1
|
Ozma MA, Fadaee M, Hosseini HM, Ataee MH, Mirhosseini SA. A Critical Review of Postbiotics as Promising Novel Therapeutic Agents for Clostridial Infections. Probiotics Antimicrob Proteins 2025; 17:656-667. [PMID: 39546182 DOI: 10.1007/s12602-024-10406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Clostridial infections, known for their severity and rapid progression, present significant challenges in both clinical and veterinary fields. These bacteria, which can survive without oxygen and produce protective spores, cause many diseases, ranging from simple gastrointestinal disorders to severe and potentially fatal infections including botulism, tetanus, and gas gangrene. The rising occurrence of antibiotic-resistant strains and the repetitive character of some Clostridial illnesses, including Clostridioides difficile infections (CDI), highlight the immediate need for alternate treatment approaches. Postbiotics, which are metabolites derived from probiotics, are showing great potential as effective agents against these diseases. The current study offers a comprehensive investigation of the potential of postbiotics as therapeutic agents for treating Clostridial infections, including C. difficile, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. It also examines the processes by which postbiotics exert their effects. Preliminary investigations have shown that postbiotics have promising antibacterial and antibiofilm properties, indicating their potential as adjunct agents in methods for controlling microbial growth. Nevertheless, more study is required to thoroughly demonstrate their medicinal uses.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ataee
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xu L, Gurung B, Gu C, Wang S, Gu T. A New Convenient Method to Assess Antibiotic Resistance and Antimicrobial Efficacy against Pathogenic Clostridioides difficile Biofilms. Antibiotics (Basel) 2024; 13:728. [PMID: 39200028 PMCID: PMC11350819 DOI: 10.3390/antibiotics13080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of a disposable electrochemical biofilm test kit using two solid-state electrodes (a 304 stainless steel working electrode, and a graphite counter electrode, which also served as the reference electrode) in a 10 mL serum vial. It was found that the C. difficile 630∆erm Adp-4 mutant had a minimum inhibitory concentration (MIC) for vancomycin twice that of the 630∆erm wild type strain in biofilm prevention (2 ppm vs. 1 ppm by mass) on 304 stainless steel. Glutaraldehyde, a commonly used hospital disinfectant, was found ineffective at 2% (w/w) for the prevention of C. difficile 630∆erm wild type biofilm formation, while tetrakis(hydroxymethyl)phosphonium sulfate (THPS) disinfectant was very effective at 100 ppm for both biofilm prevention and biofilm killing. These antimicrobial efficacy data were consistent with sessile cell count and biofilm imaging results. Furthermore, the test kit provided additional transient biocide treatment information. It showed that vancomycin killed C. difficile 630∆erm wild type biofilms in 2 d, while THPS only required minutes.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Chris Gu
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45071, USA
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
4
|
Larcombe S, Williams GC, Amy J, Lim SC, Riley TV, Muleta A, Barugahare AA, Powell DR, Johanesen PA, Cheng AC, Peleg AY, Lyras D. A genomic survey of Clostridioides difficile isolates from hospitalized patients in Melbourne, Australia. Microbiol Spectr 2023; 11:e0135223. [PMID: 37815385 PMCID: PMC10715045 DOI: 10.1128/spectrum.01352-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE There has been a decrease in healthcare-associated Clostridioides difficile infection in Australia, but an increase in the genetic diversity of infecting strains, and an increase in community-associated cases. Here, we studied the genetic relatedness of C. difficile isolated from patients at a major hospital in Melbourne, Australia. Diverse ribotypes were detected, including those associated with community and environmental sources. Some types of isolates were more likely to carry antimicrobial resistance determinants, and many of these were associated with mobile genetic elements. These results correlate with those of other recent investigations, supporting the observed increase in genetic diversity and prevalence of community-associated C. difficile, and consequently the importance of sources of transmission other than symptomatic patients. Thus, they reinforce the importance of surveillance for in both hospital and community settings, including asymptomatic carriage, food, animals, and other environmental sources to identify and circumvent important sources of C. difficile transmission.
Collapse
Affiliation(s)
- Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Galain C. Williams
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Jacob Amy
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Su Chen Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Thomas V. Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Muleta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | | | | | - Priscilla A. Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Allen C. Cheng
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
| | - Anton Y. Peleg
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Yang L, Lai Y, Cheung CI, Ye Z, Huang T, Wang Y, Chin Y, Chia Z, Chen Y, Li M, Tseng H, Tsai Y, Zhang Z, Chen K, Tsai B, Shieh D, Lee N, Tsai P, Huang C. Novel metal peroxide nanoboxes restrain Clostridioides difficile infection beyond the bactericidal and sporicidal activity. Bioeng Transl Med 2023; 8:e10593. [PMID: 38023694 PMCID: PMC10658501 DOI: 10.1002/btm2.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Abstract
Clostridioides difficile spores are considered as the major source responsible for the development of C. difficile infection (CDI), which is associated with an increased risk of death in patients and has become an important issue in infection control of nosocomial infections. Current treatment against CDI still relies on antibiotics, which also damage normal flora and increase the risk of CDI recurrence. Therefore, alternative therapies that are more effective against C. difficile bacteria and spores are urgently needed. Here, we designed an oxidation process using H2O2 containing PBS solution to generate Cl- and peroxide molecules that further process Ag and Au ions to form nanoboxes with Ag-Au peroxide coat covering Au shell and AgCl core (AgAu-based nanoboxes). The AgAu-based nanoboxes efficiently disrupted the membrane structure of bacteria/spores of C. difficile after 30-45 min exposure to the highly reactive Ag/Au peroxide surface of the nano structures. The Au-enclosed AgCl provided sustained suppression of the growth of 2 × 107 pathogenic Escherichia coli for up to 19 days. In a fecal bench ex vivo test and in vivo CDI murine model, biocompatibility and therapeutic efficacy of the AuAg nanoboxes to attenuate CDI was demonstrated by restoring the gut microbiota and colon mucosal structure. The treatment successfully rescued the CDI mice from death and prevented their recurrence mediated by vancomycin treatment. The significant outcomes indicated that the new peroxide-derived AgAu-based nanoboxes possess great potential for future translation into clinical application as a new alternative therapeutic strategy against CDI.
Collapse
Affiliation(s)
- Li‐Xing Yang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
- School of Dentistry and Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Hsin Lai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chun In Cheung
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zhi Ye
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Tzu‐Chi Huang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Chin Wang
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Cheng Chin
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zi‐Chun Chia
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Ya‐Jyun Chen
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Meng‐Jia Li
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsiu‐Ying Tseng
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Tseng Tsai
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zhi‐Bin Zhang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Kuan‐Hsu Chen
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Bo‐Yang Tsai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Dar‐Bin Shieh
- School of Dentistry and Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
- Center of Applied Nanomedicine and Core Facility CenterNational Cheng Kung UniversityTainanTaiwan
- iMANI Center of the National Core Facility for BiopharmaceuticalsNational Science and Technology CouncilTaipeiTaiwan
- Department of StomatologyNational Cheng Kung University HospitalTainanTaiwan
| | - Nan‐Yao Lee
- Department of MedicineNational Cheng Kung UniversityTainanTaiwan
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infection ControlNational Cheng Kung University HospitalTainanTaiwan
| | - Pei‐Jane Tsai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
- Research Center of Infectious Disease and SignalingNational Cheng Kung UniversityTainanTaiwan
- Department of Pathology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chih‐Chia Huang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
- Center of Applied Nanomedicine and Core Facility CenterNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
6
|
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms 2022; 10:microorganisms10101918. [DOI: 10.3390/microorganisms10101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.
Collapse
|
7
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
8
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
9
|
Tan C, Zhu F, Xiao Y, Wu Y, Meng X, Liu S, Liu T, Chen S, Zhou J, Li C, Wu A. Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Front Immunol 2022; 13:887061. [PMID: 35720363 PMCID: PMC9204425 DOI: 10.3389/fimmu.2022.887061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqi Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| |
Collapse
|
10
|
Papanikolopoulou A, Maltezou HC, Gargalianos-Kakolyris P, Pangalis A, Pantazis N, Pantos C, Tountas Y, Tsakris A, Kantzanou M. Association between consumption of antibiotics, infection control interventions and Clostridioides difficile infections: Analysis of six-year time-series data in a tertiary-care hospital in Greece. Infect Dis Health 2022; 27:119-128. [PMID: 35153189 DOI: 10.1016/j.idh.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND To investigate the association between Clostridioides difficile infection (CDI), antibiotic use, and infection control interventions, during an antibiotic stewardship program (ASP) implemented in a tertiary-care hospital in Greece from 2013 to 2018. METHODS Analysis was applied for the following monthly indices: 1. consumption of antibiotics; 2. use of hand hygiene disinfectant solutions; 3. percentage of isolations of patients either with multidrug-resistant (MDR) bacteria, or CDI, or admitted from another hospital; and 4. percentage of patients with CDI divided into two groups: community-acquired CDI (CACDI) and hospital-associated CDI (HACDI) (onset ≤72 h and >72 h after admission, respectively). RESULTS During the study, a significant reduction in CACDI rate from 0.3%/admissions [95% CI 0.1-0.6] to 0.1%/admissions [95% CI 0.0-0.3] (p-value = 0.035) was observed in adults ICU, while CDI rates were stable in the rest of the hospital. Antibiotic consumption showed a significant reduction in total hospital, from 91.7 DDDs [95% CI 89.7-93.7] to 80.1 DDDs [95% CI 79.1-81.1] (p-value<0.001), except adults ICU. Non-advanced antibiotics correlated with decreased CDI rates in Adults Clinic Departments and ICU. Isolation of patients one and two months earlier correlated with decreased CACDI rates per 20% [95% CI 0.64-1.00, p-value = 0.046] and HACDI per 23% [95% CI 0.60-1.00, p-value = 0.050] in Adults Clinic Departments. Consumption of disinfectant solutions current month correlated with decreased rate for CACDI per 33% [95% CI 0.49-0.91, p-value = 0.011] and HACDI per 38% [95% CI 0.40-0.98, p-value = 0.040] in total Hospital Clinics. CONCLUSION Rational antibiotic prescribing during ASP along with multipronged intervention strategy focusing on hand hygiene and patient isolation measures prevent and control CDI outbreaks in the hospital setting.
Collapse
Affiliation(s)
| | - Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, Athens, 15123 Greece.
| | | | - Anastasia Pangalis
- Biopathology Department, Athens Medical Center, Marousi, Athens, 15125 Greece
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, 15772 Greece
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, 15772 Greece
| | - Yannis Tountas
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, 15772 Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, 15772 Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, 15772 Greece
| |
Collapse
|
11
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
12
|
McSharry S, Koolman L, Whyte P, Bolton D. Investigation of the Effectiveness of Disinfectants Used in Meat-Processing Facilities to Control Clostridium sporogenes and Clostridioides difficile Spores. Foods 2021; 10:foods10061436. [PMID: 34205779 PMCID: PMC8234884 DOI: 10.3390/foods10061436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
Spore-forming bacteria are a major concern for the food industry as they cause both spoilage and food safety issues. Moreover, as they are more resistant than vegetative cells, their removal from the food processing environment may be difficult to achieve. This study investigated the efficacy of the ten most commonly used disinfectant agents (assigned 1–10), used at the recommended concentrations in the meat industry, for their ability to eliminate Clostridium sporogenes and Clostridioides difficile spores. Test-tube based suspension assays suggested that disinfectants 2 (10% v/v preparation of a mixture of hydrogen peroxide (10–30%), acetic acid (1–10%) and peracetic acid (1–10%)), 7 (4% w/v preparation of a mixture of peroxymonosulphate (30–50%), sulphamic acid (1–10%) and troclosene sodium (1–10%)) and 10 (2% v/v preparation of a mixture of glutaraldehyde (10–30%), benzalkonium chloride (1–10%)) were the most effective formulations. D-values for these ranged from 2.1 to 8.4 min at 20 °C for the target spores. Based on these findings, it is recommended that these disinfectants are used to control Clostridium spores in the meat plant environment.
Collapse
Affiliation(s)
- Siobhán McSharry
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- Correspondence: ; Tel.: +353-0-1-805-9539
| |
Collapse
|
13
|
Rosales-Mendoza S, Cervantes-Rincón T, Romero-Maldonado A, Monreal-Escalante E, Nieto-Gómez R. Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnol Prog 2021; 37:e3141. [PMID: 33666366 DOI: 10.1002/btpr.3141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Clostridioides difficile/genetics
- Enterotoxins/genetics
- Escherichia coli Proteins/genetics
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Molecular Farming
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Spores, Bacterial/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Edible/metabolism
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tomás Cervantes-Rincón
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
14
|
D'Agata EMC, Apata IW, Booth S, Boyce JM, Deaver K, Gualandi N, Neu A, Nguyen D, Novosad S, Palevsky PM, Rodgers D. Suggestions for the prevention of Clostridioides difficile spread within outpatient hemodialysis facilities. Kidney Int 2021; 99:1045-1053. [PMID: 33667504 PMCID: PMC10506371 DOI: 10.1016/j.kint.2021.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
Clostridioides difficile infections (CDIs) cause substantial morbidity and mortality. Patients on maintenance hemodialysis are 2 to 2.5 times more likely to develop CDI, with mortality rates 2-fold higher than the general population. Hospitalizations due to CDI among the maintenance hemodialysis population are high, and the frequency of antibiotic exposures and hospitalizations may contribute to CDI risk. In this report, a panel of experts in clinical nephrology, infectious diseases, and infection prevention provide guidance, based on expert opinion and published literature, aimed at preventing the spread of CDI in outpatient hemodialysis facilities.
Collapse
Affiliation(s)
- Erika M C D'Agata
- Division of Infectious Diseases, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Ibironke W Apata
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephanie Booth
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John M Boyce
- J.M. Boyce Consulting, LLC, Middletown, Connecticut, USA
| | - Karen Deaver
- University of Virginia Dialysis Program, Charlottesville, Virginia, USA
| | - Nicole Gualandi
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alicia Neu
- Division of Pediatric Nephrology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Duc Nguyen
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Novosad
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul M Palevsky
- Renal Section, Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA; Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Darlene Rodgers
- American Society of Nephrology Alliance for Kidney Health, Washington, DC, USA
| |
Collapse
|
15
|
Lee SY, Chan EL, Chan HH, Li CCK, Ooi ZH, Koh RY, Liew YK. ANTIMICROBIAL AGENTS AND ANTI-ADHESION MATERIALS FOR MEDICAL AND SURGICAL GLOVES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Healthcare-associated infections (HAIs) can be common in healthcare settings, such as the intensive care unit and surgical sites, if proper precautions are not followed. Although traditional techniques are encouraged, such as educating the public and healthcare workers to practice proper handwashing or to double glove, they have not been fully effective in combating HAIs. The use of surface-modified antimicrobial gloves may be an alternative approach to prevent the transmission of pathogens between healthcare workers and patients. This paper gives a comprehensive review of strategies to produce antimicrobial gloves. The chemistry of some potential chemically synthesized antimicrobial agents and nature-inspired superhydrophobic surfaces are discussed. The principles of killing microbes must be understood to effectively select these materials and to design and fabricate surfaces for the reduction of bacterial adhesion. Also, current company trends and technologies are presented for gloves proven to effectively kill bacteria. Such glove use, when coupled with in-depth research on diverse surgical procedures and medical examinations, could ease the burden of HAIs.
Collapse
Affiliation(s)
- Siang Yin Lee
- Latex Science and Technology Unit (USTL), Technology and Engineering Division (BTK), RRIM Sungai Buloh Research Station, Malaysian Rubber Board (MRB), 47000 Sungai Buloh, Selangor, Malaysia
| | - E-Lyn Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Claire Chong Khai Li
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Zhe Hooi Ooi
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. Int J Mol Sci 2020; 21:ijms21186696. [PMID: 32933117 PMCID: PMC7555657 DOI: 10.3390/ijms21186696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.
Collapse
|
17
|
Ganguly J, Tempelaars M, Abee T, van Kranenburg R. Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe 2020; 63:102208. [PMID: 32387172 DOI: 10.1016/j.anaerobe.2020.102208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022]
Abstract
Single-cell analysis of microbial population heterogeneity is a fast growing research area in microbiology due to its potential to identify and quantify the impact of subpopulations on microbial performance in, for example, industrial biotechnology, environmental biology, and pathogenesis. Although several tools have been developed, determination of population heterogenity in anaerobic bacteria, especially spore-forming clostridia species has been amply studied. In this study we applied single cell analysis techniques such as flow cytometry (FCM) and fluorescence-assisted cell sorting (FACS) on the spore-forming succinate producer Pseudoclostridium thermosuccinogenes. By combining FCM and FACS with fluorescent staining, we differentiated and enriched all sporulation-related morphologies of P. thermosuccinogenes. To evaluate the presence of metabolically active vegetative cells, a blend of the dyes propidium iodide (PI) and carboxy fluorescein diacetate (cFDA) tested best. Side scatter (SSC-H) in combination with metabolic indicator cFDA dye provided the best separation of sporulation populations. Based on this protocol, we successfully determined culture heterogeneity of P. thermosuccinogenes by discriminating between mature spores, forespores, dark and bright phase endospores, and vegetative cells populations. Henceforth, this methodology can be applied to further study sporulation dynamics and its impact on fermentation performance and product formation by P. thermosuccinogenes.
Collapse
Affiliation(s)
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Richard van Kranenburg
- Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
18
|
AbdelKhalek A, Mohammad H, Mayhoub AS, Seleem MN. Screening for potent and selective anticlostridial leads among FDA-approved drugs. J Antibiot (Tokyo) 2020; 73:392-409. [PMID: 32132676 DOI: 10.1038/s41429-020-0288-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Clostridium difficile is a leading cause of morbidity and mortality particularly in hospital settings. In addition, treatment is very challenging due to the scarcity of effective therapeutic options. Thus, there remains an unmet need to identify new therapeutic agents capable of treating C. difficile infections. In the current study, we screened two FDA-approved drug libraries against C. difficile. Out of almost 3200 drugs screened, 50 drugs were capable of inhibiting the growth of C. difficile. Remarkably, some of the potent inhibitors have never been reported before and showed activity in a clinically achievable range. Structure-activity relationship analysis of the active hits clustered the potent inhibitors into four chemical groups; nitroimidazoles (MIC50 = 0.06-2.7 μM), salicylanilides (MIC50 = 0.2-0.6 μM), imidazole antifungals (MIC50 = 4.8-11.6 μM), and miscellaneous group (MIC50 = 0.4-22.2 μM). The most potent drugs from the initial screening were further evaluated against additional clinically relevant strains of C. difficile. Moreover, we tested the activity of potent inhibitors against representative strains of human normal gut microbiota to investigate the selectivity of the inhibitors towards C. difficile. Overall, this study provides a platform that could be used for further development of potent and selective anticlostridial antibiotics.
Collapse
Affiliation(s)
- Ahmed AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Romyasamit C, Thatrimontrichai A, Aroonkesorn A, Chanket W, Ingviya N, Saengsuwan P, Singkhamanan K. Enterococcus faecalis Isolated From Infant Feces Inhibits Toxigenic Clostridioides (Clostridium) difficile. Front Pediatr 2020; 8:572633. [PMID: 33102409 PMCID: PMC7545477 DOI: 10.3389/fped.2020.572633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Clostridioides (Clostridium) difficile infection is implicated as a major cause of antibiotic-associated diarrhea in hospitals worldwide. Probiotics, especially lactic acid bacteria, are the most frequently used alternative treatment. This study aims to identify potential probiotic enterococci strains that act against C. difficile strains and exert a protective effect on colon adenocarcinoma cells (HT-29 cells). To this end, nine Enterococcus strains isolated from the feces of breast-fed infants were investigated. They were identified as E. faecalis by 16s rRNA sequencing and MALDI-TOF. The probiotic properties including their viabilities in simulated gastrointestinal condition, cell adhesion ability, and their safety were evaluated. All strains exhibited more tolerance toward both pepsin and bile salts and adhered more tightly to HT-29 cells compared with the reference probiotic strain Lactobacillus plantarum ATCC 14917. Polymerase chain reaction (PCR) results exhibited that six of nine strains carried at least one virulence determinant gene; however, none exhibited virulence phenotypes or carried transferable antibiotic resistance genes. These strains did not infect Galleria mellonella when compared to pathogenic E. faecalis strain (p < 0.05). Moreover, their antibacterial activities against C. difficile were examined using agar well-diffusion, spore production, and germination tests. The six safe strains inhibited spore germination (100 - 98.20% ± 2.17%) and sporulation, particularly in C. difficile ATCC 630 treated with E. faecalis PK 1302. Furthermore, immunofluorescence assay showed that the cytopathic effects of C. difficile of HT-29 cells were reduced by the treatment with the cell-free supernatant of E. faecalis strains. These strains prevented rounding of HT-29 cells and preserved the F-actin microstructure and tight junctions between adjacent cells, which indicated their ability to reduce the clostridial cytopathic effects. Thus, the study identified six E. faecalis isolates that have anti-C. difficile activity. These could be promising probiotics with potential applications in the prevention of C. difficile colonization and treatment of C. difficile infection.
Collapse
Affiliation(s)
- Chonticha Romyasamit
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Anucha Thatrimontrichai
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Aratee Aroonkesorn
- Department of Biochemistry, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Wannarat Chanket
- Department of Biochemistry, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Natnicha Ingviya
- Clinical Microbiology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Phanvasri Saengsuwan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Kamonnut Singkhamanan
| |
Collapse
|
20
|
Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 2019; 5:166-180. [PMID: 31768029 PMCID: PMC6925328 DOI: 10.1038/s41564-019-0613-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Clostridioides difficile is a leading cause of health care-associated infections. Although significant progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we performed a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observed great epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity whose corresponding gene is highly conserved across our dataset and in all ∼300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacted sporulation, a key step in C. difficile disease transmission, consistently supported by multi-omics data, genetic experiments, and a mouse colonization model. Further experimental and transcriptomic analysis also suggested that epigenetic regulation is associated with cell length, biofilm formation, and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this critical pathogen. This work also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomics studies.
Collapse
|
21
|
Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility. Appl Environ Microbiol 2019; 85:AEM.01090-19. [PMID: 31300397 DOI: 10.1128/aem.01090-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/20/2019] [Indexed: 01/22/2023] Open
Abstract
Clostridium difficile is the primary cause of antibiotic-associated diarrhea globally. In unfavorable environments, the organism produces highly resistant spores which can survive microbicidal insult. Our previous research determined the ability of C. difficile spores to adhere to clinical surfaces, finding that spores had markedly different hydrophobic properties and adherence abilities. Investigation into the effect of the microbicide sodium dichloroisocyanurate on C. difficile spore transmission revealed that sublethal concentrations increased spore adherence without reducing viability. The present study examined the ability of spores to transmit across clinical surfaces and their response to an in-use disinfection concentration of 1,000 ppm of chlorine-releasing agent sodium dichloroisocyanurate. In an effort to understand if these surfaces contribute to nosocomial spore transmission, surgical isolation gowns, hospital-grade stainless steel, and floor vinyl were spiked with 1 × 106 spores/ml of two types of C. difficile spore preparations: crude spores and purified spores. The hydrophobicity of each spore type versus clinical surface was examined via plate transfer assay and scanning electron microscopy. The experiment was repeated, and spiked clinical surfaces were exposed to 1,000 ppm sodium dichloroisocyanurate at the recommended 10-min contact time. Results revealed that the hydrophobicity and structure of clinical surfaces can influence spore transmission and that outer spore surface structures may play a part in spore adhesion. Spores remained viable on clinical surfaces after microbicide exposure at the recommended disinfection concentration, demonstrating ineffectual sporicidal action. This study showed that C. difficile spores can transmit and survive between various clinical surfaces despite appropriate use of microbicides.IMPORTANCE Clostridium difficile is a health care-acquired organism and the causative agent of antibiotic-associated diarrhea. Its spores are implicated in fecal to oral transmission from contaminated surfaces in the health care environment due to their adherent nature. Contaminated surfaces are cleaned using high-strength chemicals to remove and kill the spores; however, despite appropriate infection control measures, there is still high incidence of C. difficile infection in patients in the United States. Our research examined the effect of a high-strength biocide on spores of C. difficile which had been spiked onto a range of clinically relevant surfaces, including isolation gowns, stainless steel, and floor vinyl. This study found that C. difficile spores were able to survive exposure to appropriate concentrations of biocide, highlighting the need to examine the effectiveness of infection control measures to prevent spore transmission and to consider the prevalence of biocide resistance when decontaminating health care surfaces.
Collapse
|
22
|
Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D. New insights for vaccine development against Clostridium difficile infections. Anaerobe 2019; 58:73-79. [DOI: 10.1016/j.anaerobe.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
23
|
Clostridioides difficile contamination in a clinical microbiology laboratory? Clin Microbiol Infect 2019; 26:340-344. [PMID: 31284033 DOI: 10.1016/j.cmi.2019.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Clostridioides difficile infection has traditionally been considered to be transmitted predominantly within health-care settings. It is not recognized as a pathogen that presents a risk of laboratory acquisition. Data on laboratory contamination and acquisition by laboratory personnel are lacking. Our objective was to assess environmental contamination by C. difficile and its potential for transmission in a clinical microbiology laboratory. METHODS Laboratory surfaces were screened for C. difficile. Samples were taken in areas that handle C. difficile isolates (high-exposure (HE) areas), areas adjacent to HE areas or those processing faecal samples (medium-exposure (ME) areas), and areas that do not process faecal samples or C. difficile isolates (low-exposure (LE) areas). We examined C. difficile carriage (hands/rectal samples) of laboratory workers. RESULTS A total of 140 environmental samples were collected from two HE areas (n = 56), two ME areas (n = 56) and two LE areas (n = 28). Overall, 37.8% (37/98) of surfaces were contaminated with C. difficile, and 17.3% (17/98) with toxigenic C. difficile (TCD). HE areas were significantly more contaminated with TCD than LE areas (38.1% (16/42) versus 0.0% (0/14), p 0.005) and ME areas (38.1% (16/42) versus 2.4% (1/42), p <0.001). Hands were colonized with TCD in 11.8% (4/34) of cases. We found no rectal carriage of C. difficile. CONCLUSIONS We found a significant proportion of laboratory surfaces to be contaminated with toxigenic C. difficile, as well as hand colonization of laboratory personnel. We recommend specific control measures for high-risk areas and laboratory personnel working in these areas.
Collapse
|
24
|
Yu SC, Lai AM, Smyer J, Flaherty J, Mangino JE, McAlearney AS, Yen PY, Moffatt-Bruce S, Hebert CL. Novel Visualization of Clostridium difficile Infections in Intensive Care Units. ACI OPEN 2019; 3:e71-e77. [PMID: 33598637 DOI: 10.1055/s-0039-1693651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate and timely surveillance and diagnosis of healthcare-facility onset Clostridium difficile infection (HO-CDI) is vital to controlling infections within the hospital, but there are limited tools to assist with timely outbreak investigations. OBJECTIVES To integrate spatiotemporal factors with HO-CDI cases and develop a map-based dashboard to support infection preventionists (IPs) in performing surveillance and outbreak investigations for HO-CDI. METHODS Clinical laboratory results and Admit-Transfer-Discharge data for admitted patients over two years were extracted from the Information Warehouse of a large academic medical center and processed according to Center for Disease Control (CDC) National Healthcare Safety Network (NHSN) definitions to classify Clostridium difficile infection (CDI) cases by onset date. Results were validated against the internal infection surveillance database maintained by IPs in Clinical Epidemiology of this Academic Medical Center (AMC). Hospital floor plans were combined with HO-CDI case data, to create a dashboard of intensive care units. Usability testing was performed with a think-aloud session and a survey. RESULTS The simple classification algorithm identified all 265 HO-CDI cases from 1/1/15-11/30/15 with a positive predictive value (PPV) of 96.3%. When applied to data from 2014, the PPV was 94.6% All users "strongly agreed" that the dashboard would be a positive addition to Clinical Epidemiology and would enable them to present Hospital Acquired Infection (HAI) information to others more efficiently. CONCLUSIONS The CDI dashboard demonstrates the feasibility of mapping clinical data to hospital patient care units for more efficient surveillance and potential outbreak investigations.
Collapse
Affiliation(s)
- Sean C Yu
- Washington University, St. Louis, MO, USA
| | | | - Justin Smyer
- Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Julie E Mangino
- Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Po-Yin Yen
- Washington University, St. Louis, MO, USA
| | | | | |
Collapse
|
25
|
Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77:118-129. [DOI: 10.1016/j.fm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
26
|
Bressuire-Isoard C, Broussolle V, Carlin F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol Rev 2018; 42:614-626. [DOI: 10.1093/femsre/fuy021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christelle Bressuire-Isoard
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Véronique Broussolle
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Frédéric Carlin
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| |
Collapse
|
27
|
Uwamahoro MC, Massicotte R, Hurtubise Y, Gagné-Bourque F, Mafu AA, Yahia L. Evaluating the Sporicidal Activity of Disinfectants against Clostridium difficile and Bacillus amyloliquefaciens Spores by Using the Improved Methods Based on ASTM E2197-11. Front Public Health 2018; 6:18. [PMID: 29459891 PMCID: PMC5807369 DOI: 10.3389/fpubh.2018.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Spore-forming pathogenic bacteria, such as Clostridium difficile, are associated with nosocomial infection, leading to the increased use of sporicidal disinfectants, which impacts socioeconomic costs. However, C. difficile can be prevented using microorganisms such as Bacillus amyloliquefaciens, a prophylactic agent that has been proven to be effective against it in recent tests or it can be controlled by sporicidal disinfectants. These disinfectants against spores should be evaluated according to a known and recommended standard. Unfortunately, some newly manufactured disinfectants like Bioxy products have not yet been tested. ASTM E2197-11 is a standard test that uses stainless steel disks (1 cm in diameter) as carriers, and the performance of the test formulation is calculated by comparing the number of viable test organisms to that on the control carriers. Surface tests are preferable for evaluating disinfectants with sporicidal effects on hard surfaces. This study applies improved methods, based on the ASTM E2197-11 standard, for evaluating and comparing the sporicidal efficacies of several disinfectants against spores of C. difficile and B. amyloliquefaciens, which are used as the test organisms. With the improved method, all spores were recovered through vortexing and membrane filtration. The results show that chlorine-based products are effective in 5 min and Bioxy products at 5% w/v are effective in 10 min. Although Bioxy products may take longer to prove their effectiveness, their non-harmful effects to hospital surfaces and people have been well established in the literature.
Collapse
Affiliation(s)
- Marie Christine Uwamahoro
- Laboratory of Innovation and Analysis of Bioperformance, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Richard Massicotte
- Centre Intégré de Santé et de Services Sociaux de Lanaudière, Joliette, QC, Canada
| | | | | | - Akier Assanta Mafu
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada
| | - L'Hocine Yahia
- Laboratory of Innovation and Analysis of Bioperformance, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| |
Collapse
|
28
|
Engelhardt N, Foster N, Hong S, Riley T, McGechie D. Comparison of two environmental sampling tools for the detection of Clostridium difficile spores on hard bathroom surfaces in the hospital setting. J Hosp Infect 2017; 96:295-296. [DOI: 10.1016/j.jhin.2017.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/28/2017] [Indexed: 11/16/2022]
|
29
|
Nyc O, Tejkalova R, Kriz Z, Ruzicka F, Kubicek L, Matejkova J, Kuijper E, Krutova M. Two Clusters of Fluoroquinolone and Clindamycin-ResistantClostridium difficilePCR Ribotype 001 Strain Recognized by Capillary Electrophoresis Ribotyping and Multilocus Variable Tandem Repeat Analysis. Microb Drug Resist 2017; 23:609-615. [DOI: 10.1089/mdr.2016.0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Otakar Nyc
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Renata Tejkalova
- Department of Medical Microbiology, St. Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Kriz
- 2nd Department of Surgery, St. Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Ruzicka
- Department of Medical Microbiology, St. Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubos Kubicek
- 2nd Department of Surgery, St. Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Matejkova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Ed Kuijper
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
- DNA Laboratory, Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| |
Collapse
|
30
|
Abstract
Unrelated spore-forming bacteria share unique characteristics stemming from the presence of highly resistant endospores, leading to similar challenges in health and disease. These characteristics are related to the presence of these highly transmissible spores, which are commonly spread within the environment and are implicated in host-to-host transmission. In humans, spore-forming bacteria contribute to a variety of pathological processes that share similar characteristics, including persistence, chronicity, relapses and the maintenance of the resistome. We first outline the necessity of characterizing the totality of the spore-forming bacteria as the sporobiota based on their unique common characteristics. We further propose that the collection of all genes of spore-forming bacteria be known as the sporobiome. Such differentiation is critical for exploring the cross-talk between the sporobiota and other members of the gut microbiota, and will allow for a better understanding of the implications of the sporobiota and sporobiome in a variety of pathologies and the spread of antibiotic resistance.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, 423 West 127 Street, New York, NY 10027 USA
| | - Victor Tetz
- Human Microbiology Institute, 423 West 127 Street, New York, NY 10027 USA
| |
Collapse
|
31
|
The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:169-200. [PMID: 29050666 DOI: 10.1016/bs.aambs.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteriophages are key players in the evolution of most bacteria. Temperate phages have been associated with virulence of some of the deadliest pathogenic bacteria. Among the most notorious cases, the genes encoding the botulinum neurotoxin produced by Clostridium botulinum types C and D and the α-toxin (TcnA) produced by Clostridium novyi are both encoded within prophage genomes. Clostridium difficile is another important human pathogen and the recent identification of a complete binary toxin locus (CdtLoc) carried on a C. difficile prophage raises the potential for horizontal transfer of toxin genes by mobile genetic elements. Although the TcdA and TcdB toxins produced by C. difficile have never been found outside the pathogenicity locus (PaLoc), some prophages can still influence their production. Prophages can alter the expression of several metabolic and regulatory genes in C. difficile, as well as cell surface proteins such as CwpV, which confers phage resistance. Homologs of an Agr-like quorum sensing system have been identified in a C. difficile prophage, suggesting that it could possibly participate in cell-cell communication. Yet, other C. difficile prophages contain riboswitches predicted to recognize the secondary messenger molecule c-di-GMP involved in bacterial multicellular behaviors. Altogether, recent findings on clostridial phages underline the diversity of mechanisms and intricate relationship linking phages with their host. Here, milestone discoveries linking phages and virulence of some of the most pathogenic clostridial species will be retraced, with a focus on C. botulinum, C. novyi, C. difficile, and Clostridium perfringens phages, for which evidences are mostly available.
Collapse
|
32
|
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology. Anaerobe 2017; 45:3-9. [DOI: 10.1016/j.anaerobe.2017.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
33
|
Riedel T, Wetzel D, Hofmann JD, Plorin SPEO, Dannheim H, Berges M, Zimmermann O, Bunk B, Schober I, Spröer C, Liesegang H, Jahn D, Overmann J, Groß U, Neumann-Schaal M. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J Med Microbiol 2017; 307:311-320. [PMID: 28619474 DOI: 10.1016/j.ijmm.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic clades and five different toxin inventories in relation to the C. difficile model strains 630Δerm and R20291. Within 33 determined fermentation products, we identified two yet undescribed products (5-methylhexanoate and 4-(methylthio)-butanoate) of C. difficile. Our data revealed major differences in the fermentation products obtained after growth in a medium containing casamino acids and glucose as carbon and energy source. While the metabolism of branched chain amino acids remained comparable in all isolates, the aromatic amino acid uptake and metabolism and the central carbon metabolism-associated fermentation pathways varied strongly between the isolates. The patterns obtained followed neither the classification of the clades nor the ribotyping patterns nor the toxin distribution. As the toxin formation is strongly connected to the metabolism, our data allow an improved differentiation of C. difficile strains. The observed metabolic flexibility provides the optimal basis for the adaption in the course of infection and to changing conditions in different environments including the human gut.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Daniela Wetzel
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Julia Danielle Hofmann
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Simon Paul Erich Otto Plorin
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Henning Dannheim
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Ortrud Zimmermann
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany; Göttingen International Health Network, Göttingen, Germany
| | - Meina Neumann-Schaal
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.
| |
Collapse
|
34
|
Westerway SC, Basseal JM, Brockway A, Hyett JA, Carter DA. Potential Infection Control Risks Associated with Ultrasound Equipment - A Bacterial Perspective. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:421-426. [PMID: 28341192 DOI: 10.1016/j.ultrasmedbio.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Ultrasound equipment used in trans-abdominal (TA) and trans-vaginal (TV) examination may carry bacterial contamination and pose risks to infection control during ultrasound examination. We aimed to describe the prevalence of bacterial contamination on ultrasound probes, gel, machine keyboard and cords and examined the effectiveness of low- and high-level disinfection techniques. This study was performed at a public hospital and a private practice. A total of 171 swabs were analyzed and bacterial species were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis and polymerase chain reaction (PCR). Sixty percent of TA probes and 14% of TV probes had evidence of bacterial contamination after an ultrasound examination. Low-level disinfection was partially effective, but 4% of probes were still contaminated by spore-forming species. Some heated gel samples were highly contaminated with the environmental bacterium Brevundimonas aurantiaca, suggesting the gel was conducive to bacterial growth. Ultrasound machines, probe cords and gels were identified as potential sources of bacterial contamination and need to be cleaned and changed regularly to minimize risks of infection.
Collapse
Affiliation(s)
- Susan Campbell Westerway
- Faculty of Dentistry & Health Sciences, Charles Sturt University NSW, Australia; Australasian Society for Ultrasound in Medicine (ASUM), Sydney, NSW, Australia
| | - Jocelyne M Basseal
- Australasian Society for Ultrasound in Medicine (ASUM), Sydney, NSW, Australia.
| | | | - Jon A Hyett
- Department of High Risk Obstetrics, Royal Prince Alfred Hospital, Sydney, Australia; Discipline of Obstetrics, Gynaecology and Neonatology, Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, Australia
| | | |
Collapse
|
35
|
Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Front Cell Infect Microbiol 2016; 6:99. [PMID: 27713865 PMCID: PMC5031699 DOI: 10.3389/fcimb.2016.00099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CDI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.
Collapse
Affiliation(s)
- Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Camila Miranda-Cárdenas
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Iván Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Paula I Rodas
- Facultad de Medicina, Center for Integrative Medicine and Innovative Sciences, Universidad Andres Bello Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, Oregon State UniversityCorvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah UniversityAl Majma'ah, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
36
|
Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Appl Environ Microbiol 2016; 82:5892-8. [PMID: 27474709 DOI: 10.1128/aem.01463-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the morphotype responsible for transmission, infection, and persistence, and the outermost exosporium layer is likely to play a major role in spore-host interactions during recurrent infections, contributing to the persistence of the spore in the host. A recent study (M. Pizarro-Guajardo, P. Calderón-Romero, P. Castro-Córdova, P. Mora-Uribe, and D. Paredes-Sabja, Appl Environ Microbiol 82:2202-2209, 2016, http://dx.doi.org/10.1128/AEM.03410-15) demonstrated by transmission electron microscopy the presence of two ultrastructural morphotypes of the exosporium layer in spores formed from the same sporulating culture. However, whether these distinct morphotypes appeared due to purification techniques and whether they appeared during biofilm development remain unclear. In this communication, we demonstrate through transmission electron microscopy that these two exosporium morphotypes are formed under sporulation conditions and are also present in spores formed during biofilm development. In summary, this work provides definitive evidence that in a population of sporulating cells, spores with a thick outermost exosporium layer and spores with a thin outermost exosporium layer are formed. IMPORTANCE Clostridium difficile spores are recognized as the morphotype of persistence and transmission of C. difficile infections. Spores of C. difficile are intrinsically resistant to all known antibiotic therapies. Development of spore-based removal strategies requires a detailed knowledge of the spore surface for proper antigen selection. In this context, in this work we provide definitive evidence that two types of spores, those with a thick outermost exosporium layer and those with a thin outermost exosporium layer, are formed in the same C. difficile sporulating culture or during biofilm development.
Collapse
|
37
|
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Center for Bioinformatic & Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
38
|
Meehan AM, Tariq R, Khanna S. Challenges in management of recurrent and refractory Clostridium difficile infection. World J Clin Infect Dis 2016; 6:28-36. [DOI: 10.5495/wjcid.v6.i3.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) is the most common nosocomial infection in the United States and is associated with a high mortality. One quarter of patients treated for CDI have at least one recurrence. Spore persistence, impaired host immune response and alteration in the gastrointestinal microbiome due to antibiotic use are factors in recurrent disease. We review the etiology of recurrent CDI and best approaches to management including fecal microbiota transplantation.
Collapse
|
39
|
Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl Environ Microbiol 2016; 82:2202-2209. [PMID: 26850296 DOI: 10.1128/aem.03410-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863-3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025-1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore's outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets.
Collapse
|
40
|
Johanesen PA, Mackin KE, Hutton ML, Awad MM, Larcombe S, Amy JM, Lyras D. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance. Genes (Basel) 2015; 6:1347-60. [PMID: 26703737 PMCID: PMC4690045 DOI: 10.3390/genes6041347] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.
Collapse
Affiliation(s)
- Priscilla A Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Kate E Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Milena M Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Jacob M Amy
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
41
|
Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2015; 37:85-95. [PMID: 26688279 DOI: 10.1016/j.anaerobe.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins.
Collapse
Affiliation(s)
| | | | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA; Rockefeller University, New York, NY, USA
| |
Collapse
|
42
|
Abstract
The human gut harbours a dense and highly diverse microbial ecosystem-the microbiota-that plays an important role in the maintenance of health. Modern lifestyle practices, including widespread antibiotic use, have degraded microbiota diversity, compromising the integrity of this vital ecosystem and creating susceptibility to diseases such as Clostridium difficile infection. Treatment of patients to restore the diversity of the gut microbiota offers a logical solution to disease. Although fecal microbial therapy (FMT) has started to gain traction as an effective method to effect this restoration, it is not without risks and there are significant barriers to its implementation in the clinic. Some of the risks and challenges with FMT are addressed by microbial ecosystem therapeutics (MET), an alternative approach to FMT that uses selected, defined microbial ecosystems to redress microbiota balance and functionality. The time has come for the use of bugs as drugs.
Collapse
|
43
|
Zhao S, Ghose-Paul C, Zhang K, Tzipori S, Sun X. Immune-based treatment and prevention of Clostridium difficile infection. Hum Vaccin Immunother 2015; 10:3522-30. [PMID: 25668664 DOI: 10.4161/21645515.2014.980193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clostridium difficile (C. difficile) causes over 500,000 infections per year in the US, with an estimated 15,000 deaths and an estimated cost of $1-3 billion. Moreover, a continual rise in the incidence of severe C. difficile infection (CDI) has been observed worldwide. Currently, standard treatment for CDI is the administration of antibiotics. While effective, these treatments do not prevent and may contribute to a disease recurrence rate of 15-35%. Prevention of recurrence is one of the most challenging aspects in the field. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of C. difficilenow permits the development of immune-based therapies. Antibodies specific for C. difficile toxins have been shown to effectively treat CDI and prevent disease relapse in animal models and in humans. Vaccination has been recognized as the most cost-effective treatment/prevention for CDI. This review will summarize CDI transmission, epidemiology, major virulent factors and highlights the rational and the development of immune-based approaches against this remerging threat.
Collapse
Key Words
- AAD, antibiotic-associated diarrhea
- CDI, Clostridium difficile infection
- CPD, cysteine proteinase domain
- GTD, glucosyltransferase domain
- HuMabs, human monoclonal antibodies
- IVIG, intravenous immunoglobulin
- RBD, receptor binding domain
- SLP, surface-layer protein
- TMD, transmembrane domain
- bacterial toxins
- clostridium difficile infection (CDI)
- immunotherapy
- mAb, monoclonal antibody
- monoclonal antibody
- vaccine
Collapse
Affiliation(s)
- Song Zhao
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | |
Collapse
|
44
|
Gil F, Pizarro-Guajardo M, Álvarez R, Garavaglia M, Paredes-Sabja D. Clostridium difficile recurrent infection: possible implication of TA systems. Future Microbiol 2015; 10:1649-57. [DOI: 10.2217/fmb.15.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an important nosocomial pathogen associated with antibiotic treatments. C. difficile's ability to survive antimicrobial therapy and transition from inert colonization to active infection is one of the most perplexing aspects of C. difficile infections and suggests that additional mechanisms are involved in persistence. In this regard, novel mechanisms linked with pathogenesis and persistence of C. difficile such as toxin–antitoxin systems might significantly contribute to biofilm formation and persistent infection. This review will focus on advances of toxin–antitoxin systems in C. difficile and their putative roles will be discussed.
Collapse
Affiliation(s)
- Fernando Gil
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Gut Microbiota & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| | - Ricardo Álvarez
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| | - Marco Garavaglia
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniel Paredes-Sabja
- Gut Microbiota & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| |
Collapse
|
45
|
Abstract
Clostridium difficile is associated with a spectrum of clinical manifestations ranging from asymptomatic carriage to severe life-threatening pseudomembranous colitis. Current perspectives indicate that C difficile pathogenesis is a multifactorial disease process dictated by pathogenic toxin production, gut microbial dysbiosis, and altered host inflammatory responses. This article summarizes recent findings underpinning the cellular and molecular mechanisms regulating bacterial virulence and sheds new light on the critical roles of the host immune response, intestinal microbiota, and metabolome in mediating disease pathogenesis.
Collapse
Affiliation(s)
- Tanya M Monaghan
- Biomedical Research Unit, NIHR Nottingham Digestive Diseases Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK.
| |
Collapse
|
46
|
Olguín-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D. Recent advances in germination of Clostridium spores. Res Microbiol 2014; 166:236-43. [PMID: 25132133 DOI: 10.1016/j.resmic.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/23/2022]
Abstract
Members of Clostridium genus are a diverse group of anaerobic spore-formers that includes several pathogenic species. Their anaerobic requirement enhances the importance of the dormant spore morphotype during infection, persistence and transmission. Bacterial spores are metabolically inactive and may survive for long times in the environment and germinate in presence of nutrients termed germinants. Recent progress with spores of several Clostridium species has identified the germinant receptors (GRs) involved in nutrient germinant recognition and initiation of spore germination. Signal transduction from GRs to the downstream effectors remains poorly understood but involves the release of dipicolinic acid. Two mechanistically different cortex hydrolytic machineries are present in Clostridium spores. Recent studies have also shed light into novel biological events that occur during spore formation (accumulation of transcriptional units) and transcription during early spore outgrowth. In summary, this review will cover all of the recent advances in Clostridium spore germination.
Collapse
Affiliation(s)
- Valeria Olguín-Araneda
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah University, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.
| |
Collapse
|