1
|
Gutierrez H, Eugenin EA. The challenges to detect, quantify, and characterize viral reservoirs in the current antiretroviral era. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:211-219. [PMID: 39845128 PMCID: PMC11751450 DOI: 10.1515/nipt-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts. Currently, little is known about the contribution of the microenvironment to viral reservoir survival, residual viral expression, and associated inflammation. Only a few spatiotemporal techniques are available, and fewer integrate spatial genomics, transcriptomics, and proteomics into the analysis of the viral reservoir microenvironment-all essential components to cure HIV. During the development of these spatial techniques, many considerations need to be included in the analysis to avoid misinterpretation. This manuscript tries to clarify some critical concepts in viral reservoir detection by spatial techniques and the upcoming opportunities for cure efforts.
Collapse
Affiliation(s)
- Hector Gutierrez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
2
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Zhou M, Yang T, Yuan M, Li X, Deng J, Wu S, Zhong Z, Lin Y, Zhang W, Xia B, Wu Y, Wang L, Chen T, Liu R, Pan T, Ma X, Li L, Liu B, Zhang H. ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency. J Virol 2024; 98:e0003524. [PMID: 39082875 PMCID: PMC11334468 DOI: 10.1128/jvi.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Mo Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Yating Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Ruxin Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Linghua Li
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Mdluli T, Slike BM, Curtis DJ, Shubin Z, Tran U, Li Y, Dussupt V, Mendez-Rivera L, Pinyakorn S, Stieh DJ, Tomaka FL, Schuitemaker H, Pau MG, Colby DJ, Kroon E, Sacdalan C, de Souza M, Phanupak N, Hsu DC, Ananworanich J, Ake JA, Trautmann L, Vasan S, Robb ML, Krebs SJ, Paquin-Proulx D, Rolland M. Mosaic vaccine-induced antibody-dependent cellular phagocytosis associated with delayed HIV-1 viral load rebound post treatment interruption. Cell Rep 2024; 43:114344. [PMID: 38850529 PMCID: PMC11298786 DOI: 10.1016/j.celrep.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
A heterologous Ad26/MVA vaccine was given prior to an analytic treatment interruption (ATI) in people living with HIV-1 (mainly CRF01_AE) who initiated antiretroviral treatment (ART) during acute HIV-1. We investigate the impact of Ad26/MVA vaccination on antibody (Ab)-mediated immune responses and their effect on time to viral rebound. The vaccine mainly triggers vaccine-matched binding Abs while, upon viral rebound post ATI, infection-specific CRF01_AE binding Abs increase in all participants. Binding Abs are not associated with time to viral rebound. The Ad26/MVA mosaic vaccine profile consists of correlated non-CRF01_AE binding Ab and Fc effector features, with strong Ab-dependent cellular phagocytosis (ADCP) responses. CRF01_AE-specific ADCP responses (measured either prior to or post ATI) are significantly higher in individuals with delayed viral rebound. Our results suggest that vaccines eliciting cross-reactive responses with circulating viruses in a target population could be beneficial and that ADCP responses may play a role in viral control post treatment interruption.
Collapse
Affiliation(s)
- Thembi Mdluli
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Curtis
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhanna Shubin
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Yifan Li
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincent Dussupt
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Stieh
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | | | | | - Maria G Pau
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | - Donn J Colby
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Mark de Souza
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Nittaya Phanupak
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Denise C Hsu
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Julie A Ake
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lydie Trautmann
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sandhya Vasan
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L Robb
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Morgane Rolland
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
5
|
Owor RO, Kawuma C, Nantale G, Kiyimba K, Obakiro SB, Ouma S, Lulenzi J, Gavamukulya Y, Chebijira M, Lukwago TW, Egor M, Musagala P, Andima M, Kibuule D, Waako P, Hokello J. Ethnobotanical survey and phytochemistry of medicinal plants used in the management of HIV/AIDS in Eastern Uganda. Heliyon 2024; 10:e31908. [PMID: 38845918 PMCID: PMC11153244 DOI: 10.1016/j.heliyon.2024.e31908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Currently, highly active antiretroviral therapy is unable to cure HIV/AIDS because of HIV latency. This study aimed at documenting medicinal plants used in the management of HIV/AIDS in Eastern Uganda so as to identify phytochemicals with HIV latency reversing potential. An ethnobotanical survey was conducted across eight districts in Eastern Uganda. Traditional medicine practitioners were interviewed using semi-structured questionnaires. Qualitative and quantitative phytochemical tests were respectively, performed to determine the presence and quantity of phytochemicals in frequently mentioned plant species. Data were analysed and presented using descriptive statistics and Informant Consensus Factor (ICF). Twenty-one plant species from fourteen plant families were reported to be used in the management of HIV/AIDS. Six plant species with the highest frequency of mention were: Zanthoxylum chalybeum, Gymnosporia senegalensis, Warbugia ugandensis, Leonatis nepetifolia, Croton macrostachyus and Rhoicissus tridentata. Qualitative phytochemical analysis of all the six most frequently mentioned plant species revealed the presence of flavonoids, tannins, terpenoids, alkaloids and phenolics. Quantitative analysis revealed the highest content of flavonoids in L. nepetifolia (20.4 mg/g of dry extract) while the lowest content was determined in C. macrostachyus (7.1 mg/g of dry extract). On the other hand, the highest content of tannins was observed in L. nepetifolia. (199.9 mg/g of dry extract) while the lowest content was found in R. tridentata. (42.6 mg/g of dry extract). Medicinal plants used by traditional medicine practitioners in Eastern Uganda to manage HIV/AIDS are rich in phytochemicals including flavonoids and tannins. Further studies to evaluate the HIV-1 latency reversing ability of these phytochemicals are recommended to discover novel molecules against HIV/AIDS.
Collapse
Affiliation(s)
- Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Carol Kawuma
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Gauden Nantale
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Kenedy Kiyimba
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Samuel Baker Obakiro
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Simple Ouma
- The AIDS Support Organization (TASO), P.O Box 10443, Kampala, Uganda
| | - Jalia Lulenzi
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University P.O Box 1460, Mbale, Uganda
| | - Mercy Chebijira
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Tonny Wotoyitide Lukwago
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Moses Egor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Peter Musagala
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Moses Andima
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Dan Kibuule
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Paul Waako
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Joseph Hokello
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| |
Collapse
|
6
|
Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, Zhao J, Huang Z, Deng K. Ponatinib Represses Latent HIV-1 by Inhibiting AKT-mTOR. Antimicrob Agents Chemother 2023; 67:e0006723. [PMID: 37212670 PMCID: PMC10269114 DOI: 10.1128/aac.00067-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Although antiretroviral therapy (ART) is effective in suppressing viral replication, it does not cure HIV-1 infection due to the presence of the viral latent reservoir. Rather than reactivating the latent viruses, the "block and lock" strategy aims to shift the viral reservoir to a deeper state of transcriptional silencing, thus preventing viral rebound after ART interruption. Although some latency-promoting agents (LPAs) have been reported, none of them have been approved for clinical application due to cytotoxicity and limited efficacy; therefore, it is important to search for novel and effective LPAs. Here, we report an FDA-approved drug, ponatinib, that can broadly repress latent HIV-1 reactivation in different cell models of HIV-1 latency and in primary CD4+ T cells from ART-suppressed individuals ex vivo. Ponatinib does not change the expression of activation or exhaustion markers on primary CD4+ T cells and does not induce severe cytotoxicity and cell dysfunction. Mechanistically, ponatinib suppresses proviral HIV-1 transcription by inhibiting the activation of the AKT-mTOR pathway, which subsequently blocks the interaction between key transcriptional factors and the HIV-1 long terminal repeat (LTR). In summary, we discovered a novel latency-promoting agent, ponatinib, which could have promising significance for future applications of HIV-1 functional cure.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jinfeng Cai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haitao Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ziqi Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhanlian Huang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Chu C, Armenia D, Walworth C, Santoro MM, Shafer RW. Genotypic Resistance Testing of HIV-1 DNA in Peripheral Blood Mononuclear Cells. Clin Microbiol Rev 2022; 35:e0005222. [PMID: 36102816 PMCID: PMC9769561 DOI: 10.1128/cmr.00052-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as integrated proviruses. In patients with plasma viremia, most peripheral blood mononuclear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART), most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type virus populations than they are in plasma, explaining why next-generation sequencing is particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing high levels of active virus replication, the DRMs detected in PBMCs and in plasma are usually highly concordant. However, in patients with lower levels of virus replication, it may take several months for plasma virus DRMs to reach detectable levels in PBMCs. This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT) is less sensitive than historical plasma virus GRT, if previous episodes of virological failure and emergent DRMs were either not prolonged or not associated with high levels of plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies have examined the predictive value of DRMs on the response to a simplified ART regimen. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics, particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-1 GRT, and the scenarios in which PBMC GRT has been used clinically.
Collapse
Affiliation(s)
- Carolyn Chu
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - Daniele Armenia
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Charles Walworth
- LabCorp-Monogram Biosciences, South San Francisco, California, USA
| | - Maria M. Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Sengupta S, Board NL, Wu F, Moskovljevic M, Douglass J, Zhang J, Reinhold BR, Duke-Cohan J, Yu J, Reed MC, Tabdili Y, Azurmendi A, Fray EJ, Zhang H, Hsiue EHC, Jenike K, Ho YC, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S, Siliciano JD, Sadegh-Nasseri S, Reinherz EL, Siliciano RF. TCR-mimic bispecific antibodies to target the HIV-1 reservoir. Proc Natl Acad Sci U S A 2022; 119:e2123406119. [PMID: 35394875 PMCID: PMC9169739 DOI: 10.1073/pnas.2123406119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. “Shock-and-kill” approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nathan L. Board
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Milica Moskovljevic
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Josephine Zhang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bruce R. Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jonathan Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jeanna Yu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Madison C. Reed
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yasmine Tabdili
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily J. Fray
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Katharine Jenike
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kenneth W. Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Janet D. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Robert F. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
9
|
Murray JM. Dynamics of latent HIV under clonal expansion. PLoS Pathog 2021; 17:e1010165. [PMID: 34929000 PMCID: PMC8722732 DOI: 10.1371/journal.ppat.1010165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/03/2022] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The HIV latent reservoir exhibits slow decay on antiretroviral therapy (ART), impacted by homeostatic proliferation and activation. How these processes contribute to the total dynamic while also producing the observed profile of sampled latent clone sizes is unclear. An agent-based model was developed that tracks individual latent clones, incorporating homeostatic proliferation of cells and activation of clones. The model was calibrated to produce observed latent reservoir dynamics as well as observed clonal size profiles. Simulations were compared to previously published latent HIV integration data from 5 adults and 3 children. The model simulations reproduced reservoir dynamics as well as generating residual plasma viremia levels (pVL) consistent with observations on ART. Over 382 Latin Hypercube Sample simulations, the median latent reservoir grew by only 0.3 log10 over the 10 years prior to ART initiation, after which time it decreased with a half-life of 15 years, despite number of clones decreasing at a faster rate. Activation produced a maximum size of genetically intact clones of around one million cells. The individual simulation that best reproduced the sampled clone profile, produced a reservoir that decayed with a 13.9 year half-life and where pVL, produced mainly from proliferation, decayed with a half-life of 10.8 years. These slow decay rates were achieved with mean cell life-spans of only 14.2 months, due to expansion of the reservoir through proliferation and activation. Although the reservoir decayed on ART, a number of clones increased in size more than 4,000-fold. While small sampled clones may have expanded through proliferation, the large sizes exclusively arose from activation. Simulations where homeostatic proliferation contributed more to pVL than activation, produced pVL that was less variable over time and exhibited fewer viral blips. While homeostatic proliferation adds to the latent reservoir, activation can both add and remove latent cells. Latent activation can produce large clones, where these may have been seeded much earlier than when first sampled. Elimination of the reservoir is complicated by expanding clones whose dynamic differ considerably to that of the entire reservoir. The HIV latent reservoir decreases slowly on antiretroviral therapy (ART). However there are cellular processes operating within this reservoir that can expand or contract subpopulations. This means that what is happening at the macro level may not be reflected at the micro level. To investigate this, we analysed published data on HIV latent clone sizes. By constructing an agent model incorporating the processes of cellular activation and proliferation, we were able to show that activation can expand clone sizes significantly even while on ART. Homeostatic proliferation also plays a role in maintaining the reservoir but these clones, though more frequent, are much smaller in size. Our calculations also show that activation and proliferation of the intact latent reservoir can lead to some of these cells becoming virally productive to a level consistent with observed residual viremia during ART. This analysis explains how normal cellular processes restructure the make-up of the latent reservoir and contribute to residual viremia.
Collapse
Affiliation(s)
- John M. Murray
- School of Mathematics and Statistics, UNSW Sydney, Australia
- * E-mail:
| |
Collapse
|
10
|
Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure. J Infect Dis 2021; 223:13-21. [PMID: 33586775 DOI: 10.1093/infdis/jiaa649] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting CD4+ T cells is a major barrier to cure. The dimensions of the reservoir problem can be defined with 2 assays. A definitive minimal estimate of the frequency of latently infected cells is provided by the quantitative viral outgrowth assay (QVOA), which detects cells that can be induced by T-cell activation to release infectious virus. In contrast, the intact proviral DNA assay (IPDA) detects all genetically intact proviruses and provides a more accurate upper limit on reservoir size than standard single-amplicon polymerase chain reaction assays which mainly detect defective proviruses. The frequency of cells capable of initiating viral rebound on interruption of antiretroviral therapy lies between the values produced by the QVOA and the IPDA. We argue here that the 1-2-log difference between QVOA and IPDA values in part reflects that the fact that many replication-competent proviruses are not readily induced by T-cell activation. Findings of earlier studies suggest that latently infected cells can be activated to proliferate in vivo without expressing viral genes. The proliferating cells nevertheless retain the ability to produce virus on subsequent stimulation. The low inducibility of latent proviruses is a major problem for the shock-and-kill strategy for curing HIV-1 infection, which uses latency-reversing agents to induce viral gene expression and render infected cells susceptible to immune clearance. The latency-reversing agents developed to date are much less effective at reversing latency than T-cell activation. Taken together, these results indicate that HIV-1 eradication will require the discovery of much more effective ways to induce viral gene expression.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Massanella M, Puthanakit T, Leyre L, Jupimai T, Sawangsinth P, de Souza M, Suntarattiwong P, Kosalarksa P, Borkird T, Kanjanavanit S, Chokephaibulkit K, Hansudewechakul R, Petdachai W, Mitchell JL, Robb ML, Trautmann L, Ananworanich J, Chomont N. Continuous Prophylactic Antiretrovirals/Antiretroviral Therapy Since Birth Reduces Seeding and Persistence of the Viral Reservoir in Children Vertically Infected With Human Immunodeficiency Virus. Clin Infect Dis 2021; 73:427-438. [PMID: 32504081 DOI: 10.1093/cid/ciaa718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Early antiretroviral therapy (ART) restricts the size of the human immunodeficiency virus (HIV) reservoir in infants. However, whether antiretroviral (ARV) prophylaxis given to exposed vertically infected children exerts similar effects remains unknown. METHODS We measured total and integrated HIV DNA, as well as the frequency of CD4 T cells producing multiply spliced RNA (msRNA) after stimulation (inducible reservoir) in vertically infected Thai infants. Eighty-five infants were followed longitudinally for up to 3 years. We compared the size of the reservoir in children who received continuous ARV prophylaxis since birth vs those who never received or discontinued prophylaxis before initiating ART. We used samples from a cross-sectional cohort of 37 Thai children who had initiated ART within 6 months of life to validate our findings. RESULTS Before ART, levels of HIV DNA and the frequencies of cells producing msRNA were significantly lower in infants who received continuous ARV prophylaxis since birth compared to those in whom ARV prophylaxis was discontinued or never initiated (P < .020 and P < .001, respectively). Upon ART initiation, total and integrated HIV DNA levels decayed significantly in both groups (P < .01 in all cases). Interestingly, the initial differences in the frequencies of infected cells persisted during 3 years on ART. The beneficial effect of prophylaxis on the size of the HIV reservoir was confirmed in the cross-sectional study. Importantly, no differences were observed between children who discontinued prophylactic ARVs before starting ART and those who delayed ART initiation without receiving prior prophylaxis. CONCLUSIONS Neonatal ARV prophylaxis with direct transition to ART durably limits the size of the HIV reservoir.
Collapse
Affiliation(s)
- Marta Massanella
- Centre de Recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Canada
| | - Thanyawee Puthanakit
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Louise Leyre
- Centre de Recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Canada
| | - Thidarat Jupimai
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Mark de Souza
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | - Pope Kosalarksa
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Julie L Mitchell
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Vaccine and Gene Therapy Institute, Oregon Health and Science University, Hillsboro, Oregon, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lydie Trautmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Vaccine and Gene Therapy Institute, Oregon Health and Science University, Hillsboro, Oregon, USA
| | - Jintanat Ananworanich
- Queen Sirikit National Institute of Child Health, Bangkok, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Canada
| | | |
Collapse
|
12
|
Abstract
In this paper, we formulate an age-structured HIV model, in which the influence of humoral immunity and the infection age of the infected cells are considered. The model is governed by three ordinary differential equations and two first-ordered partial differential equations and admits three equilibria: disease-free, immune-inactivated and immune-activated equilibria. We introduce two important thresholds: the basic reproduction number [Formula: see text] and immune-activated reproduction number [Formula: see text] and further show the global stability of above three equilibria in terms of [Formula: see text] and [Formula: see text], respectively. The numerical simulations are presented to illustrate our results.
Collapse
Affiliation(s)
- Zhongzhong Xie
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Xiuxiang Liu
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
13
|
Moron‐Lopez S, Xie G, Kim P, Siegel DA, Lee S, Wong JK, Price JC, Elnachef N, Greenblatt RM, Tien PC, Roan NR, Yukl SA. Tissue-specific differences in HIV DNA levels and mechanisms that govern HIV transcription in blood, gut, genital tract and liver in ART-treated women. J Int AIDS Soc 2021; 24:e25738. [PMID: 34235864 PMCID: PMC8264406 DOI: 10.1002/jia2.25738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/18/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Sex-specific differences affect multiple aspects of HIV infection, yet few studies have quantified HIV levels in tissues from women. Since an HIV functional cure will likely require a major reduction of infected cells from most tissues, we measured total and intact HIV DNA and the HIV transcription profile in blood, gut, genital tract and liver from HIV-positive antiretroviral therapy (ART) -treated women. METHODS Peripheral blood mononuclear cells (PBMC) and biopsies from the gastrointestinal (ileum, colon, rectosigmoid +/- liver) and genital (ectocervix, endocervix and endometrium) tracts were collected from 6 ART-treated (HIV RNA < 200 copies/mL) women. HIV DNA (total and intact) and levels of read-through, initiated (total), 5'elongated, polyadenylated and multiply spliced HIV transcripts were measured by droplet digital PCR. Immunophenotyping of cells was performed using Cytometry by time of flight (CyTOF). RESULTS We detected total HIV DNA in all tissues and intact HIV DNA in blood, ileum, colon, rectosigmoid and ectocervix. Initiated HIV transcripts per provirus were higher in PBMC and endometrium than in ileum, colon, rectosigmoid, ectocervix or endocervix, and higher in the rectum than either ileum or colon. 5'Elongated HIV transcripts per provirus were comparable in PBMC and endometrium, but higher than in gut or cervical samples. Polyadenylated and multiply spliced HIV transcripts were detected in PBMC (6/6 and 3/6 individuals respectively), but rarely in the tissues. CONCLUSIONS These results suggest tissue-specific differences in the mechanisms that govern HIV expression, with lower HIV transcription in most tissues than blood. Therapies aimed at disrupting latency, such as latency-reversing or latency-silencing agents, will be required to penetrate into multiple tissues and target different blocks to HIV transcription.
Collapse
Affiliation(s)
- Sara Moron‐Lopez
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineSan Francisco VA Medical CenterSan FranciscoCAUSA
| | - Guorui Xie
- Department of UrologyUniversity of CaliforniaSan Francisco (UCSF)San FranciscoCAUSA
- Gladstone InstitutesSan FranciscoCAUSA
| | - Peggy Kim
- Department of MedicineSan Francisco VA Medical CenterSan FranciscoCAUSA
| | - David A Siegel
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
| | - Sulggi Lee
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
| | - Joseph K Wong
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineSan Francisco VA Medical CenterSan FranciscoCAUSA
| | - Jennifer C Price
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
| | - Najwa Elnachef
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
| | - Ruth M Greenblatt
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
| | - Phyllis C Tien
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineSan Francisco VA Medical CenterSan FranciscoCAUSA
| | - Nadia R Roan
- Department of UrologyUniversity of CaliforniaSan Francisco (UCSF)San FranciscoCAUSA
- Gladstone InstitutesSan FranciscoCAUSA
| | - Steven A Yukl
- Department of MedicineUniversity of California San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineSan Francisco VA Medical CenterSan FranciscoCAUSA
| |
Collapse
|
14
|
Kirk GD, Astemborski J, Mehta SH, Ritter KD, Laird GM, Bordi R, Sekaly R, Siliciano JD, Siliciano RF. Nonstructured Treatment Interruptions Are Associated With Higher Human Immunodeficiency Virus Reservoir Size Measured by Intact Proviral DNA Assay in People Who Inject Drugs. J Infect Dis 2021; 223:1905-1913. [PMID: 33037877 PMCID: PMC8176633 DOI: 10.1093/infdis/jiaa634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in CD4+ T cells is a major barrier to cure. HIV-1-infected persons who inject drugs (PWID) often struggle to maintain suppression of viremia and experience nonstructured treatment interruptions (NTIs). The effects of injecting drugs or NTIs on the reservoir are unclear. Using the intact proviral DNA assay, we found no apparent effect of heroin or cocaine use on reservoir size. However, we found significantly larger reservoirs in those with frequent NTIs or a shorter interval from last detectable HIV RNA measurement. These results have important implications for inclusion of PWID in HIV-1 cure studies.
Collapse
Affiliation(s)
- Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Astemborski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Rebeka Bordi
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafick Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Massanella M, Bender Ignacio RA, Lama JR, Pagliuzza A, Dasgupta S, Alfaro R, Rios J, Ganoza C, Pinto-Santini D, Gilada T, Duerr A, Chomont N. Long-term effects of early antiretroviral initiation on HIV reservoir markers: a longitudinal analysis of the MERLIN clinical study. THE LANCET. MICROBE 2021; 2:e198-e209. [PMID: 35544209 PMCID: PMC8622834 DOI: 10.1016/s2666-5247(21)00010-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early antiretroviral therapy (ART) initiation (ie, within 3 months of infection) limits establishment of the HIV reservoir. However, the effect of early ART initiation on the long-term dynamics of the pool of infected cells remains unclear. METHODS In this longitudinal analysis, we included cisgender men who have sex with men (MSM) and transgender women (aged 18-54 years) at high risk for HIV infection, enrolled in the ongoing longitudinal MERLIN study in Peru between Oct 28, 2014, and Nov 8, 2018. Participants were eligible if they had been infected with HIV less than 90 days before enrolment, and if they had cryopreserved peripheral blood mononuclear cell (PBMC) samples. Participants were stratified into three groups on the basis of whether they initiated ART at 30 days or less (acute group), at 31-90 days (early group), or more than 24 weeks (deferred group) after the estimated date of detectable infection. PBMC samples were collected before ART initiation and longitudinally for up to 4 years on ART. The main outcomes were to establish the size of the HIV reservoir before ART initiation and to assess the effect of the timing of ART initiation on the decay of the HIV reservoir over 4 years follow-up. We quantified viral load, and isolated CD4 cells to quantify total HIV DNA, integrated HIV DNA and 2-long terminal repeat circles. Longitudinal analysis of active and inducible HIV reservoirs were measured by quantifying the frequency of CD4 cells producing multiply-spliced HIV RNA ex vivo and after in-vitro stimulation with a tat/rev induced limiting dilution assay (TILDA). A mixed-effects model from the time of ART initiation was used to measure longitudinal decays in viral loads and each HIV reservoir measure in each of the three groups. FINDINGS We included 56 participants in this analysis, all of whom were MSM: 15 were in the acute group, 19 were in the early group, and 22 were in the deferred group. Participants in all three groups had similar levels of all HIV reservoir markers before ART initiation. All participants, including those in the acute group, had a pool of transcriptionally silent HIV-infected cells before ART initiation, as indicated by a substantial increase in TILDA measures upon stimulation. Longitudinal analysis over 4 years of ART revealed a biphasic decay of all HIV persistence markers, with a rapid initial decline followed by a slower decay in all participants. During the first-phase decay, the half-lives of both total and integrated HIV DNA and TILDA measures were significantly shorter in the acute group than in the early and deferred groups. During the second-phase decay, HIV reservoir markers continued to decline only in participants in the acute group. INTERPRETATION Participants who initiated ART within 30 days or less of HIV infection showed a steeper and more sustained decay in HIV reservoir measures, suggesting long-term benefit of acute ART initiation on reservoir clearance. FUNDING The US National Institutes of Health and the Canadian Institutes for Health Research.
Collapse
Affiliation(s)
- Marta Massanella
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Javier R Lama
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | - Amélie Pagliuzza
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sayan Dasgupta
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jessica Rios
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | | | | | - Trupti Gilada
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Levy CN, Hughes SM, Roychoudhury P, Reeves DB, Amstuz C, Zhu H, Huang ML, Wei Y, Bull ME, Cassidy NA, McClure J, Frenkel LM, Stone M, Bakkour S, Wonderlich ER, Busch MP, Deeks SG, Schiffer JT, Coombs RW, Lehman DA, Jerome KR, Hladik F. A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir. Cell Rep Med 2021; 2:100243. [PMID: 33948574 PMCID: PMC8080125 DOI: 10.1016/j.xcrm.2021.100243] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Quantifying the replication-competent HIV reservoir is essential for evaluating curative strategies. Viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses. We designed two triplex droplet digital PCR assays, each with 2 unique targets and 1 in common, and normalize the results to PCR-based T cell counts. Both HIV assays are specific, sensitive, and reproducible. Together, they estimate the number of proviruses containing all five primer-probe regions. Our 5-target results are on average 12.1-fold higher than and correlate with paired quantitative VOA (Spearman's ρ = 0.48) but estimate a markedly smaller reservoir than previous DNA assays. In patients on antiretroviral therapy, decay rates in blood CD4+ T cells are faster for intact than for defective proviruses, and intact provirus frequencies are similar in mucosal and circulating T cells.
Collapse
Affiliation(s)
- Claire N. Levy
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea Amstuz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yulun Wei
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marta E. Bull
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Noah A.J. Cassidy
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jan McClure
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lisa M. Frenkel
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Sonia Bakkour
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Southern Research, 431 Aviation Way, Frederick, MD, USA
| | - Michael P. Busch
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
| | - Steven G. Deeks
- School of Medicine, University of San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Conway JM, Meily P, Li JZ, Perelson AS. Unified model of short- and long-term HIV viral rebound for clinical trial planning. J R Soc Interface 2021; 18:20201015. [PMID: 33849338 PMCID: PMC8086917 DOI: 10.1098/rsif.2020.1015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. Typically suspension of therapy is rapidly followed by rebound of viral loads to high, pre-therapy levels. Indeed, a recent study showed that approximately 90% of treatment interruption study participants show viral rebound within at most a few months of therapy suspension, but the remaining 10%, showed viral rebound some months, or years, after ART suspension. Some may even never rebound. We investigate and compare branching process models aimed at gaining insight into these viral dynamics. Specifically, we provide a theory that explains both short- and long-term viral rebounds, and post-treatment control, via a multitype branching process with time-inhomogeneous rates, validated with data from Li et al. (Li et al. 2016 AIDS30, 343-353. (doi:10.1097/QAD.0000000000000953)). We discuss the associated biological interpretation and implications of our best-fit model. To test the effectiveness of an experimental intervention in delaying or preventing rebound, the standard practice is to suspend therapy and monitor the study participants for rebound. We close with a discussion of an important application of our modelling in the design of such clinical trials.
Collapse
Affiliation(s)
- Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Paige Meily
- University of Pennsylvania School of Arts and Sciences, Philadephia, PA, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
18
|
Gandhi RT, Cyktor JC, Bosch RJ, Mar H, Laird GM, Martin A, Collier AC, Riddler SA, Macatangay BJ, Rinaldo CR, Eron JJ, Siliciano JD, McMahon DK, Mellors JW. Selective Decay of Intact HIV-1 Proviral DNA on Antiretroviral Therapy. J Infect Dis 2021; 223:225-233. [PMID: 32823274 PMCID: PMC7857155 DOI: 10.1093/infdis/jiaa532] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND HIV-1 proviruses persist in people on antiretroviral therapy (ART) but most are defective and do not constitute a replication-competent reservoir. The decay of infected cells carrying intact compared with defective HIV-1 proviruses has not been well defined in people on ART. METHODS We separately quantified intact and defective proviruses, residual plasma viremia, and markers of inflammation and activation in people on long-term ART. RESULTS Among 40 participants tested longitudinally from a median of 7.1 years to 12 years after ART initiation, intact provirus levels declined significantly over time (median half-life, 7.1 years; 95% confidence interval [CI], 3.9-18), whereas defective provirus levels did not decrease. The median half-life of total HIV-1 DNA was 41.6 years (95% CI, 13.6-75). The proportion of all proviruses that were intact diminished over time on ART, from about 10% at the first on-ART time point to about 5% at the last. Intact provirus levels on ART correlated with total HIV-1 DNA and residual plasma viremia, but there was no evidence for associations between intact provirus levels and inflammation or immune activation. CONCLUSIONS Cells containing intact, replication-competent proviruses are selectively lost during suppressive ART. Defining the mechanisms involved should inform strategies to accelerate HIV-1 reservoir depletion.
Collapse
Affiliation(s)
- Rajesh T Gandhi
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Ann C Collier
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sharon A Riddler
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Bernard J Macatangay
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Janet D Siliciano
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deborah K McMahon
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Thorball CW, Borghesi A, Bachmann N, Von Siebenthal C, Vongrad V, Turk T, Neumann K, Beerenwinkel N, Bogojeska J, Roth V, Kok YL, Parbhoo S, Wieser M, Böni J, Perreau M, Klimkait T, Yerly S, Battegay M, Rauch A, Schmid P, Bernasconi E, Cavassini M, Kouyos RD, Günthard HF, Metzner KJ, Fellay J. Host Genomics of the HIV-1 Reservoir Size and Its Decay Rate During Suppressive Antiretroviral Treatment. J Acquir Immune Defic Syndr 2020; 85:517-524. [PMID: 33136754 DOI: 10.1097/qai.0000000000002473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The primary hurdle for the eradication of HIV-1 is the establishment of a latent viral reservoir early after primary infection. Here, we investigated the potential influence of human genetic variation on the HIV-1 reservoir size and its decay rate during suppressive antiretroviral treatment. SETTING Genome-wide association study and exome sequencing study to look for host genetic determinants of HIV-1 reservoir measurements in patients enrolled in the Swiss HIV Cohort Study, a nation-wide prospective observational study. METHODS We measured total HIV-1 DNA in peripheral blood mononuclear cells from study participants, as a proxy for the reservoir size at 3 time points over a median of 5.4 years, and searched for associations between human genetic variation and 2 phenotypic readouts: the reservoir size at the first time point and its decay rate over the study period. We assessed the contribution of common genetic variants using genome-wide genotyping data from 797 patients with European ancestry enrolled in the Swiss HIV Cohort Study and searched for a potential impact of rare variants and exonic copy number variants using exome sequencing data generated in a subset of 194 study participants. RESULTS Genome-wide and exome-wide analyses did not reveal any significant association with the size of the HIV-1 reservoir or its decay rate on suppressive antiretroviral treatment. CONCLUSIONS Our results point to a limited influence of human genetics on the size of the HIV-1 reservoir and its long-term dynamics in successfully treated individuals.
Collapse
Affiliation(s)
- Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alessandro Borghesi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nadine Bachmann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chantal Von Siebenthal
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Valentina Vongrad
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Teja Turk
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Volker Roth
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Yik Lim Kok
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sonali Parbhoo
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Mario Wieser
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Division Infection Diagnostics, Department Biomedicine-Petersplatz, University of Basel, Basel, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases and Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, University Hospital Bern, Bern, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Infectious Diseases Service, Regional Hospital of Lugano, Lugano, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; and
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc Natl Acad Sci U S A 2020; 117:32066-32077. [PMID: 33239444 DOI: 10.1073/pnas.2020617117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.
Collapse
|
21
|
Origin of rebound virus in chronically SIV-infected Rhesus monkeys following treatment discontinuation. Nat Commun 2020; 11:5412. [PMID: 33110078 PMCID: PMC7591481 DOI: 10.1038/s41467-020-19254-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Viral rebound following antiretroviral therapy (ART) discontinuation in HIV-1-infected individuals is believed to originate from a small pool of CD4+ T cells harboring replication-competent provirus. However, the origin and nature of the rebound virus has remained unclear. Recent studies have suggested that rebound virus does not originate directly from individual latent proviruses but rather from recombination events involving multiple proviruses. Here we evaluate the origin of rebound virus in 16 ART-suppressed, chronically SIV-infected rhesus monkeys following ART discontinuation. We sequence viral RNA and viral DNA in these animals prior to ART initiation, during ART suppression, and following viral rebound, and we compare rebound viral RNA after ART discontinuation with near full-length viral DNA from peripheral blood and lymph node mononuclear cells (PBMC and LNMC) during ART suppression. Sequences of initial rebound viruses closely match viral DNA sequences in PBMC and LNMC during ART suppression. Recombinant viruses are rare in the initial rebound virus populations but arise quickly within 2–4 weeks after viral rebound. These data suggest that intact proviral DNA in PBMC and LNMC during ART suppression is likely the direct origin of viral rebound in chronically SIV-infected rhesus monkeys following ART discontinuation. The origin and nature of rebound HIV-1 virus following antiretroviral therapy (ART) discontinuation still remains unclear. Here, Liu et al. suggest that intact proviral DNA in peripheral blood and lymph node mononuclear cells during ART suppression likely is the source of viral rebound following ART discontinuation.
Collapse
|
22
|
Nonhuman Primate Testing of the Impact of Different Regulatory T Cell Depletion Strategies on Reactivation and Clearance of Latent Simian Immunodeficiency Virus. J Virol 2020; 94:JVI.00533-20. [PMID: 32669326 DOI: 10.1128/jvi.00533-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) may be key contributors to the HIV/SIV latent reservoir, since they harbor high levels of HIV/SIV; reverse CD4+ T cell immune activation status, increasing the pool of resting CD4+ T cells; and impair CD8+ T cell function, favoring HIV persistence. We tested the hypothesis that Treg depletion is a valid intervention toward an HIV cure by depleted Tregs in 14 rhesus macaque (RM) controllers infected with SIVsab, the virus that naturally infects sabaeus monkeys, through different strategies: administration of an anti-CCR4 immunotoxin, two doses of an anti-CD25 immunotoxin (interleukin-2 with diphtheria toxin [IL-2-DT]), or two combinations of both. All of these treatments resulted in significant depletion of the circulating Tregs (>70%) and their partial depletion in the gut (25%) and lymph nodes (>50%). The fractions of CD4+ T cells expressing Ki -67 increased up to 80% in experiments containing IL-2-DT and only 30% in anti-CCR4-treated RMs, paralleled by increases in the inflammatory cytokines. In the absence of ART, plasma virus rebounded to 103 vRNA copies/ml by day 10 after IL-2-DT administration. A large but transient boost of the SIV-specific CD8+ T cell responses occurred in IL-2-DT-treated RMs. Such increases were minimal in the RMs receiving anti-CCR4-based regimens. Five RMs received IL-2-DT on ART, but treatment was discontinued because of high toxicity and lymphopenia. As such, while all treatments depleted a significant proportion of Tregs, the side effects in the presence of ART prevent their clinical use and call for different Treg depletion approaches. Thus, based on our data, Treg targeting as a strategy for HIV cure cannot be discarded.IMPORTANCE Regulatory T cells (Tregs) can decisively contribute to the establishment and persistence of the HIV reservoir, since they harbor high levels of HIV/SIV, increase the pool of resting CD4+ T cells by reversing their immune activation status, and impair CD8+ T cell function, favoring HIV persistence. We tested multiple Treg depletion strategies and showed that all of them are at least partially successful in depleting Tregs. As such, Treg depletion appears to be a valid intervention toward an HIV cure, reducing the size of the reservoir, reactivating the virus, and boosting cell-mediated immune responses. Yet, when Treg depletion was attempted in ART-suppressed animals, the treatment had to be discontinued due to high toxicity and lymphopenia. Therefore, while Treg targeting as a strategy for HIV cure cannot be discarded, the methodology for Treg depletion has to be revisited.
Collapse
|
23
|
Richard K, Schonhofer C, Giron LB, Rivera-Ortiz J, Read S, Kannan T, Kinloch NN, Shahid A, Feilcke R, Wappler S, Imming P, Harris M, Brumme ZL, Brockman MA, Mounzer K, Kossenkov AV, Abdel-Mohsen M, Andrae-Marobela K, Montaner LJ, Tietjen I. The African natural product knipholone anthrone and its analogue anthralin (dithranol) enhance HIV-1 latency reversal. J Biol Chem 2020; 295:14084-14099. [PMID: 32788215 DOI: 10.1074/jbc.ra120.013031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.
Collapse
Affiliation(s)
- Khumoekae Richard
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ruth Feilcke
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Simone Wappler
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada .,Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Hattaf K, Dutta H. Modeling the dynamics of viral infections in presence of latently infected cells. CHAOS, SOLITONS, AND FRACTALS 2020; 136:109916. [PMID: 32518473 PMCID: PMC7271877 DOI: 10.1016/j.chaos.2020.109916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
The study aims to develop a new mathematical model in order to explain the dynamics of viral infections in vivo such as HIV infection. The model includes three classes of cells, takes into account the cure of infected cells in latent period and also incorporates three modes of transmission. The mention modes are modeled by three general incidence functions covering several special cases available in the literature. The basic properties of the model as well as its stability analysis have been carried out rigorously. Further, an application is given and also numerical simulation results have been incorporated supporting the analytical results.
Collapse
Affiliation(s)
- Khalid Hattaf
- Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco
| | - Hemen Dutta
- Department of Mathematics, Gauhati University, Guwahati 781014, India
| |
Collapse
|
25
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
27
|
Thiostrepton Reactivates Latent HIV-1 through the p-TEFb and NF-κB Pathways Mediated by Heat Shock Response. Antimicrob Agents Chemother 2020; 64:AAC.02328-19. [PMID: 32094131 DOI: 10.1128/aac.02328-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 replication but fails to cure the infection. The presence of an extremely stable viral latent reservoir, primarily in resting memory CD4+ T cells, remains a major obstacle to viral eradication. The "shock and kill" strategy targets these latently infected cells and boosts immune recognition and clearance, and thus, it is a promising approach for an HIV-1 functional cure. Although some latency-reversing agents (LRAs) have been reported, no apparent clinical progress has been made, so it is still vital to seek novel and effective LRAs. Here, we report that thiostrepton (TSR), a proteasome inhibitor, reactivates latent HIV-1 effectively in cellular models and in primary CD4+ T cells from ART-suppressed individuals ex vivo TSR does not induce global T cell activation, severe cytotoxicity, or CD8+ T cell dysfunction, making it a prospective LRA candidate. We also observed a significant synergistic effect of reactivation when TSR was combined with JQ1, prostratin, or bryostatin-1. Interestingly, six TSR analogues also show reactivation abilities that are similar to or more effective than that of TSR. We further verified that TSR upregulated expression of heat shock proteins (HSPs) in CD4+ T cells, which subsequently activated positive transcriptional elongation factor b (p-TEFb) and NF-κB signals, leading to viral reactivation. In summary, we identify TSR as a novel LRA which could have important significance for applications to an HIV-1 functional cure in the future.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To provide a summary of the recent data examining infected CD4+ T cell dynamics during ART and implications for cure strategies. RECENT FINDINGS HIV-1 cure is a worldwide unmet medical need. Although combination antiretroviral therapies effectively suppress HIV-1 replication in vivo, viral rebound occurs shortly after therapy cessation. The major barrier to HIV-1 cure is a pool of latently infected CD4+ T cells, called the latent reservoir, which is established early during infection, has a long half-life in vivo, and is not eliminated by treatment. It was thought that the stability of the reservoir came from long-lived latently infected CD4+ T cells, but more recent data suggests that the reservoir is dynamic, such that there is an equilibrium in which proliferation of HIV-1-infected cells is offset by an equivalent loss of cells harboring HIV-1 DNA. SUMMARY We review the evidence to support this dynamic model of persistence, mechanisms by which infected cells expand and are eliminated, and discuss the impact of a dynamic reservoir on the future of HIV-1 cure studies.
Collapse
|
29
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
30
|
HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Rep 2020; 24:2088-2100. [PMID: 30134170 DOI: 10.1016/j.celrep.2018.07.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/01/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted between T cells through the release of cell-free particles and through cell-cell contact. Cell-to-cell transmission is more efficient than cell-free virus transmission, mediates resistance to immune responses, and facilitates the spread of virus among T cells. However, whether HIV cell-to-cell transmission influences the establishment of HIV-1 latency has not been carefully explored. We developed an HIV-1 latency model based on the transmission of HIV-1 directly to resting CD4+ T cells by cell-cell contact. This model recapitulates the spread of HIV-1 in T-cell-dense anatomical compartments. We demonstrate that productively infected activated CD4+ T cells transmit HIV-1 to resting CD4+ T cells in a cell-contact-dependent manner. However, proviruses generated in this fashion are more difficult to induce compared to proviruses generated by cell-free infection, suggesting that cell-to-cell transmission influences the establishment and maintenance of latent infection in resting CD4+ T cells.
Collapse
|
31
|
Pahar B, Kuebler D, Rasmussen T, Wang X, Srivastav SK, Das A, Veazey RS. Quantification of Viral RNA and DNA Positive Cells in Tissues From Simian Immunodeficiency Virus/Simian Human Immunodeficiency Virus Infected Controller and Progressor Rhesus Macaques. Front Microbiol 2019; 10:2933. [PMID: 31921088 PMCID: PMC6933296 DOI: 10.3389/fmicb.2019.02933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023] Open
Abstract
Eradication of human immunodeficiency virus 1 (HIV-1) from an infected individual cannot be achieved using current antiretroviral therapy (ART) regimens. Viral reservoirs established in early infection remain unaffected by ART and are able to replenish systemic infection upon treatment interruption. Simian immunodeficiency virus (SIV) infected macaque models are useful for studying HIV pathogenesis, treatments, and persistent viral reservoirs. Here, we used the SIV macaque model to examine and quantify RNA and DNA positive cells in tissues from macaques that control viral replication (controllers) and those that have persistently high plasma viremia (progressors). A positive correlation was detected between tissue RNA+ cells and plasma viral load in both mesenteric lymph node (LN) and spleen. Similarly, a positive correlation also observed between DNA+ cells and plasma viral load in ileum and jejunum. Controllers had a lower frequency of both RNA and DNA+ cells in several tissues compared to progressors. However, DNA+ cells were prevalent in mesenteric LN, inguinal LN, colon, midbrain, and bone marrow tissues in both controller and progressors. Organized lymphoid tissues of LNs, spleen, and intestine were found as the major tissues positive for virus. Viral RNA and DNA positive cells were detected in brain and thymus in macaques with high plasma viremia and SIV-encephalitis. Both T cells and macrophages were shown to be infected in several tissues, indicating vaccines and ART should be specifically designed to protect these cells in organized lymphoid tissues. These results indicate ART should target infected cells in secondary lymphoid organs to reduce both productively and latently infected cells.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Dot Kuebler
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Terri Rasmussen
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
32
|
Mavigner M, Zanoni M, Tharp GK, Habib J, Mattingly CR, Lichterfeld M, Nega MT, Vanderford TH, Bosinger SE, Chahroudi A. Pharmacological Modulation of the Wnt/β-Catenin Pathway Inhibits Proliferation and Promotes Differentiation of Long-Lived Memory CD4 + T Cells in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J Virol 2019; 94:e01094-19. [PMID: 31619550 PMCID: PMC6912121 DOI: 10.1128/jvi.01094-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
The major obstacle to human immunodeficiency type 1 virus (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and is maintained through cellular proliferation. Long-lived memory CD4+ T cells with high self-renewal capacity, such as central memory (CM) T cells and stem cell memory (SCM) T cells, are major contributors to the viral reservoir in HIV-infected individuals on ART. The Wnt/β-catenin signaling pathway regulates the balance between self-renewal and differentiation of SCM and CM T cells, and pharmacological manipulation of this pathway offers an opportunity to interfere with the proliferation of latently infected cells. Here, we evaluated in vivo a novel approach to inhibit self-renewal of SCM and CM CD4+ T cells in the rhesus macaque (RM) model of simian immunodeficiency (SIV) infection. We used an inhibitor of the Wnt/β-catenin pathway, PRI-724, that blocks the interaction between the coactivator CREB-binding protein (CBP) and β-catenin, resulting in the cell fate decision to differentiate rather than proliferate. Our study shows that PRI-724 treatment of ART-suppressed SIVmac251-infected RMs resulted in decreased proliferation of SCM and CM T cells and modified the SCM and CM CD4+ T cell transcriptome toward a profile of more differentiated memory T cells. However, short-term treatment with PRI-724 alone did not significantly reduce the size of the viral reservoir. This work demonstrates for the first time that stemness pathways of long-lived memory CD4+ T cells can be pharmacologically modulated in vivo, thus establishing a novel strategy to target HIV persistence.IMPORTANCE Long-lasting CD4+ T cell subsets, such as central memory and stem cell memory CD4+ T cells, represent critical reservoirs for human immunodeficiency virus (HIV) persistence despite suppressive antiretroviral therapy. These cells possess stem cell-like properties of enhanced self-renewal/proliferation, and proliferation of latently infected memory CD4+ T cells plays a key role in maintaining the reservoir over time. Here, we evaluated an innovative strategy targeting the proliferation of long-lived memory CD4+ T cells to reduce viral reservoir stability. Using the rhesus macaque model, we tested a pharmacological inhibitor of the Wnt/β-catenin signaling pathway that regulates T cell proliferation. Our study shows that administration of the inhibitor PRI-724 decreased the proliferation of SCM and CM CD4+ T cells and promoted a transcriptome enriched in differentiation genes. Although the viral reservoir size was not significantly reduced by PRI-724 treatment alone, we demonstrate the potential to pharmacologically modulate the proliferation of memory CD4+ T cells as a strategy to limit HIV persistence.
Collapse
Affiliation(s)
- M Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Zanoni
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - G K Tharp
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - J Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C R Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - M T Nega
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - T H Vanderford
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - S E Bosinger
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - A Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
33
|
CD161 + CD4 + T Cells Harbor Clonally Expanded Replication-Competent HIV-1 in Antiretroviral Therapy-Suppressed Individuals. mBio 2019; 10:mBio.02121-19. [PMID: 31594817 PMCID: PMC6786872 DOI: 10.1128/mbio.02121-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The latent reservoir continues to be the major obstacle to curing HIV-1 infection. The clonal expansion of latently infected cells adds another layer maintaining the long-term stability of the reservoir, but its mechanism remains unclear. Here, we report that CD161+ CD4+ T cells serve as an important compartment of the HIV-1 latent reservoir and contain a significant amount of clonally expanded proviruses. In our study, we describe a feasible strategy that may reduce the size of the latent reservoir to a certain extent by counterbalancing the repopulation and dissemination of latently infected cells. The presence of an extremely stable latent reservoir of HIV-1 is the major obstacle to eradication, despite effective antiretroviral therapy (ART). Recent studies have shown that clonal expansion of latently infected cells without viral reactivation is an important phenomenon that maintains the long-term stability of the reservoir, yet its underlying mechanism remains unclear. Here we report that a subset of CD4+ T cells, characterized by CD161 expression on the surface, is highly permissive for HIV-1 infection. These cells possess a significantly higher survival and proliferative capacity than their CD161-negative counterparts. More importantly, we found that these cells harbor HIV-1 DNA and replication-competent latent viruses at a significantly higher frequency. By using massive single-genome proviral sequencing from ART-suppressed individuals, we confirm that CD161+ CD4+ T cells contain remarkably more identical proviral sequences, indicating clonal expansion of the viral genome in these cells. Taking the results together, our study identifies infected CD161+ CD4+ T cells to be a critical force driving the clonal expansion of the HIV-1 latent reservoir, providing a novel mechanism for the long-term stability of HIV-1 latency.
Collapse
|
34
|
Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, Lampiris H, Wong JK. HIV latency in isolated patient CD4 + T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med 2019; 10:10/430/eaap9927. [PMID: 29491188 DOI: 10.1126/scitranslmed.aap9927] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022]
Abstract
Latently infected CD4+ T cells are the main barrier to complete clearance of HIV infection, but it is unclear what mechanisms govern latent HIV infection in vivo. To address this question, we developed a new panel of reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assays specific for different HIV transcripts that define distinct blocks to transcription. We applied this panel of assays to CD4+ T cells freshly isolated from HIV-infected patients on suppressive antiretroviral therapy (ART) to quantify the degree to which different mechanisms inhibit HIV transcription. In addition, we measured the degree to which these transcriptional blocks could be reversed ex vivo by T cell activation (using anti-CD3/CD28 antibodies) or latency-reversing agents. We found that the main reversible block to HIV RNA transcription was not inhibition of transcriptional initiation but rather a series of blocks to proximal elongation, distal transcription/polyadenylation (completion), and multiple splicing. Cell dilution experiments suggested that these mechanisms operated in most of the HIV-infected CD4+ T cells examined. Latency-reversing agents exerted differential effects on the three blocks to HIV transcription, suggesting that these blocks may be governed by different mechanisms.
Collapse
Affiliation(s)
- Steven A Yukl
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA.
| | - Philipp Kaiser
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Peggy Kim
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Sushama Telwatte
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Sunil K Joshi
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Mai Vu
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Harry Lampiris
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| |
Collapse
|
35
|
Conway JM, Perelson AS, Li JZ. Predictions of time to HIV viral rebound following ART suspension that incorporate personal biomarkers. PLoS Comput Biol 2019; 15:e1007229. [PMID: 31339888 PMCID: PMC6682162 DOI: 10.1371/journal.pcbi.1007229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 08/05/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023] Open
Abstract
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. Suspension of therapy is followed by rebound of viral loads to high, pre-therapy levels. However, there is significant heterogeneity in speed of rebound, with some rebounds occurring within days, weeks, or sometimes years. We present a stochastic mathematical model to gain insight into these post-treatment dynamics, specifically characterizing the dynamics of short term viral rebounds (≤ 60 days). Li et al. (2016) report that the size of the expressed HIV reservoir, i.e., cell-associated HIV RNA levels, and drug regimen correlate with the time between ART suspension and viral rebound to detectable levels. We incorporate this information and viral rebound times to parametrize our model. We then investigate insights offered by our model into the underlying dynamics of the latent reservoir. In particular, we refine previous estimates of viral recrudescence after ART interruption by accounting for heterogeneity in infection rebound dynamics, and determine a recrudescence rate of once every 2-4 days. Our parametrized model can be used to aid in design of clinical trials to study viral dynamics following analytic treatment interruption. We show how to derive informative personalized testing frequencies from our model and offer a proof-of-concept example. Our results represent first steps towards a model that can make predictions on a person living with HIV (PLWH)'s rebound time distribution based on biomarkers, and help identify PLWH with long viral rebound delays.
Collapse
Affiliation(s)
- Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW HIV functional cure requires the elimination or a major reduction of HIV reservoir pool including male and female genital HIV reservoirs. A comprehensive understanding of HIV dynamics in these compartments is mandatory. RECENT FINDINGS Data from chronically HIV-infected therapy-naïve individuals or fully suppressed on combined antiretroviral therapy (cART) or undergoing ART interruptions are now available. Using paired blood/genital samples, HIV-RNA/DNA quantification and sequencing provide new insights on HIV dynamics in genital reservoirs. SUMMARY In the absence of cART, HIV shedding in semen and cervicovaginal secretions is frequent, resulting most likely from passive transfer of HIV strains that originates from bloodborne virions or infected blood cells. Partial and intermittent HIV compartmentalization in the male and female genital tracts can occur not only in chronically infected ART-naïve individuals but also when cART is used to prevent active blood replication. This transient autonomous HIV replication in the genital reservoir in a few individuals originates from recent transfer of virions or infected blood cells. cART interruption studies showed that blood and genital quasispecies are closely related, in agreement with a passive transfer. Altogether these data suggest that HIV genital reservoirs seem not to be a significant barrier to achieve HIV cure.
Collapse
|
37
|
Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Curr Opin Virol 2019; 38:21-30. [PMID: 31132749 DOI: 10.1016/j.coviro.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reservoir is a pool of latently infected cells harboring replication-competent proviral DNA that limits antiretroviral therapy. Suppression of HIV-1 by combination antiretroviral therapy (cART) delays progression of the disease but does not eliminate the viral reservoir, necessitating lifetime daily administration of antiretroviral drugs. To achieve durable suppression of viremia without daily therapy, various strategies have been developed, including long-acting antiretroviral drugs (LA-ARVs), broadly neutralizing antibodies (bNAbs), and chimeric antigen receptor T (CAR-T) cells. Here, we summarize and discuss recent breakthroughs in CAR-T cell therapies toward the eradication of HIV-1 reservoir. Although substantial challenges exist, CAR-T cell technology may serve as a promising strategy toward HIV-1 functional cure.
Collapse
|
38
|
Gantner P, Lee GQ, Rey D, Mesplede T, Partisani M, Cheneau C, Beck-Wirth G, Faller JP, Mohseni-Zadeh M, Martinot M, Wainberg MA, Fafi-Kremer S. Dolutegravir reshapes the genetic diversity of HIV-1 reservoirs. J Antimicrob Chemother 2019; 73:1045-1053. [PMID: 29244129 DOI: 10.1093/jac/dkx475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Better understanding of the dynamics of HIV reservoirs under ART is a critical step to achieve a functional HIV cure. Our objective was to assess the genetic diversity of archived HIV-1 DNA over 48 weeks in blood cells of individuals starting treatment with a dolutegravir-based regimen. Methods Eighty blood samples were prospectively and longitudinally collected from 20 individuals (NCT02557997) including: acutely (n = 5) and chronically (n = 5) infected treatment-naive individuals, as well as treatment-experienced individuals who switched to a dolutegravir-based regimen and were either virologically suppressed (n = 5) or had experienced treatment failure (n = 5). The integrase and V3 loop regions of HIV-1 DNA isolated from PBMCs were analysed by pyrosequencing at baseline and weeks 4, 24 and 48. HIV-1 genetic diversity was calculated using Shannon entropy. Results All individuals achieved or maintained viral suppression throughout the study. A low and stable genetic diversity of archived HIV quasispecies was observed in individuals starting treatment during acute infection. A dramatic reduction of the genetic diversity was observed at week 4 of treatment in the other individuals. In these patients and despite virological suppression, a recovery of the genetic diversity of the reservoirs was observed up to 48 weeks. Viral variants bearing dolutegravir resistance-associated substitutions at integrase position 50, 124, 230 or 263 were detected in five individuals (n = 5/20, 25%) from all groups except those who were ART-failing at baseline. None of these substitutions led to virological failure. Conclusions These data demonstrate that the genetic diversity of the HIV-1 reservoir is reshaped following the initiation of a dolutegravir-based regimen and strongly suggest that HIV-1 can continue to replicate despite successful treatment.
Collapse
Affiliation(s)
- Pierre Gantner
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| | - Guinevere Q Lee
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Rey
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Marialuisa Partisani
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Christine Cheneau
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Geneviève Beck-Wirth
- Internal Medicine Department, HIV-infection care center, GHR Mulhouse Sud Alsace, Mulhouse, France
| | - Jean-Pierre Faller
- Department of Infectious Diseases, Hôpital Nord Franche Comté, Belfort, France
| | - Mahsa Mohseni-Zadeh
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Martin Martinot
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| |
Collapse
|
39
|
IL-21 Expands HIV-1-Specific CD8 + T Memory Stem Cells to Suppress HIV-1 Replication In Vitro. J Immunol Res 2019; 2019:1801560. [PMID: 31183385 PMCID: PMC6515191 DOI: 10.1155/2019/1801560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
Due to the existence of viral reservoirs, the rebound of human immunodeficiency virus type 1 (HIV-1) viremia can occur within weeks after discontinuing combined antiretroviral therapy. Immunotherapy could potentially be applied to eradicate reactivated HIV-1 in latently infected CD4+ T lymphocytes. Although the existence of HIV-1-specific CD8+ T memory stem cells (TSCMs) is well established, there are currently no reports regarding methods using CD8+ TSCMs to treat HIV-1 infection. In this study, we quantified peripheral blood antigen-specific CD8+ TSCMs and then expanded HIV-1-specific TSCMs that targeted optimal antigen epitopes (SL9, IL9, and TL9) in the presence of interleukin- (IL-) 21 or IL-15. The suppressive capacity of the expanded CD8+ TSCMs on HIV-1 production was measured by assessing cell-associated viral RNA and performing viral outgrowth assays. We found that the number of unmutated TL9-specific CD8+ TSCMs positively correlated with the abundance of CD4+ T cells and that the expression of IFN-γ was higher in TL9-specific CD8+ TSCMs than that in non-TL9-specific CD8+ TSCMs. Moreover, the antiviral capacities of IL-21-stimulated CD8+ TSCMs exceeded those of conventional CD8+ memory T cells and IL-15-stimulated CD8+ TSCMs. Thus, we demonstrated that IL-21 could efficiently expand HIV-1-specific CD8+ TSCMs to suppress HIV-1 replication. Our study provides new insight into the function of IL-21 in the in vitro suppression of HIV-1 replication.
Collapse
|
40
|
Nijmeijer BM, Sarrami‐Forooshani R, Steba GS, Schreurs RRCE, Koekkoek SM, Molenkamp R, Schinkel J, Reiss P, Siegenbeek van Heukelom ML, van der Valk M, Ribeiro CMS, Geijtenbeek TBH. HIV-1 exposure and immune activation enhance sexual transmission of Hepatitis C virus by primary Langerhans cells. J Int AIDS Soc 2019; 22:e25268. [PMID: 30932366 PMCID: PMC6442005 DOI: 10.1002/jia2.25268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/05/2019] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION The significant rise in incidence of Hepatitis C virus (HCV) infection among men-who-have-sex-with-men (MSM) living with HIV-1 suggests that HCV under specific circumstances is transmitted via sexual contact. During sexual transmission HCV has to cross the epithelial barrier to either directly enter the blood stream or indirectly via mucosal immune cells. However, the mechanisms of sexual transmission of HCV remain unclear. We investigated the role of Langerhans cells (LCs) in HCV susceptibility during sexual contact as LCs are among the first cells in mucosal tissues to encounter invading viruses. METHODS We investigated the phenotype of primary LCs in anal biopsies from MSM living with HIV-1. To investigate the role of primary LCs in HCV infection and transmission, we have used both isolated primary skin LCs and the ex vivo tissue transmission model. RESULTS Our data identified an important role for mucosal LCs in facilitating HCV transmission after HIV-1 exposure or immune activation. LCs were detected within mucosal anal tissues obtained from HIV-1 positive MSM biopsies. In order to perform functional studies, we used primary LCs from skin, which have a similar phenotype as mucosal LCs. Immature LCs were neither infected nor transmitted HCV to hepatocytes. Notably, exposure to HIV-1 significantly increased HCV transmission by LCs in the ex vivo transmission model. HIV-1 replication was crucial for the increased HCV transmission as HIV-1 inhibitors significantly reduced HIV-1-induced HCV transmission. Moreover, tissue immune activation of LCs also increased HCV transmission to target cells. CONCLUSIONS Thus, our data strongly indicate that HIV-1 or immune activation in MSM leads to capture of HCV by mucosal LCs, which might facilitate transmission to other cells or allow entry of HCV into the blood. This novel transmission mechanism by LCs also implicates that the activation state of LCs is an important cellular determinant for HCV susceptibility after sexual contact.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ramin Sarrami‐Forooshani
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gaby S Steba
- Department of Medical MicrobiologyClinical Virology LaboratoryAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Renée RCE Schreurs
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sylvie M Koekkoek
- Department of Medical MicrobiologyClinical Virology LaboratoryAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Richard Molenkamp
- Department of Medical MicrobiologyClinical Virology LaboratoryAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janke Schinkel
- Department of Medical MicrobiologyClinical Virology LaboratoryAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Peter Reiss
- Department of Global HealthAmsterdam University Medical Centers, and Amsterdam Institute for Global Health and DevelopmentAmsterdam University Medical Centers HIV Monitoring FoundationAmsterdamThe Netherlands
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Matthijs L Siegenbeek van Heukelom
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of DermatologyAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc van der Valk
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Carla MS Ribeiro
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
41
|
Induction of neutralizing antibodies against tier 2 human immunodeficiency virus 1 in rhesus macaques infected with tier 1B simian/human immunodeficiency virus. Arch Virol 2019; 164:1297-1308. [PMID: 30820667 PMCID: PMC6469619 DOI: 10.1007/s00705-019-04173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/21/2022]
Abstract
We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutralization susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 (#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production and will facilitate the development of a vaccine that elicits nAbs against HIV-1.
Collapse
|
42
|
Telwatte S, Lee S, Somsouk M, Hatano H, Baker C, Kaiser P, Kim P, Chen TH, Milush J, Hunt PW, Deeks SG, Wong JK, Yukl SA. Gut and blood differ in constitutive blocks to HIV transcription, suggesting tissue-specific differences in the mechanisms that govern HIV latency. PLoS Pathog 2018; 14:e1007357. [PMID: 30440043 PMCID: PMC6237391 DOI: 10.1371/journal.ppat.1007357] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Latently-infected CD4+ T cells are widely considered to be the major barrier to a cure for HIV. Much of our understanding of HIV latency comes from latency models and blood cells, but most HIV-infected cells reside in lymphoid tissues such as the gut. We hypothesized that tissue-specific environments may impact the mechanisms that govern HIV expression. To assess the degree to which different mechanisms inhibit HIV transcription in the gut and blood, we quantified HIV transcripts suggestive of transcriptional interference (U3-U5; "Read-through"), initiation (TAR), 5' elongation (R-U5-pre-Gag; "Long LTR"), distal transcription (Nef), completion (U3-polyA; "PolyA"), and multiple splicing (Tat-Rev) in matched peripheral blood mononuclear cells (PBMCs) and rectal biopsies, and matched FACS-sorted CD4+ T cells from blood and rectum, from two cohorts of ART-suppressed individuals. Like the PBMCs, rectal biopsies showed low levels of read-through transcripts (median = 23 copies/106 cells) and a gradient of total (679)>elongated(75)>Nef(16)>polyadenylated (11)>multiply-spliced HIV RNAs(<1) [p<0.05 for all], demonstrating blocks to HIV transcriptional elongation, completion, and splicing. Rectal CD4+ T cells showed a similar gradient of total>polyadenylated>multiply-spliced transcripts, but the ratio of total to elongated transcripts was 6-fold lower than in blood CD4+ T cells (P = 0.016), suggesting less of a block to HIV transcriptional elongation in rectal CD4+ T cells. Levels of total transcripts per provirus were significantly lower in rectal biopsies compared to PBMCs (median 3.5 vs. 15.4; P = 0.008) and in sorted CD4+ T cells from rectum compared to blood (median 2.7 vs. 31.8; P = 0.016). The lower levels of HIV transcriptional initiation and of most HIV transcripts per provirus in the rectum suggest that this site may be enriched for latently-infected cells, cells in which latency is maintained by different mechanisms, or cells in a "deeper" state of latency. These are important considerations for designing therapies that aim to disrupt HIV latency in all tissue compartments.
Collapse
Affiliation(s)
- Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Sulggi Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Ma Somsouk
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Hiroyu Hatano
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Christopher Baker
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Philipp Kaiser
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Peggy Kim
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Tsui-Hua Chen
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Jeffrey Milush
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Peter W. Hunt
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Steven G. Deeks
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Joseph K. Wong
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Steven A. Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| |
Collapse
|
43
|
Antibody-Mediated CD4 Depletion Induces Homeostatic CD4 + T Cell Proliferation without Detectable Virus Reactivation in Antiretroviral Therapy-Treated Simian Immunodeficiency Virus-Infected Macaques. J Virol 2018; 92:JVI.01235-18. [PMID: 30185596 DOI: 10.1128/jvi.01235-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV) eradication is the long-term persistence of latently infected CD4+ T cells harboring integrated replication-competent virus. It has been proposed that the homeostatic proliferation of these cells drives long-term reservoir persistence in the absence of virus reactivation, thus avoiding cell death due to either virus-mediated cytopathicity or immune effector mechanisms. Here, we conducted an experimental depletion of CD4+ T cells in eight antiretroviral therapy (ART)-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) to determine whether the homeostatically driven CD4+ T-cell proliferation that follows CD4+ T-cell depletion results in reactivation of latent virus and/or expansion of the virus reservoir. After administration of the CD4R1 antibody, we observed a CD4+ T cell depletion of 65 to 89% in peripheral blood and 20 to 50% in lymph nodes, followed by a significant increase in CD4+ T cell proliferation during CD4+ T cell reconstitution. However, this CD4+ T cell proliferation was not associated with detectable increases in viremia, indicating that the homeostatic activation of CD4+ T cells is not sufficient to induce virus reactivation from latently infected cells. Interestingly, the homeostatic reconstitution of the CD4+ T cell pool was not associated with significant changes in the number of circulating cells harboring SIV DNA compared to results for the first postdepletion time point. This study indicates that, in ART-treated SIV-infected RMs, the homeostasis-driven CD4+ T-cell proliferation that follows experimental CD4+ T-cell depletion occurs in the absence of detectable reactivation of latent virus and does not increase the size of the virus reservoir as measured in circulating cells.IMPORTANCE Despite successful suppression of HIV replication with antiretroviral therapy, current treatments are unable to eradicate the latent virus reservoir, and treatment interruption almost invariably results in the reactivation of HIV even after decades of virus suppression. Homeostatic proliferation of latently infected cells is one mechanism that could maintain the latent reservoir. To understand the impact of homeostatic mechanisms on virus reactivation and reservoir size, we experimentally depleted CD4+ T cells in ART-treated SIV-infected rhesus macaques and monitored their homeostatic rebound. We find that depletion-induced proliferation of CD4+ T cells is insufficient to reactivate the viral reservoir in vivo Furthermore, the proportion of SIV DNA+ CD4+ T cells remains unchanged during reconstitution, suggesting that the reservoir is resistant to this mechanism of expansion at least in this experimental system. Understanding how T cell homeostasis impacts latent reservoir longevity could lead to the development of new treatment paradigms aimed at curing HIV infection.
Collapse
|
44
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
45
|
Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir. Proc Natl Acad Sci U S A 2018; 115:E7795-E7804. [PMID: 30061382 PMCID: PMC6099847 DOI: 10.1073/pnas.1803468115] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms leading to the creation and maintenance of the latent HIV reservoir remain incompletely understood. Unbiased shRNA screens showed that the estrogen receptor acts as a potent repressor of proviral reactivation in T cells. Antagonists of ESR-1 activate latent HIV-1 proviruses while agonists, including β-estradiol, potently block HIV reactivation. Using a well-matched set of male and female donors, we found that ESR-1 plays an important role in regulating HIV transcription in both sexes. However, women are much more responsive to estrogen and appear to harbor smaller inducible RNA reservoirs. Accounting for the impact of estrogen on HIV viral reservoirs will therefore be critical for devising curative therapies for women, a group representing 51% of global HIV infections. Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either β-estradiol or an SERM. β-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and β-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.
Collapse
|
46
|
Short-Term Pegylated Interferon α2a Treatment Does Not Significantly Reduce the Viral Reservoir of Simian Immunodeficiency Virus-Infected, Antiretroviral Therapy-Treated Rhesus Macaques. J Virol 2018; 92:JVI.00279-18. [PMID: 29720521 DOI: 10.1128/jvi.00279-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
The major obstacle to human immunodeficiency type 1 (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and causes rapid viral rebound if treatment is interrupted. Type I interferons are immunomodulatory cytokines that induce antiviral factors and have been evaluated for the treatment of HIV-infected individuals, resulting in moderate reduction of viremia and inconclusive data about their effect on reservoir size. Here, we assessed the potential of pegylated IFN-α2a (pIFN-α2a) to reduce the viral reservoir in simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques (RMs). We found that pIFN-α2a treatment of animals in which virus replication is effectively suppressed with ART is safe and well tolerated, as no major clinical side effects were observed. By monitoring the cellular immune response during this intervention, we established that pIFN-α2a administration is not associated with either CD4+ T cell depletion or increased immune activation. Importantly, we found that interferon-stimulated genes (ISGs) were significantly upregulated in IFN-treated RMs compared to control animals, confirming that pIFN-α2a is bioactive in vivo To evaluate the effect of pIFN-α2a administration on the viral reservoir in CD4+ T cells, we performed cell-associated proviral SIV DNA measurements in multiple tissues and assessed levels of replication-competent virus by a quantitative viral outgrowth assay (QVOA). These analyses failed to reveal any significant difference in reservoir size between IFN-treated and control animals. In summary, our data suggest that short-term type I interferon treatment in combination with suppressive ART is not sufficient to induce a significant reduction of the viral reservoir in SIV-infected RMs.IMPORTANCE The potential of type I interferons to reduce the viral reservoir has been recently studied in clinical trials in HIV-infected humans. However, given the lack of mechanistic data and the potential for safety concerns, a more comprehensive testing of IFN treatment in vivo in SIV-infected RMs is critical to provide rationale for further development of this intervention in humans. Utilizing the SIV/RM model in which virus replication is suppressed with ART, we addressed experimental limitations of previous human studies, in particular the lack of a control group and specimen sampling limited to blood. Here, we show by rigorous testing of blood and lymphoid tissues that virus replication and reservoir size were not significantly affected by pIFN-α2a treatment in SIV-infected, ART-treated RMs. This suggests that intensified and/or prolonged IFN treatment regimens, possibly in combination with other antilatency agents, are necessary to effectively purge the HIV/SIV reservoir under ART.
Collapse
|
47
|
Crosby B, Deas CM. Repurposing medications for use in treating HIV infection: A focus on valproic acid as a latency-reversing agent. J Clin Pharm Ther 2018; 43:740-745. [PMID: 29959785 DOI: 10.1111/jcpt.12726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/31/2018] [Indexed: 01/18/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Combined antiretroviral therapy (ART) reduces human immunodeficiency virus type 1 (HIV-1) RNA plasma levels below the limit of detection. However, HIV-1 persists in latently infected CD4+ T cells, which is currently the barrier to curing HIV-1. Novel mechanisms are being explored to target HIV-1 latent reservoirs. The purpose of this review was to critically evaluate the available literature on innovative use of valproic acid (VPA) for the agent's therapeutic effects on reversing latent human immunodeficiency virus (HIV) reservoirs. METHODS A search of PubMed (1996-December 2017) and International Pharmaceutical Abstracts (1970-December 2017) was conducted using the MeSH terms HIV, valproic acid and latency. Free text searches included the terms latency-reversing agents, HIV therapy and valproic acid. RESULTS Six clinical trials and one case report were critically evaluated on VPA's therapeutic effects on reversing HIV reservoirs. Only one study reported that VPA therapy has a significant effect on reversing HIV-1 latent reservoirs; all other studies reviewed and did not demonstrate an appreciable effect of VPA on reversing HIV latent reservoirs. WHAT IS NEW AND CONCLUSION Current literature does not support the use of VPA as adjunctive therapy to reverse HIV-1 latent reservoirs. Sample sizes were small, and overall studies were not sufficiently powered. Further studies are needed to make informed conclusions on the use of VPA as an HIV-1 latency-reversing agent.
Collapse
Affiliation(s)
- B Crosby
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - C M Deas
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| |
Collapse
|
48
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Distribution and reduction magnitude of HIV-DNA burden in CD4+ T cell subsets depend on art initiation timing. AIDS 2018; 32:921-926. [PMID: 29424775 DOI: 10.1097/qad.0000000000001770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of our study was to analyze the dynamics of HIV-DNA levels in CD4 T-cell subsets in individuals starting successful dolutegravir-based regimens. DESIGN Twenty-seven individuals with acute infection (AI, n = 8) or chronic infection (CI, n = 5) and patients in virological success (VS, n = 10) or virological failure (VF, n = 4) on antiretroviral therapy (ART) who initiated a dolutegravir-based regimen were enrolled (NCT02557997). METHODS CD4 T-cells from baseline and week 48 of successful treatment were sorted into effector memory (TEM), transitional memory (TTM), central memory (TCM) and naïve (TN) cell groups for total HIV-DNA measurements by qPCR. Bayesian methods were used to estimate the posterior probability of a HIV-DNA decrease more than 0.25 log copies/10 cells at week 48. RESULTS All patients achieved HIV-RNA suppression at 48 weeks. At baseline and week 48, the highest contributions to the HIV-DNA-infected pool from CD4 T cells were observed in TTM cells in the AI group (62.4 and 60.2%, respectively), but in TCM cells for the CI, VS and VF groups (54.6 and 59.4%, 58.2 and 62.9%, 62.4 and 67.2%), respectively. HIV-DNA burden declined in all subsets after 48 weeks of treatment in the AI (probability (Pr) > 91%), CI (Pr > 52%) and VF (Pr > 52%) groups, but only in TEM cells in the VS group (Pr = 95%). CONCLUSION Our study showed that dolutegravir-based treatment reduced the HIV-DNA cellular burden in individuals from the AI, CI and VF groups, though the reduction levels differed between the patient subgroups. Early treated patients had the highest probability of HIV-DNA reduction. Interestingly, in the aviremic VS group, HIV-DNA reduction was limited to TEM cells.
Collapse
|
50
|
Expanded cellular clones carrying replication-competent HIV-1 persist, wax, and wane. Proc Natl Acad Sci U S A 2018; 115:E2575-E2584. [PMID: 29483265 DOI: 10.1073/pnas.1720665115] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells is a major barrier to cure. Several lines of evidence suggest that the latent reservoir is maintained through cellular proliferation. Analysis of this proliferative process is complicated by the fact that most infected cells carry defective proviruses. Additional complications are that stimuli that drive T cell proliferation can also induce virus production from latently infected cells and productively infected cells have a short in vivo half-life. In this ex vivo study, we show that latently infected cells containing replication-competent HIV-1 can proliferate in response to T cell receptor agonists or cytokines that are known to induce homeostatic proliferation and that this can occur without virus production. Some cells that have proliferated in response to these stimuli can survive for 7 d while retaining the ability to produce virus. This finding supports the hypothesis that both antigen-driven and cytokine-induced proliferation may contribute to the stability of the latent reservoir. Sequencing of replication-competent proviruses isolated from patients at different time points confirmed the presence of expanded clones and demonstrated that while some clones harboring replication-competent virus persist longitudinally on a scale of years, others wax and wane. A similar pattern is observed in longitudinal sampling of residual viremia in patients. The observed patterns are not consistent with a continuous, cell-autonomous, proliferative process related to the HIV-1 integration site. The fact that the latent reservoir can be maintained, in part, by cellular proliferation without viral reactivation poses challenges to cure.
Collapse
|