1
|
Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022; 10:microorganisms10061103. [PMID: 35744621 PMCID: PMC9229135 DOI: 10.3390/microorganisms10061103] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is one of the species most frequently involved in biofilm-related diseases, being especially important in urinary tract infections, causing relapses or chronic infections. Compared to their planktonic analogues, biofilms confer to the bacteria the capacity to be up to 1000-fold more resistant to antibiotics and to evade the action of the host’s immune system. For this reason, biofilm-related infections are very difficult to treat. To develop new strategies against biofilms, it is important to know the mechanisms involved in their formation. In this review, the different steps of biofilm formation in E. coli, the mechanisms of tolerance to antimicrobials and new compounds and strategies to combat biofilms are discussed.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Carlos Ratia
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
2
|
Schwan WR, Luedtke J, Engelbrecht K, Mollinger J, Wheaton A, Foster JW, Wolchak R. Regulation of Escherichia coli fim gene transcription by GadE and other acid tolerance gene products. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001149. [PMID: 35316170 PMCID: PMC9558354 DOI: 10.1099/mic.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Foster
- University South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
3
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
4
|
Wang J, Ma W, Wang X. Insights into the structure of Escherichia coli outer membrane as the target for engineering microbial cell factories. Microb Cell Fact 2021; 20:73. [PMID: 33743682 PMCID: PMC7980664 DOI: 10.1186/s12934-021-01565-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is generally used as model bacteria to define microbial cell factories for many products and to investigate regulation mechanisms. E. coli exhibits phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae on the outer membrane which is a self-protective barrier and closely related to cellular morphology, growth, phenotypes and stress adaptation. However, these outer membrane associated molecules could also lead to potential contamination and insecurity for fermentation products and consume lots of nutrients and energy sources. Therefore, understanding critical insights of these membrane associated molecules is necessary for building better microbial producers. Here the biosynthesis, function, influences, and current membrane engineering applications of these outer membrane associated molecules were reviewed from the perspective of synthetic biology, and the potential and effective engineering strategies on the outer membrane to improve fermentation features for microbial cell factories were suggested.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Burin R, Shah DH. Global transcriptional profiling of tyramine and d-glucuronic acid catabolism in Salmonella. Int J Med Microbiol 2020; 310:151452. [PMID: 33091748 DOI: 10.1016/j.ijmm.2020.151452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Salmonella has evolved various metabolic pathways to scavenge energy from the metabolic byproducts of the host gut microbiota, however, the precise metabolic byproducts and pathways utilized by Salmonella remain elusive. Previously we reported that Salmonella can proliferate by deriving energy from two metabolites that naturally occur in the host as gut microbial metabolic byproducts, namely, tyramine (TYR, an aromatic amine) and d-glucuronic acid (DGA, a hexuronic acid). Salmonella Pathogenicity Island 13 (SPI-13) plays a critical role in the ability of Salmonella to derive energy from TYR and DGA, however the catabolic pathways of these two micronutrients in Salmonella are poorly defined. The objective of this study was to identify the specific genetic components and construct the regulatory circuits for the TYR and DGA catabolic pathways in Salmonella. To accomplish this, we employed TYR and DGA-induced global transcriptional profiling and gene functional network analysis approaches. We report that TYR induced differential expression of 319 genes (172 up-regulated and 157 down-regulated) when Salmonella was grown in the presence of TYR as a sole energy source. These included the genes originally predicted to be involved in the classical TYR catabolic pathway. TYR also induced expression of majority of genes involved in the acetaldehyde degradation pathway and aided identification of a few new genes that are likely involved in alternative pathway for TYR catabolism. In contrast, DGA induced differential expression of 71 genes (58 up-regulated and 13 down-regulated) when Salmonella was grown in the presence of DGA as a sole energy source. These included the genes originally predicted to be involved in the classical pathway and a few new genes likely involved in the alternative pathway for DGA catabolism. Interestingly, DGA also induced expression of SPI-2 T3SS, suggesting that DGA may also influence nutritional virulence of Salmonella. In summary, this is the first report describing the global transcriptional profiling of TYR and DGA catabolic pathways of Salmonella. This study will contribute to the better understanding of the role of TYR and DGA in metabolic adaptation and virulence of Salmonella.
Collapse
Affiliation(s)
- Raquel Burin
- Department of Veterinary Microbiology and Pathology, United States
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, United States; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, United States.
| |
Collapse
|
6
|
Liao J, Orsi RH, Carroll LM, Wiedmann M. Comparative genomics reveals different population structures associated with host and geographic origin in antimicrobial-resistant Salmonella enterica. Environ Microbiol 2020; 22:2811-2828. [PMID: 32337816 DOI: 10.1111/1462-2920.15014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023]
Abstract
Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Zhang Z, Qi X, Chai J, Wu P, Lv X, Cheng S, Li X. Detection of glycan-binding proteins using glycan-functionalized quantum dots and gold nanoparticles. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1451875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Xiaoxiao Qi
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jinfeng Chai
- School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road, Changchun, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
8
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Hussain HI, Iqbal Z, Seleem MN, Huang D, Sattar A, Hao H, Yuan Z. Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Sci Rep 2017; 7:8335. [PMID: 28827616 PMCID: PMC5567091 DOI: 10.1038/s41598-017-07798-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have examined the prevalence of pathogenic Escherichia coli in poultry and poultry products; however, limited data are available regarding their resistance- and virulence-associated gene expression profiles. This study was designed to examine the resistance and virulence of poultry E. coli strains in vitro and in vivo via antibiotic susceptibility, biofilm formation and adhesion, and invasion and intracellular survivability assays in Caco-2 and Raw 264.7 cell lines as well as the determination of the median lethal dose in two-day old chickens. A clinical pathogenic multidrug-resistant isolate, E. coli 381, isolated from broilers, was found to be highly virulent in cell culture and 1000-fold more virulent in a chicken model than other strains; accordingly, the isolate was subsequently selected for transcriptome analysis. The comparative gene expression profile of MDR E. coli 381 and the reference human strain E. coli ATCC 25922 was completed with Illumina HiSeq. 2500 transcriptome analysis. Differential gene expression analysis indicates that there are multiple pathways involved in the resistance and virulence of this highly virulent strain. The results garnered from this study provide critical information about the highly virulent MDR E. coli strain of poultry origin and warrant further investigation due to its significant threat to public health.
Collapse
Affiliation(s)
- Hafiz I Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Deyu Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Bravo V, Puhar A, Sansonetti P, Parsot C, Toro CS. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One 2015; 10:e0121785. [PMID: 25811616 PMCID: PMC4374849 DOI: 10.1371/journal.pone.0121785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.
Collapse
Affiliation(s)
- Verónica Bravo
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Puhar
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
- * E-mail: (CP); (CT)
| | - Cecilia S. Toro
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (CP); (CT)
| |
Collapse
|
11
|
Modulating the frequency and bias of stochastic switching to control phenotypic variation. Nat Commun 2014; 5:4574. [PMID: 25087841 DOI: 10.1038/ncomms5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/02/2014] [Indexed: 12/29/2022] Open
Abstract
Mechanisms that control cell-to-cell variation in gene expression ('phenotypic variation') can determine a population's growth rate, robustness, adaptability and capacity for complex behaviours. Here we describe a general strategy (termed FABMOS) for tuning the phenotypic variation and mean expression of cell populations by modulating the frequency and bias of stochastic transitions between 'OFF' and 'ON' expression states of a genetic switch. We validated the strategy experimentally using a synthetic fim switch in Escherichia coli. Modulating the frequency of switching can generate a bimodal (low frequency) or a unimodal (high frequency) population distribution with the same mean expression. Modulating the bias as well as the frequency of switching can generate a spectrum of bimodal and unimodal distributions with the same mean expression. This remarkable control over phenotypic variation, which cannot be easily achieved with standard gene regulatory mechanisms, has many potential applications for synthetic biology, engineered microbial ecosystems and experimental evolution.
Collapse
|
12
|
Lillington J, Geibel S, Waksman G. Reprint of "Biogenesis and adhesion of type 1 and P pili". Biochim Biophys Acta Gen Subj 2014; 1850:554-64. [PMID: 25063559 DOI: 10.1016/j.bbagen.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
13
|
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta Gen Subj 2014; 1840:2783-93. [PMID: 24797039 DOI: 10.1016/j.bbagen.2014.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
14
|
Brankatschk K, Kamber T, Pothier JF, Duffy B, Smits THM. Transcriptional profile of Salmonella enterica subsp. enterica serovar Weltevreden during alfalfa sprout colonization. Microb Biotechnol 2013; 7:528-44. [PMID: 24308841 PMCID: PMC4265072 DOI: 10.1111/1751-7915.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022] Open
Abstract
Sprouted seeds represent a great risk for infection by human enteric pathogens because of favourable growth conditions for pathogens during their germination. The aim of this study was to identify mechanisms of interactions of Salmonella enterica subsp. enterica Weltevreden with alfalfa sprouts. RNA-seq analysis of S. Weltevreden grown with sprouts in comparison with M9-glucose medium showed that among a total of 4158 annotated coding sequences, 177 genes (4.3%) and 345 genes (8.3%) were transcribed at higher levels with sprouts and in minimal medium respectively. Genes that were higher transcribed with sprouts are coding for proteins involved in mechanisms known to be important for attachment, motility and biofilm formation. Besides gene expression required for phenotypic adaption, genes involved in sulphate acquisition were higher transcribed, suggesting that the surface on alfalfa sprouts may be poor in sulphate. Genes encoding structural and effector proteins of Salmonella pathogenicity island 2, involved in survival within macrophages during infection of animal tissue, were higher transcribed with sprouts possibly as a response to environmental conditions. This study provides insight on additional mechanisms that may be important for pathogen interactions with sprouts.
Collapse
Affiliation(s)
- Kerstin Brankatschk
- Plant Protection Division, Agroscope Changins-Wädenswil ACW, Schloss 1, Wädenswil, CH-8820, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Intramolecular donor strand complementation in the E. coli type 1 pilus subunit FimA explains the existence of FimA monomers as off-pathway products of pilus assembly that inhibit host cell apoptosis. J Mol Biol 2013; 426:542-9. [PMID: 24184277 DOI: 10.1016/j.jmb.2013.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
Abstract
Type 1 pili are filamentous organelles mediating the attachment of uropathogenic Escherichia coli to epithelial cells of host organisms. The helical pilus rod consists of up to 3000 copies of the main structural subunit FimA that interact via donor strand complementation, where the incomplete Ig-like fold of FimA is completed by insertion of the N-terminal extension (donor strand) of the following FimA subunit. Recently, it was shown that FimA also exists in a monomeric, assembly-incompetent form and that FimA monomers act as inhibitors of apoptosis in infected host cells. Here we present the NMR structure of monomeric wild-type FimA with its natural N-terminal donor strand complementing the Ig fold. Compared to FimA subunits in the assembled pilus, intramolecular self-complementation in the monomer stabilizes the FimA fold with significantly less interactions, and the natural FimA donor strand is inserted in the opposite orientation. In addition, we show that a motif of two glycine residues in the FimA donor strand, separated by five residues, is the prerequisite of the alternative, parallel donor strand insertion mechanism in the FimA monomer and that this motif is preserved in FimA homologs of many enteroinvasive pathogens. We conclude that FimA is a unique case of a protein with alternative, functionally relevant folding possibilities, with the FimA polymer forming the highly stable pilus rod and the FimA monomer promoting pathogen propagation by apoptosis suppression of infected epithelial target cells.
Collapse
|
16
|
Hamilton HM, Wilson R, Blythe M, Nehring RB, Fonville NC, Louis EJ, Rosenberg SM. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair (Amst) 2013; 12:993-9. [PMID: 24075571 DOI: 10.1016/j.dnarep.2013.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/17/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022]
Abstract
Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind(-)) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA(-) SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells.
Collapse
Affiliation(s)
- Holly M Hamilton
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology and the Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030-3411, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Ordered and ushered; the assembly and translocation of the adhesive type I and p pili. BIOLOGY 2013; 2:841-60. [PMID: 24833049 PMCID: PMC3960871 DOI: 10.3390/biology2030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Type I and P pili are chaperone-usher pili of uropathogenic Escherichia coli, which allow bacteria to adhere to host cell receptors. Pilus formation and secretion are orchestrated by two accessory proteins, a chaperone, which catalyses pilus subunit folding and maintains them in a polymerization-competent state, and an outer membrane-spanning nanomachine, the usher, which choreographs their assembly into a pilus and drives their secretion through the membrane. In this review, recent structures and kinetic studies are combined to examine the mechanism of type I and P pili assembly, as it is currently known. We also investigate how the knowledge of pilus biogenesis mechanisms has been exploited to design selective inhibitors of the process.
Collapse
|
18
|
FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 2012; 80:3289-96. [PMID: 22778099 DOI: 10.1128/iai.00331-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative member of the family Enterobacteriaceae and is a common cause of bacterial food poisoning in humans. The fimbrial appendages are found on the surface of many enteric bacteria and enable the bacteria to bind to eukaryotic cells. S. Typhimurium type 1 fimbriae are characterized by mannose-sensitive hemagglutination and are assembled via the chaperone/usher pathway. S. Typhimurium type 1 fimbrial proteins are encoded by the fim gene cluster (fimAICDHFZYW), with fimAICDHF expressed as a single transcriptional unit. The structural components of the fimbriae are FimA (major subunit), FimI, FimH (adhesin), and FimF (adaptor). In order to determine which components are required for fimbrial formation in S. Typhimurium, mutations in fimA, fimI, fimH, and fimF were constructed and examined for their ability to produce surface-assembled fimbriae. S. Typhimurium SL1344ΔfimA, -ΔfimH, and -ΔfimF mutants were unable to assemble fimbriae, indicating that these genes are necessary for fimbrial production in S. Typhimurium. However, SL1344ΔfimI was able to assemble fimbriae. In Escherichia coli type 1 and Pap fimbriae, at least two adaptors are expressed in addition to the adhesins. However, E. coli type 1 and Pap fimbriae have been reported to be able to assemble fimbriae in the absence of these proteins. These results suggest differences between the S. Typhimurium type 1 fimbrial system and the E. coli type 1 and Pap fimbrial systems.
Collapse
|
19
|
van Aartsen JJ, Stahlhut SG, Harrison EM, Crosatti M, Ou HY, Krogfelt KA, Struve C, Rajakumar K. Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae. BMC Microbiol 2012; 12:59. [PMID: 22520965 PMCID: PMC3419637 DOI: 10.1186/1471-2180-12-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/20/2012] [Indexed: 01/11/2023] Open
Abstract
Background Several strain-specific Klebsiella pneumoniae virulence determinants have been described, though these have almost exclusively been linked with hypervirulent liver abscess-associated strains. Through PCR interrogation of integration hotspots, chromosome walking, island-tagging and fosmid-based marker rescue we captured and sequenced KpGI-5, a novel genomic island integrated into the met56 tRNA gene of K. pneumoniae KR116, a bloodstream isolate from a patient with pneumonia and neutropenic sepsis. Results The 14.0 kb KpGI-5 island exhibited a genome-anomalous G + C content, possessed near-perfect 46 bp direct repeats, encoded a γ1-chaperone/usher fimbrial cluster (fim2) and harboured seven other predicted genes of unknown function. Transcriptional analysis demonstrated expression of three fim2 genes, and suggested that the fim2A-fim2K cluster comprised an operon. As fimbrial systems are frequently implicated in pathogenesis, we examined the role of fim2 by analysing KR2107, a streptomycin-resistant derivative of KR116, and three isogenic mutants (Δfim, Δfim2 and ΔfimΔfim2) using biofilm assays, human cell adhesion assays and pair-wise competition-based murine models of intestinal colonization, lung infection and ascending urinary tract infection. Although no statistically significant role for fim2 was demonstrable, liver and kidney CFU counts for lung and urinary tract infection models, respectively, hinted at an ordered gradation of virulence: KR2107 (most virulent), KR2107∆fim2, KR2107∆fim and KR2107∆fim∆fim2 (least virulent). Thus, despite lack of statistical evidence there was a suggestion that fim and fim2 contribute additively to virulence in these murine infection models. However, further studies would be necessary to substantiate this hypothesis. Conclusion Although fim2 was present in 13% of Klebsiella spp. strains investigated, no obvious in vitro or in vivo role for the locus was identified, although there were subtle hints of involvement in urovirulence and bacterial dissemination from the respiratory tract. Based on our findings and on parallels with other fimbrial systems, we propose that fim2 has the potential to contribute beneficially to pathogenesis and/or environmental persistence of Klebsiella strains, at least under specific yet-to-be identified conditions.
Collapse
Affiliation(s)
- Jon J van Aartsen
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
21
|
Korea CG, Ghigo JM, Beloin C. The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli. Bioessays 2011; 33:300-11. [DOI: 10.1002/bies.201000121] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol 2010; 12:1957-77. [PMID: 20345943 DOI: 10.1111/j.1462-2920.2010.02202.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Commensal and pathogenic Escherichia coli adherence to host and environmental surfaces is mediated by a variety of adhesins. Although extensively studied as a model bacterium, 34% of the genes in the E. coli K-12 genome have no known function. We hypothesized that some of them may correspond to functional adhesins. We characterized E. coli K-12 ycb, ybg, yfc, yad, yra, sfm and yeh operons, which display sequence and organizational homologies to type 1 fimbriae exported by the chaperone/usher pathway. We showed that, although these operons are poorly expressed under laboratory conditions, six of them are nevertheless functional when expressed, and promote adhesion to abiotic and/or epithelial cell surfaces. While the studied fimbriae display different binding specificities, we obtained evidence of synergy/interference with other adhesins such as Ag43 or type 1 fimbriae. We showed that their expression is under the negative control of H-NS and, except for yad, subjected to cAMP receptor protein-mediated activation and carbon catabolite repression. These results therefore demonstrate that ycb, yfc, yad, yra, sfm and yeh operons encode cryptic but functional fimbriae adhesins whose expression following environmental modifications could contribute to E. coli's ability to adhere to and colonize a wide diversity of surfaces in its various ecological niches.
Collapse
Affiliation(s)
- Charalampia-Georgia Korea
- Institut Pasteur, Unité de Génétique des Biofilms, CNRS URA 2172, 25-28 rue du Dr Roux, 750724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
23
|
Knight SD, Bouckaert J. Structure, Function, and Assembly of Type 1 Fimbriae. GLYCOSCIENCE AND MICROBIAL ADHESION 2009; 288:67-107. [DOI: 10.1007/128_2008_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 2008; 191:1258-67. [PMID: 19060153 DOI: 10.1128/jb.01465-08] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The roles of toxin-antitoxin (TA) systems in bacteria have been debated. Here, the role of five TA systems in regard to biofilm development was investigated (listed as toxin/antitoxin: MazF/MazE, RelE/RelB, ChpB, YoeB/YefM, and YafQ/DinJ). Although these multiple TA systems were reported previously to not impact bacterial fitness, we found that deletion of the five TA systems decreased biofilm formation initially (8 h) on three different surfaces and then increased biofilm formation (24 h) by decreasing biofilm dispersal. Whole-transcriptome profiling revealed that the deletion of the five TA systems induced expression of a single gene, yjgK, which encodes an uncharacterized protein; quantitative real-time PCR (qRT-PCR) confirmed consistent induction of this gene (at 8, 15, and 24 h). Corroborating the complex phenotype seen upon deleting the TA systems, overexpression of YjgK decreased biofilm formation at 8 h and increased biofilm formation at 24 h; deletion of yjgK also affected biofilm formation in the expected manner by increasing biofilm formation after 8 h and decreasing biofilm formation after 24 h. In addition, YjgK significantly reduced biofilm dispersal. Whole-transcriptome profiling revealed YjgK represses fimbria genes at 8 h (corroborated by qRT-PCR and a yeast agglutination assay), which agrees with the decrease in biofilm formation upon deleting the five TA systems at 8 h, as well as that seen upon overexpressing YjgK. Sand column assays confirmed that deleting the five TA systems reduced cell attachment. Furthermore, deletion of each of the five toxins increased biofilm formation at 8 h, and overexpression of the five toxins repressed biofilm formation at 8 h, a result that is opposite that of deleting all five TA systems; this suggests that complex regulation occurs involving the antitoxins. Also, the ability of the global regulator Hha to reduce biofilm formation was dependent on the presence of these TA systems. Hence, we suggest that one role of TA systems is to influence biofilm formation.
Collapse
|
25
|
Abstract
Bacterial urinary tract infections represent the most common type of nosocomial infection. In many cases, the ability of bacteria to both establish and maintain these infections is directly related to biofilm formation on indwelling devices or within the urinary tract itself. This chapter will focus on the role of biofilm formation in urinary tract infections with an emphasis on Gram-negative bacteria. The clinical implications of biofilm formation will be presented along with potential strategies for prevention. In addition, the role of specific pathogen-encoded functions in biofilm development will be discussed.
Collapse
|
26
|
Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 2008; 76:4055-65. [PMID: 18559432 DOI: 10.1128/iai.00494-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is recognized as an important gram-negative opportunistic pathogen. The ability of bacteria to adhere to host structures is considered essential for the development of infections; however, few studies have examined the influence of adhesion factors on K. pneumoniae virulence. In this study, we cloned and characterized the type 1 fimbria gene cluster of a clinical K. pneumoniae isolate. Although this cluster was not identical to the Escherichia coli type 1 fimbria gene cluster, an overall high degree of structural resemblance was demonstrated. Unique to the K. pneumoniae fim gene cluster is the fimK gene, whose product contains an EAL domain, suggesting that it has a role in regulation of fimbrial expression. Like expression of type 1 fimbriae in E. coli, expression of type 1 fimbriae in K. pneumoniae was found to be phase variable, and an invertible DNA element (fim switch) was characterized. An isogenic type 1 fimbria mutant was constructed and used to evaluate the influence of type 1 fimbriae in different infection models. Type 1 fimbriae did not influence the ability of K. pneumoniae to colonize the intestine or infect the lungs, but they were determined to be a significant virulence factor in K. pneumoniae urinary tract infection. By use of a PCR-based assay, the orientation of the fim switch during colonization and infection was investigated and was found to be all "off" in the intestine and lungs but all "on" in the urinary tract. Our results suggest that during colonization and infection, there is pronounced selective pressure in different host environments for selection of either the type 1 fimbriated or nonfimbriated phenotype of K. pneumoniae.
Collapse
|
27
|
Niba ETE, Naka Y, Nagase M, Mori H, Kitakawa M. A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 2008; 14:237-46. [PMID: 18180259 PMCID: PMC2779908 DOI: 10.1093/dnares/dsm024] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofilm forming cells are distinctive from the well-investigated planktonic cells and exhibit a different type of gene expression. Several new Escherichia coli genes related to biofilm formation have recently been identified through genomic approaches such as DNA microarray analysis. However, many others involved in this process might have escaped detection due to poor expression, regulatory mechanism, or genetic backgrounds. Here, we screened a collection of single-gene deletion mutants of E. coli named ‘Keio collection’ to identify genes required for biofilm formation. Of the 3985 mutants of non-essential genes in the collection thus examined, 110 showed a reduction in biofilm formation nine of which have not been well characterized yet. Systematic and quantitative analysis revealed the involvement of genes of various functions and reinforced the importance in biofilm formation of the genes for cell surface structures and cell membrane. Characterization of the nine mutants of function-unknown genes indicated that some of them, such as yfgA that genetically interacts with a periplasmic chaperone gene surA together with yciB and yciM, might be required for the integrity of outer membrane.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Teplitski M, Al-Agely A, Ahmer BMM. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2007; 152:3411-3424. [PMID: 17074910 DOI: 10.1099/mic.0.29118-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Orthologues of the Salmonella enterica serovar Typhimurium (S. typhimurium) BarA/SirA two-component system are important for biofilm formation and virulence in many gamma-Proteobacteria. In S. typhimurium, SirA activates the csrB and csrC carbon storage regulatory RNAs and the virulence gene regulators hilA and hilC. The regulatory RNAs antagonize the activity of the CsrA protein, allowing translation of those same virulence genes, and inhibiting the translation of flagellar genes. In this report, it was determined that SirA and the Csr system also control the fim operon that encodes type 1 fimbriae. sirA orthologues in other bacterial species, and the fim operon of S. typhimurium, are known to play a role in biofilm formation; therefore, all members of the S. typhimurium sirA regulon were tested for in vitro biofilm production. A sirA mutant, a csrB csrC double mutant, and a fimI mutant, were all defective in biofilm formation. Conversely, inactivation of flhDC increased biofilm formation. Therefore, SirA activates csrB, csrC and the fim operon to promote biofilm formation. In turn, csrB and csrC promote the translation of the fim operon, while at the same time inhibiting the translation of flagella, which are inhibitory to biofilm formation.
Collapse
Affiliation(s)
- Max Teplitski
- Soil and Water Science Department, IFAS, University of Florida, Gainesville, FL 32611-0290, USA
| | - Ali Al-Agely
- Soil and Water Science Department, IFAS, University of Florida, Gainesville, FL 32611-0290, USA
| | - Brian M M Ahmer
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
29
|
Tucker DL, Karouia F, Wang J, Luo Y, Li TB, Willson RC, Fofanov Y, Fox GE. Effect of an artificial RNA marker on gene expression in Escherichia coli. Appl Environ Microbiol 2005; 71:4156-9. [PMID: 16000839 PMCID: PMC1168998 DOI: 10.1128/aem.71.7.4156-4159.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional analysis was used to examine the effect of a genomically encoded artificial RNA on Escherichia coli in rich and minimal media. Only the expression of a single gene, deoC, was unequivocally affected under both conditions. E. coli marker strains of this type may be useful in monitoring the fate and transport of bacteria in various applications.
Collapse
Affiliation(s)
- Don L Tucker
- Dept. Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | | | | | |
Collapse
|