1
|
Frade AF, Guérin H, Nunes JPS, Silva LFSE, Roda VMDP, Madeira RP, Brochet P, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Cardiac and Digestive Forms of Chagas Disease: An Update on Pathogenesis, Genetics, and Therapeutic Targets. Mediators Inflamm 2025; 2025:8862004. [PMID: 40297326 PMCID: PMC12037249 DOI: 10.1155/mi/8862004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/12/2025] [Indexed: 04/30/2025] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a neglected disease affecting around 6 million people, with no effective antiparasitic drugs or vaccines. About 40% of Chagas disease patients develop symptomatic forms in the chronic phase of infection, chronic Chagas cardiomyopathy (CCC) or digestive forms like megaoesophagus and megacolon, while most infected patients (60%) remain asymptomatic (ASY) in the so-called indeterminate form (IF). CCC is an inflammatory cardiomyopathy that occurs decades after the initial infection. Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in heart failure and arrhythmia. Survival in CCC is worse than in other cardiomyopathies. Distinct from other cardiomyopathies, CCC displays a helper T-cell type 1 (Th1-T) cell-rich myocarditis with abundant interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and selectively lower levels of mitochondrial energy metabolism enzymes and high-energy phosphates in the heart. A CD8+ T cell-rich inflammatory infiltrate has also been found in the Chagasic megaesophagus, which is associated with denervation of myoenteric plexi. IFN-γ and TNF-α signaling, which are constitutively upregulated in Chagas disease patients, negatively affect mitochondrial function and adenosine 5'-triphosphate (ATP) production-cytokine-induced mitochondrial dysfunction. In addition, the differential susceptibility to developing CCC has prompted many studies over the past 25 years on the association of genetic polymorphisms with disease outcomes. A comprehensive understanding of Chagas disease pathogenesis is crucial for identifying potential therapeutic targets. Genetic studies may offer valuable insights into factors with prognostic significance. In this review, we present an updated perspective on the pathogenesis and genetic factors associated with Chagas disease, emphasizing key studies that elucidate the differential progression of patients to CCC and other symptomatic forms. Furthermore, we explore the interplay between genetic susceptibility, inflammatory cytokines, mitochondrial dysfunction and discuss emerging therapeutic targets.
Collapse
Affiliation(s)
- Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Hélléa Guérin
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Joao Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Luiz Felipe Souza e Silva
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Rafael Pedro Madeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Pauline Brochet
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Pauline Andrieux
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Christophe Chevillard
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| |
Collapse
|
2
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
3
|
Olivera V, Bizai ML, Arias E, Suasnabar S, Bottasso O, Marcipar I, Fabbro D. Levels of anti-B13 antibodies over time in a cohort of chronic infected by Trypanosoma cruzi. Its relationship with specific treatment and clinical status. Acta Trop 2021; 218:105908. [PMID: 33789152 DOI: 10.1016/j.actatropica.2021.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
The immunodominant B13 protein of Trypanosoma cruzi is found on the surface of trypomastigotes and exhibits cross-reactivity with the human cardiac myosin heavy chain; for which antibodies against this parasitic antigen may be involved in the development of disease pathology. In a cohort of chronically T. cruzi-infected adults, undergoing trypanocidal treatment, or not, we, therefore, decided to evaluate the levels of anti-B13 antibodies (ELISA-B13) and its eventual relationship with heart complaints. Two hundred twenty-eight serum samples from 76 chronically infected adults with an average follow-up of 24 years were analyzed. Thirty of them had received trypanocidal treatment. Among treated patients, anti-B13 Ab levels in successive samples showed a significant decrease in reactivity as the years after treatment increased (ANOVA test, p = 0.0049). At the end of the follow-up, 36.7% became non-reactive for ELISA B13. Untreated patients did not have significant variations in the level of anti-B13 antibodies during follow-up. None of the treated patients had electrocardiographic changes compatible with chronic chagasic cardiomyopathy, whereas 21.7% of those undergoing no treatment did show such kind of pathological electrocardiogram tracings. ELISA-B13 was reactive in all cases with heart involvement. Among untreated patients, there were no significant differences in anti-B13 antibodies when comparing individuals without proven pathology with those with chronic chagasic cardiomyopathy. Although treatment with trypanocidal drugs was followed by decreased anti-B13 antibody levels, such assessment was unhelpful in differentiating the evolution of chronic chagasic heart disease.
Collapse
|
4
|
Vicco MH, Rodeles L, Capovilla GS, Perrig M, Choque AGH, Marcipar I, Bottasso O, Rodriguez C, Cuña W. IgG Autoantibodies Induced by T. cruzi During Pregnancy: Correlation with Gravidity Complications and Early Outcome Assessment of the Newborns. Matern Child Health J 2016; 20:2057-64. [PMID: 27318490 DOI: 10.1007/s10995-016-2035-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Objective The aim of the present research was to evaluate the correlation of vertically transmitted IgG antibodies induced by T. cruzi and newborn early outcome assessment, mainly birth weight and gestational age. Methods We performed a cross-sectional study with 183 pregnant women (64 with asymptomatic Chagas disease) and their newborns. Both were subjected to complete clinical examination. Peripheral parasitemia was assessed in mother and neonates by parasite detection through microscopic examination of the buffycoat from mother's peripheral and cord blood. Antibodies induced by T. cruzi, such as anti-FRA, anti-B13, anti-p2β and anti-T. cruzi were assessed by immunoassay. Birth weight, general condition evaluation by APGAR Score and gestational age by Capurro Score, were determined in newborns. Results The rate of stillbirth background and pregnancy-induced hypertension were higher in patients with Chagas disease (p = 0.01 and p = 0.02, respectively). Parasitemia was detectable in 17 mothers and 4 newborns. The newborns of mothers with detectable parasitemia presented decreased gestational age (p = 0.006) and body weight (p = 0.04). Mostly all the mothers with Chagas disease and all their newborns have positive values of antibodies induced by T. cruzi; however, only anti-p2β showed to be related to the presence of complication during pregnancy (OR 2.35, p = 0.036), and to low birth weight (OR 1.55, p = 0.02). Conclusions Low birth weight and decreased postnatal estimation of maturity were related to detectable parasitemia in the mother. Also, vertical transmission of T. cruzi-induced autoantibodies might have clinical implication in newborns given the negative association between anti-p2β values and weight.
Collapse
Affiliation(s)
- Miguel Hernán Vicco
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, 3000, Santa Fe, Argentina. .,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Luz Rodeles
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, 3000, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Melina Perrig
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, 3000, Santa Fe, Argentina
| | | | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, 3000, Santa Fe, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-UNR, Rosario, Argentina
| | - Celeste Rodriguez
- Unidad de Inmunología Parasitaria, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Washington Cuña
- Unidad de Inmunología Parasitaria, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| |
Collapse
|
5
|
Decreased level of antibodies and cardiac involvement in patients with chronic Chagas heart disease vaccinated with BCG. Med Microbiol Immunol 2013; 203:133-9. [DOI: 10.1007/s00430-013-0326-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 01/19/2023]
|
6
|
Massilamany C, Huber SA, Cunningham MW, Reddy J. Relevance of molecular mimicry in the mediation of infectious myocarditis. J Cardiovasc Transl Res 2013; 7:165-71. [PMID: 24263348 DOI: 10.1007/s12265-013-9519-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
Heart disease, the leading cause of death in humans, is estimated to affect one in four American adults in some form. One predominant cause of heart failure in young adults is myocarditis, which can lead to the development of dilated cardiomyopathy, a major indication for heart transplantation. Environmental microbes, including viruses, bacteria, and fungi that are otherwise innocuous, have the potential to induce inflammatory heart disease. As the list is growing, it is critical to determine the mechanisms by which microbes can trigger heart autoimmunity and, importantly, to identify their target antigens. This is especially true as microbes showing structural similarities with the cardiac antigens can predispose to heart autoimmunity by generating cross-reactive immune responses. In this review, we discuss the relevance of molecular mimicry in the mediation of infectious myocarditis.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Room 202, Bldg VBS, Lincoln, NE, 68583, USA
| | | | | | | |
Collapse
|
7
|
Valoración de anticuerpos con reactividad cruzada patógeno-huésped en pacientes con diferentes estadios de cardiopatía chagásica crónica. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2013.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Vicco MH, Ferini F, Rodeles L, Cardona P, Bontempi I, Lioi S, Beloscar J, Nara T, Marcipar I, Bottasso OA. Assessment of cross-reactive host-pathogen antibodies in patients with different stages of chronic Chagas disease. ACTA ACUST UNITED AC 2013; 66:791-6. [PMID: 24773859 DOI: 10.1016/j.rec.2013.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES Trypanosoma cruzi infection has been shown to induce humoral autoimmune responses against host antigens tissues. Particularly, antibodies cross-reacting with myocardial antigens may play a role in the development of the severe forms of chronic Chagas disease. The aim of this study was to determine the association between clinical stage of the disease and the presence of autoantibodies in patients with chronic Chagasic disease. METHODS We performed a cross-sectional study in T. cruzi-seropositive patients divided into 3 groups according to the classic classification of chronic Chagas heart of Storino et al. All participants underwent complete clinical examination and their sera were used to measure autoantibody levels. RESULTS All patients had detectable levels of anti-p2β and anti-B13 autoantibodies but none had anti-Na-K-ATPase antibodies. No association was observed between electrocardiographic conduction disturbances and autoantibody levels. Patients with chronic Chagas disease stage III had the highest levels of anti-B13 antibodies and a high risk of mortality score, showing a clear association between disease stage and this score. CONCLUSIONS Anti-B13 antibodies were significantly higher in chronic Chagas disease stage III patients, suggesting that these antibodies may be involved in disease progression and that they might be a useful marker of poor prognosis in terms of heart compromise. Our results also reveal an important correlation between the level of anti-B13 autoantibodies and symptomatic heart failure and/or dilated cardiomyopathy.
Collapse
Affiliation(s)
- Miguel H Vicco
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Servicio de Clínica Médica, Hospital J.B. Iturraspe, Santa Fe, Argentina.
| | - Franco Ferini
- Servicio de Clínica Médica, Hospital J.B. Iturraspe, Santa Fe, Argentina
| | - Luz Rodeles
- Servicio de Clínica Médica, Hospital J.B. Iturraspe, Santa Fe, Argentina
| | - Paula Cardona
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Bontempi
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Susana Lioi
- Cátedra de Química Analítica Clínica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Juan Beloscar
- Servicio de Cardiología, Hospital Provincial del Centenario, Carrera de Especialización en Cardiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Takeshi Nara
- Departamento de Parasitología Celular y Molecular, Escuela de Medicina, Universidad de Juntendo, Tokyo, Japan
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar A Bottasso
- Instituto de Inmunología, Facultad de Medicina, Universidad Nacional de Rosario, Santa Fe, Argentina
| |
Collapse
|
9
|
Teixeira PC, Frade AF, Nogueira LG, Kalil J, Chevillard C, Cunha-Neto E. Pathogenesis of Chagas disease cardiomyopathy. World J Clin Infect Dis 2012; 2:39-53. [DOI: 10.5495/wjcid.v2.i3.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi. Chagas disease is mainly affecting rural populations in Mexico and Central and South America. The World Health Organization estimates that 300 000 new cases of Chagas disease occur every year and approximately 20 000 deaths are attributable to Chagas. However, this organisation classified Chagas disease as a neglected tropical disease. The economic burden of this disease is significant. In many Latin American countries, the direct and indirect costs, including the cost of health care in dollars and loss of productivity, attributable to Chagas disease ranges from $40 million to in excess of $800 million per nation per annum. So, it remains a contemporary public health concern. In chronic phase, mortality is primarily due to the rhythm disturbances and congestive heart failure that result from the chronic inflammatory cardiomyopathy (CCC) due to the persistence presence of parasites in the heart tissue. Mechanisms underlying differential progression to CCC are still incompletely understood. In the last decades immunological proteomic genetic approaches lead to significant results which help to disperse the veil covering the knowledge of the pathogenic process. Here, we reported these significant progresses.
Collapse
|
10
|
Abstract
The scarcity of Trypanosoma cruzi in inflammatory lesions of chronic Chagas disease led early investigators to suggest that tissue damage had an autoimmune nature. In spite of parasite persistence in chronic Chagas disease, several reports indicate that inflammatory tissue damage may not be correlated to the local presence of T. cruzi. A significant number of reports have described autoantibodies and self-reactive T cells, often cross-reactive with T. cruzi antigens, both in patients and in animal models. Evidence for a direct pathogenetic role of autoimmunity was suggested by the development of lesions after immunization with T. cruzi antigens or passive transfer of lymphocytes from infected animals, and the amelioration of chronic myocarditis in animals made tolerant to myocardial antigens. Autoimmune and T. cruzi-specific innate or adaptative responses are not incompatible or mutually exclusive, and it is likely that a combination of both is involved in the pathogenesis of chronic Chagas disease cardiomyopathy. The association between persistent infection and autoimmune diseases-such as multiple sclerosis or diabetes mellitus-suggests that post-infectious autoimmunity may be a frequent finding. Here, we critically review evidence for autoimmune phenomena and their possible pathogenetic role in human Chagas disease and animal models, with a focus on chronic Chagas disease cardiomyopathy.
Collapse
|
11
|
Massilamany C, Gangaplara A, Steffen D, Reddy J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol 2011; 271:438-49. [DOI: 10.1016/j.cellimm.2011.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 07/05/2011] [Accepted: 08/16/2011] [Indexed: 01/26/2023]
|
12
|
Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J. Myocardial gene and protein expression profiles after autoimmune injury in Chagas' disease cardiomyopathy. Autoimmun Rev 2010; 10:163-5. [PMID: 20883825 DOI: 10.1016/j.autrev.2010.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/18/2010] [Indexed: 01/04/2023]
Abstract
One third of the 16 million of individuals infected by the protozoan Trypanosoma cruzi in Latin America eventually develop chronic Chagas' disease cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy with shorter survival than non-inflammatory cardiomyopathies. The presence of a T cell-rich mononuclear inflammatory infiltrate and the relative scarcity of parasites in the heart suggested that chronic inflammation secondary to the autoimmune recognition of cardiac proteins could be a major pathogenetic mechanism. Sera from CCC patients crossreactively recognize cardiac myosin and T. cruzi protein B13. T cell clones elicited from peripheral blood with T. cruzi B13 protein or its peptides could crossreactively recognize epitopes from cardiac myosin heavy chain. Likewise, CD4+ T cell clones infiltrating CCC myocardium crossreactively recognize cardiac myosin and T. cruzi protein B13, and intralesional T cell lines produce the inflammatory cytokines IFN-γ and TNF-α. Conversely, IFN-γ-induced genes and chemokines were found to be upregulated in CCC heart samples, and IFN-γ is able to induce cardiomyocyte expression of atrial natriuretic factor, a key member of the hypertrophy/heart failure signature. Proteomic analysis of CCC heart tissue showed reduced expression of the energy metabolism enzymes. It can be hypothesized that cytokine-induced modulation of cardiomyocyte gene/protein expression may be a novel disease mechanism in CCC, in addition to direct inflammatory damage.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Cunha-Neto E, Nogueira LG, Teixeira PC, Ramasawmy R, Drigo SA, Goldberg AC, Fonseca SG, Bilate AM, Kalil J. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:252-8. [PMID: 19753481 DOI: 10.1590/s0074-02762009000900032] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023] Open
Abstract
The pathogenesis of Chagas disease cardiomyopathy (CCC) is not well understood. Since studies show that myocarditis is more frequent during the advanced stages of the disease, and the prognosis of CCC is worse than that of other dilated cardiomyopathies of non-inflammatory aetiology, which suggest that the inflammatory infiltrate plays a major role in myocardial damage. In the last decade, increasing evidence has shown that inflammatory cytokines and chemokines play a role in the generation of the inflammatory infiltrate and tissue damage. CCC patients have an increased peripheral production of the inflammatory Th1 cytokines IFN-gamma and TNF-alpha when compared to patients with the asymptomatic/indeterminate form. Moreover, Th1-T cells are the main producers of IFN-gamma and TNF-alpha and are frequently found in CCC myocardial inflammatory infiltrate. Over the past several years, our group has collected evidence that shows several cytokines and chemokines produced in the CCC myocardium may also have a non-immunological pathogenic effect via modulation of gene and protein expression in cardiomyocytes and other myocardial cell types. Furthermore, genetic polymorphisms of cytokine, chemokine and innate immune response genes have been associated with disease progression. We will review the molecular and immunological mechanisms of myocardial damage in human CCC in light of recent findings.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratório de Imunologia, Instituto do Coração, Hospital das Clínicas, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM. Induction of cardiac autoimmunity in Chagas heart disease: A case for molecular mimicry. Autoimmunity 2009; 39:41-54. [PMID: 16455581 DOI: 10.1080/08916930500485002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Up to 18 million of individuals are infected by the protozoan parasite Trypanosoma cruzi in Latin America, one third of whom will develop chronic Chagas disease cardiomyopathy (CCC) up to 30 years after infection. Cardiomyocyte destruction is associated with a T cell-rich inflammatory infiltrate and fibrosis. The presence of such lesions in the relative scarcity of parasites in the heart, suggested that CCC might be due, in part, to a postinfectious autoimmune process. Over the last two decades, a significant amount of reports of autoimmune and molecular mimicry phenomena have been described in CCC. The authors will review the evidence in support of an autoimmune basis for CCC pathogenesis in humans and experimental animals, with a special emphasis on molecular mimicry as a fundamental mechanism of autoimmunity.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), Laboratory of Immunology, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The apparent discrepancy between the intensity of inflammatory reaction and scarce number of parasites in chronic chagasic myocarditis prompt several investigators to hypothesize that an autoimmune process was involved in the pathogenesis of Chagas disease. Here, we recapitulate diverse molecular and cellular mechanisms of innate and acquired immunity involved in the control of parasite replication and in the build up of myocarditis observed during infection with Trypanosoma cruzi. In addition, we review the immunoregulatory mechanisms responsible for preventing excessive immune response elicited by this protozoan parasite. Ongoing studies in this research area may provide novel therapeutic strategies that could enhance the immunoprotective response while preventing the deleterious parasite-elicited responses observed during Chagas disease.
Collapse
Affiliation(s)
- Denise Golgher
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, and René Research Center, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
16
|
Abstract
Autoimmunity occurs when the immune system recognizes and attacks host tissue. In addition to genetic factors, environmental triggers (in particular viruses, bacteria and other infectious pathogens) are thought to play a major role in the development of autoimmune diseases. In this review, we (i) describe the ways in which an infectious agent can initiate or exacerbate autoimmunity; (ii) discuss the evidence linking certain infectious agents to autoimmune diseases in humans; and (iii) describe the animal models used to study the link between infection and autoimmunity.
Collapse
Affiliation(s)
- A M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
17
|
Gironès N, Carrasco-Marin E, Cuervo H, Guerrero NA, Sanoja C, John S, Flores-Herráez R, Fernández-Prieto L, Chico-Calero I, Salgado H, Carrión J, Fresno M. Role of Trypanosoma cruzi autoreactive T cells in the generation of cardiac pathology. Ann N Y Acad Sci 2007; 1107:434-44. [PMID: 17804572 DOI: 10.1196/annals.1381.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects several million people in Central and South America. About 30% of chronic patients develop cardiomyopathy probably caused by parasite persistence and/or autoimmunity. While several cross-reactive antibodies generated during mammal T. cruzi infection have been described, very few cross-reactive T cells have been identified. We performed adoptive transfer experiments of T cells isolated from chronically infected mice. The results showed the generation of cardiac pathology in the absence of parasites. We also transferred cross-reactive SAPA-specific T cells and observed unspecific alterations in heart repolarization, cardiac inflammatory infiltration, and tissue damage.
Collapse
Affiliation(s)
- Núria Gironès
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hyland KV, Leon JS, Daniels MD, Giafis N, Woods LM, Bahk TJ, Wang K, Engman DM. Modulation of autoimmunity by treatment of an infectious disease. Infect Immun 2007; 75:3641-50. [PMID: 17485457 PMCID: PMC1932944 DOI: 10.1128/iai.00423-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/16/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022] Open
Abstract
Chagas' heart disease (CHD), caused by the parasite Trypanosoma cruzi, is the most common form of myocarditis in Central America and South America. Some humans and experimental animals develop both humoral and cell-mediated cardiac-specific autoimmunity during infection. Benznidazole, a trypanocidal drug, is effective at reducing parasite load and decreasing the severity of myocarditis in acutely infected patients. We hypothesized that the magnitude of autoimmunity that develops following T. cruzi infection is directly proportional to the amount of damage caused by the parasite. To test this hypothesis, we used benznidazole to reduce the number of parasites in an experimental model of CHD and determined whether this treatment altered the autoimmune response. Infection of A/J mice with the Brazil strain of T. cruzi leads to the development of severe inflammation, fibrosis, necrosis, and parasitosis in the heart accompanied by vigorous cardiac myosin-specific delayed-type hypersensitivity (DTH) and antibody production at 21 days postinfection. Mice succumbed to infection within a month if left untreated. Treatment of infected mice with benznidazole eliminated mortality and decreased disease severity. Treatment also reduced cardiac myosin-specific DTH and antibody production. Reinfection of treated mice with a heart-derived, virulent strain of T. cruzi or immunization with myosin led to the redevelopment of myosin-specific autoimmune responses and inflammation. These results provide a direct link between the levels of T. cruzi and the presence of autoimmunity and suggest that elimination of the parasite may result in the reduction or elimination of autoimmunity in the chronic phase of infection.
Collapse
Affiliation(s)
- Kenneth V Hyland
- Department of Microbiology-Immunology and Pathology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Chagas disease remains a significant public health issue and a major cause of morbidity and mortality in Latin America. Despite nearly 1 century of research, the pathogenesis of chronic Chagas cardiomyopathy is incompletely understood, the most intriguing challenge of which is the complex host-parasite interaction. METHODS AND RESULTS A systematic review of the literature found in MEDLINE, EMBASE, BIREME, LILACS, and SCIELO was performed to search for relevant references on pathogenesis and pathophysiology of Chagas disease. Evidence from studies in animal models and in anima nobile points to 4 main pathogenetic mechanisms to explain the development of chronic Chagas heart disease: autonomic nervous system derangements, microvascular disturbances, parasite-dependent myocardial aggression, and immune-mediated myocardial injury. Despite its prominent peculiarities, the role of autonomic derangements and microcirculatory disturbances is probably ancillary among causes of chronic myocardial damage. The pathogenesis of chronic Chagas heart disease is dependent on a low-grade but incessant systemic infection with documented immune-adverse reaction. Parasite persistence and immunological mechanisms are inextricably related in the myocardial aggression in the chronic phase of Chagas heart disease. CONCLUSIONS Most clinical studies have been performed in very small number of patients. Future research should explore the clinical potential implications and therapeutic opportunities of these 2 fundamental underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Jose Antonio Marin-Neto
- Cardiology Division, Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
20
|
Gironès N, Cuervo H, Fresno M. Trypanosoma cruzi-induced molecular mimicry and Chagas' disease. Curr Top Microbiol Immunol 2006; 296:89-123. [PMID: 16323421 DOI: 10.1007/3-540-30791-5_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chagas' disease, caused by Trypanosoma cruzi, has been considered a paradigm of infection-induced autoimmune disease. Thus, the scarcity of parasites in the chronic phase of the disease contrasts with the severe cardiac pathology observed in approximately 30% of chronic patients and suggested a role for autoimmunity as the origin of the pathology. Antigen-specific and antigen-non-specific mechanisms have been described by which T. cruzi infection might activate T and B cells, leading to autoimmunity. Among the first mechanisms, molecular mimicry has been claimed as the most important mechanism leading to autoimmunity and pathology in the chronic phase of this disease. In this regard, various T. cruzi antigens, such as B13, cruzipain and Cha, cross-react with host antigens at the B or T cell level and their role in pathogenesis has been widely studied. Immunization with those antigens and/or passive transfer of autoreactive T lymphocytes in mice lead to clinical disturbances similar to those found in Chagas' disease patients. On the other hand, the parasite is becoming increasingly detected in chronically infected hosts and may also be the cause of pathology either directly or through parasite-specific mediated inflammatory responses. Thus, the issue of autoimmunity versus parasite persistence as the cause of Chagas' disease pathology is hotly debated among many researchers in the field. We critically review here the evidence in favor of and against autoimmunity through molecular mimicry as responsible for Chagas' disease pathology from clinical, pathological and immunological perspectives.
Collapse
Affiliation(s)
- N Gironès
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
21
|
Dutra WO, Rocha MOC, Teixeira MM. The clinical immunology of human Chagas disease. Trends Parasitol 2005; 21:581-7. [PMID: 16236550 DOI: 10.1016/j.pt.2005.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 08/05/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Human infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects approximately 17 million people in Latin America. A significant percentage of the infected population will develop clinical symptoms or present changes in laboratory and/or image evaluation. The existence of a large spectrum of clinical manifestations--with patients ranging from asymptomatic to severe cardiac involvement--emphasizes the need to use standardized and well-defined clinical criteria among different research groups. In this article, we carry out a systematic review of the immunology in human Chagas disease, discussing recent findings in the context of a clinical perspective.
Collapse
Affiliation(s)
- Walderez O Dutra
- Department of Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | |
Collapse
|
22
|
Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E. T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J Autoimmun 2005; 24:111-7. [PMID: 15829403 DOI: 10.1016/j.jaut.2005.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 10/25/2022]
Abstract
Chagas disease cardiomyopathy (CCC) is one of the few examples of post-infectious autoimmunity, where infectious episodes with an established pathogen, the protozoan parasite Trypanosoma cruzi, clearly triggers molecular mimicry-related target organ immune damage. CD4+ T-cell clones infiltrating hearts from CCC patients cross-reactively recognize human cardiac myosin, the major heart protein, and the immunodominant B13 protein from T. cruzi. Moreover, in vitro priming with B13 leads to the recovery of cardiac myosin cross-reactive T-cell clones. In order to identify cross-reactive epitopes between B13 protein and human cardiac myosin, we used B13 peptide S15.4, preferentially recognized by CCC patients, to establish a T-cell clone from an HLA-DQ7 individual. The B13 S15.4 peptide-specific CD4+ T-cell clone 3E5 was tested in proliferation assays against 15 Lys/His-substituted S15.4-derived peptides for TCR/HLA contact analysis. Together with previous HLA-binding data and molecular modeling of the HLA-DQ7-peptide S15.4 complex, Lys/His scanning analysis showed eight TCR/HLA contact positions. Clone 3E5 was also tested against 45 15-mer peptides from human beta-cardiac myosin heavy chain bearing the central HLA-DQ7 binding motif. Clone 3E5 recognized 13 peptides from cardiac myosin. The alignment of cross-reactive peptides in cardiac myosin showed very limited sharing of residues or side chains with similar chemical/structural features at aligned positions, indicative of a very degenerate TCR recognition pattern. The existence of degenerate intramolecular recognition, with multiple low-homology, cross-reactive epitopes in a single autoantigenic protein may have implications in increasing the magnitude of the autoimmune response in CCC and other autoimmune diseases.
Collapse
Affiliation(s)
- Leo Kei Iwai
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, bloco-2, 9(o) andar, Cerqueira César, São Paulo, SP 05403-000, Brazil
| | | | | | | | | |
Collapse
|
23
|
Olszewska W, Steward MW. The molecular basis of the antigenic cross-reactivity between measles and cowpea mosaic viruses. Virology 2003; 310:183-9. [PMID: 12788642 DOI: 10.1016/s0042-6822(03)00118-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two nonrelated viruses, cowpea mosaic virus (wtCPMV) and measles virus (MV), were found to induce cross-reactive antibodies. The nature of this cross-reactivity was studied and results are presented here demonstrating that antiserum raised against wtCPMV reacted with peptide from the fusion (F) protein of MV. Furthermore, the F protein of MV was shown to share an identical conformational B cell epitope with the small subunit of CPMV coat protein. Passive transfer of anti-wtCPMV antibodies into BALB/c mice conferred partial protection against measles virus induced encephalitis. The results are discussed in the context of cross-protection.
Collapse
Affiliation(s)
- Wieslawa Olszewska
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | | |
Collapse
|
24
|
Cunha-Neto E, Kalil J. Heart-infiltrating and peripheral T cells in the pathogenesis of human Chagas' disease cardiomyopathy. Autoimmunity 2002; 34:187-92. [PMID: 11908776 DOI: 10.3109/08916930109007383] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart tissue destruction in chronic Chagas' disease cardiomyopathy (CCC), occurring in 30% of individuals chronically infected by the protozoan parasite Trypanosoma cruzi, may be caused by autoimmune recognition of patients' heart tissue by a T cell rich inflammatory infiltrate. Recently, our group demonstrated that T cells infiltrating the heart of CCC patients crossreactively recognize cardiac myosin heavy chain and tandemly repetitive T. cruzi antigen B13, and possess an inflammatory T1-type cytokine profile. Susceptibility factors leading 30% of infected patients to develop CCC, while the rest of the patients remain largely asymptomatic (ASY), are still obscure. We compared immunological phenotypes of CCC and ASY patients, who have distinct clinical outcomes despite bearing a similar chronic T. cruzi infection. Preliminary observations indicate that PBMC from CCC patients recognize a set of B13 and cardiac myosin epitopes distinct from that recognized by ASY patients. Moreover, the IFN-gamma response of CCC patients is more intense than that of ASY, both at qualitative and quantitative levels. Taken together, results suggest that heart damage in Chagas' disease cardiomyopathy may be secondary to inflammatory cytokines and a delayed-type hypersensitivity process started and/or maintained by heart-crossreactive T cells. Furthermore, the distinct recognition repertoire and the high frequency of IFN-gamma producing among CCC patients could be important factors leading to the differential development of CCC among T. cruzi infected individuals.
Collapse
Affiliation(s)
- E Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, SP, Brazil.
| | | |
Collapse
|
25
|
Pontes-de-Carvalho L, Santana CC, Soares MBP, Oliveira GGS, Cunha-Neto E, Ribeiro-dos-Santos R. Experimental chronic Chagas' disease myocarditis is an autoimmune disease preventable by induction of immunological tolerance to myocardial antigens. J Autoimmun 2002; 18:131-8. [PMID: 11908945 DOI: 10.1006/jaut.2001.0574] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The protozoan Trypanosoma cruzi causes chronic Chagas' disease myocarditis (CCDM) in infected mammals. The pathogenesis of CCDM, however, is still unclear. Indirect evidence for either parasite- or heart-specific immune responses playing a pathogenic role is available. In this work, the participation of autoimmunity in the development of CCDM is demonstrated in mice in which immunological tolerance to heart antigens was induced or strengthened prior to their infection by T. cruzi. Tolerance was induced by heart antigen administration in the presence of complete Freund's adjuvant and anti-CD4 antibodies. Tolerized mice developed less intense CCDM than control non-tolerized animals that had received only anti-CD4 and adjuvant. This result confirms the important notion that tolerance to self, and in particular to heart antigens, may be reinforced/induced in normal animals, and raises the possibility that analogous interventions may prevent the development of CCDM in millions of T. cruzi -infected human beings.
Collapse
|
26
|
Vallochi AL, Yamamoto JH, Schlesinger D, Machado MA, Silveira C, Martins MC, Belfort R, Kalil J, Rizzo LV. Lack of evidence for superantigen activity of Toxoplasma gondii towards human T cells. Braz J Med Biol Res 2001; 34:1023-31. [PMID: 11471041 DOI: 10.1590/s0100-879x2001000800008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite whose life cycle may include man as an intermediate host. More than 500 million people are infected with this parasite worldwide. It has been previously reported that T. gondii contains a superantigen activity. The purpose of the present study was to determine if the putative superantigen activity of T. gondii would manifest towards human T cells. Peripheral blood mononuclear cells (PBMC) from individuals with no previous contact with the parasite were evaluated for proliferation as well as specific Vbeta expansion after exposure to Toxoplasma antigens. Likewise, PBMC from individuals with the congenital infection were evaluated for putative Vbeta family deletions in their T cell repertoire. We also evaluated, over a period of one year, the PBMC proliferation pattern in response to Toxoplasma antigens in patients with recently acquired infection. Some degree of proliferation in response to T. gondii was observed in the PBMC from individuals never exposed to the parasite, accompanied by specific Vbeta expansion, suggesting a superantigen effect. However, we found no specific deletion of Vbeta (or Valpha) families in the blood of congenitally infected individuals. Furthermore, PBMC from recently infected individuals followed up over a period of one year did not present a reduction of the Vbeta families that were originally expanded in response to the parasite antigens. Taken together, our data suggest that T. gondii does not have a strong superantigen activity on human T cells.
Collapse
Affiliation(s)
- A L Vallochi
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Faculdade de Medicina, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, 055098-000 São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwai LK, Duranti MA, Abel LC, Juliano MA, Kalil J, Juliano L, Cunha-Neto E. Retro-inverso peptide analogues of Trypanosoma cruzi B13 protein epitopes fail to be recognized by human sera and peripheral blood mononuclear cells. Peptides 2001; 22:853-60. [PMID: 11390013 DOI: 10.1016/s0196-9781(01)00409-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Retro inverso (RI) analogues of antigenic synthetic peptides, which are made of D-amino acids with a reversed sequence, may mimic the side chain conformation of natural all-L peptides. RI analogues were cross-reactively recognized by antibodies and CD4+ T cells reactive against natural all-L synthetic peptides or native proteins in animal models. Since peptides containing D-amino acids are highly resistant to proteolytic digestion, cross-reactive RI analogues may be ideal for in vivo administration to humans as synthetic peptide vaccines or immunomodulators. B13 is an immunodominant tandemly repetitive protein from Trypanosoma cruzi, a protozoan parasite that is the causative antigen of Chagas' disease. In order to test whether RI peptides can be recognized by human antibody and T cells, we synthesized two all-L peptides containing the immunodominant B (S12) and T (S15.7) cell epitopes of B13 protein from T. cruzi and their retro (R, made of all-L amino acids with reversed sequence), inverso (I, made of all-D amino acids) and RI analogues. Recognition of peptides S12, S12-R, S12-I and S12-RI by anti-B13 antibodies in sera from T. cruzi-infected patients was tested in competitive ELISA assay with recombinant B13 protein as the solid phase antigen. Peptides S15.7 and its topological analogues were tested at the 10-50 microM range in proliferation assays on peripheral blood mononuclear cells (PBMC) from S15.7-responder individuals. The median percentage inhibition of B13 ELISA for peptide S12 was 94%, while those of the RI analogue or the other topological analogues were below 12%. While peptide S15.7 was recognized by PBMC from all subjects tested, none recognized the RI analogue of the S15.7 T cell epitope. Our results indicate that cross-reactivity with natural epitopes is not an universal property of RI analogues. This may limit the general applicability of the use of cross-reactive RI analogues as human vaccines and immunotherapeutic agents.
Collapse
Affiliation(s)
- L K Iwai
- Laboratory of Immunology, Heart Institute (InCor), and Division of Allergy and Immunopathology, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Ribeiro-Dos-Santos R, Mengel JO, Postol E, Soares RA, Ferreira-Fernandez E, Soares MB, Pontes-De-Carvalho LC. A heart-specific CD4+ T-cell line obtained from a chronic chagasic mouse induces carditis in heart-immunized mice and rejection of normal heart transplants in the absence of Trypanosoma cruzi. Parasite Immunol 2001; 23:93-101. [PMID: 11240900 DOI: 10.1046/j.1365-3024.2001.00368.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the role of autoreactive T cells in the pathogenesis of cardiomyopathy in Chagas' disease, we generated a cell line by repeated in vitro antigenic stimulation of purified splenic CD4+ T lymphocytes from a chronically Trypanosoma cruzi-infected mouse. Cells from this line were confirmed to be CD4+ CD8- and proliferated upon stimulation with soluble heart antigens from different animal species, as well as with T. cruzi antigen, in the presence of syngeneic feeder cells. In vitro antigen stimulation of the cell line produced a Th1 cytokine profile, with high levels of IFNgamma and IL-2 and absence of IL-4, IL-5 and IL-10. The cell line also terminated the beating of fetal heart clusters in vitro when cocultured with irradiated syngeneic normal spleen cells. In situ injection of the cell line into well established heart transplants also induced the cessation of heart beating. Finally, adoptive transfer of the cell line to heart-immunized or T. cruzi-infected BALB/c nude mice caused intense heart inflammation.
Collapse
|
29
|
Faé KC, Drigo SA, Cunha-Neto E, Ianni B, Mady C, Kalil J, Goldberg AC. HLA and beta-myosin heavy chain do not influence susceptibility to Chagas disease cardiomyopathy. Microbes Infect 2000; 2:745-51. [PMID: 10955954 DOI: 10.1016/s1286-4579(00)00501-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An inflammatory dilated cardiomyopathy occurs in 30% of Chagas' disease patients, chronically infected by Trypanosoma cruzi, while the remaining infected individuals are asymptomatic. Studies have indicated a role for genetic factors in the susceptibility to Chagas' disease cardiomyopathy. In an attempt to identify the genetic factors influencing the development and outcome of Chagas' cardiomyopathy, we compared the frequencies of alleles from two candidate gene loci, class II HLA and a microsatellite marker for the human cardiac beta-myosin heavy chain gene in different clinical groups. Patients were grouped as asymptomatic or with severe or mild cardiomyopathy. The results indicate that the HLA and myosin microsatellite allele profiles in all cardiomyopathy and in asymptomatic groups are similar. In conclusion, these results establish that polymorphism of HLA-DR and -DQ molecules, as well as beta-cardiac myosin, do not influence the susceptibility to different clinical forms of Chagas' disease or the progression to severe Chagas' cardiomyopathy. On the other hand, male sex was identified as a risk factor for progression to the more severe forms of cardiomyopathy (relative risk = 8.75).
Collapse
Affiliation(s)
- K C Faé
- Laboratory of Transplant Immunology, Heart Institute-InCor, School of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Cunha-Neto E, Rizzo LV, Albuquerque F, Abel L, Guilherme L, Bocchi E, Bacal F, Carrara D, Ianni B, Mady C, Kalil J. Cytokine production profile of heart-infiltrating T cells in Chagas' disease cardiomyopathy. Braz J Med Biol Res 1998; 31:133-7. [PMID: 9686190 DOI: 10.1590/s0100-879x1998000100018] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hallmark of chronic Chagas' disease cardiomyopathy (CCC) is the finding of a T cell-rich inflammatory mononuclear cell infiltrate in the presence of extremely few parasites in the heart lesions. The scarcity of parasites in affected heart tissue casts doubt on the direct participation of Trypanosoma cruzi in CCC heart tissue lesions, and suggests the possible involvement of autoimmunity. The cells in the infiltrate are presumably the ultimate effectors of tissue damage, and there is evidence that such cells recognize cardiac myosin in molecular mimicry with T. cruzi proteins rather than primary reactivity to T. cruzi antigens (Cunha-Neto et al. (1996) Journal of Clinical Investigation, 98: 1709-1712). Recently, we have studied heart-infiltrating T cells at the functional level. In this short review we summarize the studies about the role of cytokines in human and experimental T. cruzi infection, along with our data on heart-infiltrating T cells in human Chagas' cardiomyopathy. The bulk of evidence points to a significant production of IFN-gamma and TNF-alpha which may be linked to T. cruzi-induced IL-12 production.
Collapse
Affiliation(s)
- E Cunha-Neto
- Laboratório de Imunologia de Transplantes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|