1
|
Zell BN, Swenson VA, Lu SC, Wang L, Barry MA, Ebihara H, Yamaoka S. Development of a Pentacistronic Ebola Virus Minigenome System. Viruses 2025; 17:688. [PMID: 40431699 PMCID: PMC12115963 DOI: 10.3390/v17050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Ebola virus (EBOV) causes severe disease outbreaks in humans with high case fatality rates. EBOV requires adaptation to cause lethal disease in mice by acquiring single mutations in both the nucleoprotein (NP) and VP24 genes. As an attempt to model mouse-adapted EBOV (MA-EBOV), we engineered novel pentacistronic minigenomes (5xMG) containing a reporter gene, VP40, and glycoprotein genes as well as the NP and VP24 genes from either EBOV or MA-EBOV. The 5xMGs were constructed and optimized, and the produced transcription- and replication-competent virus-like particles (trVLPs) were demonstrated to infect several cell lines. Introduction of the mouse-adaptation mutations did not significantly impact the replication and transcription of the 5xMG or the relative infectivity of the trVLPs in vitro. This work demonstrates the development of the 5xMG system as a new versatile tool to study EBOV biology.
Collapse
Affiliation(s)
- Brady N. Zell
- Virology and Gene Therapy Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; (B.N.Z.); (V.A.S.)
| | - Vaille A. Swenson
- Virology and Gene Therapy Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; (B.N.Z.); (V.A.S.)
| | - Shao-Chia Lu
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.-C.L.); (L.W.)
| | - Lin Wang
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.-C.L.); (L.W.)
| | - Michael A. Barry
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.-C.L.); (L.W.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
| | - Satoko Yamaoka
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.-C.L.); (L.W.)
| |
Collapse
|
2
|
Bodmer BS, Wendt L, Dupré J, Groseth A, Hoenen T. Antiviral defense against filovirus infections: targets and evasion mechanisms. Future Microbiol 2025:1-15. [PMID: 40331244 DOI: 10.1080/17460913.2025.2501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
Filoviruses include a number of serious human pathogens, infections with which result in the development of hemorrhagic fevers with high case fatality rates. As for other RNA viruses, viral replication generates both protein and RNA species that can serve as danger signals, leading to the activation of antiviral defense pathways. However, in order to be able to efficiently infect humans these viruses have developed mechanisms that allow them to evade diverse host antiviral defense mechanisms. Consequently, in addition to their functions within the viral lifecycle many filovirus proteins have been shown to have accessory functions involved in the regulation of diverse host pathways. These include those of the type-I interferon response, other pathways involved in dsRNA-sensing, as well as the selective inhibition of interferon stimulated gene activities. Further, filoviruses have developed mechanisms to subvert recognition of infected cells and the generation of neutralizing antibodies. This review focuses on bringing together the evidence to date supporting the existence of diverse mechanisms aimed at regulating these pathways as well as providing details of the mechanisms involved.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Juliette Dupré
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
4
|
Rabaan AA, Halwani MA, Garout M, Alotaibi J, AlShehail BM, Alotaibi N, Almuthree SA, Alshehri AA, Alshahrani MA, Othman B, Alqahtani A, Alissa M. Exploration of phytochemical compounds against Marburg virus using QSAR, molecular dynamics, and free energy landscape. Mol Divers 2024; 28:3261-3278. [PMID: 37925643 DOI: 10.1007/s11030-023-10753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, 4781, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, 11564, Riyadh, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, 43442, Makkah, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al Baha University, 65779, Al Baha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61321, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| |
Collapse
|
5
|
Ebisine K, Quist D, Findlay-Wilson S, Kennedy E, Dowall S. A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens 2024; 13:856. [PMID: 39452727 PMCID: PMC11510021 DOI: 10.3390/pathogens13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral disease that primarily affects animals, especially ruminants, but has the capacity to infect humans and result in outbreaks. Infection with the causative agent, RVF virus (RVFV), causes severe disease in domestic animals, especially sheep, resulting in fever, anorexia, immobility, abortion, and high morbidity and mortality rates in neonate animals. Humans become infected through exposure to infected animals and, less frequently, directly via a mosquito bite. A greater awareness of RVFV and its epidemic potential has resulted in increased investment in the development of interventions, especially vaccines. There is currently no substitute for the use of animal models in order to evaluate these vaccines. As outbreaks of RVF disease are difficult to predict or model, conducting Phase III clinical trials will likely not be feasible. Therefore, representative animal model systems are essential for establishing efficacy data to support licensure. Nonhuman primate (NHP) species are often chosen due to their closeness to humans, reflecting similar susceptibility and disease kinetics. This review covers the use of NHP models in RVFV research, with much of the work having been conducted in rhesus macaques and common marmosets. The future direction of RVF work conducted in NHP is discussed in anticipation of the importance of it being a key element in the development and approval of a human vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK; (K.E.); (D.Q.); (S.F.-W.); (E.K.)
| |
Collapse
|
6
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Yang W, Li W, Zhou W, Wang S, Wang W, Wang Z, Feng N, Wang T, Xie Y, Zhao Y, Yan F, Xia X. Establishment and application of a surrogate model for human Ebola virus disease in BSL-2 laboratory. Virol Sin 2024; 39:434-446. [PMID: 38556051 PMCID: PMC11279801 DOI: 10.1016/j.virs.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.
Collapse
Affiliation(s)
- Wanying Yang
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wujie Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| |
Collapse
|
8
|
Vogel OA, Nafziger E, Sharma A, Pasolli HA, Davey RA, Basler CF. The Role of Ebola Virus VP24 Nuclear Trafficking Signals in Infectious Particle Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584761. [PMID: 38559040 PMCID: PMC10980025 DOI: 10.1101/2024.03.13.584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elias Nafziger
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
9
|
Kumar S, Dubey R, Mishra R, Gupta S, Dwivedi VD, Ray S, Jha NK, Verma D, Tsai LW, Dubey NK. Repurposing of SARS-CoV-2 compounds against Marburg Virus using MD simulation, mm/GBSA, PCA analysis, and free energy landscape. J Biomol Struct Dyn 2024:1-20. [PMID: 38450706 DOI: 10.1080/07391102.2024.2323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
The significant mortality rate associated with Marburg virus infection made it the greatest hazard among infectious diseases. Drug repurposing using in silico methods has been crucial in identifying potential compounds that could prevent viral replication by targeting the virus's primary proteins. This study aimed at repurposing the drugs of SARS-CoV-2 for identifying potential candidates against the matrix protein VP40 of the Marburg virus. Virtual screening was performed where the control compound, Nilotinib, showed a binding score of -9.99 kcal/mol. Based on binding scores, hit compounds 9549298, 11960895, 44545852, 51039094, and 89670174 were selected that had a lower binding score than the control. Subsequent molecular dynamics (MD) simulation revealed that compound 9549298 consistently formed a hydrogen bond with the residue Gln290. This was observed both in molecular docking and MD simulation poses, indicating a strong and significant interaction with the protein. 11960895 had the most stable and consistent RMSD pattern exhibited in 100 ns simulation, while 9549298 had the most identical RMSD plot compared to the control molecule. MM/PBSA analysis showed that the binding free energy (ΔG) of 9549298 and 11960895 was lower than the control, with -30.84 and -38.86 kcal/mol, respectively. It was observed by the PCA (principal component analysis) and FEL (free energy landscape) analysis that compounds 9549298 and 11960895 had lesser conformational variation. Overall, this study proposed 9549298 and 11960895 as potential binders of VP40 MARV that can cause its inhibition, however it inherently lacks experimental validation. Furthermore, the study proposes in-vitro experiments as the next step to validate these computational findings, offering a practical approach to further explore these compounds' potential as antiviral agents.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, UP, India
| | - Subhasree Ray
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
10
|
Rabaan AA, Almansour ZH, Al Bshabshe A, Halwani MA, Al-Subaie MF, Al Kaabi NA, Alshamrani SA, Alshehri AA, Nahari MH, Alqahtani AS, Alhajri M, Alissa M. Application of temperature-dependent and steered molecular dynamics simulation to screen anti-dengue compounds against Marburg virus. J Biomol Struct Dyn 2024:1-20. [PMID: 38234048 DOI: 10.1080/07391102.2024.2303386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using Δ G binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Ali Al Bshabshe
- Adult critical care Department of Medicine, Division of adult critical care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed H Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ali S Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
11
|
Lewis CE, Pinette MM, Lakin SM, Smith G, Fisher M, Moffat E, Embury-Hyatt C, Pickering BS. Experimental Infection of Bundibugyo Virus in Domestic Swine Leads to Viral Shedding with Evidence of Intraspecies Transmission. Transbound Emerg Dis 2024; 2024:5350769. [PMID: 40303058 PMCID: PMC12017203 DOI: 10.1155/2024/5350769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 05/02/2025]
Abstract
The Ebolavirus genus contains several of the deadliest zoonotic viruses known. One of these, Bundibugyo virus (BDBV), has been the causative agent of two outbreaks of human disease that have resulted in 211 known cases with a case fatality rate of 33.6%. Although bats are routinely implicated as the possible reservoir species for the ebolaviruses, the source of infection for index cases in almost all outbreaks is unknown with only limited epidemiological evidence directly linking human cases to bats. This lack of evidence leaves open the possibility that maintenance of one or more of these viruses could involve multiple host species or more complex spillover dynamics. Domestic pigs have been found naturally infected with Reston virus (RESTV) and are experimentally susceptible to infection with Ebola virus (EBOV), two other members of the Ebolavirus genus. Infection of pigs resulted in shedding of infectious virus with subsequent transmission to naïve animals being documented, including transmission to humans for RESTV and to nonhuman primates for EBOV. The susceptibility and subsequent viral shedding and pathogenesis of domestic pigs to other ebolaviruses and the potential role this species may play in virus ecology, spillover dynamics, and human public health risk is unknown. For these reasons, we conducted a series of studies aimed at determining the susceptibility of domestic pigs to BDBV thereby demonstrating that pigs are not only susceptible to experimental infection but that the development of productive infection, tissue dissemination, and shedding of infectious virus can also occur while animals remain clinically normal. The role of pigs as a possible interim or amplifying host for ebolaviruses is a concern for both human public health and food security.
Collapse
Affiliation(s)
- Charles E. Lewis
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Program, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa, USA
| | - Mathieu M. Pinette
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Steven M. Lakin
- Scientific Liaison Services Section, Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal Plant Health Inspection Service, United States Department of Agriculture, Orient Point, New York, USA
| | - Greg Smith
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Mathew Fisher
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Brad S. Pickering
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Bodmer BS, Hoenen T. Reverse Genetics Systems for Filoviruses. Methods Mol Biol 2024; 2733:1-14. [PMID: 38064023 DOI: 10.1007/978-1-0716-3533-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
13
|
Normandin E, Triana S, Raju SS, Lan TCT, Lagerborg K, Rudy M, Adams GC, DeRuff KC, Logue J, Liu D, Strebinger D, Rao A, Messer KS, Sacks M, Adams RD, Janosko K, Kotliar D, Shah R, Crozier I, Rinn JL, Melé M, Honko AN, Zhang F, Babadi M, Luban J, Bennett RS, Shalek AK, Barkas N, Lin AE, Hensley LE, Sabeti PC, Siddle KJ. Natural history of Ebola virus disease in rhesus monkeys shows viral variant emergence dynamics and tissue-specific host responses. CELL GENOMICS 2023; 3:100440. [PMID: 38169842 PMCID: PMC10759212 DOI: 10.1016/j.xgen.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 10/15/2023] [Indexed: 01/05/2024]
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.
Collapse
Affiliation(s)
- Erica Normandin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sergio Triana
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.
| | - Siddharth S Raju
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy C T Lan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Kim Lagerborg
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Melissa Rudy
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gordon C Adams
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Daniel Strebinger
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arya Rao
- Columbia University, New York, NY, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | | | - Molly Sacks
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ricky D Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Krisztina Janosko
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dylan Kotliar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rickey Shah
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna N Honko
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Feng Zhang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehrtash Babadi
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeremy Luban
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Alex K Shalek
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nikolaos Barkas
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
14
|
Halfmann PJ, Borisevich V, Levine CB, Mire CE, Fenton KA, Geisbert TW, Kawaoka Y, Cross RW. The Mucin-Like Domain of the Ebola Glycoprotein Does Not Impact Virulence or Pathogenicity in Ferrets. J Infect Dis 2023; 228:S587-S593. [PMID: 37379580 PMCID: PMC10651202 DOI: 10.1093/infdis/jiad240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Ebola virus (EBOV) is considered among the most dangerous viruses with case fatality rates approaching 90% depending on the outbreak. While several viral proteins (VPs) including VP24, VP35, and the soluble glycoprotein are understood to contribute to virulence, less is known of the contribution of the highly variable mucin-like domain (MLD) of EBOV. Early studies have defined a potential role in immune evasion of the MLD by providing a glycan shield to critical glycoprotein residues tied to viral entry. Nonetheless, little is known as to what direct role the MLD plays in acute EBOV disease (EVD). METHODS We generated an infectious EBOV clone that lacks the MLD and assessed its virulence in ferrets compared with wild-type (WT) virus. RESULTS No differences in growth kinetics were observed in vitro, nor were there any differences in time to death, viremia, or clinical picture in ferrets infected with recombinant EBOV (rEBOV)-WT or rEBOV-Δmucin. CONCLUSIONS The EBOV MLD does not play a critical role in acute pathogenesis of EVD in ferrets.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Corri B Levine
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Chad E Mire
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Karla A Fenton
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Thomas W Geisbert
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison
- Division of Virology, Institute of Medical Science, University of Tokyo
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Japan
| | - Robert W Cross
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| |
Collapse
|
15
|
Davies KA, Welch SR, Jain S, Sorvillo TE, Coleman-McCray JD, Montgomery JM, Spiropoulou CF, Albariño C, Spengler JR. Fluorescent and Bioluminescent Reporter Mouse-Adapted Ebola Viruses Maintain Pathogenicity and Can Be Visualized in Vivo. J Infect Dis 2023; 228:S536-S547. [PMID: 37145895 PMCID: PMC11014640 DOI: 10.1093/infdis/jiad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Collapse
Affiliation(s)
- Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
O’Donnell KL, Callison J, Feldmann H, Hoenen T, Marzi A. Single-Dose Treatment With Vesicular Stomatitis Virus-Based Ebola Virus Vaccine Expressing Ebola Virus-Specific Artificial Micro-RNA Does Not Protect Mice From Lethal Disease. J Infect Dis 2023; 228:S677-S681. [PMID: 37186162 PMCID: PMC10651205 DOI: 10.1093/infdis/jiad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Although significant progress has been made in the development of therapeutics against Ebola virus (EBOV), we sought to expand upon existing strategies and combine an RNA interference-based intervention with the approved vesicular stomatitis virus-based Ebola virus (VSV-EBOV) vaccine to conjointly treat and vaccinate patients during an outbreak. We constructed VSV-EBOV vectors expressing artificial micro-RNAs (amiRNAs) targeting sequences of EBOV proteins. In vitro experiments demonstrated a robust decrease in EBOV replication using a minigenome system and infectious virus. For in vivo evaluation, mouse-adapted EBOV-infected CD-1 mice were treated 24 hours after infection with a single dose of the VSV-EBOV amiRNA constructs. We observed no difference in disease progression or survival compared to the control-treated mice. In summary, while amiRNAs decrease viral replication in vitro, the effect is not sufficient to protect mice from lethal disease, and this therapeutic approach requires further optimization.
Collapse
Affiliation(s)
- Kyle L O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
17
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Bourne N, Freiberg AN. The Susceptibility of BALB/c Mice to a Mouse-Adapted Ebola Virus Intravaginal Infection. Viruses 2023; 15:1590. [PMID: 37515275 PMCID: PMC10386242 DOI: 10.3390/v15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
18
|
Ramanathan P, Tigabu B, Santos RI, Ilinykh PA, Kuzmina N, Vogel OA, Thakur N, Ahmed H, Wu C, Amarasinghe GK, Basler CF, Bukreyev A. Ebolavirus Species-Specific Interferon Antagonism Mediated by VP24. Viruses 2023; 15:1075. [PMID: 37243162 PMCID: PMC10222226 DOI: 10.3390/v15051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-β), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Palaniappan Ramanathan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Bersabeh Tigabu
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Rodrigo I. Santos
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hamza Ahmed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Yankowski C, Kurup D, Wirblich C, Schnell MJ. Effects of adjuvants in a rabies-vectored Ebola virus vaccine on protection from surrogate challenge. NPJ Vaccines 2023; 8:10. [PMID: 36754965 PMCID: PMC9906604 DOI: 10.1038/s41541-023-00615-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Ebola virus is the primary contributor to the global threat of filovirus severe hemorrhagic fever, and Ebola virus disease has a case fatality rate of 50-90%. An inactivated, bivalent filovirus/rabies virus vaccine, FILORAB1, consists of recombinant rabies virus virions expressing the Ebola virus glycoprotein. FILORAB1 is immunogenic and protective from Ebola virus challenge in mice and non-human primates, and protection is enhanced when formulated with toll-like receptor 4 agonist Glucopyranosyl lipid adjuvant (GLA) in a squalene oil-in-water emulsion (SE). Through an adjuvant comparison in mice, we demonstrate that GLA-SE improves FILORAB1 efficacy by activating the innate immune system and shaping a Th1-biased adaptive immune response. GLA-SE adjuvanted mice and those adjuvanted with the SE component are better protected from surrogate challenge, while Th2 alum adjuvanted mice are not. Additionally, the immune response to FILORAB1 is long-lasting, as exhibited by highly-maintained serum antibody titers and long-lived cells in the spleen and bone marrow.
Collapse
Affiliation(s)
- Catherine Yankowski
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
History and impact of the mouse-adapted Ebola virus model. Antiviral Res 2023; 210:105493. [PMID: 36567023 DOI: 10.1016/j.antiviral.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV) is a member of the filoviridae family, which are comprised of negative sense, enveloped RNA hemorrhagic fever viruses that can cause severe disease and high lethality rates. These viruses require BSL-4 containment laboratories for study. Early studies of EBOV pathogenesis relied heavily on the use of nonhuman primates, which are expensive and cumbersome to handle in large numbers. Guinea pig models were also developed, but even to this day limited reagents are available in this model. In 1998, Mike Bray and colleagues developed a mouse-adapted EBOV (maEBOV) that caused lethality in adult immunocompetent mice. This model had significant advantages, including being inexpensive, allowing for higher animal numbers for statistical analysis, availability of reagents for studying pathogenesis, and availability of a vast array of genetically modified strains. The model has been used to test vaccines, therapeutic drugs, EBOV mutants, and pathogenesis, and its importance is demonstrated by the hundreds of citations referencing the original publication. This review will cover the history of the maEBOV model and its use in filovirus research.
Collapse
|
21
|
Kuhn JH, Schmaljohn CS. Of mice and Mike-An underappreciated Ebola virus disease model may have paved the road for future filovirology. Antiviral Res 2023; 210:105522. [PMID: 36592667 PMCID: PMC9852096 DOI: 10.1016/j.antiviral.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
In 1998, Mike Bray and colleagues published the first immunocompetent laboratory mouse model of Ebola virus disease. Often labeled by peer reviewers as inferior to large nonhuman primate efforts, this model initially laid the foundation for the recent establishment of panel-derived cross-bred and humanized mouse models and a golden hamster model. Nonhuman primate research has always been associated with ethical concerns and is sometimes deemed scientifically questionable due to the necessarily low animal numbers in individual studies. Independent of these concerns, the now-global severe shortage of commercially available large nonhuman primates may pragmatically push research toward increased and improved rodent modeling that may altogether replace nonhuman primate studies in the short term as well as in an optimal future.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022; 13:1034444. [PMID: 36518757 PMCID: PMC9742215 DOI: 10.3389/fimmu.2022.1034444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are submicroscopic, obligate intracellular parasites that carry either DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities that propagate by using the metabolic and biosynthetic machinery of their hosts and many of them cause sickness in the host. The ability of viruses to adapt to different hosts and settings mainly relies on their ability to create de novo variety in a short interval of time. The size and chemical composition of the viral genome have been recognized as important factors affecting the rate of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that has quickly become one of the world's leading causes of mortality, making it one of the most serious public health problems in recent decades. The discovery of new medications to cope with Covid-19 is a difficult and time-consuming procedure, as new mutations represent a serious threat to the efficacy of recently developed vaccines. The current article discusses viral mutations and their impact on the pathogenicity of newly developed variants with a special emphasis on Covid-19. The biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and treatment strategies are discussed in detail along with the statistical data.
Collapse
Affiliation(s)
| | - Adila Nazli
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hawaa Al-furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Muhammad Imran Asad
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| |
Collapse
|
23
|
Xu Z, Ho M, Bordoloi D, Kudchodkar S, Khoshnejad M, Giron L, Zaidi F, Jeong M, Roberts CC, Park YK, Maslow J, Abdel-Mohsen M, Muthumani K. Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods Mol Biol 2022; 2410:229-263. [PMID: 34914050 DOI: 10.1007/978-1-0716-1884-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Makan Khoshnejad
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Faraz Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Joel Maslow
- GeneOne Life Science Inc., Seoul, South Korea
| | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
- GeneOne Life Science Inc., Seoul, South Korea.
| |
Collapse
|
24
|
Bradfute SB. The discovery and development of novel treatment strategies for filoviruses. Expert Opin Drug Discov 2021; 17:139-149. [PMID: 34962451 DOI: 10.1080/17460441.2022.2013800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Filoviruses are negative-stranded, enveloped RNA viruses that can cause hemorrhagic fever in humans and include Ebola and Marburg viruses. Lethality rates can reach 90% in isolated outbreaks. The 2013-2016 Ebola virus epidemic demonstrated the global threat of filoviruses and hastened development of vaccines and therapeutics. There are six known filoviruses that cause disease in humans, but still few therapeutics are available for treatment. AREAS COVERED This review summarizes identification, testing, and development of therapeutics based on the peer-reviewed scientific literature beginning with the discovery of filoviruses in 1967. Small molecules, antibodies, cytokines, antisense, post-exposure vaccination, and host-targeted therapeutic approaches are discussed. An emphasis is placed on therapeutics that have shown promise in in vivo studies. EXPERT OPINION Two monoclonal antibody regimens are approved for use in humans for one filovirus (Ebola virus), and preclinical nonhuman primate studies suggest that other monoclonal-based therapies are likely to be effective against other filoviruses. Significant progress has been made in small-molecule antivirals and host-targeted approaches. An important consideration is the necessity of pan-filovirus therapeutics via broadly effective small molecules, antibody cocktails, and cross-reactive antibodies. The use of filovirus therapeutics as prophylactic treatment or in chronically infected individuals should be considered.
Collapse
Affiliation(s)
- Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
25
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
26
|
Paparisto E, Hunt NR, Labach DS, Coleman MD, Di Gravio EJ, Dodge MJ, Friesen NJ, Côté M, Müller A, Hoenen T, Barr SD. Interferon-Induced HERC5 Inhibits Ebola Virus Particle Production and Is Antagonized by Ebola Glycoprotein. Cells 2021; 10:cells10092399. [PMID: 34572049 PMCID: PMC8472148 DOI: 10.3390/cells10092399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel ‘protagonist–antagonistic’ relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nina R. Hunt
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Daniel S. Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Macon D. Coleman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Eric J. Di Gravio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nicole J. Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Roger-Guindon Hall Room 4214, Ottawa, ON K1H 8M5 , Canada;
| | - Andreas Müller
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
- Correspondence:
| |
Collapse
|
27
|
Gong M, Yang Y, Huang Y, Gan T, Wu Y, Gao H, Li Q, Nie J, Huang W, Wang Y, Zhang R, Zhong J, Deng F, Rao Y, Ding Q. Novel quinolone derivatives targeting human dihydroorotate dehydrogenase suppress Ebola virus infection in vitro. Antiviral Res 2021; 194:105161. [PMID: 34391783 DOI: 10.1016/j.antiviral.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 outbreak in West Africa. Currently, no effective antiviral treatments have been approved for clinical use. Compound 1 RYL-634 is a quinolone-derived compound that can inhibit dihydroorotate dehydrogenase, a rate-limiting enzyme in the de novo pyrimidine synthesis pathway and it exhibited antiviral activity against multiple RNA virus infection. In this study, we evaluated the efficacy of a panel of newly developed compounds based on RYL-634 against EBOV infection. Our data showed that RYL-634 as well as its derivatives are effective against EBOV transcription- and replication-competent virus-like particle (trVLP) infection and authentic EBOV infection in vitro at low nanomolar IC50 values and relatively high CC50. Of note, the new derivative RYL-687 had the lowest IC50 at approximately 7 nM and was almost 6 times more potent than remdesivir (GS-5734). Exogenous addition of different metabolites in the pyrimidine de novo synthesis pathway confirmed DHODH as the target of RYL-687. These data provide evidence that such quinolone-derived compounds are promising therapeutic candidates against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yi Huang
- Wuhan National Biosafety Laboratory, Chinese Academy of Science, Wuhan, 43007, China
| | - Tianyu Gan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongying Gao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Rong Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of BasicMedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yu Rao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Harrison AR, Todd S, Dearnley M, David CT, Green D, Rawlinson SM, Au GG, Marsh GA, Moseley GW. Antagonism of STAT3 signalling by Ebola virus. PLoS Pathog 2021; 17:e1009636. [PMID: 34166464 PMCID: PMC8224886 DOI: 10.1371/journal.ppat.1009636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Many viruses target signal transducers and activators of transcription (STAT) 1 and 2 to antagonise antiviral interferon signalling, but targeting of signalling by other STATs/cytokines, including STAT3/interleukin 6 that regulate processes important to Ebola virus (EBOV) haemorrhagic fever, is poorly defined. We report that EBOV potently inhibits STAT3 responses to interleukin-6 family cytokines, and that this is mediated by the interferon-antagonist VP24. Mechanistic analysis indicates that VP24 effects a unique strategy combining distinct karyopherin-dependent and karyopherin-independent mechanisms to antagonise STAT3-STAT1 heterodimers and STAT3 homodimers, respectively. This appears to reflect distinct mechanisms of nuclear trafficking of the STAT3 complexes, revealed for the first time by our analysis of VP24 function. These findings are consistent with major roles for global inhibition of STAT3 signalling in EBOV infection, and provide new insights into the molecular mechanisms of STAT3 nuclear trafficking, significant to pathogen-host interactions, cell physiology and pathologies such as cancer. Ebola virus (EBOV) continues to pose a significant risk to human health globally, causing ongoing disease outbreaks with case-fatality rates between 40 and 65%. Suppression of immune responses is a critical component of EBOV haemorrhagic fever, but understanding of EBOV impact on signalling by cytokines other than interferon is limited. We find that infectious EBOV inhibits interleukin-6 cytokine signalling via antagonism of STAT3. The antagonistic strategy uniquely combines two distinct mechanisms, which appear to reflect differing nuclear trafficking mechanisms of critical STAT3 complexes. This provides fundamental insights into the mechanisms of pathogenesis of a lethal virus, and biology of STAT3, a critical player in immunity, development, growth and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shawn Todd
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Cassandra T. David
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Diane Green
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gough G. Au
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Reston virus causes severe respiratory disease in young domestic pigs. Proc Natl Acad Sci U S A 2020; 118:2015657118. [PMID: 33443221 DOI: 10.1073/pnas.2015657118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reston virus (RESTV), an ebolavirus, causes clinical disease in macaques but has yet only been associated with rare asymptomatic infections in humans. Its 2008 emergence in pigs in the Philippines raised concerns about food safety, pathogenicity, and zoonotic potential, questions that are still unanswered. Until today, the virulence of RESTV for pigs has remained elusive, with unclear pathogenicity in naturally infected animals and only one experimental study demonstrating susceptibility and evidence for shedding but no disease. Here we show that combined oropharyngeal and nasal infection of young (3- to 7-wk-old) Yorkshire cross pigs with RESTV resulted in severe respiratory disease, with most animals reaching humane endpoint within a week. RESTV-infected pigs developed severe cyanosis, tachypnea, and acute interstitial pneumonia, with RESTV shedding from oronasal mucosal membranes. Our studies indicate that RESTV should be considered a livestock pathogen with zoonotic potential.
Collapse
|
31
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
32
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
33
|
Closely related reovirus lab strains induce opposite expression of RIG-I/IFN-dependent versus -independent host genes, via mechanisms of slow replication versus polymorphisms in dsRNA binding σ3 respectively. PLoS Pathog 2020; 16:e1008803. [PMID: 32956403 PMCID: PMC7529228 DOI: 10.1371/journal.ppat.1008803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/01/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.
Collapse
|
34
|
Woolsey C, Menicucci AR, Cross RW, Luthra P, Agans KN, Borisevich V, Geisbert JB, Mire CE, Fenton KA, Jankeel A, Anand S, Ebihara H, Geisbert TW, Messaoudi I, Basler CF. A VP35 Mutant Ebola Virus Lacks Virulence but Can Elicit Protective Immunity to Wild-Type Virus Challenge. Cell Rep 2020; 28:3032-3046.e6. [PMID: 31533029 DOI: 10.1016/j.celrep.2019.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Zaire ebolavirus (EBOV) VP35 protein is a suppressor of type I interferon (IFN) production, an inhibitor of dendritic cell maturation, and a putative virulence determinant. Here, a recombinant EBOV encoding a mutant VP35 virus (VP35m) is demonstrated to activate RIG-I-like receptor signaling and innate antiviral pathways. When inoculated into cynomolgus macaques, VP35m exhibits dramatic attenuation as compared to wild-type EBOV (wtEBOV), with 20 or 300 times the standard 100% lethal challenge dose not causing EBOV disease (EVD). Further, VP35m infection, despite limited replication in vivo, activates antigen presentation and innate immunity pathways and elicits increased frequencies of proliferating memory T cells and B cells and production of anti-EBOV antibodies. Upon wtEBOV challenge, VP35m-immunized animals survive, exhibiting host responses consistent with an orderly immune response and the absence of excessive inflammation. These data demonstrate that VP35 is a critical EBOV immune evasion factor and provide insights into immune mechanisms of EBOV control.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrea R Menicucci
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Sneha Anand
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
35
|
A Surrogate Animal Model for Screening of Ebola and Marburg Glycoprotein-Targeting Drugs Using Pseudotyped Vesicular Stomatitis Viruses. Viruses 2020; 12:v12090923. [PMID: 32842671 PMCID: PMC7552044 DOI: 10.3390/v12090923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
Filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates with high mortality rates. There is no approved therapy against these deadly viruses. Antiviral drug development has been hampered by the requirement of a biosafety level (BSL)-4 facility to handle infectious EBOV and MARV because of their high pathogenicity to humans. In this study, we aimed to establish a surrogate animal model that can be used for anti-EBOV and -MARV drug screening under BSL-2 conditions by focusing on the replication-competent recombinant vesicular stomatitis virus (rVSV) pseudotyped with the envelope glycoprotein (GP) of EBOV (rVSV/EBOV) and MARV (rVSV/MARV), which has been investigated as vaccine candidates and thus widely used in BSL-2 laboratories. We first inoculated mice, rats, and hamsters intraperitoneally with rVSV/EBOV and found that only hamsters showed disease signs and succumbed within 4 days post-infection. Infection with rVSV/MARV also caused lethal infection in hamsters. Both rVSV/EBOV and rVSV/MARV were detected at high titers in multiple organs including the liver, spleen, kidney, and lungs of infected hamsters, indicating acute and systemic infection resulting in fatal outcomes. Therapeutic effects of passive immunization with an anti-EBOV neutralizing antibody were specifically observed in rVSV/EBOV-infected hamsters. Thus, this animal model is expected to be a useful tool to facilitate in vivo screening of anti-filovirus drugs targeting the GP molecule.
Collapse
|
36
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
37
|
Quercetin Blocks Ebola Virus Infection by Counteracting the VP24 Interferon-Inhibitory Function. Antimicrob Agents Chemother 2020; 64:AAC.00530-20. [PMID: 32366711 DOI: 10.1128/aac.00530-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) is among the most devastating pathogens causing fatal hemorrhagic fever in humans. The epidemics from 2013 to 2016 resulted in more than 11,000 deaths, and another outbreak is currently ongoing. Since there is no FDA-approved drug so far to fight EBOV infection, there is an urgent need to focus on drug discovery. Considering the tight correlation between the high EBOV virulence and its ability to suppress the type I interferon (IFN-I) system, identifying molecules targeting viral protein VP24, one of the main virulence determinants blocking the IFN response, is a promising novel anti-EBOV therapy approach. Hence, in the effort to find novel EBOV inhibitors, a screening of a small set of flavonoids was performed; it showed that quercetin and wogonin can suppress the VP24 effect on IFN-I signaling inhibition. The mechanism of action of the most active compound, quercetin, showing a half-maximal inhibitory concentration (IC50) of 7.4 μM, was characterized to significantly restore the IFN-I signaling cascade, blocked by VP24, by directly interfering with the VP24 binding to karyopherin-α and thus restoring P-STAT1 nuclear transport and IFN gene transcription. Quercetin significantly blocked viral infection, specifically targeting EBOV VP24 anti-IFN-I function. Overall, quercetin is the first identified inhibitor of the EBOV VP24 anti-IFN function, representing a molecule interacting with a viral binding site that is very promising for further drug development aiming to block EBOV infection at the early steps.
Collapse
|
38
|
Fanunza E, Frau A, Corona A, Tramontano E. Insights into Ebola Virus VP35 and VP24 Interferon Inhibitory Functions and their Initial Exploitation as Drug Targets. Infect Disord Drug Targets 2020; 19:362-374. [PMID: 30468131 DOI: 10.2174/1871526519666181123145540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Upon viral infection, the interferon (IFN) system triggers potent antiviral mechanisms limiting viral growth and spread. Hence, to sustain their infection, viruses evolved efficient counteracting strategies to evade IFN control. Ebola virus (EBOV), member of the family Filoviridae, is one of the most virulent and deadly pathogen ever faced by humans. The etiological agent of the Ebola Virus Disease (EVD), EBOV can be undoubtedly considered the perfect example of a powerful inhibitor of the host organism immune response activation. Particularly, the efficacious suppression of the IFN cascade contributes to disease progression and severity. Among the EBOVencoded proteins, the Viral Proteins 35 (VP35) and 24 (VP24) are responsible for the EBOV extreme virulence, representing the core of such inhibitory function through which EBOV determines its very effective shield to the cellular immune defenses. VP35 inhibits the activation of the cascade leading to IFN production, while VP24 inhibits the activation of the IFN-stimulated genes. A number of studies demonstrated that both VP35 and VP24 is validated target for drug development. Insights into the structural characteristics of VP35 and VP24 domains revealed crucial pockets exploitable for drug development. Considered the lack of therapy for EVD, restoring the immune activation is a promising approach for drug development. In the present review, we summarize the importance of VP35 and VP24 proteins in counteracting the host IFN cellular response and discuss their potential as druggable viral targets as a promising approach toward attenuation of EBOV virulence.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy.,Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
39
|
Price A, Okumura A, Haddock E, Feldmann F, Meade-White K, Sharma P, Artami M, Lipkin WI, Threadgill DW, Feldmann H, Rasmussen AL. Transcriptional Correlates of Tolerance and Lethality in Mice Predict Ebola Virus Disease Patient Outcomes. Cell Rep 2020; 30:1702-1713.e6. [PMID: 32049004 PMCID: PMC11062563 DOI: 10.1016/j.celrep.2020.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Host response to infection is a major determinant of disease severity in Ebola virus disease (EVD), but gene expression programs associated with outcome are poorly characterized. Collaborative Cross (CC) mice develop strain-dependent EVD phenotypes of differential severity, ranging from tolerance to lethality. We screen 10 CC lines and identify clinical, virologic, and transcriptomic features that distinguish tolerant from lethal outcomes. Tolerance is associated with tightly regulated induction of immune and inflammatory responses shortly following infection, as well as reduced inflammatory macrophages and increased antigen-presenting cells, B-1 cells, and γδ T cells. Lethal disease is characterized by suppressed early gene expression and reduced lymphocytes, followed by uncontrolled inflammatory signaling, leading to death. We apply machine learning to predict outcomes with 99% accuracy in mice using transcriptomic profiles. This signature predicts outcomes in a cohort of EVD patients from western Africa with 75% accuracy, demonstrating potential clinical utility.
Collapse
Affiliation(s)
- Adam Price
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Atsushi Okumura
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA; Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pryanka Sharma
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Methinee Artami
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
40
|
Feldmann F, Shupert WL, Haddock E, Twardoski B, Feldmann H. Gamma Irradiation as an Effective Method for Inactivation of Emerging Viral Pathogens. Am J Trop Med Hyg 2020; 100:1275-1277. [PMID: 30860018 DOI: 10.4269/ajtmh.18-0937] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gamma irradiation using a cobalt-60 source is a commonly used method for the inactivation of infectious specimens to be handled safely in subsequent laboratory procedures. Here, we determined irradiation doses to safely inactivate liquid proteinaceous specimens harboring different emerging/reemerging viral pathogens known to cause neglected tropical and other diseases of regional or global public health importance. By using a representative arenavirus, bunyavirus, coronavirus, filovirus, flavivirus, orthomyxovirus, and paramyxovirus, we found that these enveloped viruses differed in their susceptibility to irradiation treatment with adsorbed doses for inactivation of a target dose of 1 × 106 50% tissue culture infectious dose (TCID50)/mL ranging from 1 to 5 MRads. This finding seemed generally inversely correlated with genome size. Our data may help to guide other facilities in testing and verifying safe inactivation procedures.
Collapse
Affiliation(s)
- Friederike Feldmann
- Division of Intramural Research (DIR), Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana
| | - W Lesley Shupert
- Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana
| | - Elaine Haddock
- Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana
| | - Barri Twardoski
- Division of Intramural Research (DIR), Office of Operations and Management, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana
| | - Heinz Feldmann
- Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana
| |
Collapse
|
41
|
Chan M, Leung A, Griffin BD, Vendramelli R, Tailor N, Tierney K, Audet J, Kobasa D. Generation and Characterization of a Mouse-Adapted Makona Variant of Ebola Virus. Viruses 2019; 11:E987. [PMID: 31717793 PMCID: PMC6893688 DOI: 10.3390/v11110987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Ebola virus (EBOV) is a zoonotic pathogen that poses a significant threat to public health, causing sporadic yet devastating outbreaks that have the potential to spread worldwide, as demonstrated during the 2013-2016 West African outbreak. Mouse models of infection are important tools for the development of therapeutics and vaccines. Exposure of immunocompetent mice to clinical isolates of EBOV is nonlethal; consequently, EBOV requires prior adaptation in mice to cause lethal disease. Until now, the only immunocompetent EBOV mouse model was based on the Mayinga variant, which was isolated in 1976. Here, we generated a novel mouse-adapted (MA)-EBOV based on the 2014 Makona isolate by inserting EBOV/Mayinga-MA mutations into the EBOV/Makona genome, followed by serial passaging of the rescued virus in suckling mice. The resulting EBOV/Makona-MA causes lethal disease in adult immunocompetent mice within 6 to 9 days and has a lethal dose (LD50) of 0.004 plaque forming units (PFU). Two additional mutations emerged after mouse-adaptation in the viral nucleoprotein (NP) and membrane-associated protein VP24. Using reverse genetics, we found the VP24 mutation to be critical for EBOV/Makona-MA virulence. EBOV/Makona-MA infected mice that presented with viremia, high viral burden in organs, increased release of pro-inflammatory cytokines/chemokines, and lymphopenia. Our mouse model will help advance pre-clinical development of countermeasures against contemporary EBOV variants.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.); (K.T.); (J.A.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
42
|
Wong G, Zhang Z, He S, de La Vega MA, Tierney K, Soule G, Tran K, Fernando L, Qiu X. Marburg and Ravn Virus Infections Do Not Cause Observable Disease in Ferrets. J Infect Dis 2019; 218:S471-S474. [PMID: 29889278 DOI: 10.1093/infdis/jiy245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ferrets are used for studying infections with wild-type Ebola virus isolates. Here, we investigated whether these animals are also susceptible to wild-type isolates of Marburg virus (MARV). Ferrets were challenged intramuscularly or intranasally with MARV strain Angola and monitored for 3 weeks. Unexpectedly, the animals neither showed observable signs of disease nor died of infection, and viremia was not detected after challenge. All animals were seropositive for MARV-specific immunoglobulin antibodies. Confirmatory studies with MARV strain Musoke and Ravn virus yielded the same outcomes. Therefore, ferrets may be of limited usefulness for studying the pathogenesis of MARV and Ravn virus infections.
Collapse
Affiliation(s)
- Gary Wong
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, China.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Département de microbiologie-infectiologie et d'immunologie, Université Laval, Ville de Québec, Québec, Canada
| | - Zirui Zhang
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China
| | - Marc-Antoine de La Vega
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Ville de Québec, Québec, Canada
| | - Kevin Tierney
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China
| | - Geoff Soule
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China
| | - Kaylie Tran
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China
| | - Lisa Fernando
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, China.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
43
|
Ilinykh PA, Graber J, Kuzmina NA, Huang K, Ksiazek TG, Crowe JE, Bukreyev A. Ebolavirus Chimerization for the Development of a Mouse Model for Screening of Bundibugyo-Specific Antibodies. J Infect Dis 2019; 218:S418-S422. [PMID: 30060231 DOI: 10.1093/infdis/jiy423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Screening of monoclonal antibodies against ebolaviruses requires small-animal models. Wild-type mice require adaptation of ebolaviruses, whereas immunodeficient mice are still resistant to nonadapted Bundibugyo ebolavirus. Swapping of Ebola virus glycoprotein with that from Bundibugyo virus resulted in a replication-competent chimeric virus, which caused 100% lethal infection in STAT1 knockout mice. Monoclonal antibody BDBV223 isolated from a human survivor of Bundibugyo virus infection protected mice from challenge with the chimeric virus. These data demonstrate the suitability of the approach for in vivo screening of antibodies and suggest the greater contribution of internal Ebola proteins in pathogenesis compared to Bundibugyo virus proteins.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston.,Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Jessica Graber
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston.,Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston.,Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston.,Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center.,Chemical and Physical Biology Program, Vanderbilt University.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston.,Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
44
|
Cross RW, Geisbert TW. Use of reverse genetics to inform Ebola outbreak responses. THE LANCET. INFECTIOUS DISEASES 2019; 19:925-927. [PMID: 31300333 DOI: 10.1016/s1473-3099(19)30346-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77550-0610, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77550-0610, USA.
| |
Collapse
|
45
|
Abstract
Filovirus small animal disease models have so far been developed in laboratory mice, guinea pigs, and hamsters. Since immunocompetent rodents do not exhibit overt signs of disease following infection with wild-type filoviruses isolated from humans, rodent models have been established using adapted viruses produced through sequential passage in rodents. Rodent-adapted viruses target the same cells/tissues as the wild-type viruses, making rodents invaluable basic research tools for studying filovirus pathogenesis. Moreover, comparative analyses using wild-type and rodent-adapted viruses have provided beneficial insights into the molecular mechanisms of pathogenicity and acquisition of species-specific virulence. Additionally, wild-type filovirus infections in immunodeficient rodents have provided a better understanding of the host factors required for resistance to filovirus infection and of the immune response against the infection. This chapter provides comprehensive information on the filovirus rodent models and rodent-adapted filoviruses. Specifically, we summarize the clinical and pathological features of filovirus infections in all rodent models described to date, including the recently developed humanized and collaborative cross (CC) resource recombinant inbred (RI) intercrossed (CC-RIX) mouse models. We also cover the molecular determinants responsible for adaptation and virulence acquisition in a number of rodent-adapted filoviruses. This chapter clearly defines the characteristic and advantages/disadvantages of rodent models, helping to evaluate the practical use of rodent models in future filovirus studies.
Collapse
|
46
|
Pleet ML, DeMarino C, Stonier SW, Dye JM, Jacobson S, Aman MJ, Kashanchi F. Extracellular Vesicles and Ebola Virus: A New Mechanism of Immune Evasion. Viruses 2019; 11:v11050410. [PMID: 31052499 PMCID: PMC6563240 DOI: 10.3390/v11050410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Spencer W Stonier
- Department, Emergent BioSolutions, Gaithersburg, MD 20879, USA.
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - M Javad Aman
- Department. Integrated BioTherapeutics, Inc., Gaithersburg, MD 20850, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
47
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
48
|
Role of Type I Interferons on Filovirus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7010022. [PMID: 30791589 PMCID: PMC6466283 DOI: 10.3390/vaccines7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.
Collapse
|
49
|
Comer JE, Escaffre O, Neef N, Brasel T, Juelich TL, Smith JK, Smith J, Kalveram B, Perez DD, Massey S, Zhang L, Freiberg AN. Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir. Viruses 2019; 11:v11020137. [PMID: 30717492 PMCID: PMC6410141 DOI: 10.3390/v11020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo ebolavirus and Taï Forest ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.
Collapse
Affiliation(s)
- Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Natasha Neef
- Experimental Pathology Laboratories, Inc., Sterling, VA 20167, USA.
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - David D Perez
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Alexander N Freiberg
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
50
|
Meyer M, Malherbe DC, Bukreyev A. Can Ebola Virus Vaccines Have Universal Immune Correlates of protection? Trends Microbiol 2019; 27:8-16. [PMID: 30201511 PMCID: PMC6309495 DOI: 10.1016/j.tim.2018.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022]
Abstract
Testing vaccine efficacy against the highly lethal Ebola virus (EBOV) in humans is almost impossible due to obvious ethical reasons and the sporadic nature of outbreaks. For such situations, the 'animal rule' was established, requiring the product be tested in animal models, expected to predict the response observed in humans. For vaccines, this testing aims to identify immune correlates of protection, such as antibody or cell-mediated responses. In the wake of the 2013-2016 EBOV epidemic, and despite advancement of promising candidates into clinical trials, protective correlates remain ambiguous. In the hope of identifying a reliable correlate by comparing preclinical and clinical trial data on immune responses to vaccination, we conclude that correlates are not universal for all EBOV vaccines.
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA; These authors contributed equally to this work
| | - Delphine C Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA; These authors contributed equally to this work
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA.
| |
Collapse
|