Published online May 15, 2020. doi: 10.5495/wjcid.v10.i1.14
Peer-review started: February 7, 2020
First decision: March 5, 2020
Revised: March 25, 2020
Accepted: May 5, 2020
Article in press: May 5, 2020
Published online: May 15, 2020
Processing time: 95 Days and 9.2 Hours
Uropathogenic Escherichia coli (UPEC) is the number one cause of urinary tract infection in women. Motility driven by the action of flagella is critical for UPEC pathogenesis. How Escherichia coli (E. coli) adapts to a low pH/high osmolarity environment is essential for the species survival. Acid tolerance systems, such as the System two system, are important for UPEC survival in a low pH environment.
Our key problem to be solved was whether GadE, a part of the acid response two system, regulates transcription of the fliC gene, and in turn, UPEC motility.
Determine whether GadE regulated fliC transcription and subsequent motility of the E. coli.
We created a fliC-lacZ reporter system on a single-copy number plasmid and measured b-galactosidase levels in both a K-12 and UPEC clinical isolate. Furthermore, motility was assessed in both E. coli strains by inoculating wild-type, gadE mutant, and complemented gadE mutant strains onto motility agar.
Transcription of fliC was significantly lower in E. coli grown in pH 5.5 Luria Bertani compared to pH 7.0 Luria Bertani. A mutation in the gadE gene led to higher fliC expression in that strain vs wild-type bacteria. Motility was significantly higher in the gadE mutant strain compared to the wild-type strain.
We confirmed that fliC transcription was down-regulated in E. coli grown in a low pH/high osmolarity environment compared to a neutral pH/low osmolarity environment. GadE appears to either directly or indirectly regulate fliC transcription in E. coli.
Future work could be done to affirm the GadE regulation of flagella expression in E. coli.