lee
- Rare Disease Center of Busan Region, Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Han Hyuk Lim
- Rare Disease Center of Chungnam Region, Department of Pediatrics, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hoon Kook
- Rare Disease Center of Chonnam Region, Department of Pediatrics, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Ki-Soo Kang
- Rare Disease Center of Jeju Region, Department of Pediatrics, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Soonhak Kwon
- Rare Disease Center for Daegu/Gyeongbuk Region and Department of Pediatrics, Kyungpook National University Children's Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Lee
- Division of Rare Disease Management, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Go Hun Seo
- Medical Genetics Division, 3billion Inc., Seoul, Republic of Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Chong Kun Cheon
- Rare Disease Center of Gyeongnam Region, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Hahn E, Dharmadhikari AV, Markowitz AL, Estrine D, Quindipan C, Maggo SDS, Sharma A, Lee B, Maglinte DT, Shams S, Deardorff MA, Biegel JA, Gai X, Sun M, Schmidt RJ, Raca G, Ji J. Copy number variant analysis improves diagnostic yield in a diverse pediatric exome sequencing cohort. NPJ Genom Med 2025; 10:16. [PMID: 39984494 PMCID: PMC11845629 DOI: 10.1038/s41525-025-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Exome sequencing is the current standard for diagnosing Mendelian disorders; however, it is generally not considered the first-line test for detecting copy number variants (CNVs). We retrospectively investigated the additional diagnostic yield by performing concurrent CNV analysis using exome data in a large and diverse pediatric cohort. Patients were referred from various sources with variable phenotypes. Human Phenotype Ontology terms were used to prioritize variants for analysis. Ancestry and CNV analyses were performed using Somalier and NxClinical, respectively. A total of 1538 patients were tested, with the majority being Admixed Americans. Diagnostic CNVs were identified in 70 patients (4.6%), ranging from exonic deletions to large, unbalanced rearrangements, aneuploidies, and mosaic findings. While no significant differences were identified in diagnostic yield, or rates of negative or uncertain diagnoses, between ancestries, our study demonstrates the feasibility and increased yield of CNV analysis of exome data, across multiple phenotypes, referral sources, and ancestries.
Collapse
Affiliation(s)
- Elan Hahn
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Avinash V Dharmadhikari
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander L Markowitz
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dolores Estrine
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Catherine Quindipan
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran D S Maggo
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Bernard J Dunn School of Pharmacy, Shenandoah University, Winchester, VA, USA
| | - Ankit Sharma
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Brian Lee
- Bionano Genomics, San Diego, CA, USA
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Matthew A Deardorff
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miao Sun
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan J Schmidt
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gordana Raca
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianling Ji
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Bayat S, Gholami M, Khodadadi H, Ghazavi M, Nasiri J, Kheirollahi M. Comprehensive review and outline of genotypes and phenotypes of Arboleda-Tham syndrome spectrum: insights from novel variants. Mol Biol Rep 2025; 52:242. [PMID: 39964375 DOI: 10.1007/s11033-025-10302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND AND OBJECTIVE Mutations in the KAT6A gene, which encodes a histone acetyltransferase, have been linked to an autosomal dominant neurodevelopmental disorder known as the Arboleda-Tham syndrome. The clinical symptoms of this disorder are nonspecific and pose challenges to accurately characterizing the condition based solely on these symptoms. This study aimed to establish a definitive diagnosis in three patients with intellectual disability and multiple congenital anomalies, and to elucidate the genotype-phenotype correlation based on the existing literature. PARTICIPANTS AND METHODS In this study, we investigated three probands with severe intellectual disability, global developmental delay, hypotonia, gait disturbance, microcephaly, scoliosis, abnormal heart morphology, strabismus, gastrointestinal dysmotility, and abnormal facial shape, using karyotype analysis, multiplex ligation-dependent probe amplification, and whole exome sequencing. We also conducted a comprehensive literature review of previously reported cases. RESULTS The karyotype analysis and Multiplex ligation-dependent probe amplification results were normal. Whole exome sequencing revealed three novel de novo mutations, c.3712G > T (p.Glu1238*), c.3561 C > A (p.Cys1187*), and c.1069 C > T (p.Arg357*), in the KAT6A gene (NM_006766.5). The heterozygous variants were verified by Sanger sequencing and were not present in either parent. CONCLUSIONS In this study, we describe three cases of de novo KAT6A variants that were identified for the first time in Iran. Our results expand the understanding of the clinical features associated with Arboleda-Tham syndrome and validate the effectiveness of whole-exome sequencing to rapidly and accurately determine the etiology of such disorders. Furthermore, our literature review demonstrated close genotype-phenotype correlations associated with KAT6A and Arboleda-Tham syndrome.
Collapse
Affiliation(s)
- Sahar Bayat
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Gholami
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamidreza Khodadadi
- Department of Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Mohammadreza Ghazavi
- Department of Pediatric Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Nasiri
- Department of Pediatric Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Lessel I, Baresic A, Chinn IK, May J, Goenka A, Chandler KE, Posey JE, Afenjar A, Averdunk L, Bedeschi MF, Besnard T, Brager R, Brick L, Brugger M, Brunet T, Byrne S, Calle-Martín ODL, Capra V, Cardenas P, Chappé C, Chong HJ, Cogne B, Conboy E, Cope H, Courtin T, Deb W, Dilena R, Dubourg C, Elgizouli M, Fernandes E, Fitzgerald KK, Gangi S, George-Abraham JK, Gucsavas-Calikoglu M, Haack TB, Hadonou M, Hanker B, Hüning I, Iascone M, Isidor B, Järvelä I, Jin JJ, Jorge AAL, Josifova D, Kalinauskiene R, Kamsteeg EJ, Keren B, Kessler E, Kölbel H, Kozenko M, Kubisch C, Kuechler A, Leal SM, Leppälä J, Luu SM, Lyon GJ, Madan-Khetarpal S, Mancardi M, Marchi E, Mehta L, Menendez B, Morel CF, Harasink SM, Nevay DL, Nigro V, Odent S, Oegema R, Pappas J, Pastore MT, Perilla-Young Y, Platzer K, Powell-Hamilton N, Rabin R, Rekab A, Rezende RC, Robert L, Romano F, Scala M, Poths K, Schrauwen I, Sebastian J, Short J, Sidlow R, Sullivan J, Szakszon K, Tan QKG, Wagner M, Wieczorek D, Yuan B, Maeding N, Strunk D, Begtrup A, Banka S, Lupski JR, Tolosa E, Lessel D. DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders. Am J Hum Genet 2025; 112:394-413. [PMID: 39798569 DOI: 10.1016/j.ajhg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.
Collapse
Affiliation(s)
- Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Anja Baresic
- Division of Computing and Data Science, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan May
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra Afenjar
- Département de Génétique Paris, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, APHP, Sorbonne Université, Paris, France
| | - Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Thomas Besnard
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Lauren Brick
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Céline Chappé
- Service d'oncohematologie pédiatrique, CHU Rennes, 35000 Rennes, France
| | - Hey J Chong
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital, Pittsburgh, PA 15224, USA
| | - Benjamin Cogne
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Thomas Courtin
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Wallid Deb
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuropathophysiology Unit, Milan, Italy
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, 35033 Rennes, France; University Rennes, CNRS, IGDR, UMR 6290, 35000 Rennes, France
| | - Magdeldin Elgizouli
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Erica Fernandes
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | | | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 28, 20122 Milan, Italy
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA; Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Muge Gucsavas-Calikoglu
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Medard Hadonou
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, 24128 Bergamo, Italy
| | - Bertrand Isidor
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, P.O. Box 720, 00251 Helsinki, Finland
| | - Jay J Jin
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil; Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Dragana Josifova
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ruta Kalinauskiene
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elena Kessler
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Mariya Kozenko
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Suzanne M Leal
- Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, Columbia University, New York, NY 10032, USA; Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Juha Leppälä
- The Wellbeing Services County of South Ostrobothnia, 60280 Seinäjoki, Finland
| | - Sharon M Luu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA; George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Margherita Mancardi
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Epicare Network for Rare Disease, Genoa, Italy
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Lakshmi Mehta
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Beatriz Menendez
- Division of Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Chantal F Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Sue Moyer Harasink
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Dayna-Lynn Nevay
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Sylvie Odent
- Clinical Genetics, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; University Rennes, CNRS, INSERM, Institut de génétique et développement de Rennes, UMR 6290, ERL U1305, Rennes, France
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - John Pappas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yezmin Perilla-Young
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Rachel Rabin
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aisha Rekab
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leema Robert
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy; U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Poths
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John Short
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Katalin Szakszon
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Queenie K G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Munich, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Friedman MR, Yogev Y, Maslovitz S, Leshno M, Reicher L. Cost-effectiveness of exome sequencing and chromosomal microarray for low-risk pregnancies. Am J Obstet Gynecol MFM 2025; 7:101512. [PMID: 39424276 DOI: 10.1016/j.ajogmf.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Chromosomal microarray analysis (CMA) has been central to prenatal genetic diagnosis, detecting copy number variants with a ∼1% yield in low-risk cases. Next-generation sequencing (NGS), including exome sequencing (ES), enhances diagnostic capabilities with higher yields (8.5-10%) but at greater cost and complexity. While ES's cost-effectiveness is studied in high-risk pregnancies, data for low-risk pregnancies remain lacking. This study evaluates the cost-effectiveness of ES in low-risk pregnancies. OBJECTIVE This study aimed to investigate the cost-effectiveness of exome sequencing compared with chromosomal microarray analysis. STUDY DESIGN Costs, utilities, and quality-adjusted life years were modeled for prenatal testing with chromosomal microarray analysis or chromosomal microarray analysis + exome sequencing. Average costs and utilities were discounted at 3%. In addition, 2 strategies for screening were compared using the Markovian decision analysis model: (1) chromosomal microarray analysis only (an abnormal result leads to a termination of pregnancy, and a normal test has a 1 to 160 chance of developing into a severe disorder) and (2) exome sequencing after a normal chromosomal microarray analysis (a positive result leads to a termination of pregnancy). Of note, 1-way sensitivity analysis was performed for all variables. The outcome measures included quality-adjusted life years after abortion, costs of chromosomal microarray analysis and exome sequencing, and health expenses of a critically ill infant. The time horizon of the model was 20 years. RESULTS The total costs were $1348 for chromosomal microarray analysis and $3108 for chromosomal microarray analysis + exome sequencing. The quality-adjusted life years with a time horizon of 20 years were 14.15 for chromosomal microarray analysis and 14.19 for chromosomal microarray analysis + exome sequencing, with an incremental cost-effectiveness ratio of $46,383 per quality-adjusted life years. Sensitivity analysis revealed that the time horizon and the disutility of moderate/severe disability of the genetic disorder have an effect on the incremental cost-effectiveness ratio. For example, the incremental cost-effectiveness ratios are $84,291 per quality-adjusted life years for a relatively small disutility of moderate/severe disability and $94,148 per quality-adjusted life years for a shorter time horizon of 10 years. CONCLUSION Exome sequencing has the potential to be cost-effective compared with chromosomal microarray analysis alone. Our research provides data regarding the cost-effectiveness of exome sequencing without a specific indication, which will become increasingly important in the near future as whole exome sequencing becomes the first-tier test in prenatal diagnosis.
Collapse
Affiliation(s)
- Michal Rosenberg Friedman
- Lis Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel (Friedman, Yogev, Maslovitz, and Reicher)
| | - Yariv Yogev
- Lis Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel (Friedman, Yogev, Maslovitz, and Reicher)
| | - Sharon Maslovitz
- Lis Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel (Friedman, Yogev, Maslovitz, and Reicher)
| | - Moshe Leshno
- Coller School of Management, Tel Aviv University, Tel Aviv, Israel (Leshno); Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel (Leshno)
| | - Lee Reicher
- Lis Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel (Friedman, Yogev, Maslovitz, and Reicher); Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (Reicher); Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel (Reicher).
| |
Collapse
|
13
|
Petillo R, De Maggio I, Piscopo C, Chetta M, Tarsitano M, Chiriatti L, Sannino E, Torre S, D'Antonio M, D'Ambrosio P, Rambaldi M, Cioce M, De Stefano V, Parisi MR, Telese A, Oro M, Rivieccio M, Radio FC, Mancini C, Niceta M, Cordeddu V, Bruselles A, Mammì C, Dattola A, Fioretti T, Esposito G, Novelli A, Tessitore A, Tessa A, Santorelli FM, Iolascon A, Monica MD, Tartaglia M, Priolo M. Genomic Testing in Adults With Undiagnosed Rare Conditions: Improvement of Diagnosis Using Clinical Exome Sequencing as a First-Tier Approach. Clin Genet 2025. [PMID: 39891531 DOI: 10.1111/cge.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Adult patients with undiagnosed genetic disorders suffer most from diagnostic delay and seldom appear in cohort studies investigating the diagnostic yield in medical genetic clinical practice. Here we present the results of the diagnostic activity performed in a referral center on 654 consecutive, unselected adult subjects presenting with molecularly unsolved conditions. More than 50% of the referred individuals were affected by syndromic or isolated intellectual disability. Different molecular approaches, including clinical/whole exome sequencing (CES/WES), chromosomal microarray analysis (CMA), and/or targeted gene or gene panel sequencing were used to analyze patients' DNA. Definitive diagnosis was obtained in over 30% of individuals. The most sensitive methodology was CES/WES, which allowed us to reach a diagnosis in over 50% of the 162 solved cases. Despite the great variety of clinical presentations, our results represent a reliable picture of the "real world" daily routine in an outpatient medical genetics clinic dedicated to diagnostic activity, and contribute to better understand the great value of a definitive molecular diagnosis in adults, either for the affected individuals and their families. This retrospective analysis demonstrates the importance of adopting a genomic-first approach within the diagnostic process for adults affected with unsolved rare conditions.
Collapse
Affiliation(s)
- Roberta Petillo
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Ilaria De Maggio
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Carmelo Piscopo
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Massimiliano Chetta
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Marina Tarsitano
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Elvira Sannino
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Serena Torre
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Marcella D'Antonio
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Paola D'Ambrosio
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Marco Rambaldi
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Maria Cioce
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Valentina De Stefano
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Maria Rita Parisi
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Antonella Telese
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Maria Oro
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Maria Rivieccio
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Viviana Cordeddu
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Corrado Mammì
- Medical Genetics, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Adele Dattola
- Medical Genetics, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Tiziana Fioretti
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c. a r.l., Naples, Italy
| | - Gabriella Esposito
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c. a r.l., Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Università di Napoli "Federico II", Naples, Italy
| | - Antonio Novelli
- Medical Genetics Laboratory, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Science, Università Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Tessa
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | - Achille Iolascon
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c. a r.l., Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Università di Napoli "Federico II", Naples, Italy
| | - Matteo Della Monica
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Manuela Priolo
- Medical and Molecular Genetics, Azienda Ospedaliera a Rilevanza Nazionale "Antonio Cardarelli", Naples, Italy
| |
Collapse
|
14
|
Gimeno AF, Tinker RJ, Furuta Y, Phillips JA. Prevalence of Individuals With Multiple Diagnosed Genetic Diseases in the Undiagnosed Diseases Network. Am J Med Genet A 2025; 197:e63888. [PMID: 39333051 DOI: 10.1002/ajmg.a.63888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Report the prevalence of multiple genetic diseases in the Undiagnosed Diseases Network (UDN) cohort in the post-exome-sequencing era. UDN subjects underwent genome sequencing before inclusion in the cohort. Records of all UDN subjects until January 2024 were analyzed. The number of diagnoses, proportion of molecular versus nonmolecular (i.e., not attributable to a discretely identifiable genetic change) diagnoses, and the inheritance patterns of the genetic diagnoses were determined. Of 2799 subjects, 766 (27.4%) had diagnoses. Of these 766, 95.4% had one diagnosis, 4.0% had two diagnoses, and 0.5% had three diagnoses. Of the diagnosed subjects, 93.4% had a genetic disease, and 6.5% had a nonmolecular disease. Of subjects with two diagnoses, both diagnoses were molecular in 90.3%, while 9.7% had one molecular and one nonmolecular diagnosis. All four subjects with three diagnoses had three molecular diagnoses. 4.2% of diagnosed subjects in the UDN had more than one molecular diagnosis, with four individuals having three concurrent Mendelian diagnoses. Additionally, three subjects had concurrent molecular and nonmolecular diagnoses. Given that numerous UDN subjects had a negative genome sequence prior to UDN enrollment, multiple molecular diagnoses may contribute to diagnostic uncertainty even with genome sequencing, as may concurrent nonmolecular disease.
Collapse
Affiliation(s)
- Alex F Gimeno
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rory J Tinker
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yutaka Furuta
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Stafford-Smith B, Sullivan JA, McAllister M, Walley N, Shashi V, McConkie-Rosell A. The book is just being written: The enduring journey of parents of children with emerging- ultrarare disorders. J Genet Couns 2025; 34:e1894. [PMID: 38562053 DOI: 10.1002/jgc4.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Ultra rare disorders are being diagnosed at an unprecedented rate, due to genomic sequencing. These diagnoses are often a new gene association, for which little is known, and few share the diagnosis. For these diagnoses, we use the term emerging-ultrarare disorder (E-URD), defined as <100 diagnosed individuals. We contacted 20 parents of children diagnosed with an E-URD through the Duke University Research Sequencing Clinic. Seventeen completed semi-structured interviews exploring parental perspectives (7/17 had children in publications describing the phenotype; 4/17 had children in the first publication establishing a new disorder). Data were analyzed using a directed content approach informed by an empowerment framework. Parents reported a range of responses, including benefits of a diagnosis and challenges of facing the unknown, some described feeling lost and confused, while others expressed empowerment. Empowerment characteristics were hope for the future, positive emotions, engagement, and confidence/self-efficacy to connect with similar others, partner with healthcare providers, and seek new knowledge. We identified a subset of parents who proactively engaged researchers, supported research and publications, and created patient advocacy and support organizations to connect with and bolster similarly diagnosed families. Other parents reported challenges of low social support, low tolerance for uncertainty, limited knowledge about their child's disorder, as well as difficulty partnering with HCPs and connecting to an E-URD community. An overarching classification was developed to describe parental actions taken after an E-URD diagnosis: adjusting, managing, and pioneering. These classifications may help genetic counselors identify and facilitate positive steps with parents of a child with an E-URD.
Collapse
Affiliation(s)
- Bethany Stafford-Smith
- Centre for Medical Education, Cardiff University, Cardiff, UK
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | | | - Nicole Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| |
Collapse
|
16
|
Han H, Seo GH, Hyun SI, Kwon K, Ryu SW, Khang R, Lee E, Kim J, Song Y, Jeong WC, Han J, Kim DW, Yang S, Lee S, Jang S, Lee J, Lee H. Exome sequencing of 18,994 ethnically diverse patients with suspected rare Mendelian disorders. NPJ Genom Med 2025; 10:6. [PMID: 39843441 PMCID: PMC11754811 DOI: 10.1038/s41525-024-00455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
We investigated the effectiveness of exome sequencing (ES) in diagnosing ethnically diverse patients with rare genetic disorders. A total of 18,994 patients referred to a single reference laboratory for ES between 2020 and 2022 were studied for the diagnostic rate and factors influencing the diagnostic rate. The overall diagnostic rate was 31.8%. Dermatological disorders, skeletal disorders, and neurodevelopmental disorders disease categories, early age-of-onset, presence of consanguinity, and the presence of parental sequencing data were found to be correlated with a higher diagnostic rate. Nearly 68K variants were identified in our dataset at a higher frequency than that observed in gnomAD 4.0. Of these, 507 variants could be classified as likely benign, representing 0.04% of non-benign variants in ClinVar (507/1,433,904) and 0.20% of the non-benign ClinVar variants observed at least once in our cohort (507/276,777). The overall diagnostic rate is comparable to that observed in other large cohort studies with less diverse ethnic backgrounds.
Collapse
Affiliation(s)
| | | | - Seong-In Hyun
- 3billion, Inc., Seoul, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, South Korea
| | | | | | | | | | | | | | - Won Chan Jeong
- 3billion, Inc., Seoul, South Korea
- AI Research Center, Seegene Medical Foundation, Seoul, South Korea
| | | | - Dong-Wook Kim
- 3billion, Inc., Seoul, South Korea
- Graduate School of Science and Technology Policy, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | - Sohyun Jang
- 3billion, Inc., Seoul, South Korea
- Genolution, Seoul, South Korea
| | | | - Hane Lee
- 3billion, Inc., Seoul, South Korea.
| |
Collapse
|
17
|
Özdemiral C, Yaz I, Esenboga S, Nabiyeva Cevik N, Bildik HN, Kilic M, Tezcan I, Cagdas D. Human FCHO1 deficiency: review of the literature and additional two cases. Clin Exp Immunol 2025; 219:uxae097. [PMID: 39498505 PMCID: PMC11773606 DOI: 10.1093/cei/uxae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025] Open
Abstract
F-BAR domain only protein 1 (FCHO1) contributes as a critical component to an essential cellular process, clathrin-mediated endocytosis. Clathrin-mediated endocytosis involves cellular membrane invagination followed by cargo protein recruitment and adaptor protein assembly to form endocytic vesicles and maintains several cellular functions, such as signaling, differentiation, nutrition, absorption, and secretion. We aimed to determine the clinical/immunological findings of FCHO1 deficiency to generate an appropriate medical approach. We present clinical/immunological/genetic findings of two FCHO1 deficiency patients together with recently reported 17 patients. We found two different variants in the patients, one previously defined and one novel homozygous mutation [c.306C > A (p.Tyr102Ter)]. Recurrent sinopulmonary infections occurred in all patients, with viral (63.1%) and fungal (52.6%) infections frequently reported. Lymphopenia and CD4 + T cell lymphopenia are present in 77.7% (14/18) and 100% of patients, respectively. CD8+ T cell number is low in half. Hypogammaglobulinemia and low IgM are present in 83.3% (15/18) and 61.1% (11/18) of patients, respectively. Neurological disorders (Guillian-Barre Syndrome, Moya-Moya disease, encephalitis, and cranial infarction) are common [n = 6 (31.5%)]. Malignancy is present in four (21%) patients, three suffered from diffuse large B cell lymphoma, and one developed Hodgkin lymphoma. Additional clinical and laboratory results from more patients helped to define the characteristics of FCHO1 deficiency. The early application of molecular genetic analysis in CID patients is crucial. Since all transplanted patients were alive, allogeneic hematopoietic stem cell transplantation emerged as a potential curative therapy.
Collapse
Affiliation(s)
- Cansu Özdemiral
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Ismail Yaz
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Saliha Esenboga
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Nadira Nabiyeva Cevik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Hacer Neslihan Bildik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Mehmet Kilic
- Division of Allergy and Immunology, Department of Pediatrics, Fırat University Faculty of Medicine, Elazığ, Türkiye
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
18
|
Ahuja S, Zaheer S. Advancements in pathology: Digital transformation, precision medicine, and beyond. J Pathol Inform 2025; 16:100408. [PMID: 40094037 PMCID: PMC11910332 DOI: 10.1016/j.jpi.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
Pathology, a cornerstone of medical diagnostics and research, is undergoing a revolutionary transformation fueled by digital technology, molecular biology advancements, and big data analytics. Digital pathology converts conventional glass slides into high-resolution digital images, enhancing collaboration and efficiency among pathologists worldwide. Integrating artificial intelligence (AI) and machine learning (ML) algorithms with digital pathology improves diagnostic accuracy, particularly in complex diseases like cancer. Molecular pathology, facilitated by next-generation sequencing (NGS), provides comprehensive genomic, transcriptomic, and proteomic insights into disease mechanisms, guiding personalized therapies. Immunohistochemistry (IHC) plays a pivotal role in biomarker discovery, refining disease classification and prognostication. Precision medicine integrates pathology's molecular findings with individual genetic, environmental, and lifestyle factors to customize treatment strategies, optimizing patient outcomes. Telepathology extends diagnostic services to underserved areas through remote digital pathology. Pathomics leverages big data analytics to extract meaningful insights from pathology images, advancing our understanding of disease pathology and therapeutic targets. Virtual autopsies employ non-invasive imaging technologies to revolutionize forensic pathology. These innovations promise earlier diagnoses, tailored treatments, and enhanced patient care. Collaboration across disciplines is essential to fully realize the transformative potential of these advancements in medical practice and research.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
19
|
Eskin-Schwartz M, Seraidy S, Paz E, Molhem M, Ranza E, Antonarakis SE, Blanc X, Herman K, Benko WS, Libzon S, Ben Sira L, Fattal-Valevski A, Dolgin V, Birk OS, Kessel A, Bross P, Weiss C, Azem A, Zerem A. Heterozygous de novo variants in HSPD1 cause hypomyelinating leukodystrophy through impaired HSP60 oligomerisation. J Med Genet 2024; 62:15-24. [PMID: 39500555 DOI: 10.1136/jmg-2024-109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Hypomyelinating leukodystrophies are a group of genetic disorders, characterised by severe permanent myelin deficiency. Their clinical features include developmental delay with or without neuroregression, nystagmus, central hypotonia, progressing to spasticity and ataxia. HSPD1 encodes the HSP60 chaperonin protein, mediating ATP-dependent folding of imported proteins in the mitochondrial matrix. Pathogenic variants in HSPD1 have been related to a number of neurological phenotypes, including the dominantly inherited pure hereditary spastic paraplegia (MIM 605280) and the recessively inherited hypomyelinating leukodystrophy 4 (MIM 612233). Subsequently, an additional phenotype of hypomyelinating leukodystrophy has been reported due to de novo heterozygous HSPD1 variants.In the current work, we expand the clinical and genetic spectrum of this hypomyelinating disorder by describing a cohort of three patients, being heterozygous for HSPD1 variants involving residue Ala536 of HSP60 (the novel p.Ala536Pro variant and the previously reported p.Ala536Val). METHODS Clinical and radiological evaluation; whole exome sequencing, in vitro reconstitution assay and patient fibroblast cell lysate analysis. RESULTS Clinical manifestation was of early-onset nystagmus, tremor and hypotonia evolving into spasticity and ataxia and childhood-onset neuroregression in one case. Brain MRI studies revealed diffuse hypomyelination.The 3D protein structure showed these variants to lie in spatial proximity to the previously reported Leu47Val variant, associated with a similar clinical phenotype. In vitro reconstitution assay and patient fibroblast cell lysate analysis demonstrated that these mutants display aberrant chaperonin protein complex assembly. DISCUSSION We provide evidence that impaired oligomerisation of the chaperonin complex might underlie this HSPD1-related phenotype, possibly through exerting a dominant negative effect.
Collapse
Affiliation(s)
- Marina Eskin-Schwartz
- Genetics Institute, Soroka Hospital, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shaikah Seraidy
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Paz
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Maism Molhem
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | | | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Kristin Herman
- UC Davis Medical Center, MIND Institute Section of Medical Genomics, Sacramento, California, USA
| | - William S Benko
- UC Davis Medical Center, Department of Neurology, Sacramento, California, USA
| | - Stephanie Libzon
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ben Sira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Radiology, Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad S Birk
- Genetics Institute, Soroka Hospital, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Morris Kahn Laboratory of Human Genetics, National Center for Rare Diseases at the Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amit Kessel
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Celeste Weiss
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Abdussalam Azem
- Faculty of Life Sciences School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Zerem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Zhu L, Zhou R, Zhang L, Chen M, Zhang S, Huang X, Shi Y, Ding H. A novel variant c.7104 + 6T > A of ABCA12 linked to autosomal recessive congenital ichthyosis verified by minigene splicing assay. Front Pediatr 2024; 12:1505924. [PMID: 39748812 PMCID: PMC11693441 DOI: 10.3389/fped.2024.1505924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Background Autosomal recessive congenital ichthyosis (ARCI) is a group of genetic skin disorders characterized by abnormal keratinization, leading to significant health issues and reduced quality of life. ARCI encompasses harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While all ARCI genes are linked to LI and CIE, HI is specifically associated with severe mutations in the ABCA12 gene. Milder forms like LI and CIE usually involve at least one non-truncating ABCA12 variant. Methods Whole-exome sequencing (WES) was performed on fetal and parental DNA, and ABCA12 gene variants were validated by Sanger sequencing. The functional effect of the novel variant c.7104 + 6T > A was evaluated using an in vitro minigene system, with splicing analysis conducted via PCR and Sanger sequencing. Results A compound heterozygous variation in the ABCA12 gene, comprising c.5784G > A (p.W1928*) and c.7104 + 6T > A, was identified in the fetus, inherited from the father and mother, respectively. According to ACMG guidelines, the c.7104 + 6T > A variant is classified as a Variant of Uncertain Significance (VUS). Computational predictions suggested that this variant affects splicing. A minigene assay further confirmed that the c.7104 + 6T > A variant in ABCA12 leads to two types of aberrant mRNA splicing: a 69-base pair deletion (c.7036_7104del, p.Val2346_Glu2368del) and skipping of Exon 47, both of which result in a premature stop codon and a truncated protein. Conclusion In conclusion, this study identified a novel genetic variant, c.7104 + 6T > A in ABCA12, as the cause of ARCI in a fetus, thereby enriched the known ABCA12 mutation spectrum.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rui Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lianxiao Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mei Chen
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shengmin Zhang
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaxi Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yubo Shi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huiqing Ding
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Petrazzini BO, Balick DJ, Forrest IS, Cho J, Rocheleau G, Jordan DM, Do R. Ensemble and consensus approaches to prediction of recessive inheritance for missense variants in human disease. CELL REPORTS METHODS 2024; 4:100914. [PMID: 39657681 PMCID: PMC11704621 DOI: 10.1016/j.crmeth.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Mode of inheritance (MOI) is necessary for clinical interpretation of pathogenic variants; however, the majority of variants lack this information. Furthermore, variant effect predictors are fundamentally insensitive to recessive-acting diseases. Here, we present MOI-Pred, a variant pathogenicity prediction tool that accounts for MOI, and ConMOI, a consensus method that integrates variant MOI predictions from three independent tools. MOI-Pred integrates evolutionary and functional annotations to produce variant-level predictions that are sensitive to both dominant-acting and recessive-acting pathogenic variants. Both MOI-Pred and ConMOI show state-of-the-art performance on standard benchmarks. Importantly, dominant and recessive predictions from both tools are enriched in individuals with pathogenic variants for dominant- and recessive-acting diseases, respectively, in a real-world electronic health record (EHR)-based validation approach of 29,981 individuals. ConMOI outperforms its component methods in benchmarking and validation, demonstrating the value of consensus among multiple prediction methods. Predictions for all possible missense variants are provided in the "Data and code availability" section.
Collapse
Affiliation(s)
- Ben O Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel J Balick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard, Medical School, Boston, MA, USA
| | - Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel M Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Xu H, Wang Z, Sa S, Yang Y, Zhang X, Li D. Identification of novel compound heterozygous variants of the ALMS1 gene in a child with Alström syndrome by whole genome sequencing. Gene 2024; 929:148827. [PMID: 39122231 DOI: 10.1016/j.gene.2024.148827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Alström syndrome (ALMS), a rare recessively inherited ciliopathy caused by mutations in ALMS1, is characterized by retinal dystrophy, childhood obesity, sensorineural hearing loss, and type 2 diabetes mellitus. The majority of pathogenic variants in ALMS1 are nonsense and frameshift mutations, which would lead to premature protein truncation, whereas copy number variants are seldom reported. METHODS Herein, we present a 10-year-old Chinese girl with ALMS. The potential causative genetic variant was confirmed through whole genome sequencing, quantitative real-time PCR analysis, and Sanger sequencing. Additionally, breakpoint analysis was performed to determine the exact breakpoint site of the large deletion and elucidate its probable formation mechanism. RESULTS The patient had a cor triatriatum sinister (CTS) structure. Genetic analysis identified novel compound heterozygous variants in the patient, consisting of a frameshift variant c.4414_4415delGT (p.V1472Nfs*26) in ALMS1 and a novel large deletion at chr2:73,612,355-73,626,339, which encompasses exon 1 of the ALMS1 gene. Moreover, breakpoint analysis revealed that the large deletion probably formed through the microhomology-mediated end joining (MMEJ) mechanism due to the 6-bp microhomologies (TCCTTC) observed at both ends of the breakpoints. CONCLUSIONS In this study, novel compound heterozygous variants in the ALMS1 gene were identified in an ALMS patient with a CTS structure. The molecular confirmation of these variants expands the mutational spectrum of ALMS1, while the manifestation of ALMS in the patient provides additional clinical insights into this syndrome.
Collapse
Affiliation(s)
- Haikun Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ziju Wang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Sha Sa
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ying Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China.
| | - Dejun Li
- Center for Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| |
Collapse
|
23
|
Yu T, Ji Y, Cui X, Liang N, Wu S, Xiang C, Li Y, Tao H, Xie Y, Zuo H, Wang W, Khan N, Ullah K, Xu F, Zhang Y, Lin C. Novel Pathogenic Mutation of P209L in TRPC6 Gene Causes Adult Focal Segmental Glomerulosclerosis. Biochem Genet 2024; 62:4432-4445. [PMID: 38315264 DOI: 10.1007/s10528-023-10651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 μmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.
Collapse
Affiliation(s)
- Tianxi Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ning Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chongjun Xiang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huiying Tao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yaqi Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongwei Zuo
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Nauman Khan
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yan Zhang
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
24
|
Basel-Salmon L, Brabbing-Goldstein D. Fetal whole genome sequencing as a clinical diagnostic tool: Advantages, limitations and pitfalls. Best Pract Res Clin Obstet Gynaecol 2024; 97:102549. [PMID: 39259994 DOI: 10.1016/j.bpobgyn.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Genome-wide sequencing, which includes exome sequencing and genome sequencing, has revolutionized the diagnostics of genetic disorders in both postnatal and prenatal settings. Compared to exome sequencing, genome sequencing enables the detection of many additional types of genomic variants, although this depends on the bioinformatics pipelines used. Variant classification might vary among laboratories. In the prenatal setting, variant classification may change if new fetal phenotypic features emerge as the pregnancy progresses. There is still a need to evaluate the incremental diagnostic yield of genome sequencing compared to exome sequencing in the prenatal setting. This article reviews the advantages and limitations of genome sequencing, with an emphasis on fetal diagnostics.
Collapse
Affiliation(s)
- Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Felsenstein Medical Research Center, Petach Tikva, 4920235, Israel.
| | - Dana Brabbing-Goldstein
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel; Ultrasound Unit, The Helen Schneider Women's Hospital, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel
| |
Collapse
|
25
|
Doğulu N, Köse E, Ceylaner S, Kasapkara ÇS, Bozaci AE, Oncul U, Eminoğlu FT. Mitochondrial DNA Depletion Syndromes Gene Panel versus Clinical Exome Sequencing in Children with Suspected Mitochondrial Hepatopathies. Mol Syndromol 2024; 15:450-463. [PMID: 39634245 PMCID: PMC11614429 DOI: 10.1159/000539034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/20/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Mitochondrial DNA depletion syndromes (MDDSs) are a group of clinically and genetically heterogeneous disorders. In the present study, we aimed to investigate the frequency of MDDS in children under the age of 5 years with suspected mitochondrial hepatopathy and to evaluate this group of patients using MDDS gene panel and clinical exome sequencing (CES) genetic analysis methods. Methods Patients under 5 years of age who were clinically suspected to have mitochondrial hepatopathy and had neonatal acute liver failure, hepatic steatohepatitis, cholestasis, or cirrhosis with chronic liver failure of insidious onset were included. Results Forty patients (20 female, 50%) were enrolled, with a median age of 102 [57-263.8] days. Icteric appearance was identified in 28 (70%) of the patients, hepatomegaly in 27 (67.5%), splenomegaly in 10 (25.0%), and hypotonicity in 10 (25.0%); moreover, elevated international normalized ratio was detected in 77.5%, cholestasis in 77.5%, and elevated lactate levels in 62.5%. Molecular genetic diagnosis was made in 9 patients (22.5%) with the MDDS gene panel and in 17 (42.5%) patients with the CES analysis. All patients diagnosed with MDDS had a history of parental consanguinity, while the rate in those without MDDS was 54.8% (p = 0.012). High lactate levels were identified in all those with MDDS, but in only 51.6% of those without MDDS (p = 0.020). Conclusion Present study revealed that demographic findings and laboratory assessments are insufficient to diagnose genetically inherited diseases in children presenting with hepatic involvement. While one-fifth of the patients with suspected mitochondrial hepatopathies were diagnosed with MDDS, it is revealed that around half of patients can be diagnosed with CES panel.
Collapse
Affiliation(s)
- Neslihan Doğulu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Genetics and Rare Diseases Diagnosis Research and Application Center, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ayşe Ergul Bozaci
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Manisa City Hospital, Manisa, Turkey
| | - Ummuhan Oncul
- Department of Pediatric Metabolism, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
26
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Bagabir HA, Abdulkareem AA, Muthaffar OY, Shirah BH, Naseer MI. Clinical whole Exome Sequencing Reveals Novel Homozygous Missense Variant in the PMPCA Gene causing Autosomal Recessive Spinocerebellar Ataxia. Pak J Med Sci 2024; 40:2243-2250. [PMID: 39554679 PMCID: PMC11568725 DOI: 10.12669/pjms.40.10.10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024] Open
Abstract
Background & Objective Autosomal recessive cerebellar ataxias (ARCA) are rare heterogenous neurodegenerative disorders characterized by degeneration of the cerebellum and spinal cord with an early onset before the age of 20 years. PMPCA (MIM: 613036), is a key enzyme in mitochondrial protein processing which is critical for cell survival and growth. Our objective was to investigate Peptidase, Mitochondrial Processing Subunit Alpha (PMPCA) mutations linked with Spinocerebellar ataxia, autosomal recessive 2 (SCAR2). Method In the current study, Whole Exome Sequencing (WES) was done followed by Sanger sequencing for the validation of the WES results. Results WES results identified a novel homozygous variant, NM_015160.2: c.802C>T p.(Arg268Trp) in PMPCA gene. Mutation in this gene leads to progressive cerebellar ataxia with fine motor skills difficulties, intentional tremors, slow slurred speech and learning difficulties in a 12-year-old Saudi patient. WES results were further validated by Sanger sequencing technique. Conclusions Identified phenotype in our case was similar as previously described for SCAR2 related conditions. To our knowledge, this is the first reported mutation in PMPCA gene leading to SCAR2 in Saudi Arabia. These findings will enrich the scarce literature, further provide a new insight on the role of PMPCA gene-related disorders leading to SCAR2 and expand the disease concept. In addition, this will help to establish a database for the disease and its causative factors will further help in controlling diseases resulting from consanguinity in Saudi population.
Collapse
Affiliation(s)
- Hala Abubaker Bagabir
- Hala Abubaker Bagabir Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Angham Abdulrhman Abdulkareem Center of Excellence in Genomic Medicine Research, Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Osama Yousef Muthaffar Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bader H. Shirah
- Bader H. Shirah Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Muhammad Imran Naseer Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Lee JM, Kim HS, Yoo J, Lee J, Ahn A, Cho H, Han EH, Jung J, Yoo JW, Kim S, Lee JW, Cho B, Chung NG, Kim M, Kim Y. Genomic insights into inherited bone marrow failure syndromes in a Korean population. Br J Haematol 2024; 205:1581-1589. [PMID: 38735735 DOI: 10.1111/bjh.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Inherited bone marrow failure syndromes (IBMFS) pose significant diagnostic challenges due to overlapping symptoms and variable expressivity, despite evolving genomic insights. The study aimed to elucidate the genomic landscape among 130 Korean patients with IBMFS. We conducted targeted next-generation sequencing (NGS) and clinical exome sequencing (CES) across the cohort, complemented by whole genome sequencing (WGS) and chromosomal microarray (CMA) in 12 and 47 cases, respectively, with negative initial results. Notably, 50% (n = 65) of our cohort achieved a genomic diagnosis. Among these, 35 patients exhibited mutations associated with classic IBMFSs (n = 33) and the recently defined IBMFS, aplastic anaemia, mental retardation and dwarfism syndrome (AmeDS, n = 2). Classic IBMFSs were predominantly detected via targeted NGS (85%, n = 28) and CES (88%, n = 29), whereas AMeDS was exclusively identified through CES. Both CMA and WGS aided in identifying copy number variations (n = 2) and mutations in previously unexplored regions (n = 2). Additionally, 30 patients were diagnosed with other congenital diseases, encompassing 13 distinct entities including inherited thrombocytopenia (n = 12), myeloid neoplasms with germline predisposition (n = 8), congenital immune disorders (n = 7) and miscellaneous genomic conditions (n = 3). CES was particularly effective in revealing these diverse diagnoses. Our findings underscore the significance of comprehensive genomic analysis in IBMFS, highlighting the need for ongoing exploration in this complex field.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanwool Cho
- Department of Laboratory Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Hee Han
- Department of Laboratory Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Won Yoo
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Jin P, Hong J, Xu Y, Qian Y, Han S, Dong M. Molecular diagnostic yield of exome sequencing in a Chinese cohort of 512 fetuses with anomalies. BMC Pregnancy Childbirth 2024; 24:591. [PMID: 39251974 PMCID: PMC11385820 DOI: 10.1186/s12884-024-06782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Currently, whole exome sequencing has been performed as a helpful complement in the prenatal setting in case of fetal anomalies. However, data on its clinical utility remain limited in practice. Herein, we reported our data of fetal exome sequencing in a cohort of 512 trios to evaluate its diagnostic yield. METHODS In this retrospective cohort study, the couples performing prenatal exome sequencing were enrolled. Fetal phenotype was classified according to ultrasound and magnetic resonance imaging findings. Genetic variants were analyzed based on a phenotype-driven followed by genotype-driven approach in all trios. RESULTS A total of 97 diagnostic variants in 65 genes were identified in 69 fetuses, with an average detection rate of 13.48%. Skeletal and renal system were the most frequently affected organs referred for whole exome sequencing, with the highest diagnostic rates. Among them, short femur and kidney cyst were the most common phenotype. Fetal growth restriction was the most frequently observed phenotype with a low detection rate (4.3%). Exome sequencing had limited value in isolated increased nuchal translucency and chest anomalies. CONCLUSIONS This study provides our data on the detection rate of whole exome sequencing in fetal anomalies in a large cohort. It contributes to the expanding of phenotypic and genotypic spectrum.
Collapse
Affiliation(s)
- Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiawei Hong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Shuning Han
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China.
| |
Collapse
|
30
|
Yue X, Chen M, Ke X, Yang H, Gong F, Wang L, Duan L, Pan H, Zhu H. Clinical Characteristics, Genetic Analysis, and Literature Review of Cornelia de Lange Syndrome Type 4 Associated With a RAD21 Variant. Mol Genet Genomic Med 2024; 12:e70009. [PMID: 39286962 PMCID: PMC11406311 DOI: 10.1002/mgg3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is an uncommon congenital developmental disorder distinguished by intellectual disorder and distinctive facial characteristics, with a minority of cases attributed to RAD21 variants. METHODS A patient was admitted to the endocrinology department at Peking Union Medical College Hospital, where 2 mL of peripheral venous blood was collected from the patient and his parents. DNA was extracted for whole-exome sequencing (WES) analysis, and the genetic variation of the parents was confirmed through Sanger sequencing. RESULTS A 13.3-year-old male patient with a height of 136.5 cm (-3.5 SDS) and a weight of 28.4 kg (-3.1 SDS) was found to have typical craniofacial features. WES revealed a pathogenic variant c.1143G>A (p.Trp381*) in the RAD21 gene. He was diagnosed with CdLS type 4 (OMIM #614701). We reviewed 36 patients with CdLS related to RAD21 gene variants reported worldwide from May 2012 to March 2024. Patient's variant status, clinical characteristics, and rhGH treatment response were summarized. Frameshift variants constituted the predominant variant type, representing 36% (13/36) of cases. Clinical features included verbal developmental delay and intellectual disorder observed in 94% of patients. CONCLUSION This study reported the third case of CdLS type 4 in China caused by a RAD21 gene variant, enriching the genetic mutational spectrum.
Collapse
Affiliation(s)
- Xinyu Yue
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Meiping Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiaoan Ke
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
31
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
32
|
Furuta Y, Phillips JA. Recurrent Myalgia, Dark Urine, and Exercise Intolerance: Glycogen Storage Disease Type X Diagnosed Through Gene Sequencing Panel. Cureus 2024; 16:e70175. [PMID: 39463617 PMCID: PMC11506848 DOI: 10.7759/cureus.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Evaluation of a single episode of exercise-induced myalgia, dark urine, and elevated creatine phosphokinase (CPK) levels relies primarily on clinical history and physical examinations. However, recurrent episodes necessitate further investigations for potential genetic conditions. This is a case of an 11-year-old male who presents with recurrent myalgia, dark discolored urine, and exercise intolerance for the past year. The initial examination revealed hematuria and a mild elevation of transaminases. Referral to nephrology showed elevated CPK level, prompting further evaluation by neurology. A DNA sequencing-based neuromuscular genetic panel identified a heterozygous pathogenic variant and two variants of uncertain significance in his PGAM2 genes, leading to a diagnosis of glycogen storage disease X. Metabolic myopathies should be considered in children with recurrent exercise-induced myalgia and dark discoloration of urine. Screening for myoglobinuria, elevated plasma CPK levels, and characteristic acylcarnitine profiles should be considered when clinically indicated. DNA sequencing-based gene panel testing can serve as a non-invasive alternative to muscle biopsy for diagnosing metabolic myopathies when suspicion is high.
Collapse
Affiliation(s)
- Yutaka Furuta
- Medical Genetics, Vanderbilt University Medical Center, Nashville, USA
| | - John A Phillips
- Medical Genetics, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
33
|
Shen B, Fang Y, Dai Q, Xie Q, Wu W, Wang M. Whole Exome Sequencing as an Effective Molecular Diagnosis Tool for Craniofacial Fibrous Dysplasia with Ocular Complications. Curr Eye Res 2024; 49:996-1003. [PMID: 38708814 DOI: 10.1080/02713683.2024.2349634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To summarize the clinical manifestations of craniofacial fibrous dysplasia (CFD) patients with ocular complications, and find effective methods to diagnose early. METHODS Nine CFD patients with ocular complications, and their parents were recruited in this study. All patients underwent ocular and systemic examinations. Bone lesions from all patients and peripheral blood from patients and their parents were collected for whole exome sequencing (WES). According to the screening for low-frequency deleterious variants, and bioinformatics variants prediction software, possible disease-causing variants were found in multiple CFD patients. The variants were validated by Sanger sequencing. Trio analysis was performed to verify the genetic patterns of CFD. RESULTS All patients were diagnosed with CFD, according to the clinical manifestations, classic radiographic appearance, and pathological biopsy. The main symptoms of the 9 CFD patients, included visual decline (9/9), craniofacial deformity (3/9) and strabismus (2/9), with few extraocular manifestations. The family backgrounds of all the CFD patients indicated that only the patient was affected, and their immediate family members were normal. GNAS variants were identified in all bone lesions from CFD patients, including two variant types: c.601C > T:p.R201C(6/9) and c.602G > A:p.R201H (3/9) in exon 8. The detection rate reached 100% by WES, but only 77.8% by Sanger sequencing. Interestingly, we found GNAS variants could not be detected in peripheral blood samples from CFD patients or their parents, and other potentially disease-causing gene variants related to CFD were not found. CONCLUSIONS For CFD patients with bone lesions involving the optic canal or sphenoid sinus regions, ocular symptoms should also be considered. Furthermore, we confirmed that CFD is not inherited, somatic variants in the GNAS gene are the main pathogenic gene causing CFD. Compared to the traditional methods in molecular genetic diagnosis of CFD, WES is more feasible and effective but limited in the type of samples.
Collapse
Affiliation(s)
- Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Tsai CY, Hsu JSJ, Chen PL, Wu CC. Implementing next-generation sequencing for diagnosis and management of hereditary hearing impairment: a comprehensive review. Expert Rev Mol Diagn 2024; 24:753-765. [PMID: 39194060 DOI: 10.1080/14737159.2024.2396866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Sensorineural hearing impairment (SNHI), a common childhood disorder with heterogeneous genetic causes, can lead to delayed language development and psychosocial problems. Next-generation sequencing (NGS) offers high-throughput screening and high-sensitivity detection of genetic etiologies of SNHI, enabling clinicians to make informed medical decisions, provide tailored treatments, and improve prognostic outcomes. AREAS COVERED This review covers the diverse etiologies of HHI and the utility of different NGS modalities (targeted sequencing and whole exome/genome sequencing), and includes HHI-related studies on newborn screening, genetic counseling, prognostic prediction, and personalized treatment. Challenges such as the trade-off between cost and diagnostic yield, detection of structural variants, and exploration of the non-coding genome are also highlighted. EXPERT OPINION In the current landscape of NGS-based diagnostics for HHI, there are both challenges (e.g. detection of structural variants and non-coding genome variants) and opportunities (e.g. the emergence of medical artificial intelligence tools). The authors advocate the use of technological advances such as long-read sequencing for structural variant detection, multi-omics analysis for non-coding variant exploration, and medical artificial intelligence for pathogenicity assessment and outcome prediction. By integrating these innovations into clinical practice, precision medicine in the diagnosis and management of HHI can be further improved.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
35
|
Kim J, Lee J, Kim M, Jang DH. Diagnostic Yield of Trio Whole-Genome Sequencing in Children with Undiagnosed Developmental Delay or Congenital Anomaly: A Prospective Cohort Study. Diagnostics (Basel) 2024; 14:1680. [PMID: 39125556 PMCID: PMC11312062 DOI: 10.3390/diagnostics14151680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Developmental delays (DD) and congenital anomalies (CA) are prevalent yet often remain undiagnosed despite comprehensive genetic testing. This study aims to investigate the diagnostic yield of trio whole-genome sequencing (WGS) in children presenting with DD or CA who remained undiagnosed after previous genetic testing. A prospective cohort study was conducted on children with undiagnosed DD or CA at a single tertiary hospital. All participants suspected of genetic conditions had undergone chromosome analysis, chromosome microarray analysis (CMA), and clinical exome sequencing (CES); however, a subset remained undiagnosed. The WGS test was administered to both the affected children and their parents. A total of 52 children were included, and 10 (19.2%) had undergone a genetic diagnosis through WGS. Eight of these cases were associated with autosomal dominant and de novo variants. WGS led to successful diagnosis due to several factors, including small structural variants, genes not covered in the CES panel, the discovery of newly implicated genes, issues related to coverage depth, low variant allele frequency, challenges in variant interpretation, and differences in the interpretation of variants of unknown significance among clinicians. This study highlights the clinical value of trio WGS testing in undiagnosed children with DD or CA. Notably, an additional 19.2% of affected children were diagnosed through this method.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dae-Hyun Jang
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
36
|
Wallis M, Bodek SD, Munro J, Rafehi H, Bennett MF, Ye Z, Schneider A, Gardiner F, Valente G, Murdoch E, Uebergang E, Hunter J, Stutterd C, Huq A, Salmon L, Scheffer I, Eratne D, Meyn S, Fong CY, John T, Mullen S, White SM, Brown NJ, McGillivray G, Chen J, Richmond C, Hughes A, Krzesinski E, Fennell A, Chambers B, Santoreneos R, Le Fevre A, Hildebrand MS, Bahlo M, Christodoulou J, Delatycki M, Berkovic SF. Experience of the first adult-focussed undiagnosed disease program in Australia (AHA-UDP): solving rare and puzzling genetic disorders is ageless. Orphanet J Rare Dis 2024; 19:288. [PMID: 39095811 PMCID: PMC11297648 DOI: 10.1186/s13023-024-03297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.
Collapse
Affiliation(s)
- Mathew Wallis
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon D Bodek
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia.
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia.
| | - Jacob Munro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Haloom Rafehi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mark F Bennett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy Schneider
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Fiona Gardiner
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Giulia Valente
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Emma Murdoch
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Eloise Uebergang
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
| | - Jacquie Hunter
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Chloe Stutterd
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Aamira Huq
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetic Medicine Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lucinda Salmon
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetics Service, Royal Prince Alfred Hospital, Melbourne, Australia
| | - Ingrid Scheffer
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Austin Health, Melbourne, Australia
| | - Dhamidhu Eratne
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Stephen Meyn
- Centre for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chun Y Fong
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Tom John
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Saul Mullen
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Melbourne, Australia
- Genetics Service, Mercy Hospital for Women, Melbourne, Australia
| | - Jesse Chen
- Neurology Service, Austin Health, Melbourne, Australia
| | - Chris Richmond
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Hughes
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | | | - Andrew Fennell
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Monash Health Genetics Clinic, Melbourne, Australia
| | - Brian Chambers
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | - Renee Santoreneos
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Anna Le Fevre
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Martin Delatycki
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Samuel F Berkovic
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
37
|
Watson S, Ngo KJ, Stevens HA, Wong DY, Kim J, Song Y, Han B, Hyun SI, Khang R, Ryu SW, Lee E, Seo G, Lee H, Lajonchere C, Fogel BL. Cross-Sectional Analysis of Exome Sequencing Diagnosis in Patients With Neurologic Phenotypes Facing Barriers to Clinical Testing. Neurol Genet 2024; 10:e200133. [PMID: 38617022 PMCID: PMC11010248 DOI: 10.1212/nxg.0000000000200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 04/16/2024]
Abstract
Background and Objectives Exome sequencing (ES) demonstrates a 20-50 percent diagnostic yield for patients with a suspected monogenic neurologic disease. Despite the proven efficacy in achieving a diagnosis for such patients, multiple barriers for obtaining exome sequencing remain. This study set out to assess the efficacy of ES in patients with primary neurologic phenotypes who were appropriate candidates for testing but had been unable to pursue clinical testing. Methods A total of 297 patients were identified from the UCLA Clinical Neurogenomics Research Center Biobank, and ES was performed, including bioinformatic assessment of copy number variation and repeat expansions. Information regarding demographics, clinical indication for ES, and reason for not pursuing ES clinically were recorded. To assess diagnostic efficacy, variants were interpreted by a multidisciplinary team of clinicians, bioinformaticians, and genetic counselors in accordance with the American College of Medical Genetics and Genomics variant classification guidelines. We next examined the specific barriers to testing for these patients, including how frequently insurance-related barriers such as coverage denials and inadequate coverage of cost were obstacles to pursuing exome sequencing. Results The cohort primarily consisted of patients with sporadic conditions (n = 126, 42.4%) of adult-onset (n = 239, 80.5%). Cerebellar ataxia (n = 225, 75.8%) was the most common presenting neurologic phenotype. Our study found that in this population of mostly adult patients with primary neurologic phenotypes that were unable to pursue exome sequencing clinically, 47 (15.8%) had diagnostic results while an additional 24 patients (8.1%) had uncertain results. Of the 297 patients, 206 were initially recommended for clinical exome but 88 (42.7%) could not pursue ES because of insurance barriers, of whom 14 (15.9%) had diagnostic findings, representing 29.8% of all patients with diagnostic findings. In addition, the incorporation of bioinformatic repeat expansion testing was valuable, identifying a total of 8 pathogenic repeat expansions (17.0% of all diagnostic findings) including 3 of the common spinocerebellar ataxias and 2 patients with Huntington disease. Discussion These findings underscore the importance and value of clinical ES as a diagnostic tool for neurogenetic disease and highlight key barriers that prevent patients from receiving important clinical information with potential treatment and psychosocial implications for patients and family members.
Collapse
Affiliation(s)
- Sonya Watson
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Kathie J Ngo
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Hannah A Stevens
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Darice Y Wong
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Jihye Kim
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Yongjun Song
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Beomman Han
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Seong-In Hyun
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Rin Khang
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Seung Woo Ryu
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Eugene Lee
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Gohun Seo
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Hane Lee
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Clara Lajonchere
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Brent L Fogel
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| |
Collapse
|
38
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
39
|
Duraisamy AJ, Liu R, Sureshkumar S, Rose R, Jagannathan L, da Silva C, Coovadia A, Ramachander V, Chandrasekar S, Raja I, Sajnani M, Selvaraj SM, Narang B, Darvishi K, Bhayal AC, Katikala L, Guo F, Chen-Deutsch X, Balciuniene J, Ma Z, Nallamilli BRR, Bean L, Collins C, Hegde M. Focused Exome Sequencing Gives a High Diagnostic Yield in the Indian Subcontinent. J Mol Diagn 2024; 26:510-519. [PMID: 38582400 DOI: 10.1016/j.jmoldx.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.
Collapse
Affiliation(s)
| | - Ruby Liu
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | - Rajiv Rose
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | - Indu Raja
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | | | - Fen Guo
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | | | | | | - Lora Bean
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
40
|
Afridi TUK, Fatima A, Satti HS, Akram Z, Yousafzai IK, Naeem WB, Fatima N, Ali A, Iqbal Z, Khan A, Shahzad M, Liu C, Toft M, Zhang F, Tariq M, Davis EE, Khan TN. Exome sequencing in four families with neurodevelopmental disorders: genotype-phenotype correlation and identification of novel disease-causing variants in VPS13B and RELN. Mol Genet Genomics 2024; 299:55. [PMID: 38771357 DOI: 10.1007/s00438-024-02149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.
Collapse
Affiliation(s)
- Tehseen Ullah Khan Afridi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, 74800, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Zaineb Akram
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Imran Khan Yousafzai
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Wajahat Bin Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Nasreen Fatima
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Asmat Ali
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, 74800, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Shahzad
- Department of Neurosurgery, District Headquarter Hospital, Kohat, Pakistan
| | - Chunyu Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Feng Zhang
- Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200438, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Tahir N Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
D'haene E, López-Soriano V, Martínez-García PM, Kalayanamontri S, Rey AD, Sousa-Ortega A, Naranjo S, Van de Sompele S, Vantomme L, Mahieu Q, Vergult S, Neto A, Gómez-Skarmeta JL, Martínez-Morales JR, Bauwens M, Tena JJ, De Baere E. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential cis-regulatory interactions at retinal disease loci. Genome Biol 2024; 25:123. [PMID: 38760655 PMCID: PMC11100165 DOI: 10.1186/s13059-024-03250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.
Collapse
Affiliation(s)
- Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Víctor López-Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Soraya Kalayanamontri
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quinten Mahieu
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan Ramón Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Juan Jesús Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
42
|
Liang JW, Christensen KD, Green RC, Kraft P. Evaluating the utility of multi-gene, multi-disease population-based panel testing accounting for uncertainty in penetrance estimates. NPJ Genom Med 2024; 9:30. [PMID: 38760335 PMCID: PMC11101660 DOI: 10.1038/s41525-024-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Panel germline testing allows for the efficient detection of deleterious variants for multiple conditions, but the benefits and harms of identifying these variants are not always well understood. We present a multi-gene, multi-disease aggregate utility formula that allows the user to consider adding or removing each gene in a panel based on variant frequency, estimated penetrances, and subjective disutilities for testing positive but not developing the disease and testing negative but developing the disease. We provide credible intervals for utility that reflect uncertainty in penetrance estimates. Rare, highly penetrant deleterious variants tend to contribute positive net utilities for a wide variety of user-specified disutilities, even when accounting for parameter estimation uncertainty. However, the clinical utility of deleterious variants with moderate, uncertain penetrance depends more on assumed disutilities. The decision to include a gene on a panel depends on variant frequency, penetrance, and subjective utilities and should account for uncertainties around these factors.
Collapse
Affiliation(s)
- Jane W Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kurt D Christensen
- Center for Healthcare Research in Pediatrics, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert C Green
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Mass General Brigham, Boston, MA, USA
- Ariadne Labs, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Ciancia S, Madeo SF, Calabrese O, Iughetti L. The Approach to a Child with Dysmorphic Features: What the Pediatrician Should Know. CHILDREN (BASEL, SWITZERLAND) 2024; 11:578. [PMID: 38790573 PMCID: PMC11120268 DOI: 10.3390/children11050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
The advancement of genetic knowledge and the discovery of an increasing number of genetic disorders has made the role of the geneticist progressively more complex and fundamental. However, most genetic disorders present during childhood; thus, their early recognition is a challenge for the pediatrician, who will be also involved in the follow-up of these children, often establishing a close relationship with them and their families and becoming a referral figure. In this review, we aim to provide the pediatrician with a general knowledge of the approach to treating a child with a genetic syndrome associated with dysmorphic features. We will discuss the red flags, the most common manifestations, the analytic collection of the family and personal medical history, and the signs that should alert the pediatrician during the physical examination. We will offer an overview of the physical malformations most commonly associated with genetic defects and the way to describe dysmorphic facial features. We will provide hints about some tools that can support the pediatrician in clinical practice and that also represent a useful educational resource, either online or through apps downloaded on a smartphone. Eventually, we will offer an overview of genetic testing, the ethical considerations, the consequences of incidental findings, and the main indications and limitations of the principal technologies.
Collapse
Affiliation(s)
- Silvia Ciancia
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Simona Filomena Madeo
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Olga Calabrese
- Medical Genetics Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| |
Collapse
|
44
|
Perlman SL. CRPD frontiers in movement disorders Therapeutics: From evidence to treatment and applications: Addressing Patients' Needs in the Management of the Ataxias. Clin Park Relat Disord 2024; 10:100255. [PMID: 38798918 PMCID: PMC11126860 DOI: 10.1016/j.prdoa.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
The genetic ataxias have no cures and no proven ways to delay progression (no disease-modifying therapies). The acquired ataxias may have treatments that address the underlying cause and may slow or stop progression, but will not reverse damage already sustained. The idiopathic ataxias (of unknown genetic or acquired cause) also have no proven disease-modifying therapies. However, for all patients with ataxia of any cause, there is always something that can be done to improve quality of life-treat associated symptoms, provide information and resources, counsel patient and family, help with insurance and disability concerns, be available to listen and answer the many questions they will have.
Collapse
Affiliation(s)
- Susan L. Perlman
- Department of Neurology David Geffen School of Medicine at UCLA Health Sciences 300 UCLA Medical Plaza, Suite B200 Los Angeles, CA 90095, United States
| |
Collapse
|
45
|
Li S, Zhao S, Sinson JC, Bajic A, Rosenfeld JA, Neeley MB, Pena M, Worley KC, Burrage LC, Weisz-Hubshman M, Ketkar S, Craigen WJ, Clark GD, Lalani S, Bacino CA, Machol K, Chao HT, Potocki L, Emrick L, Sheppard J, Nguyen MTT, Khoramnia A, Hernandez PP, Nagamani SC, Liu Z, Eng CM, Lee B, Liu P. The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing. Am J Hum Genet 2024; 111:841-862. [PMID: 38593811 PMCID: PMC11080285 DOI: 10.1016/j.ajhg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jefferson C Sinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Neeley
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Mezthly Pena
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Gary D Clark
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Cain Pediatric Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Lisa Emrick
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Sheppard
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - My T T Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Anahita Khoramnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sandesh Cs Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
46
|
Ferrer A, Duffy P, Olson RJ, Meiners MA, Schultz-Rogers L, Macke EL, Safgren S, Morales-Rosado JA, Cousin MA, Oliver GR, Rider D, Williams M, Pichurin PN, Deyle DR, Morava E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Kaiwar C, Vitek CR, McAllister TM, Wick MJ, Schimmenti LA, Lazaridis KN, Vairo FPE, Klee EW. Semiautomated approach focused on new genomic information results in time and effort-efficient reannotation of negative exome data. Hum Genet 2024; 143:649-666. [PMID: 38538918 DOI: 10.1007/s00439-024-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/25/2024] [Indexed: 05/18/2024]
Abstract
Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick Duffy
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Meiners
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Laura Schultz-Rogers
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica L Macke
- The Institute of Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Joel A Morales-Rosado
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gavin R Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Rider
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Megan Williams
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Radhika Dhamija
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Klass J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Carolyn R Vitek
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Myra J Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lisa A Schimmenti
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Departments of Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
47
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Abdulkareem AA, Shirah BH, Bagabir HA, Haque A, Naseer MI. Whole exome sequencing of a novel homozygous missense variant in PALB2 gene leading to Fanconi anaemia complementation group. Biomed Rep 2024; 20:67. [PMID: 38476606 PMCID: PMC10928473 DOI: 10.3892/br.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah 11211, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
49
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
50
|
McNamara RC, Zven S, Horvat DE, Veras JE, Schacht JP. "Hole" Exome Sequences: The Importance of Phenotyping to Fill the Gaps in Whole Exome Sequencing. Pediatr Neurol 2024; 152:1-3. [PMID: 38168579 DOI: 10.1016/j.pediatrneurol.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Whole exome sequencing (WES) is commonly used for patients with nonspecific clinical features and conditions with genetic heterogeneity. However, a nondiagnostic exome does not exclude a genetic diagnosis, so history and physical examination is crucial to selecting appropriate genetic testing. CASES We report three patients with three recognizable phenotypes: a seven-year-old female with classic Rett syndrome; a 28-year-old male with neuropathy, ataxia, and retinitis pigmentosa; and a 16-year-old male with mosaic, segmental, paternal uniparental disomy 14 who had nondiagnostic WES. CONCLUSIONS Despite recognizable phenotypes they had diagnostic delays due to incorrect selection of genetic testing. This case series highlights the limitations of WES and reinforces the importance of utilizing patient history and physical examination to select initial testing. We will discuss appropriate testing for these patients and a consistent diagnostic algorithm that can be applied when approaching patients with unknown or uncertain clinical presentations.
Collapse
Affiliation(s)
- R Colin McNamara
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Sidney Zven
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David E Horvat
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - John Paul Schacht
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland; Department of Pediatric Subspecialties, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|