1
|
Berrow M, Brooks A, Kotowska AM, Watts J, Riordan L, Kidger L, Scurr DJ, Nikoi ND, Banzhaf M, Bryant JA, Greenway S, Mendez V, Norton B, de Cogan F. Development and characterisation of antimicrobial epoxy resin. Sci Rep 2025; 15:12463. [PMID: 40263385 PMCID: PMC12015595 DOI: 10.1038/s41598-025-90465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/13/2025] [Indexed: 04/24/2025] Open
Abstract
Surface contamination is an important, if under-discussed, route of infection transmission. In this study, we suspended chlorhexidine digluconate (CHX) in epoxy resin. CHX was found to be stably incorporated into the material, and its addition to epoxy resin was found to have minimal effects on the optical transparency of the material. After application of the epoxy resin to steel surfaces, time-of-flight secondary ion mass spectrometry revealed that CHX was uniformly present over the surface. Surfaces painted with CHX-resin were found to have significant, reproducible antimicrobial efficacy against E. coli, S. aureus, and C. albicans. We have shown that the addition of CHX has minimal effects on the adhesion of the epoxy resin to surfaces, as well as a high durability of the antimicrobial efficacy. We believe that this material has a wide array of applications, and could be utilised to confer significant, low-cost antimicrobial efficacy to existing surfaces, to prevent surface contamination, and to stop the transmission of infectious disease.
Collapse
Affiliation(s)
- Madeline Berrow
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Julie Watts
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lily Riordan
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Luke Kidger
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Naa Dei Nikoi
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jack Alfred Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Simon Greenway
- Indestructible Paint Ltd, 16-25 Pentos Drive, Birmingham, UK
| | - Violaine Mendez
- Indestructible Paint Ltd, 16-25 Pentos Drive, Birmingham, UK
| | - Brian Norton
- Indestructible Paint Ltd, 16-25 Pentos Drive, Birmingham, UK
| | | |
Collapse
|
2
|
Kovar L, McPherson C, Ware J, Hurst L, Gould C, Martinez A, Shrestha P, Sparks JE. Interventions implemented to remediate mold identified in Neonatal Intensive Care Unit (NICU) incubators, 2022 to 2023. Am J Infect Control 2025; 53:387-393. [PMID: 39486591 DOI: 10.1016/j.ajic.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Neonatal Intensive Care Units utilize incubators to sustain core temperatures associated with transepidermal water loss. High relative humidity in incubators provides an environment for fungi to grow. In August 2022, mold was identified growing in 11 (85%) Neonatal Intensive Care Unit incubators. METHODS A team assembled to address mold in incubators. The environment was addressed as a possible source of contamination by consulting an environmental specialist. The air handler, ducts, and environment were terminally cleaned. Specimens were collected from the contaminated incubators and the manufacturer reviewed cleaning practices. Experimental trials were conducted using the incubators to replicate mold growth after interventions. RESULTS The environmental consultant approved when the space could be reoccupied. Incubators introduced to the clean environment did not grow mold. Various fungi or yeast were identified in the contaminated incubators. Opportunities to improve cleaning and replacement of parts were identified by the manufacturer. September 2022 to February 2023, 7 experimental trials were completed after cleaning the incubators. Four (36%) of the 11 contaminated incubators were placed back in use due to no fungal growth. No patient illnesses occurred. CONCLUSIONS The interventions implemented stopped ongoing contamination of incubators and use of previously contaminated incubators.
Collapse
Affiliation(s)
- Lacey Kovar
- Infection Prevention Covenant Children's Hospital, Lubbock, TX.
| | | | - Jennifer Ware
- Neonatal Intensive Care Unit Covenant Children's Hospital, Lubbock, TX
| | - Lacye Hurst
- Risk Management Covenant Children's Hospital, Lubbock, TX
| | - Chris Gould
- Environment of Care Facilities Engineering Covenant Health, Lubbock, TX
| | | | | | - John E Sparks
- Neonatal Intensive Care Unit Covenant Children's Hospital, Lubbock, TX
| |
Collapse
|
3
|
Angelopoulos N, Staines J, Chamberlin M, Bates S, McGain F. A narrative review of personal protective equipment gowns: lessons from COVID-19. Br J Anaesth 2025; 134:368-381. [PMID: 39516124 DOI: 10.1016/j.bja.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review evaluates the evidence regarding the protection offered by isolation gowns, approaches to imparting antimicrobial activity to gowns, and the environmental impacts of gown use, particularly during the COVID-19 pandemic. We conducted a search of the Medline, PubMed, and Google Scholar databases for articles published between January 1, 2019 to February 20, 2024. We found that current standards pertaining to isolation gowns might be irrelevant to the protection of healthcare workers from pathogen transmission, as they focus primarily on fluid barrier resistance values that are not reflective of all transmission conditions in hospitals. Although most available isolation gowns are disposable, reusable gowns could offer greater barrier protection and are more environmentally sustainable. Several techniques have been studied for their ability to impart antimicrobial properties to isolation gowns, extending their lifespan and reducing environmental impacts. However, evidence of the effectiveness of such techniques in clinical settings is scarce. We advocate for standardised guidelines inclusive of common pathogen survival tests, comfort, and durability, which reflect the actual infection risks encountered by healthcare workers, to improve the safety and efficacy of isolation gowns in hospital settings. Further research into the clinical effectiveness of antimicrobial gowns and their long-term implications on the environment is also warranted.
Collapse
Affiliation(s)
- Nikolaos Angelopoulos
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia.
| | - Jo Staines
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Meriel Chamberlin
- Limebranch Pty Ltd trading as Full Circle Fibres, Brisbane, QLD, Australia
| | - Samantha Bates
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Forbes McGain
- Department of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Meijer EFJ, Marek A, Ramage G, Chowdhary A, Bagrade L, Voss A, Bal AM. A practical approach to investigating nosocomial acquisition of Aspergillus. Med Mycol 2025; 63:myaf007. [PMID: 39875195 DOI: 10.1093/mmy/myaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025] Open
Abstract
Invasive mould disease (IMD) has a high mortality in immunosuppressed patients. Invasive aspergillosis (IA) is the most common IMD. A guideline for preventing IA has been published jointly by the Centers for Disease Control and Prevention, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. Use of high-efficiency particulate air filters, adequate air exchange rates, sealing of patient rooms, and preventing exposure to moulds by nursing patients in areas away from construction sites are recommended by the guideline. However, there is limited information in relation to the actions to be undertaken by infection prevention and control teams in the event of one or more cases of nosocomial aspergillosis. In this review, we describe a systematic approach to aspergillosis by defining possible and probable nosocomial acquisition based on the number of days since hospital admission. We advocate an incremental response to the investigation of nosocomial aspergillosis in patients in protective isolation taking into account the number of cases and the likelihood of nosocomial origin. For single cases of nosocomial IA, we suggest that infection control investigations should focus on case surveillance and walk-through inspection escalating in a stepwise manner to enhanced case surveillance, verification of environmental controls, environmental monitoring, genotyping of clinical and environmental isolates, and review of antifungal prophylaxis for multiple cases and outbreaks. Where applicable, the construction site should be inspected with the aim to reduce the dispersal of conidia. Surveillance systems need to be strengthened to better understand the epidemiology of IA.
Collapse
Affiliation(s)
- Eelco F J Meijer
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Medical Microbiology and Immunology, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Aleksandra Marek
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Anuradha Chowdhary
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Linda Bagrade
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Andreas Voss
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Abhijit M Bal
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
5
|
Garvey M, Kremer TA, Rowan NJ. Efficacy of cleaning, disinfection, and sterilization modalities for addressing infectious drug-resistant fungi: a review. J Appl Microbiol 2025; 136:lxaf005. [PMID: 39774830 DOI: 10.1093/jambio/lxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
This is a timely and important review that focuses on the appropriateness of established cleaning, disinfection, and sterilization methods to safely and effectively address infectious fungal drug-resistant pathogens that can potentially contaminate reusable medical devices used in healthcare environment in order to mitigate the risk of patient infection. The release of the World Health Organization (WHO) fungal priority pathogen list (FPPL) in 2022 highlighted the public health crisis of antimicrobial resistance (AMR) in clinically relevant fungal species. Contamination of medical devices with drug-resistant fungal pathogens (including those on the FPPL) in healthcare is a rare event that is more likely to occur due to cross-transmission arising from lapses in hand hygiene practices. Established disinfection and sterilization methods decontaminate fungal pathogens on single-use and reusable medical devices; however, there are assumptions that reusable devices destined for semi-critical use are appropriately cleaned and do not harbour biofilms that may undermine the ability to effectively decontamination these type devices in healthcare. International standards dictate that manufacturer's instructions for use must provide appropriate guidance to healthcare facilities to meet safe reprocessing expectations that include addressing drug-resistant fungal pathogens. Increased environmental monitoring and vigilance surrounding fungal pathogens in healthcare is advised, including adherence to hand hygiene/aseptic practices and appropriate cleaning encompassing the simplification of reusable device features for 'ease-of-reach'. There are emereging opportunities to promote a more integrated multiactor hub approach to addressing these sophisticated challenges, including future use of artificial intelligence and machine learning for improved diagnostics, monitoring/surveillance (such as healthcare and wastewater-based epidemiology), sterility assurance, and device design. There is a knowledge gap surrounding the occurrence and potential persistence of drug-resistant fungal pathogens harboured in biofilms, particularly for ascertaining efficacy of high-level disinfection for semi-critical use devices.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo F91 YW50, Ireland
| | - Terra A Kremer
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- Microbiological Quality and Quality Assurance, Johnson & Johnson, 1000 Route 202, South Raritan, NJ 08869, United States
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- SFI-funded CURAM Centre for Medical Device Research, University of Galway, Ireland
| |
Collapse
|
6
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024; 37:e0018623. [PMID: 39388143 PMCID: PMC11640306 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene
and Environmental Medicine, University Medicine
Greifswald, Greifswald,
Germany
| | - Franziska Lexow
- Department for
Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and
Control, Robert Koch Institute,
Berlin, Germany
| | - Anna Bludau
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Antonia Milena Köster
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Martin Misailovski
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
- Department of
Geriatrics, University of Göttingen Medical
Center, Göttingen,
Germany
| | - Ulrike Seifert
- Friedrich
Loeffler-Institute of Medical Microbiology – Virology, University
Medicine Greifswald,
Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G.
Enders MVZ GbR, Stuttgart,
Germany
| | - William Rutala
- Division of Infectious
Diseases, University of North Carolina School of
Medicine, Chapel Hill,
North Carolina, USA
| | - Stephanie J. Dancer
- Department of
Microbiology, University Hospital
Hairmyres, Glasgow,
United Kingdom
- School of Applied
Sciences, Edinburgh Napier University,
Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| |
Collapse
|
7
|
Alhussain H, Ghani S, Eltai NO. Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1107. [PMID: 39200716 PMCID: PMC11354768 DOI: 10.3390/ijerph21081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024]
Abstract
The prevalence of airborne pathogens in indoor environments presents significant health risks due to prolonged human occupancy. This review addresses diverse air purification systems to combat airborne pathogens and the factors influencing their efficacy. Indoor aerosols, including bioaerosols, harbor biological contaminants from respiratory emissions, highlighting the need for efficient air disinfection strategies. The COVID-19 pandemic has emphasized the dangers of airborne transmission, highlighting the importance of comprehending how pathogens spread indoors. Various pathogens, from viruses like SARS-CoV-2 to bacteria like Mycobacterium (My) tuberculosis, exploit unique respiratory microenvironments for transmission, necessitating targeted air purification solutions. Air disinfection methods encompass strategies to reduce aerosol concentration and inactivate viable bioaerosols. Techniques like ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation (PCO), filters, and unipolar ion emission are explored for their specific roles in mitigating airborne pathogens. This review examines air purification systems, detailing their operational principles, advantages, and limitations. Moreover, it elucidates key factors influencing system performance. In conclusion, this review aims to provide practical knowledge to professionals involved in indoor air quality management, enabling informed decisions for deploying efficient air purification strategies to safeguard public health in indoor environments.
Collapse
Affiliation(s)
- Hashim Alhussain
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Saud Ghani
- Department of Industrial and Mechanical Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
8
|
Hajhosseini M, Sharifi I, Bamorovat M, Karamoozian A, Amanizadeh A, Agha Kuchak Afshari S. Monitoring of airborne fungi during the second wave of COVID-19 in selected wards of the referral university hospital in southeastern Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1132. [PMID: 37653110 DOI: 10.1007/s10661-023-11791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Microbiological monitoring of the air hospital is essential for prevention and control, due to the possible airborne route of infection transmission, especially in high-risk wards. This study aimed to monitor the airborne fungi during the second wave of the COVID-19 pandemic in selected wards of the biggest university educational hospital in Kerman, southeastern Iran. This study was conducted in 11 different wards, separated into the patient room and nursing station, of the Afzalipour hospital from May to August 2021. Fungal isolates were characterized to the species level by conventional and sequencing methods. Out of 93 obtained fungal colonies, 70 (75.3%) isolates were filamentous and 23 (24.7%) isolates were yeast. Aspergillus species were the predominant fungal isolates among the filamentous colonies (n=19; 27.1%), and Naganishia albida (formerly Cryptococcus albidus) was identified as the most common yeast isolate (n=13/23; 56.8%). The infectious ward was the most contaminated unit (n=19/93), while the least contaminated units were the neonatal intensive care unit (n=3/93), and oncology (n=3/93). The statistical findings displayed that the number of fungal isolates in patients' rooms is significantly higher than in nurses' stations (p-value=0.013). Our study demonstrated the presence of diverse fungal species in all wards of the hospital. Considering the presence of airborne fungi in hospitals and related public health problems is one of the critical issues for health systems management. In this regard, efficient monitoring of airborne fungi might play an influential role in hospital infection control and surveillance, particularly in high-risk hospitalization patients in critical wards.
Collapse
Affiliation(s)
- Mahdi Hajhosseini
- Department of Environmental Health Engineering, School of Public Health, Environmental Science and Technology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Department of Biostatistics and Epidemiology, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Amanizadeh
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Agha Kuchak Afshari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Ormsby MJ, Akinbobola A, Quilliam RS. Plastic pollution and fungal, protozoan, and helminth pathogens - A neglected environmental and public health issue? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163093. [PMID: 36996975 DOI: 10.1016/j.scitotenv.2023.163093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities, known collectively as the 'plastisphere.' The plastisphere can facilitate the increased survival and dissemination of human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infections, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination, and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
10
|
Non- Aspergillus Hyaline Molds: A Host-Based Perspective of Emerging Pathogenic Fungi Causing Sinopulmonary Diseases. J Fungi (Basel) 2023; 9:jof9020212. [PMID: 36836326 PMCID: PMC9964096 DOI: 10.3390/jof9020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The incidence of invasive sino-pulmonary diseases due to non-Aspergillus hyaline molds is increasing due to an enlarging and evolving population of immunosuppressed hosts as well as improvements in the capabilities of molecular-based diagnostics. Herein, we review the following opportunistic pathogens known to cause sinopulmonary disease, the most common manifestation of hyalohyphomycosis: Fusarium spp., Scedosporium spp., Lomentospora prolificans, Scopulariopsis spp., Trichoderma spp., Acremonium spp., Paecilomyces variotii, Purpureocillium lilacinum, Rasamsonia argillacea species complex, Arthrographis kalrae, and Penicillium species. To facilitate an understanding of the epidemiology and clinical features of sino-pulmonary hyalohyphomycoses in the context of host immune impairment, we utilized a host-based approach encompassing the following underlying conditions: neutropenia, hematologic malignancy, hematopoietic and solid organ transplantation, chronic granulomatous disease, acquired immunodeficiency syndrome, cystic fibrosis, and healthy individuals who sustain burns, trauma, or iatrogenic exposures. We further summarize the pre-clinical and clinical data informing antifungal management for each pathogen and consider the role of adjunctive surgery and/or immunomodulatory treatments to optimize patient outcome.
Collapse
|
11
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
12
|
Tahir MF, Khan MZ, Attacha S, Asim N, Tayyab M, Ali A, Militky J, Tomková B. The Comparative Performance of Phytochemicals, Green Synthesised Silver Nanoparticles, and Green Synthesised Copper Nanoparticles-Loaded Textiles to Avoid Nosocomial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3629. [PMID: 36296819 PMCID: PMC9607875 DOI: 10.3390/nano12203629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In the current study, a sustainable approach was adopted for the green synthesis of silver nanoparticles, green synthesis of copper nanoparticles, and the investigation of the phytochemical and biological screening of bark, leaves, and fruits of Ehretia acuminata (belongs to the family Boraginaceae). Subsequently, the prepared nanoparticles and extracted phytochemicals were loaded on cotton fibres. Surface morphology, size, and the presence of antimicrobial agents (phytochemicals and particles) were analysed by scanning electron microscopy, dynamic light scattering, and energy-dispersive X-ray spectroscopy. The functional groups and the presence of particles (copper and silver) were found by FTIR and XRD analyses. The coated cotton fibres were further investigated for antibacterial (qualitative and quantitative), antiviral, and antifungal analysis. The study revealed that the herb-encapsulated nanoparticles can be used in numerous applications in the field of medical textiles. Furthermore, the utility of hygienic and pathogenic developed cotton bandages was analysed for the comfort properties regarding air permeability and water vapour permeability. Finally, the durability of the coating was confirmed by measuring the antibacterial properties after severe washing.
Collapse
Affiliation(s)
| | - Muhammad Zaman Khan
- Department of Material Engineering, Technical University of Liberec, 46015 Liberec, Czech Republic
| | - Safira Attacha
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 2500, Pakistan
| | - Noreen Asim
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 2500, Pakistan
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 2500, Pakistan
| | - Azam Ali
- Department of Material Engineering, Technical University of Liberec, 46015 Liberec, Czech Republic
| | - Jiri Militky
- Department of Material Engineering, Technical University of Liberec, 46015 Liberec, Czech Republic
| | - Blanka Tomková
- Department of Material Engineering, Technical University of Liberec, 46015 Liberec, Czech Republic
| |
Collapse
|
13
|
Jabłońska-Trypuć A, Makuła M, Włodarczyk-Makuła M, Wołejko E, Wydro U, Serra-Majem L, Wiater J. Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8121. [PMID: 35805776 PMCID: PMC9265696 DOI: 10.3390/ijerph19138121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The carriers of nosocomial infections are the hands of medical personnel and inanimate surfaces. Both hands and surfaces may be contaminated as a result of contact with the patient, their body fluids, and touching contaminated surfaces in the patient's surroundings. Visually clean inanimate surfaces are an important source of pathogens. Microorganisms have properties thanks to which they can survive in unfavorable conditions, from a few days to several months. Bacteria, viruses and fungi are able to transmit from inanimate surfaces to the skin of the patient and the medical staff. These pathogens include SARS-CoV-2, which can survive on various types of inanimate surfaces, being a potential source of infection. By following the recommendations related to washing and disinfecting hands and surfaces, and using appropriate washing and disinfecting agents with a broad biocidal spectrum, high material compatibility and the shortest duration of action, we contribute to breaking the chain of nosocomial infections.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Marcin Makuła
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Traugutta sq.2, 41-800 Zabrze, Poland;
| | - Maria Włodarczyk-Makuła
- Faculty of Infrastructure and Environment, Częstochowa University of Technology, 69 Dabrowskiego Str., 42-201 Częstochowa, Poland;
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| |
Collapse
|
14
|
Bryant JA, Riordan L, Watson R, Nikoi ND, Trzaska W, Slope L, Tibbatts C, Alexander MR, Scurr DJ, May RC, de Cogan F. Developing Novel Biointerfaces: Using Chlorhexidine Surface Attachment as a Method for Creating Anti-Fungal Surfaces. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100138. [PMID: 35602408 PMCID: PMC9121760 DOI: 10.1002/gch2.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing focus in healthcare environments on combatting antimicrobial resistant infections. While bacterial infections are well reported, infections caused by fungi receive less attention, yet have a broad impact on society and can be deadly. Fungi are eukaryotes with considerable shared biology with humans, therefore limited technologies exist to combat fungal infections and hospital infrastructure is rarely designed for reducing microbial load. In this study, a novel antimicrobial surface (AMS) that is modified with the broad-spectrum biocide chlorhexidine is reported. The surfaces are shown to kill the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans very rapidly (<15 min) and are significantly more effective than current technologies available on the commercial market, such as silver and copper.
Collapse
Affiliation(s)
- Jack A. Bryant
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Lily Riordan
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Rowan Watson
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Naa Dei Nikoi
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Wioleta Trzaska
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Louise Slope
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Callum Tibbatts
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - David J. Scurr
- Advanced Materials and Healthcare Technologies DivisionSchool of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Robin C. May
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Felicity de Cogan
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
15
|
Møller SA, Rasmussen PU, Frederiksen MW, Madsen AM. Work clothes as a vector for microorganisms: Accumulation, transport, and resuspension of microorganisms as demonstrated for waste collection workers. ENVIRONMENT INTERNATIONAL 2022; 161:107112. [PMID: 35091375 DOI: 10.1016/j.envint.2022.107112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 05/04/2023]
Abstract
Work clothes may act as a vector for the transport of microorganisms leading to second-hand exposure; however, this has not been studied in work environments. We investigated whether microorganisms accumulate on workers' clothes in environments with elevated microbial exposures, and whether they are transported with the clothes and subsequently resuspended to the air. To study this, we selected waste collection workers and potential transport of bacteria and fungi to waste truck cabs via clothes, and compared the microbial communities within truck cabs, in waste collection workers' personal exposure, and on clean T-shirts worn by the workers. Microbial communities were also investigated for the presence of potentially harmful microorganisms. Results showed that microorganisms accumulated in large quantities (GM = 3.69 × 105 CFU/m2/h for bacteria, GM = 8.29 × 104 CFU/m2/h for fungi) on workers' clothes. The concentrations and species composition of airborne fungi in the truck cabs correlated significantly with the accumulation and composition of fungi on clothes and correlated to concentrations (a trend) and species composition of their personal exposures. The same patterns were not found for bacteria, indicating that work clothes to a lesser degree act as a vector for bacteria under waste collection workers' working conditions compared to fungi. Several pathogenic or allergenic microorganisms were present, e.g.: Klebsiella oxytoca, K. pneumoniae, Proteus mirabilis, Providencia rettgeri, Pseudomonas aeruginosa, and Aspergillus fumigatus, A. glaucus, A. nidulans, A. niger, and various Penicillium species. The potential 'take-home' exposure to these microorganisms are of most concern for immunocompromised or atopic individuals or people with open wounds or cuts. In conclusion, the large accumulation of microorganisms on workers' clothes combined with the overlap between fungal species for the different sample types, and the presence of pathogenic and allergenic microorganisms forms the basis for encouragement of good clothing hygiene during and post working hours.
Collapse
Affiliation(s)
- Signe Agnete Møller
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
16
|
Ren J, Tang M, Novoselac A. Experimental study to quantify airborne particle deposition onto and resuspension from clothing using a fluorescent-tracking method. BUILDING AND ENVIRONMENT 2022; 209:108580. [PMID: 34848915 PMCID: PMC8620412 DOI: 10.1016/j.buildenv.2021.108580] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 05/22/2023]
Abstract
The rapid spread and high level of morbidity of the SARS-CoV-2 virus during the COVID-19 pandemic has attracted considerable attention worldwide. Recent studies have shown that clothing is one of the vectors for the transport of airborne particles, including bioaerosols. This study developed a method that can both quantify the deposition of particles onto clothing and the resuspension of particles from clothing using a fluorescent-tracking technology and found that electrical tape can be used as a fluorescent particle collector on irregular clothing surfaces. Results show that 0.07%-6.61% of the fluorescent particles (FPs) previously loaded on the room flooring surfaces moved to the occupant's clothing during the 20-min sampling periods; the percentage depended on the type of activity and the range is for: office work, walking, and vacuuming. Furthermore, both the flooring type (carpet or vinyl composition tile) and flooring condition (clean or dirty) had significant effects on particle resuspension and transport to the occupant's clothing. The average particle deposition factor for carpet flooring was 2.7 (±1.4) times that for vinyl composition tile flooring, while the average particle deposition factor for dirty flooring was 2.4 (±1.6) times that for clean flooring. A multiple regression analysis shows that the activity type had the largest effect on the particle transport among all experimental variables. An additional experiment performed in a full-scale house shows that 46.8% of FPs formerly seeded on clothing resuspended from clothing and dispersed around the house during the 1-h period of light walking at a speed of 60 steps/min.
Collapse
Affiliation(s)
- Jianlin Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Mengjia Tang
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, USA
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, USA
| |
Collapse
|
17
|
Uddin MA, Afroj S, Hasan T, Carr C, Novoselov KS, Karim N. Environmental Impacts of Personal Protective Clothing Used to Combat COVID- 19. ADVANCED SUSTAINABLE SYSTEMS 2022; 6:2100176. [PMID: 34901387 PMCID: PMC8646872 DOI: 10.1002/adsu.202100176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/16/2023]
Abstract
Personal protective clothing is critical to shield users from highly infectious diseases including COVID-19. Such clothing is predominantly single-use, made of plastic-based synthetic fibers such as polypropylene and polyester, low cost and able to provide protection against pathogens. However, the environmental impacts of synthetic fiber-based clothing are significant and well-documented. Despite growing environmental concerns with single-use plastic-based protective clothing, the recent COVID-19 pandemic has seen a significant increase in their use, which could result in a further surge of oceanic plastic pollution, adding to the mass of plastic waste that already threatens marine life. In this review, the nature of the raw materials involved in the production of such clothing, as well as manufacturing techniques and the personal protective equipment supply chain are briefly discussed. The environmental impacts at critical points in the protective clothing value chain are identified from production to consumption, focusing on water use, chemical pollution, CO2 emissions, and waste. On the basis of these environmental impacts, the need for fundamental changes in the business model is outlined, including increased usage of reusable protective clothing, addressing supply chain "bottlenecks", establishing better waste management, and the use of sustainable materials and processes without associated environmental problems.
Collapse
Affiliation(s)
- Mohammad Abbas Uddin
- Department of Dyes and Chemical EngineeringBangladesh University of TextilesTejgaonDhaka1208Bangladesh
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Tahmid Hasan
- Department of Environmental Science and EngineeringBangladesh University of TextilesTejgaonDhaka1208Bangladesh
| | - Chris Carr
- Clothworkers’ Centre for Textile Materials Innovation for HealthcareSchool of DesignUniversity of LeedsLeedsLS2 9JTUK
| | - Kostya S Novoselov
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117575Singapore
- Institute for Functional Intelligent MaterialsNational University of Singapore9 Engineering Drive 1Singapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
18
|
Bupha-Intr O, Butters C, Reynolds G, Kennedy K, Meyer W, Patil S, Bryant P, Morrissey CO. Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than Aspergillus in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:177-219. [PMID: 34937139 DOI: 10.1111/imj.15592] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive fungal disease (IFD) due to moulds other than Aspergillus is a significant cause of mortality in patients with malignancies or post haemopoietic stem cell transplantation. The current guidelines focus on the diagnosis and management of the common non-Aspergillus moulds (NAM), such as Mucorales, Scedosporium species (spp.), Lomentospora prolificans and Fusarium spp. Rare but emerging NAM including Paecilomyces variotii, Purpureocillium lilacinum and Scopulariopsis spp. are also reviewed. Culture and histological examination of tissue biopsy specimens remain the mainstay of diagnosis, but molecular methods are increasingly being used. As NAM frequently disseminate, blood cultures and skin examination with biopsy of any suspicious lesions are critically important. Treatment requires a multidisciplinary approach with surgical debridement as a central component. Other management strategies include control of the underlying disease/predisposing factors, augmentation of the host response and the reduction of immunosuppression. Carefully selected antifungal therapy, guided by susceptibility testing, is critical to cure. We also outline novel antifungal agents still in clinical trial which offer substantial potential for improved outcomes in the future. Paediatric recommendations follow those of adults. Ongoing epidemiological research, improvement in diagnostics and the development of new antifungal agents will continue to improve the poor outcomes that have been traditionally associated with IFD due to NAM.
Collapse
Affiliation(s)
- Olivia Bupha-Intr
- Department of Infection Services, Wellington Regional Hospital, Wellington, New Zealand
| | - Coen Butters
- Department of General Paediatric and Adolescent Medicine, John Hunter Children's Hospital, Newcastle, New South Wales, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gemma Reynolds
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Karina Kennedy
- Department of Infectious Diseases and Microbiology, Canberra Hospital and Health Services, Canberra, Australian Capital Territory, Australia.,ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Research and Education Network, Westmead Hospital, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service, Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Penelope Bryant
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Catherine O Morrissey
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
19
|
Gupta AK, Venkataraman M, Renaud HJ, Summerbell R, Shear NH, Piguet V. A Paradigm Shift in the Treatment and Management of Onychomycosis. Skin Appendage Disord 2021; 7:351-358. [PMID: 34604322 PMCID: PMC8436613 DOI: 10.1159/000516112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
There is an increase in the incidence of onychomycosis, especially in at-risk populations. Onychomycosis is difficult to treat, as the efficacy of most antifungal agents is relatively low. Nondermatophyte molds (NDMs) and mixed infection (dermatophyte plus NDM) onychomycosis are contributing to growing antifungal resistance, as they are often underestimated and ignored due to incorrect diagnosis. There is a need for a paradigm shift in the management of onychomycosis to a patient-centered, holistic approach with an emphasis on laboratory diagnosis prior to initiating treatment, which enables the rational choice of the antifungal agent. Additionally, in the case of resistant infections, antifungal susceptibility testing is recommended. Strategies for effective management of onychomycosis include disinfection of fungal reservoirs in shoes and socks and prophylaxis posttreatment using topical antifungal agents. These measures may reduce the recurrence of onychomycosis and improve long-term clinical success.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mediprobe Research Inc., London, Ontario, Canada
| | | | | | - Richard Summerbell
- Sporometrics, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Neil H. Shear
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Dermatology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Dermatology, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Bonadonna L, Briancesco R, Coccia AM, Meloni P, Rosa GL, Moscato U. Microbial Air Quality in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6226. [PMID: 34207509 PMCID: PMC8296088 DOI: 10.3390/ijerph18126226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
There is increasing evidence that indoor air quality and contaminated surfaces provide an important potential source for transmission of pathogens in hospitals. Airborne hospital microorganisms are apparently harmless to healthy people. Nevertheless, healthcare settings are characterized by different environmental critical conditions and high infective risk, mainly due to the compromised immunologic conditions of the patients that make them more vulnerable to infections. Thus, spread, survival and persistence of microbial communities are important factors in hospital environments affecting health of inpatients as well as of medical and nursing staff. In this paper, airborne and aerosolized microorganisms and their presence in hospital environments are taken into consideration, and the factors that collectively contribute to defining the infection risk in these facilities are illustrated.
Collapse
Affiliation(s)
- Lucia Bonadonna
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Rossella Briancesco
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Anna Maria Coccia
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Pierluigi Meloni
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Umberto Moscato
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Occupational Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
21
|
Cho SH, Kim JB, Kim CH, Bak YS. Evaluation of Microbiological Contamination of Dummies Used in Cardiopulmonary Resuscitation in Korea. Curr Pharm Biotechnol 2021; 22:281-287. [PMID: 32767917 DOI: 10.2174/1389201021666200807105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES In order to prevent infections through dummies used during Cardiopulmonary Resuscitation (CPR) training, we analyzed the microbiological contamination on dummies used in CPR institutions. METHODS A total of 31 dummy samples were collected from 13 different institutions in Korea, and were evaluated for the number of contaminating bacteria and fungi on the surface. PCR and biochemical tests were performed to identify pathogenic bacteria and fungi, including Methicillin-Resistant Staphylococcus aureus (MRSA). Moreover, we further assessed the survival rate of microorganisms on the surface of the dummies. RESULTS We assessed the total number of microorganisms on the surface to be 77,752CFU/cm2 (±50,047CFU), which is up to 188 times higher than the required surface contamination level. Grampositive cocci such as Micrococcus spp. and Staphylococcus spp. accounted for the highest proportion (55.3%). Especially, we detected three MRSA strains. Considering the isolated fungi and yeast, Aspergillus spp. and Candidia spp. accounted for the highest proportion. Assessing the contamination level simulation and survival rate on the humanoid surface showed that within two weeks of training, the level of contamination on the dummy's surface exceeded the standard, and artificially contaminated pathogenic strains on the surface of the dummy survived for at least 40 days. CONCLUSION To minimize the possibility of secondary infections during CPR training, there is a requirement for a standardized protocol for proper microbiological management of dummies.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Sunchon National University, Suncheon, Jeonnam, Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, SungKyunkwan University and Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Korea
| | - Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460, Korea
| |
Collapse
|
22
|
Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021; 9:microorganisms9020343. [PMID: 33572303 PMCID: PMC7916105 DOI: 10.3390/microorganisms9020343] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
For the prevention of infectious diseases, knowledge about transmission routes is essential. In addition to respiratory, fecal-oral, and sexual transmission, the transfer of pathogens via surfaces plays a vital role for human pathogenic infections-especially nosocomial pathogens. Therefore, information about the survival of pathogens on surfaces can have direct implications on clinical measures, including hygiene guidelines and disinfection strategies. In this review, we reviewed the existing literature regarding viral, bacterial, and fungal persistence on inanimate surfaces. In particular, the current knowledge of the survival time and conditions of clinically relevant pathogens is summarized. While many pathogens persist only for hours, common nosocomial pathogens can survive for days to weeks under laboratory conditions and thereby potentially form a continuous source of transmission if no adequate inactivation procedures are performed.
Collapse
|
23
|
Recontamination of Healthcare Surfaces by Repeated Wiping with Biocide-Loaded Wipes: " One Wipe, One Surface, One Direction, Dispose" as Best Practice in the Clinical Environment. Int J Mol Sci 2020; 21:ijms21249659. [PMID: 33352868 PMCID: PMC7766459 DOI: 10.3390/ijms21249659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
The wiping of high-touch healthcare surfaces made of metals, ceramics and plastics to remove bacteria is an accepted tool in combatting the transmission of healthcare-associated infections (HCAIs). In practice, surfaces may be repeatedly wiped using a single wipe, and the potential for recontamination may be affected by various factors. Accordingly, we studied how the surface to be wiped, the type of fibre in the wipe and how the presence of liquid biocide affected the degree of recontamination. Experiments were conducted using metal, ceramic and plastic healthcare surfaces, and two different wipe compositions (hygroscopic and hydrophilic), with and without liquid biocide. Despite initially high removal efficiencies of >70% during initial wiping, all healthcare surfaces were recontaminated with E. coli, S. aureus and E. faecalis when wiped more than once using the same wipe. Recontamination occurred regardless of the fibre composition of the wipe or the presence of a liquid biocide. The extent of recontamination by E. coli, S. aureus and E. faecalis bacteria also increased when metal healthcare surfaces possessed a higher microscale roughness (<1 μm), as determined by Atomic Force Microscopy (AFM). The high propensity for healthcare surfaces to be re-contaminated following initial wiping suggests that a “One wipe, One surface, One direction, Dispose” policy should be implemented and rigorously enforced.
Collapse
|
24
|
Owen L, Laird K. The role of textiles as fomites in the healthcare environment: a review of the infection control risk. PeerJ 2020; 8:e9790. [PMID: 32904371 PMCID: PMC7453921 DOI: 10.7717/peerj.9790] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infectious diseases are a significant threat in both healthcare and community settings. Healthcare associated infections (HCAIs) in particular are a leading cause of complications during hospitalisation. Contamination of the healthcare environment is recognised as a source of infectious disease yet the significance of porous surfaces including healthcare textiles as fomites is not well understood. It is currently assumed there is little infection risk from textiles due to a lack of direct epidemiological evidence. Decontamination of healthcare textiles is achieved with heat and/or detergents by commercial or in-house laundering with the exception of healthcare worker uniforms which are laundered domestically in some countries. The emergence of the COVID-19 pandemic has increased the need for rigorous infection control including effective decontamination of potential fomites in the healthcare environment. This article aims to review the evidence for the role of textiles in the transmission of infection, outline current procedures for laundering healthcare textiles and review studies evaluating the decontamination efficacy of domestic and industrial laundering. METHODOLOGY Pubmed, Google Scholar and Web of Science were searched for publications pertaining to the survival and transmission of microorganisms on textiles with a particular focus on the healthcare environment. RESULTS A number of studies indicate that microorganisms survive on textiles for extended periods of time and can transfer on to skin and other surfaces suggesting it is biologically plausible that HCAIs and other infectious diseases can be transmitted directly through contact with contaminated textiles. Accordingly, there are a number of case studies that link small outbreaks with inadequate laundering or infection control processes surrounding healthcare laundry. Studies have also demonstrated the survival of potential pathogens during laundering of healthcare textiles, which may increase the risk of infection supporting the data published on specific outbreak case studies. CONCLUSIONS There are no large-scale epidemiological studies demonstrating a direct link between HCAIs and contaminated textiles yet evidence of outbreaks from published case studies should not be disregarded. Adequate microbial decontamination of linen and infection control procedures during laundering are required to minimise the risk of infection from healthcare textiles. Domestic laundering of healthcare worker uniforms is a particular concern due to the lack of control and monitoring of decontamination, offering a route for potential pathogens to enter the clinical environment. Industrial laundering of healthcare worker uniforms provides greater assurances of adequate decontamination compared to domestic laundering, due to the ability to monitor laundering parameters; this is of particular importance during the COVID-19 pandemic to minimise any risk of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
25
|
Seeman K, Ogg MJ. Clinical Issues—July 2020. AORN J 2020; 112:73-80. [DOI: 10.1002/aorn.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Marik PE, Shankaran S, King L. The effect of copper-oxide-treated soft and hard surfaces on the incidence of healthcare-associated infections: a two-phase study. J Hosp Infect 2020; 105:265-271. [PMID: 32068014 DOI: 10.1016/j.jhin.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/08/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Copper-oxide-impregnated linens and hard surfaces within the hospital environment have emerged as a novel technology to reduce environmental contamination and thereby potentially reduce the risk of healthcare-associated infections (HCAIs). METHODS This was a two-phase study. Phase 1 was a prospective, cluster-randomized, cross-over clinical trial in which one pod (eight beds) of our general ICU (GICU) utilized copper-oxide-impregnated linens whereas the other pod (eight beds) used standard hospital linens. Phase 2 was a two-year before-after study, following the relocation of three ICUs into a new ICU tower in which all the hard surfaces were treated with copper oxide (in addition to copper-impregnated linens). HCAIs were recorded using the National Healthcare Safety Network definitions. FINDINGS A total of 1282 patients were enrolled in phase 1. There was no difference in the rate of HCAI between the patients who received standard compared with copper oxide linen. In phase 2 there was a significant reduction in the number of infections due to Clostridioides difficile (2.4 per 1000 vs 0.7 per 1000 patient-days; incidence rate ratio: 3.3; 95% confidence interval: 1.4-8.7; P = 0.002) but no difference in the rate of central-line-associated bloodstream infections nor of catheter-associated urinary tract infections. CONCLUSION Copper-oxide-impregnated linens alone had no effect on the rate of HCAI. Our data suggest that copper-oxide-treated hard surfaces reduced the rate of infections due to C. difficile; however, important confounders cannot be excluded.
Collapse
Affiliation(s)
- P E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - S Shankaran
- Division of Infectious Diseases, Eastern Virginia Medical School, Norfolk, VA, USA; Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| | - L King
- Infection Prevention and Control Coordinator, Sentara Norfolk General Hospital, Norfolk, VA, USA
| |
Collapse
|
27
|
Abstract
The study of hospital wastewater (HWW) microbiology is important to understand the pollution load, growth of particular pathogenic microbes, shift and drift in microbial community, development and spread of antibiotic resistance in microbes, and subsequent change in treatment efficiencies. This chapter investigates the potential microbes such as bacteria, viruses, fungi, and parasites present in HWW along with the diseases associated and methods of treatment used. Due to the indiscriminate release of antibiotics from hospitals, HWW serves as a hotspot for emergence of antibiotic-resistance genes (ARGs) and antibiotic-resistance bacteria. This chapter discusses the ARGs occurrence in HWW, their prevalence in the environment, the molecular tools used for identification, and different mechanisms of horizontal gene transfer. Thus better understanding of the microbiology of HWW could further help in development of advanced treatment technologies for effective removal of microbes and their bioproducts (toxins and infectious nucleic acid) from HWW and contaminated water.
Collapse
|
28
|
Outbreaks of Mucorales and the Species Involved. Mycopathologia 2019; 185:765-781. [PMID: 31734800 DOI: 10.1007/s11046-019-00403-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 01/27/2023]
Abstract
The order Mucorales is an ancient group of fungi classified in the subphylum Mucoromycotina. Mucorales are mainly fast-growing saprotrophs that belong to the first colonizers of diverse organic materials and represent a permanent part of the human environment. Several species are able to cause human infections (mucormycoses) predominantly in patients with impaired immune system, diabetes, or deep trauma. In this review, we compiled 32 reports on community- and hospital-acquired outbreaks caused by Mucorales. The most common source of mucoralean outbreaks was contaminated medical devices that are responsible for 40.7% of the outbreaks followed by contaminated air (31.3%), traumatic inoculation of soil or foreign bodies (9.4%), and the contact (6.2%) or the ingestion (6.2%) of contaminated plant material. The most prevalent species were Rhizopus arrhizus and R. microsporus causing 57% of the outbreaks. The genus Rhizomucor was dominating in outbreaks related to contaminated air while outbreaks of Lichtheimia species and Mucor circinelloides were transmitted by direct contact. Outbreaks with the involvement of several species are reported. Subtyping of strains revealed clonality in two outbreaks and no close relation in two other outbreaks. Based on the existing data, outbreaks of Mucorales can be caused by heterogeneous sources consisting of different strains or different species. Person-to-person transmission cannot be excluded because Mucorales can sporulate on wounds. For a better understanding and prevention of outbreaks, we need to increase our knowledge on the physiology, ecology, and population structure of outbreak causing species and more subtyping data.
Collapse
|
29
|
Kenters N, Kiernan M, Chowdhary A, Denning DW, Pemán J, Saris K, Schelenz S, Tartari E, Widmer A, Meis JF, Voss A. Control of Candida auris in healthcare institutions: Outcome of an International Society for Antimicrobial Chemotherapy expert meeting. Int J Antimicrob Agents 2019; 54:400-406. [PMID: 31419480 DOI: 10.1016/j.ijantimicag.2019.08.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Candida auris (C. auris) is an emerging fungal pathogen causing invasive infections and outbreaks that have been difficult to control in healthcare facilities worldwide. There is a lack of current evidence for pragmatic infection prevention and control recommendations. The aim of this paper was to review the epidemiology of C. auris and identify best practices with a panel of experts, in order to provide guidance and recommendations for infection prevention and control measures based on available scientific evidence, existing guidelines and expert opinion. The Infection Prevention and Control working group of the International Society of Antimicrobial Chemotherapy organised an expert meeting with infection prevention and mycology experts to review recommendations for healthcare workers on infection prevention and control measures for C. auris at inpatient healthcare facilities. The most common interventions included: screening, standard precautions, cleaning and disinfection, inpatient transfer, outbreak management, decolonisation, and treatment.
Collapse
Affiliation(s)
- Nikki Kenters
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, the Netherlands.
| | - Martin Kiernan
- Richard Wells Research Centre, University of West London, UK
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - David W Denning
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and National Aspergillosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Javier Pemán
- Department of Clinical Microbiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Katja Saris
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, the Netherlands; Reshape, Radboudumc, Nijmegen, the Netherlands
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, London, UK
| | - Ermira Tartari
- Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Andreas Widmer
- University of Basel Hospitals & Clinics, Basel, Switzerland
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, the Netherlands; Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, the Netherlands; Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Licina D, Morrison GC, Bekö G, Weschler CJ, Nazaroff WW. Clothing-Mediated Exposures to Chemicals and Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5559-5575. [PMID: 31034216 DOI: 10.1021/acs.est.9b00272] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A growing body of evidence identifies clothing as an important mediator of human exposure to chemicals and particles, which may have public health significance. This paper reviews and critically assesses the state of knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify, predict, and control clothing-related exposures.
Collapse
Affiliation(s)
- Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
- Environmental and Occupational Health Sciences Institute , Rutgers University , Piscataway , New Jersey 08901 , United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
| |
Collapse
|
31
|
Sands F, Fairbanks L. How clean is "hygienically clean": Quantitative microbial levels from samples of clean health care textiles across the United States. Am J Infect Control 2019; 47:509-514. [PMID: 30638671 DOI: 10.1016/j.ajic.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the United States, the laundry industry has not reliably measured microbial levels on hygienically clean textiles. The aim of this study was to quantitatively measure the microbial levels found on a sample of hygienically clean textiles. METHODS Forty-eight health care textile samples were collected from hygienically clean linen scheduled to be used on 3 different patient care units. Samples were taken at 2 separate points in time representing laundry facility processing practices and hospital linen management practices. United States Pharmacopeia 61 testing was completed using a pour plate culturing method, producing a total aerobic microbial count and a total yeast and mold count. RESULTS Of the samples, only 27% had a total aerobic microbial count below the expected 100 colony-forming unit level (range, 9-40,000) versus 81% (range, 9-1,000) for total yeast and mold count. Median microbial counts for the 2 separate time points across the 3 different patient care units were also higher than expected. CONCLUSIONS As far as we know, this study is a first step by the laundry industry to understand what quantitative microbial levels are currently found on hygienically clean health care textiles. These types of data can assist the industry in establishing appropriate outcome targets for process improvement initiatives.
Collapse
Affiliation(s)
- Fontaine Sands
- Department of Baccalaureate and Graduate Nursing, Eastern Kentucky University, Richmond, KY; Association for Linen Management, Richmond, KY.
| | | |
Collapse
|
32
|
Synthesis, Characterization, and Antibacterial Activity of Ag₂O-Loaded Polyethylene Terephthalate Fabric via Ultrasonic Method. NANOMATERIALS 2019; 9:nano9030450. [PMID: 30889785 PMCID: PMC6474086 DOI: 10.3390/nano9030450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
In this study, Ag₂O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag₂O on the fabrics. The fabrics were characterized by Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, and wettability testing. Field-emission scanning electron microscopy verified that the change of pH altered the microstructure of the materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related to the morphology of Ag₂O particles. Thus, the surface structure of Ag₂O particles may be a key factor of the antibacterial activity.
Collapse
|
33
|
Oliveira LT, Lopes LG, Ramos SB, Martins CHG, Jamur MC, Pires RH. Fungal biofilms in the hemodialysis environment. Microb Pathog 2018; 123:206-212. [DOI: 10.1016/j.micpath.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023]
|
34
|
Microbial Contamination of a Diving Suit. POLISH HYPERBARIC RESEARCH 2018. [DOI: 10.2478/phr-2018-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pathogenic micro-organisms can easily transfer from the surface of a diver’s skin onto the surfaces of a protective suit. A long-term stay in a hyperbaric chamber during a saturation dive increases the risk of infection if in the chamber there is even a single carrier of disease-causing pathogens.
The conducted research has confirmed that the diving equipment located in Diving Centres is a place of many different bacteria and fungi, including pathogenic ones. The vast majority of microbes found on the surfaces of wetsuits, etc. are commensals (with some being opportunistic organisms). This fact allows us to realise that the surfaces of diving equipment are an excellent “transmission route” for various dermatoses and other diseases. In order to reduce the risk of infection the diving equipment used by various people should be subject to the process of decontamination. The authors recommend decontamination with the use of gaseous hydrogen peroxide which does not cause damage to equipment.
Collapse
|
35
|
Licina D, Nazaroff WW. Clothing as a transport vector for airborne particles: Chamber study. INDOOR AIR 2018; 28:404-414. [PMID: 29444354 DOI: 10.1111/ina.12452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/07/2018] [Indexed: 05/04/2023]
Abstract
Strong evidence suggests that clothing serves as a reservoir of chemical pollutants and particles, including bioaerosols, which may have health significance. However, little is known about the role that clothing may play as a transport vector for inhaled airborne particles. Here, we contribute toward bridging the knowledge gap by conducting experiments to investigate clothing release fraction (CRF), determined as the size-dependent ratio of released to deposited particulate matter in the diameter range 0.5-10 μm. In a fully controlled chamber with low background particle levels, we deployed a programmable robot to reproducibly quantify the size-dependent CRF as a function of motion type and intensity, dust loadings, and activity duration. On average, 0.3%-3% of deposited particles were subsequently released with fabric motion, confirming that clothing can act as a vehicle for transporting airborne particles. The CRF increased with the vigor of movement and with dust loading. Rubbing and shaking the fabric were more effective than fabric stretching in resuspending particles. We also found that most of the release happened quickly after the onset of the resuspension activity. Particle size substantially influenced the CRF, with larger particles exhibiting higher values.
Collapse
Affiliation(s)
- D Licina
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - W W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
36
|
Zhang S, Li R, Huang D, Ren X, Huang TS. Antibacterial modification of PET with quaternary ammonium salt and silver particles via electron-beam irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:123-129. [PMID: 29407140 DOI: 10.1016/j.msec.2017.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/01/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022]
Abstract
Quaternary ammonium compound 2-dimethyl-2-hexadecyl-1-methacryloxyethyl ammonium bromide (DEHMA) was synthesized and grafted onto polyester (PET) fibers with acrylic acid (AA) via electron-beam (EB) irradiation process. The grafted fibers were soaked in AgNO3 solution for further improving antibacterial efficiency. SEM, FTIR, EDX, and XPS were used to characterize the treated PET samples. The antibacterial efficacy testing showed the grafted PET samples inactivated all Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli O157:H7) in 10min. After coated with silver ions, the antibacterial efficacy of the grafted PET with silver against S. aureus improved significantly. The EB irradiation process only caused a small degree of the breaking strength loss of the grafted PET fabrics which is acceptable in practical application.
Collapse
Affiliation(s)
- Shumin Zhang
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rong Li
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dan Huang
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangsu Engineering Technology Research Center for Functional Textiles, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | |
Collapse
|
37
|
What Healthcare Workers Should Know about Environmental Bacterial Contamination in the Intensive Care Unit. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6905450. [PMID: 29214175 PMCID: PMC5682046 DOI: 10.1155/2017/6905450] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
Intensive care unit- (ICU-) acquired infections are a major health problem worldwide. Inanimate surfaces and equipment contamination may play a role in cross-transmission of pathogens and subsequent patient colonization or infection. Bacteria contaminate inanimate surfaces and equipment of the patient zone and healthcare area, generating a reservoir of potential pathogens, including multidrug resistant species. Traditional terminal cleaning methods have limitations. Indeed patients who receive a bed from prior patient carrying bacteria are exposed to an increased risk (odds ratio 2.13, 95% confidence intervals 1.62-2.81) of being colonized and potentially infected by the same bacterial species of the previous patient. Biofilm formation, even on dry surfaces, may play a role in reducing the efficacy of terminal cleaning procedures since it enables bacteria to survive in the environment for a long period and provides increased resistance to commonly used disinfectants. No-touch methods (e.g., UV-light, hydrogen peroxide vapour) are under investigation and further studies with patient-centred outcomes are needed, before considering them the standard of terminal cleaning in ICUs. Healthcare workers should be aware of the role of environmental contamination in the ICU and consider it in the broader perspective of infection control measures and stewardship initiatives.
Collapse
|
38
|
Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:229-234. [DOI: 10.1016/j.jphotobiol.2017.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023]
|
39
|
Dąbrowiecki Z, Dąbrowiecka M, Olszański R, Siermontowski P. Decontamination of a Diving Suit. POLISH HYPERBARIC RESEARCH 2017. [DOI: 10.1515/phr-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
When working in chemical or biological environments, contamination is an extremely dangerous issue for the rescue services of the fire department, police and the army.
Modern protective overalls worn by fire fighters or dry “Viking” diving suits made from neoprene or nylon covered with polyurethane, have been proven to ensure sufficient protection. However, once the contaminated area is left, there is a need to perform decontamination of the external and internal surfaces of the protective overalls; in order to ensure the clothing continues to offer a high level of comfort and to retain the durability of said protective clothing, it is of course also necessary to perform a drying procedure.
Moreover, there is a risk of a transfer of pathogenic micro-organisms between persons utilising the same protective clothes, particularly in the case of expensive specialist suits. Micro-organisms which may potentially spread through clothing include intestinal bacteria, such as: Salmonella, Shigella, Campylobacter, E. coli (including E. coli O157), C. difficile, viruses inducing infections of the upper respiratory tract and alimentary tract (noraviruses, rotaviruses, adeno and astroviruses). The risk of infection also involves the presence of the flu viruses, herpesviruses and pathogens transferred through skin, such as S. aureus (including MRSA), yeast-like fungi (Candida albicans), fungal strains inducing Tinea pedis and Tinea corporis [1]. Pathogenic micro-organisms can easily transfer from fabric surface onto the body of a person wearing protective clothing.
From the numerous available techniques of decontamination of surfaces, equipment and protective clothing we propose to use for this purpose gaseous hydrogen peroxide (H2O2), a very effective biocidal agent. In field conditions, typical for the activities of rescue crews of the fire department, police and army we assume utilisation of a portable decontamination chamber enabling performance of a complete decontamination process.
The process lasting approximately 3 hours encompasses 3 phases:
• Drying phase;
• Decontamination with gaseous hydrogen peroxide;
• Catalytic combustion phase of hydrogen peroxide residues to a level safe for the environment.
The integrated humidity and H2O2 level sensors ensure automatic control of the entire process and the unique distribution system of gaseous H2O2 secures full accessibility of the biocidal agent to the external surface of protective clothing as well as its interior. Moreover, the container allows for the conduction of the complete decontamination of the rescue equipment, night vision devices, binoculars, field telephones, radio stations, etc. Upon decontamination cycle completion, we obtain a completely dried suit which can be safely used by another crew member.
Collapse
Affiliation(s)
- Zbigniew Dąbrowiecki
- Maritime & Hyperbaric Medicine Department, Military Institute of Medicine, Poland
| | | | - Romuald Olszański
- Maritime & Hyperbaric Medicine Department, Military Institute of Medicine, Poland
| | - Piotr Siermontowski
- Maritime & Hyperbaric Medicine Department, Military Institute of Medicine, Poland
| |
Collapse
|
40
|
Noman EA, Al-Gheethi AA, Rahman NNNA, Nagao H, Ab Kadir MO. Assessment of relevant fungal species in clinical solid wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19806-19824. [PMID: 27417327 DOI: 10.1007/s11356-016-7161-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The study aimed to determine the fungal diversity in clinical waste samples from a healthcare facility in Penang Malaysia. Different fungi species were detected in 83.75 % of the 92 clinical waste samples that were screened from different sections of the healthcare facility. One hundred fifty fungal isolates comprising of 8 genera and 36 species were obtained. They were purified by using single spore isolation technique. Subsequently, the isolates were identified by phenotypic method based on morphological and culture characteristics on different culture media. Among all fungal isolates, Aspergillus spp. in section Nigri 10.2 %, Aspergillus niger 9.5 %, Aspergillus fumigatus 8.8 %, Penicillium. simplicissium 8 %, Aspergillus tubingensis 7.3 %, Aspergillus terreus var. terreus 6.6 %, Penicillium waksmanii 5.9 % and Curvularia lunata 6.5 % were the most frequent. Among five sections of the Wellness Centre, the clinical wastes collected from the diagnostic labs of haematology section had the highest numbers of fungal species (29 species). Glove wastes had the highest numbers of fungal species (19 species) among 17 types of clinical wastes screened. Among all fungal species, Aspergillus spp. exhibited higher growth at 37 °C than at 28 °C, indicating the potential of these opportunistic fungi to cause diseases in human. These results indicated the potential of hospital wastes as reservoirs for fungal species.
Collapse
Affiliation(s)
- Efaq Ali Noman
- School of Industrial Technology, University Science Malaysia, 11800, Penang, Malaysia.
| | - A A Al-Gheethi
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | | | - H Nagao
- School of Biological Sciences, University Science Malaysia, 11800, Penang, Malaysia
| | - M O Ab Kadir
- School of Industrial Technology, University Science Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
41
|
Efaq AN, Ab. Rahman NNN, Nagao H, Al-Gheethi AA, Ab. Kadir MO. Inactivation of Aspergillus Spores in Clinical Wastes by Supercritical Carbon Dioxide. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2087-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Irene G, Georgios P, Ioannis C, Anastasios T, Diamantis P, Marianthi C, Philippe W, Maria S. Copper-coated textiles: armor against MDR nosocomial pathogens. Diagn Microbiol Infect Dis 2016; 85:205-9. [PMID: 27055400 DOI: 10.1016/j.diagmicrobio.2016.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Soft surfaces in the health-care setting harbor potentially pathogenic bacteria and fungi that can be transferred to patients and personnel. We evaluated the in vitro antimicrobial efficacy of two types of innovative copper-coated textiles against a variety of nosocomial multi-drug resistant (MDR) pathogens. Five isolates each of MDR Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus faecium as well as three Candida parapsilosis were tested. The antimicrobial activity of copper-coated para-aramide and copper-coated polyester swatches was compared to that of non-copper coated controls using a quantitative method. Reduction of viable colonies by >3log10 from starting inoculum was characterized as bactericidal activity. No viable colonies of S. aureus, P. aeruginosa, E. faecium and C. parapsilosis were recovered after the first hour of contact while for A. baumannii, no viable colonies were recovered after only 15min of contact with either type of copper-coated textiles. Copper-coated para-aramide exhibited a bactericidal effect at 15min of contact with A. baumannii, at 1h with S. aureus, P. aeruginosa, E. faecium and C. parapsilosis and at 3h with K. pneumoniae. Copper-coated polyester was bactericidal at 15min of contact for A. baumannii and at 1h for the other species tested. Both copper-coated textiles exhibited a rapid and significant antimicrobial effect. Antimicrobial textiles may have a role in the arsenal of strategies aiming to reduce environmental contamination in the health-care setting.
Collapse
Affiliation(s)
- Galani Irene
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, University General Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62, Chaidari, Athens, Greece
| | - Priniotakis Georgios
- Technological Education Institute of Pireaus, School of Applied Technology, Thivon 250, 12244, Egaleo, Greece
| | - Chronis Ioannis
- Technological Education Institute of Pireaus, School of Applied Technology, Thivon 250, 12244, Egaleo, Greece
| | - Tzerachoglou Anastasios
- Technological Education Institute of Pireaus, School of Applied Technology, Thivon 250, 12244, Egaleo, Greece
| | - Plachouras Diamantis
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, University General Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62, Chaidari, Athens, Greece
| | - Chatzikonstantinou Marianthi
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, University General Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62, Chaidari, Athens, Greece
| | | | - Souli Maria
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, University General Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62, Chaidari, Athens, Greece.
| |
Collapse
|
43
|
Kilinc Balci FS. Isolation gowns in health care settings: Laboratory studies, regulations and standards, and potential barriers of gown selection and use. Am J Infect Control 2016; 44:104-11. [PMID: 26391468 DOI: 10.1016/j.ajic.2015.07.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Although they play an important role in infection prevention and control, textile materials and personal protective equipment (PPE) used in health care settings are known to be one of the sources of cross-infection. Gowns are recommended to prevent transmission of infectious diseases in certain settings; however, laboratory and field studies have produced mixed results of their efficacy. PPE used in health care is regulated as either class I (low risk) or class II (intermediate risk) devices in the United States. Many organizations have published guidelines for the use of PPE, including isolation gowns, in health care settings. In addition, the Association for the Advancement of Medical Instrumentation published a guidance document on the selection of gowns and a classification standard on liquid barrier performance for both surgical and isolation gowns. However, there is currently no existing standard specific to isolation gowns that considers not only the barrier resistance but also a wide array of end user desired attributes. As a result, infection preventionists and purchasing agents face several difficulties in the selection process, and end users have limited or no information on the levels of protection provided by isolation gowns. Lack of knowledge about the performance of protective clothing used in health care became more apparent during the 2014 Ebola epidemic. This article reviews laboratory studies, regulations, guidelines and standards pertaining to isolation gowns, characterization problems, and other potential barriers of isolation gown selection and use.
Collapse
|
44
|
Kilinc FS. A Review of Isolation Gowns in Healthcare: Fabric and Gown Properties. JOURNAL OF ENGINEERED FIBERS AND FABRICS 2015; 10:180-190. [PMID: 26989351 PMCID: PMC4791533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The threat of emerging infectious diseases including Ebola hemorrhagic fever, pandemic influenza, avian influenza, Hepatitis B, Hepatitis C, and SARS has highlighted the need for effective personal protective equipment (PPE) to protect healthcare workers (HCWs), patients, and visitors. PPE is a critical component in the hierarchy of controls used to protect HCWs from infectious hazards. HCW PPE may include gowns, respirators, face masks, gloves, eye protection, face shields, and head and shoe coverings. Important research has been conducted in certain areas, such as respirators and protective masks, but studies in other areas, particularly gowns, are scarce. Gowns are identified as the second-most-used piece of PPE, following gloves, in the healthcare setting. According to the Centers for Disease Control and Prevention's Guideline for Isolation Precautions, isolation gowns should be worn to protect HCWs' arms and exposed body areas during procedures and patient-care activities when anticipating contact with clothing, blood, bodily fluids, secretions and excretions. Isolation gowns currently available on the marketplace offer varying resistance to blood and other bodily fluids depending on the type of the material, its impermeability, and wear and tear. While some studies show no benefit of the routine use of isolation gowns, others demonstrate that its use is associated with a reduced infection rate. This paper reviews isolation gowns in healthcare settings, including the fabrics used, gown design and interfaces, as well as critical parameters that affect microorganism and liquid transmission through fabrics.
Collapse
Affiliation(s)
- F Selcen Kilinc
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, PA UNITED STATES
| |
Collapse
|
45
|
Pulsed light for the inactivation of fungal biofilms of clinically important pathogenicCandidaspecies. Yeast 2015; 32:533-40. [DOI: 10.1002/yea.3077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 05/03/2015] [Indexed: 02/01/2023] Open
|
46
|
Koca O, Altoparlak U, Ayyildiz A, Kaynar H. Persistence of nosocomial pathogens on various fabrics. Eurasian J Med 2015; 44:28-31. [PMID: 25610201 DOI: 10.5152/eajm.2012.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/29/2011] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Fabrics can become contaminated with high numbers of microorganisms that may be pathogenic to patients in a hospital setting and can play an important role in the chain of infection. The aim of this study was to investigate the survival of several clinical bacterial and fungal isolates on several fabrics commonly used in hospitals. MATERIALS AND METHODS Bacterial and fungal survival was tested on the following materials, each of which are commonly used in our hospital: 100% smooth cotton, 60% cotton-40% polyester, 100% wool and 100% silk. One isolate each of Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, Geotrichum candidum, Aspergillus fumigatus, Cryptococcus neoformans, vancomycin resistant Enterococcus faecium (VRE, methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL) positive Escherichia coli, inducible beta-lactamase (IBL) positive Pseudomonas aeruginosa, IBL-positive Acinetobacter baumannii and Stenotrophomonas maltophilia were used to contaminate fabrics. The survival of these microorganisms was studied by testing the fabric swatches for microbial growth. RESULTS The median survival times for all the tested bacteria and fungi were as follows: 26 days on cotton, 26.5 days on cotton-polyester, 28 days on silk, and 30 days on wool. Among the bacterial species tested, E. faecium had the longest survival time on cotton-polyester fabrics. For the fungal isolates, it was observed that C. tropicalis and C. krusei survived for the shortest amount of time on cotton fabrics in the present study. CONCLUSION This survival data indicate that pathogenic microorganisms can survive from days to months on commonly used hospital fabrics. These findings indicate that current recommendations for the proper disinfection or sterilization of fabrics used in hospitals should be followed to minimize cross-contamination and prevent nosocomial infections.
Collapse
Affiliation(s)
- Ozlem Koca
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ulku Altoparlak
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Ayyildiz
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Hasan Kaynar
- Department of Pulmonary Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
47
|
Neely AN, Gallardo V, Barth E, Haugland RA, Warden GD, Vesper SJ. Rapid Monitoring by Quantitative Polymerase Chain Reaction for Pathogenic Aspergillus During Carpet Removal From a Hospital. Infect Control Hosp Epidemiol 2015; 25:350-2. [PMID: 15108736 DOI: 10.1086/502405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractMonitoring for pathogenic Aspergillus species using a rapid, highly sensitive, quantitative polymerase chain reaction technique during carpet removal in a burn unit provided data that allowed patients to be safely returned to the refloored area sooner than if only conventional culture monitoring had been used.
Collapse
Affiliation(s)
- Alice N Neely
- Shriners Burns Hospital, Cincinnati, OH 45229-3095, USA
| | | | | | | | | | | |
Collapse
|
48
|
Borkow G, Assadian O. Survival of Microorganisms on Inanimate Surfaces. USE OF BIOCIDAL SURFACES FOR REDUCTION OF HEALTHCARE ACQUIRED INFECTIONS 2014. [PMCID: PMC7123372 DOI: 10.1007/978-3-319-08057-4_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In healthcare settings microbial contaminated surfaces play an important role in indirect transmission of infection. Especially surfaces close to the patients’ environment may be touched at high frequencies, allowing transmission from animated sources to others via contaminated inanimate surfaces. Therefore, the knowledge on the survival of bacteria, fungi, viruses and protozoa on surfaces, and hence, in a broader sense, in the human environment, is important for implementing tactics for prevention of Healthcare-acquired Infections (HAI). This chapter will elaborate the role of surfaces in the transmission of pathogens. Particular emphasis is laid on the current knowledge of the survival time and conditions favouring survival of the pathogens. Finally, mechanisms of transmission from inanimate surfaces to patients are highlighted. Within the multi-barrier strategy of the prevention of HAI, environmental disinfection policies should be based on risk assessments for surfaces with different risks for cross contamination such as high- and low-touched surfaces with appropriate standards for adequate disinfection measures under consideration of the persistence and infectious dose of the pathogens. As a result, surface disinfection is indicated in the following situations:
Frequently touched surfaces adjacent to patients Surfaces with assumed or visible contamination Terminal disinfection in rooms or areas where infected or colonized patients with easily transferable nosocomial pathogens are cared for, and in outbreak situations. Furthermore, the knowledge of the persistence of pathogens will also support ensuring the biosafety in microbiological and biomedical laboratories, food-handling settings, and for hygienic behaviour in the everyday life to prevent transmission of infectious diseases.
Collapse
|
49
|
Abstract
BACKGROUND Mucormycosis is an invasive fungal infection with a high fatality rate. We investigated an outbreak of mucormycosis in a pediatric hospital to determine routes of pathogen transmission from the environment and prevent additional infections. METHODS A case was defined as a hospital-onset illness consistent with mucormycosis, confirmed by culture or histopathology. Case-patient medical records were reviewed for clinical course and exposure to items and locations within the hospital. Environmental samples were collected from air and surfaces. Fungal isolates collected from case-patients and the environmental samples were identified using DNA sequencing. RESULTS Five case-patients had hospital-associated cutaneous mucormycosis over an 11-month period; all subsequently died. Three case-patients had conditions known to be associated with susceptibility to mucormycosis, while 2 had cardiac conditions with persistent acidosis. The cases occurred on several different wards throughout the hospital, and hospital linens were the only exposure identified as common to the case-patients. Rhizopus species were recovered from 26 (42%) of 62 environmental samples from clean linens and associated areas and from 1 (4%) of 25 samples from nonlinen-related items. Case-patients were infected with Rhizopus delemar, which was also isolated from cultures of clean linens and clean linen delivery bins from the off-site laundry facility. CONCLUSIONS Hospital linens were identified as a vehicle that carried R. delemar into contact with susceptible patients. Fungal species identification using DNA-based methods is useful for corroborating epidemiologic links in hospital outbreak investigations. Hospital linens should be laundered, packaged, shipped and stored in a manner that minimizes exposure to environmental contaminants.
Collapse
|
50
|
Humphreys PN, Davies CS, Rout S. An evaluation of the infection control potential of a UV clinical podiatry unit. J Foot Ankle Res 2014; 7:17. [PMID: 24576315 PMCID: PMC3942763 DOI: 10.1186/1757-1146-7-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/19/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. METHOD A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. RESULTS Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. CONCLUSIONS Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused.
Collapse
Affiliation(s)
- Paul N Humphreys
- Hygiene and Disinfection Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Chris S Davies
- Division of Podiatry and Clinical Sciences, School of Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Simon Rout
- Hygiene and Disinfection Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| |
Collapse
|