1
|
Palmer RD. The protein paradox, carnivore diet & hypertrophy versus longevity.: Short term nutrition and hypertrophy versus longevity. Nutr Health 2025:2601060251314575. [PMID: 40094942 DOI: 10.1177/02601060251314575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Meat consumption has been a common food selection for humans for millennia. Meat is rich in amino acids, delivers vast amounts of nutrients and assists in short term health and hypertrophy. However, meat consumption can induce the activation of mTOR and IGF-1, accelerated aging, vascular constriction, atherosclerosis, heart disease, increased risk of diabetes, systemic inflammatory effects, cancers (including colorectal and prostate cancers), advanced glycation end products, impaired immune function / increased susceptibility to infection via downstream advanced glycation end product accumulation, polycyclic aromatic hydrocarbon ingestion, increased homocysteine levels among many other pathophysiologies. Research papers showing health benefits of meat consumption versus other papers showing the detriment of meat have led to confusion as many cohorts such as bodybuilding, health and wellness groups, carnivore diet practitioners, online social media longevity groups and more are interested in data that exists across the peer reviewed literature, however, few papers offer a super wide view where meat consumption benefits and pitfalls are taken into account.BackgroundThe need for such a systematic review is high as health enthusiasts incorrectly often quote single data points from papers showing a single benefit from consuming meat. This often leads to a higher consumption of meat. However, not all meat consumption is the same, and not all meat delivers the same benefits or detriments. Therefore, a systematic review of current literature has been performed to extrapolate the data into whether those interested in hypertrophy, short term nutrition and energy, and longevity should consume meat. Aim: The aim of this research is to dispel myths about meat consumption, such as that meat has a one size fits all benefit to all those that consume it regardless of genetics, or that consuming meat-based protein is the same across all meats.MethodsA deep analysis of almost one hundred peer reviewed papers and surveys spanning decades of cohorts having a meat-based diet compared to those consuming a plant based diet has been performed. Further analysis on specific side effects and disease has also been performed.ResultsThe results of our systematic review show clearly that meat is great for hypertrophy, short term nutrition, short term energy requirements, but a very poor choice when it comes to healthy aging and longevity.ConclusionAnimal protein is great for building muscle, short term energy, maintaining high levels of nutrients, but a carnivore diet holds too many adverse long term side effects to be considered a staple for a longevity-based diet. The evidence is very strong, that subjects interested in longevity and aging should shift their protein intake away from red and processed meats, and either toward white meats or plant-based sources if longevity is the goal.
Collapse
|
2
|
Amodio G, Giacomini G, Boeri L, Raffo M, Cilio S, Pozzi E, Belladelli F, Negri F, Ferrara AM, d'Arma A, Santoni de Sio FR, Pagliardini L, Papaleo E, Ventimiglia E, Alfano M, Montorsi F, Salonia A, Gregori S. Specific types of male infertility are correlated with T cell exhaustion or senescence signatures. Nat Commun 2025; 16:971. [PMID: 39856063 PMCID: PMC11759947 DOI: 10.1038/s41467-025-56193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The association between male infertility and health status has yet to be unraveled. Here, by combining multiparameter phenotyping and scRNA-seq, we delineate the immune status of infertile men both at the semen and systemic levels. We first observe that young infertile men have a pro-inflammatory milieu with increased frequency of myeloid cells and inflammatory mediators in the seminal fluid and the peripheral blood, which are immune alterations typically observed in healthy elderly men. Transcriptomic profiling confirms the upregulation of genes associated with the interferon-gamma and -alpha responses in peripheral blood T cells of infertile men with oligo-astheno-teratozoospermia or non-obstructive azoospermia, with distinct T cell signatures of exhaustion and senescence discriminating the two infertile conditions. These findings provide evidence that subtypes of male infertility are characterized by specific immune signatures and unravel the potential link between infertility and the risk of developing secondary diseases.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giorgia Giacomini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Department of Urology, Milan, Italy
| | - Massimiliano Raffo
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Simone Cilio
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", Naples, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Fausto Negri
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia d'Arma
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Luca Pagliardini
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Papaleo
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eugenio Ventimiglia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy.
- University Vita-Salute San Raffaele, Milan, Italy.
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
3
|
Mapuskar KA, London B, Zacharias ZR, Houtman JCD, Allen BG. Immunometabolism in the Aging Heart. J Am Heart Assoc 2025; 14:e039216. [PMID: 39719411 DOI: 10.1161/jaha.124.039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Structural, functional, and molecular-level changes in the aging heart are influenced by a dynamic interplay between immune signaling and cellular metabolism that is referred to as immunometabolism. This review explores the crosstalk between cellular metabolic pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, and the immune processes that govern cardiac aging. With a rapidly aging population that coincides with increased cardiovascular risk and cancer incidence rates, understanding the immunometabolic underpinnings of cardiac aging provides a foundation for identifying therapeutic targets to mitigate cardiac dysfunction. Aging alters the immune environment of the heart by concomitantly driving the changes in immune cell metabolism, mitochondrial dysfunction, and redox signaling. Shifts in these metabolic pathways exacerbate inflammation and impair tissue repair, creating a vicious cycle that accelerates cardiac functional decline. Treatment with cancer therapy further complicates this landscape, as aging-associated immunometabolic disruptions augment the susceptibility to cardiotoxicity. The current review highlights therapeutic strategies that target the immunometabolic axis to alleviate cardiac aging pathologies. Interventions include modulating metabolic intermediates, improving mitochondrial function, and leveraging immune signaling pathways to restore cardiac health. Advances in immunometabolism thus hold significant potential for translating preclinical findings into therapies that improve the quality of life for the aging population and underscore the need for approaches that address the immunometabolic mechanisms of cardiac aging, providing a framework for future research.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Department of Radiation Oncology University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Holden Comprehensive Cancer Center, Carver College of Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
| | - Barry London
- Holden Comprehensive Cancer Center, Carver College of Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Department of Internal Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, Carver College of Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Human Immunology Core University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, Carver College of Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Human Immunology Core University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Department of Microbiology and Immunology University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
| | - Bryan G Allen
- Department of Radiation Oncology University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
- Holden Comprehensive Cancer Center, Carver College of Medicine University of Iowa Hospitals and Clinic, University of Iowa Healthcare Iowa City IA USA
| |
Collapse
|
4
|
Zaragoza-García O, Briceño O, Villafan-Bernal JR, Gutiérrez-Pérez IA, Rojas-Delgado HU, Alonso-Silverio GA, Alarcón-Paredes A, Navarro-Zarza JE, Morales-Martínez C, Rodríguez-García R, Guzmán-Guzmán IP. Levels of sCD163 in women rheumatoid arthritis: Relationship with cardiovascular risk markers. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100721. [PMID: 38729859 DOI: 10.1016/j.arteri.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
AIM The soluble scavenger receptor differentiation antigen 163 (sCD163), a monocyte/macrophage activation marker, is related to cardiovascular mortality in the general population. This study aimed to evaluate their relationship between serum levels of sCD163 with cardiovascular risk indicators in rheumatoid arthritis (RA). METHODS A cross-sectional study was performed on 80 women diagnosed with RA. The cardiovascular risks were determined using the lipid profile, metabolic syndrome, and QRISK3 calculator. For the assessment of RA activity, we evaluated the DAS28 with erythrocyte sedimentation rate (DAS28-ESR). The serum levels of sCD163 were determined by the ELISA method. Logistic regression models and receiver operating characteristics (ROC) curve were used to assess the association and predictive value of sCD163 with cardiovascular risk in RA patients. RESULTS Levels of sCD163 were significantly higher in RA patients with high sensitivity protein C-reactive to HDL-c ratio (CHR)≥0.121 (p=0.003), total cholesterol/HDL-c ratio>7% (p=0.004), LDL-c/HDL-c ratio>3% (p=0.035), atherogenic index of plasma>0.21 (p=0.004), cardiometabolic index (CMI)≥1.70 (p=0.005), and high DAS28-ESR (p=0.004). In multivariate analysis, levels of sCD163≥1107.3ng/mL were associated with CHR≥0.121 (OR=3.43, p=0.020), CMI≥1.70 (OR=4.25, p=0.005), total cholesterol/HDL-c ratio>7% (OR=6.63, p=0.044), as well as with DAS28-ESR>3.2 (OR=8.10, p=0.008). Moreover, levels of sCD163 predicted CHR≥0.121 (AUC=0.701), cholesterol total/HDL ratio>7% (AUC=0.764), and DAS28-ESR>3.2 (AUC=0.720). CONCLUSION Serum levels of sCD163 could be considered a surrogate of cardiovascular risk and clinical activity in RA.
Collapse
Affiliation(s)
- Oscar Zaragoza-García
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Olivia Briceño
- Infectious Diseases Research Center, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José Rafael Villafan-Bernal
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - Ilse Adriana Gutiérrez-Pérez
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | | | - Gustavo Adolfo Alonso-Silverio
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Antonio Alarcón-Paredes
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | | | | | - Rubén Rodríguez-García
- Laboratorio de Clínico, Instituto Mexicano del Seguro Social, Hospital General Regional, Cuernavaca, Morelos, Mexico
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
5
|
Ko EJ, Jeong JY, Bae SC, Cha HJ. Expression profiles of TNF-Alpha and HERV-K Env proteins in multiple types of colon and lung disease. Genes Genomics 2025; 47:113-123. [PMID: 39567418 DOI: 10.1007/s13258-024-01585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) were integrated into the human genome millions of years ago and have since proliferated to comprise about 8% of the human genome. For a long time, HERVs were thought to be remnants of ancient viruses, rendered inactive over the ages. However, recent studies have revealed that HERVs are involved in various diseases, including cancer. Notably, HERVs have been found to play a crucial role in immune responses and inflammatory processes, indicating their significant influence on the regulation of immune-related diseases. OBJECTIVE We reported in previous reports that HERV-K119 env Knockout (KO) and inflammatory response were associated. In this study, we identified the correlation between inflammatory disease and HERV-K Env and TNF-Alpha protein expression in multiple types of colon disease tissue and lung disease spectrum tissue. METHODS We performed Immunofluorescence (IF) using multiple types of colon disease and lung disease spectrum tissue microarray (TMAs) and compared and analyzed the patient clinical data provided. RESULTS As a result, we identified that the expression of HERV-K Env and TNF-Alpha proteins in certain colorectal inflammatory diseases and certain lung inflammatory diseases showed specific expression. And through the analysis of the clinical data provided, environmental factors could be identified. CONCLUSION Our study demonstrates that the relationship between TNF-Alpha and HERV-K Env expression in inflammation disease and clinical significance of disease tissues.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, 10032, USA.
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, 49241, Republic of Korea
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea
| | - Sung Chul Bae
- Department of Biological Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
| |
Collapse
|
6
|
Schmid SM, Hoffman JM, Prescott J, Ernst H, Promislow DEL, Creevy KE. The companion dog as a model for inflammaging: a cross-sectional pilot study. GeroScience 2024; 46:5395-5407. [PMID: 38822125 PMCID: PMC11494019 DOI: 10.1007/s11357-024-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Inflammaging, the chronic, progressive proinflammatory state associated with aging, has been associated with multiple negative health outcomes in humans. The pathophysiology of inflammaging is complex; however, it is often characterized by high serum concentrations of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and C-reactive protein (CRP). Few studies have evaluated the effects of age on inflammatory cytokines in companion dogs, and most of these studies included dogs of a single breed. In this cross-sectional study, we measured multiple circulating inflammatory markers and hematological parameters in banked serum samples from 47 healthy companion dogs of various breeds enrolled in the Dog Aging Project. Using univariate linear models, we investigated the association of each of these markers with age, sex, body weight, and body condition score (BCS), a measure of obesity in the dog. Serum IL-6, IL-8, and TNF-α concentrations were all positively associated with age. Lymphocyte count was negatively associated with age. Platelet count had a negative association with body weight. IL-2, albumin, cholesterol, triglyceride, bilirubin, S100A12, and NMH concentrations were not associated with age, weight, BCS, or sex after adjustment for multiple comparisons. Our findings replicate previous findings in humans, including increases in IL-6 and TNF-α with age, giving more evidence to the strength of the companion dog as a model for human aging.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, GA, USA
| | - Jena Prescott
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Holley Ernst
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
- Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, USA
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Wang J, Xiang Y, Wu L, Zhang C, Han B, Cheng Y, Tong Y, Yan D, Wang L. The association between inflammatory cytokines and sarcopenia-related traits: a bi-directional Mendelian randomization study. Eur J Clin Nutr 2024; 78:1032-1040. [PMID: 39122802 PMCID: PMC11611733 DOI: 10.1038/s41430-024-01486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sarcopenia is among the most common musculoskeletal illnesses, yet its underlying biochemical mechanisms remain incompletely understood. Identifying the relationship of inflammatory cytokines with sarcopenia components would help understand the etiology of sarcopenia. We performed a bi-directional Mendelian randomization study to explore the causal relationship between 41 inflammatory cytokines and sarcopenia-related traits. METHODS The study was performed in two stages using bidirectional dual-sample Mendelian randomization. We obtained aggregated statistical data on inflammatory factors, low grip strength, and ALM from genome-wide association studies. To explore the causal association between exposure and outcomes, we primarily utilized the inverse variance weighted strategy. Furthermore, we conducted sensitivity analyses through the use of Mendelian randomization (MR) Egger, weighted median and simple mode methods. To evaluate robustness of the results and to identify and adjust for horizontal pleiotropy, we performed the MR Pleiotropy RESidual Sum and Outlier test, the MR Egger intercept test, and a leave-one-out analysis. RESULTS The results displayed a potential association between interleukin-10 (OR: 1.046, 95% CI: 1.002-1.093, p = 0.042) and vascular endothelial growth factor (OR: 1.024, 95% CI: 1.001-1.047, p = 0.038) and the risk of low hand-grip strength. Moreover, interferon gamma-induced protein 10 (OR: 1.010, 95% CI: 1.000-1.019, p = 0.042) and macrophage colony-stimulating factor (OR: 1.010, 95% CI: 1.003-1.017, p = 0.003) were significantly linked to a higher risk of ALM. CONCLUSION We identified a causal relationship between multiple inflammatory factors and sarcopenia-related traits. Our study offers valuable insights into innovative methods for the sarcopenia prevention and treatment by regulating inflammatory factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yaoxian Xiang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Lihui Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Baojuan Han
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China.
| | - Li Wang
- Department of Oncology, Beijing Luhe hospital Affiliated to Capital Medical University, 101149, Beijing, China.
| |
Collapse
|
8
|
Prasad K. Role of C-Reactive Protein, An Inflammatory Biomarker in The Development of Atherosclerosis and Its Treatment. Int J Angiol 2024; 33:271-281. [PMID: 39502349 PMCID: PMC11534478 DOI: 10.1055/s-0044-1788296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
This article deals with the role of c-reactive protein (CRP) in the development of atherosclerosis and its treatment. CRP has a predictive value in ischemic heart disease, restenosis, coronary artery disease, aortic atherosclerosis, and cerebrovascular disease. This article deals with the synthesis and mechanism of CRP-induced atherosclerosis and its treatment. CRP increases the formation of numerous atherogenic biomolecules such as reactive oxygen species (ROS), cytokines (interleukin [IL]-1β and IL-6), cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, activated complement C 5 , monocyte colony-stimulating factor, and numerous growth factors [insulin-like growth factor, platelet-derived growth factor, and transforming growth factor-β]). ROS mildly oxidizes low-density lipoprotein (LDL)-cholesterol to form minimally modified LDL which is further oxidized to form oxidized LDL. The above atherogenic biomolecules are involved in the development of atherosclerosis and has been described in detail in the text. This paper also deals with the treatment modalities for CRP-induced atherosclerosis which includes lipid-lowering drugs, antihypertensive drugs, antioxidants, aspirin, antidiabetic drugs, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, regular physical activity, weight reduction, and stoppage of cigarette smoking. In conclusion, CRP induces atherosclerosis through increases in atherogenic biomolecules and the treatment modalities would prevent, regress, and slow the progression of CRP-induced atherosclerosis.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Lam TD, Tóth I, Hermenean A, Wilhelm I, Kieda C, Krizbai I, Farkas AE. Senolysis potentiates endothelial progenitor cell adhesion to and integration into the brain vasculature. Stem Cell Res Ther 2024; 15:413. [PMID: 39529098 PMCID: PMC11556082 DOI: 10.1186/s13287-024-04042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND One of the most severe consequences of ageing is cognitive decline, which is associated with dysfunction of the brain microvasculature. Thus, repairing the brain vasculature could result in healthier brain function. METHODS To better understand the potential beneficial effect of endothelial progenitor cells (EPCs) in vascular repair, we studied the adhesion and integration of EPCs using the early embryonic mouse aorta-gonad-mesonephros - MAgEC 10.5 endothelial cell line. The EPC interaction with brain microvasculature was monitored ex vivo and in vivo using epifluorescence, laser confocal and two-photon microscopy in healthy young and old animals. The effects of senolysis, EPC activation and ischaemia (two-vessel occlusion model) were analysed in BALB/c and FVB/Ant: TgCAG-yfp_sb #27 mice. RESULTS MAgEC 10.5 cells rapidly adhered to brain microvasculature and some differentiated into mature endothelial cells (ECs). MAgEC 10.5-derived endothelial cells integrated into microvessels, established tight junctions and co-formed vessel lumens with pre-existing ECs within five days. Adhesion and integration were much weaker in aged mice, but were increased by depleting senescent cells using abt-263 or dasatinib plus quercetin. Furthermore, MAgEC 10.5 cell adhesion to and integration into brain vessels were increased by ischaemia and by pre-activating EPCs with TNFα. CONCLUSIONS Combining progenitor cell therapy with senolytic therapy and the prior activation of EPCs are promising for improving EPC adhesion to and integration into the cerebral vasculature and could help rejuvenate the ageing brain.
Collapse
Affiliation(s)
- Tri Duc Lam
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, 6726, Hungary
| | - István Tóth
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, Szeged, 6720, Hungary
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, Warsaw, 04-141, Poland
- Centre for Molecular Biophysics, UPR 4301 CNRS, Orleans, 45071, France
| | - István Krizbai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6726, Hungary.
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania.
| | - Attila E Farkas
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
| |
Collapse
|
10
|
Zucchelli A, Parigi M, Giliani S, Vetrano DL, Lucente D, Marzetti E, Calvani R, Bellelli G, Marengoni A. Older patients affected by COVID-19: investigating the existence of biological phenotypes. BMC Geriatr 2024; 24:923. [PMID: 39511501 PMCID: PMC11542346 DOI: 10.1186/s12877-024-05473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION COVID-19 provides an opportunity to examine biological phenotypes (observable morphological, functional and biological characteristics) in individuals who experience the same acute condition, potentially revealing differences in response to acute external stressors. The aim our study was to investigate biological phenotypes in older patients hospitalized for COVID-19, exploiting a panel of aging biomarkers. METHODS Data were gathered from the FRACOVID Project, an observational multicenter study, aimed to evaluate the impact of frailty on health-related outcomes in patients 60 + with COVID-19 in Northern Italy. A hierarchical cluster analysis was run using log-transformed and scaled values of TNF-a, IL-1 beta, IL-6, PAI-1, GDF-15, NT-proBNP, and Cystatin C evaluated at admission. RESULTS Eighty-one participants (mean age 75.3 years; 60.5% male) were evaluated. Frailty was identified in 42% of the sample and 27.2% were unable to ambulate outdoors. The mean hospital stay was 24.7 days, with an in-hospital mortality rate of 18.5%. Three biological phenotypes were found: (1) 'inflammatory', with high inflammatory biomarkers; (2) 'organ dysfunction', characterized by elevated cystatin C and NT-proBNP, and lower inflammatory markers; and (3) 'unspecific', with lower NT-proBNP and GDF-15 levels, and intermediate concentrations of other biomarkers. The 'organ dysfunction' phenotype showed the highest mean age and prevalence of frailty, disability, and chronic diseases. The 'inflammatory' phenotype showed the highest burden of respiratory and systemic signs and symptoms of infection. CONCLUSION Biological phenotypes might be used to identify different clinical and functional phenotypes in individuals affected by COVID-19.
Collapse
Affiliation(s)
- Alberto Zucchelli
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden.
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Marta Parigi
- A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Liborio Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Daniela Lucente
- Fondazione "Ospedale e Casa di Riposo Nobile Paolo Richiedei", Brescia, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Acute Geriatric Unit, IRCCS San Gerardo Foundation, Monza, Italy
| | - Alessandra Marengoni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
12
|
Liu YY, Pang J, Zhang C, Zeng LT, Wang Y, Wang SB, Fan GQ, Zhang LQ, Shen T, Li XF, Li CB, Cao SY, Zhang TM, Cai JP, Cui J. Biofluid GPNMB/osteoactivin as a potential biomarker of ageing: A cross-sectional study. Heliyon 2024; 10:e36574. [PMID: 39263169 PMCID: PMC11388787 DOI: 10.1016/j.heliyon.2024.e36574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Glycoprotein non-metastatic melanoma B (GPNMB)/osteoactivin was first identified in the human melanoma cell lines. GPNMB plays a key role in the anti-inflammatory and antioxidative functions as well as osteoblast differentiation, cancer progression, and tissue regeneration. Recently, GPNMB was used as an anti-aging vaccine for mice. The present study aimed to investigate the potential of biofluid GPNMB as an aging biomarker in humans using serum and urine samples from an aging Chinese population. Methods We analyzed RNA-sequencing data (GSE132040) from 17 murine organs across different ages to assess the gene expression of potential ageing biomarkers. Spearman's correlation coefficients were used to evaluate the relationship between gene expression and age. Meanwhile, a cross-sectional population study was conducted, which included 473 participants (aged 25-91 years), a representative subset of participants from the Peng Zu Study on Healthy Ageing in China (Peng Zu Cohort). Biofluid GPNMB levels were measured by ELISA. The associations of serum and urine GPNMB levels with various clinical and anthropometrical indices were assessed using ANOVA, Kruskal-Wallis H test, and univariate and multivariate linear regression analyses. Results In mice, the Gpnmb mRNA expression levels showed a significant positive association with age in multiple organs in mice (P < 0.05). In Peng Zu Cohort, biofluid (both serum and urine) GPNMB levels showed a positive correlation with age (P < 0.05). Univariate linear regression analysis revealed that serum GPNMB levels were negatively associated with skeletal muscle mass index (SMI, P < 0.05) and insulin-like growth factor 1 (IGF-1, P < 0.05), and urine GPNMB levels showed a negative association with total bile acids (TBA, P < 0.05). Multivariate linear regression analysis further indicated that serum GPNMB levels negatively correlated with the systemic immune-inflammation index (SII, P < 0.05), and the urine GPNMB levels maintained a negative association with TBA (P < 0.05), additionally, urine GPNMB levels in men were significantly lower than in women (P < 0.05). Conclusions The biofluid GPNMB was a strong clinical biomarker candidate for estimating biological aging.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Chi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Yao Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Shi-Bo Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Xue-Fei Li
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Chuan-Bao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Su-Yan Cao
- Department of General Practice/VIP Medical Service, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Tie-Mei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, 1 Dahua Rd, Dongcheng District, Beijing, PR China
| |
Collapse
|
13
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
14
|
Hashikawa-Hobara N, Inoue S, Hashikawa N. Lack of alpha CGRP exacerbates the development of atherosclerosis in ApoE-knockout mice. Sci Rep 2024; 14:18377. [PMID: 39112593 PMCID: PMC11306347 DOI: 10.1038/s41598-024-69331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The effects of calcitonin gene-related peptide (CGRP) on atherosclerosis remain unclear. We used apolipoprotein E-deficient (ApoE-/-) mice to generate double-knockout ApoE-/-:CGRP-/- mice lacking alpha CGRP. ApoE-/-:CGRP-/- mice exhibited larger atherosclerotic plaque areas, peritoneal macrophages with enhanced migration functions, and elevated levels of the inflammatory cytokine tumor necrosis factor (TNF)-⍺. Thus, we also explored whether inhibiting TNF-⍺ could improve atherosclerosis in ApoE-/-:CGRP-/- mice by administering etanercept intraperitoneally once a week (5 mg/kg) alongside a high-fat diet for 2 weeks. This treatment led to significant reductions in aortic root lesion size, atherosclerotic plaque area and macrophage migration in ApoE-/-:CGRP-/- mice compared with mice treated with human IgG (5 mg/kg). We further examined whether results observed in ApoE-/-:CGRP-/- mice could similarly be obtained by administering a humanized monoclonal CGRP antibody, galcanezumab, to ApoE-/- mice. ApoE-/- mice were subcutaneously administered galcanezumab at an initial dose of 50 mg/kg, followed by a dose of 30 mg/kg in the second week. Galcanezumab administration did not affect systolic blood pressure, serum lipid levels, or macrophage migration but led to a significant increase in lipid deposition at the aortic root. These findings suggest that alpha CGRP plays a critical role in inhibiting the progression of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Calcitonin Gene-Related Peptide/metabolism
- Mice
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Tumor Necrosis Factor-alpha/metabolism
- Male
- Mice, Knockout, ApoE
- Disease Models, Animal
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Etanercept/pharmacology
- Mice, Inbred C57BL
- Cell Movement/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/drug effects
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan.
| | - Shota Inoue
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan
| |
Collapse
|
15
|
Singh R, Tasnim S, Chandra S, Pp R, Choudhary A, Dawar R, Goyal P, Meena MK, Bhattacharjee J, Tyagi S. Risk stratification analysis of recurrent myocardial infarction in Indian population using inflammatory, lipid, thrombotic and extracellular matrix remodeling markers. Glob Cardiol Sci Pract 2024; 2024:e202425. [PMID: 39351476 PMCID: PMC11439428 DOI: 10.21542/gcsp.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/22/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic condition characterized by impaired lipid homeostasis and chronic inflammatory pathology in large and mid-sized arteries. Myocardial infarction is caused by coronary artery thrombosis in a ruptured or unstable atherosclerotic plaque. Despite the emphasis on known triggering factors, such as hypertension and dyslipidemia, adverse events following MI, such as recurrence and mortality, are still high. Therefore, it is imperative to assess potential determinants of plaque instability. We evaluated markers of inflammation, extracellular matrix (ECM) remodeling, thrombosis, and lipids in first-time and recurrent MI (RMI). METHODS Two hundred patients diagnosed with MI within the first 24 h of the event were included in the study and categorized as first-time or recurrent MI. Serum levels of NF-κB, hs-CRP, TNF-α, IFN γ, IL-6, VCAM-1,MMP-9, stromelysin, TIMP-1, MCP-1, PAPP-A, vWF, D-dimer, PLA2, PON-1, Apo-B, Apo-A1, ox-LDL, and anti-oxidized LDL antibodies were analyzed by ELISA. We performed a multivariate logistic regression analysis for risk stratification. RESULTS The mean age of first-time MI patients was 52.4 ± 25 years and that of recurrent MI patients was 55.9 ± 24.6 years. RMI patients showed significant (p¡0.05) upregulation of markers of inflammation (TNF-α), endothelial adhesion (VCAM-1), ECM remodeling (MMP-9, PAPP-A), and antioxidant PON-1 enzyme. First-time MI patients had significantly higher serum IL-6 and D-dimer levels than RMI patients. Risk categorization for RMI was determined at 0.5 cut-off utilizing proteomic indicators at 95% confidence interval. CONCLUSION Non-lipid factors provide substantial insights into plaque instability. Multiple markers of inflammation, thrombosis, extracellular matrix remodeling, and paroxonase-1 are reliable indicators of recurrent myocardial infarction.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Sana Tasnim
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Sudhir Chandra
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Roshnara Pp
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Ankita Choudhary
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Rajni Dawar
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Parul Goyal
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Mukesh Kumar Meena
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Jayashree Bhattacharjee
- Department of Biochemistry, Lady Hardinge Medical College, Connaught Place, New Delhi, India
| | - Sanjay Tyagi
- Department of Cardiology, GB Pant hospital, Raj Ghat, New Delhi, India
| |
Collapse
|
16
|
Mironov S, Borysova O, Morgunov I, Zhou Z, Moskalev A. A Framework for an Effective Healthy Longevity Clinic. Aging Dis 2024:AD.2024.0328-1. [PMID: 38607731 DOI: 10.14336/ad.2024.0328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of an aging global population and the imperative for innovative healthcare solutions, the concept of longevity clinics emerges as a timely and vital area of exploration. Unlike traditional medical facilities, longevity clinics offer a unique approach to preclinical prevention, focusing on "prevention of prevention" through the utilization of aging clocks and biomarkers from healthy individuals. This article presents a comprehensive overview of longevity clinics, encompassing descriptions of existing models, the development of a proposed framework, and insights into biomarkers, wearable devices, and therapeutic interventions. Additionally, economic justifications for investing in longevity clinics are examined, highlighting the significant growth potential of the global biotechnology market and its alignment with the goals of achieving active longevity. Anchored by an Analytical Center, the proposed framework underscores the importance of data-driven decision-making and innovation in promoting prolonged and enhanced human life. At present, there is no universally accepted standard model for longevity clinics. This absence highlights the need for additional research and ongoing improvements in this field. Through a synthesis of scientific research and practical considerations, this article aims to stimulate further discussion and innovation in the field of longevity clinics, ultimately contributing to the advancement of healthcare practices aimed at extending and enhancing human life.
Collapse
Affiliation(s)
- Sergey Mironov
- Longaevus Technologies LTD, London, United Kingdom
- Human and health division, DEKRA Automobil GmbH, Chemnitz, Germany
| | | | | | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Alexey Moskalev
- Longaevus Technologies LTD, London, United Kingdom
- Institute of biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Gerontological Research and Clinical Center, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
17
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
18
|
Fathi P, Karkanitsa M, Rupert A, Lin A, Darrah J, Thomas FD, Lai J, Babu K, Neavyn M, Kozar R, Griggs C, Cunningham KW, Schulman CI, Crandall M, Sereti I, Ricotta E, Sadtler K. Development of a predictive algorithm for patient survival after traumatic injury using a five analyte blood panel. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306188. [PMID: 38903094 PMCID: PMC11188118 DOI: 10.1101/2024.04.22.24306188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Severe trauma can induce systemic inflammation but also immunosuppression, which makes understanding the immune response of trauma patients critical for therapeutic development and treatment approaches. By evaluating the levels of 59 proteins in the plasma of 50 healthy volunteers and 1000 trauma patients across five trauma centers in the United States, we identified 6 novel changes in immune proteins after traumatic injury and further new variations by sex, age, trauma type, comorbidities, and developed a new equation for prediction of patient survival. Blood was collected at the time of arrival at Level 1 trauma centers and patients were stratified based on trauma level, tissues injured, and injury types. Trauma patients had significantly upregulated proteins associated with immune activation (IL-23, MIP-5), immunosuppression (IL-10) and pleiotropic cytokines (IL-29, IL-6). A high ratio of IL-29 to IL-10 was identified as a new predictor of survival in less severe patients with ROC area of 0.933. Combining machine learning with statistical modeling we developed an equation ("VIPER") that could predict survival with ROC 0.966 in less severe patients and 0.8873 for all patients from a five analyte panel (IL-6, VEGF-A, IL-21, IL-29, and IL-10). Furthermore, we also identified three increased proteins (MIF, TRAIL, IL-29) and three decreased proteins (IL-7, TPO, IL-8) that were the most important in distinguishing a trauma blood profile. Biologic sex altered phenotype with IL-8 and MIF being lower in healthy women, but higher in female trauma patients when compared to male counterparts. This work identifies new responses to injury that may influence systemic immune dysfunction, serving as targets for therapeutics and immediate clinical benefit in identifying at-risk patients.
Collapse
Affiliation(s)
- Parinaz Fathi
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
- Unit for Nanoengineering and Microphysiologic Systems, NIBIB, NIH, Bethesda MD 20892
| | - Maria Karkanitsa
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick MD
| | - Aaron Lin
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
- Unit for Nanoengineering and Microphysiologic Systems, NIBIB, NIH, Bethesda MD 20892
| | | | | | - Jeffrey Lai
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Kavita Babu
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Mark Neavyn
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore MD 21201
| | - Christopher Griggs
- Department of Emergency Medicine, Atrium Health’s Carolinas Medical Center, Charlotte NC 28203
| | - Kyle W. Cunningham
- Division of Acute Care Surgery, Atrium Health’s Carolinas Medical Center, Charlotte NC 28203
| | | | - Marie Crandall
- Department of Surgery, University of Florida College of Medicine, Jacksonville FL 33209
| | - Irini Sereti
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH
| | - Emily Ricotta
- Epidemiology and Data Management Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892
- Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda MD 20814
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
19
|
Alencar-Silva T, de Barcelos SM, Silva-Carvalho A, Sousa MGDC, Rezende TMB, Pogue R, Saldanha-Araújo F, Franco OL, Boroni M, Zonari A, Carvalho JL. Senotherapeutic Peptide 14 Suppresses Th1 and M1 Human T Cell and Monocyte Subsets In Vitro. Cells 2024; 13:813. [PMID: 38786036 PMCID: PMC11120033 DOI: 10.3390/cells13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Stefhani Martins de Barcelos
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Amandda Silva-Carvalho
- Hematology and Stem Cell Laboratory, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil; (A.S.-C.)
| | - Mauricio Gonçalves da Costa Sousa
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Taia Maria Berto Rezende
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Dentistry Department, University of Brasília, Brasília 70910-900, Brazil
- Post-Graduation Program in Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Robert Pogue
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
| | - Felipe Saldanha-Araújo
- Hematology and Stem Cell Laboratory, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil; (A.S.-C.)
| | - Octávio Luiz Franco
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Centre of Proteomic Analyses and Biochemistry, Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília 71966-700, Brazil
- S-Inova Biotech, Biotechnology Program, Catholic University Dom Bosco, Campo Grande 79117-900, Brazil
- Molecular Pathology Program, University of Brasília, Brasília 70910-900, Brazil
| | - Mariana Boroni
- OneSkin, Inc., San Francisco, CA 94107, USA
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20230-130, Brazil
| | - Alessandra Zonari
- Molecular Pathology Program, University of Brasília, Brasília 70910-900, Brazil
| | - Juliana Lott Carvalho
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-700, Brazil (S.M.d.B.); (M.G.d.C.S.); (T.M.B.R.); (R.P.)
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
20
|
Hwang HJ, Kang D, Kim JR, Choi JH, Ryu JK, Herman AB, Ko YG, Park HJ, Gorospe M, Lee JS. FLRT2 prevents endothelial cell senescence and vascular aging by regulating the ITGB4/mTORC2/p53 signaling pathway. JCI Insight 2024; 9:e172678. [PMID: 38587072 PMCID: PMC11128196 DOI: 10.1172/jci.insight.172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Donghee Kang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and
| | - Joon Hyuk Choi
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication and
- Department of Urology, College of Medicine, Inha University, Incheon, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication and
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| |
Collapse
|
21
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
22
|
Wang K, Zhang W, Yi L, Zhao M, Li PY, Fu MH, Lin R, Zhu YM, Li JF, Yang WP, Fang H, Chen Z, Cai WW, Ren RB. The impact of age and number of mutations on the size of clonal hematopoiesis. Proc Natl Acad Sci U S A 2024; 121:e2319364121. [PMID: 38359296 PMCID: PMC10895265 DOI: 10.1073/pnas.2319364121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.
Collapse
Affiliation(s)
- Kai Wang
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou571199, China
| | - Li Yi
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Ming Zhao
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Peng-Yu Li
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Mei-Hong Fu
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Rong Lin
- Department of Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou571199, China
- Center of Forensic Medicine of Hainan Medical University, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Haikou571199, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wei-Ping Yang
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wang-Wei Cai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou571199, China
| | - Rui-Bao Ren
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
23
|
Heo SJ, Jee YS. Intensity-effects of strengthening exercise on thigh muscle volume, pro- or anti-inflammatory cytokines, and immunocytes in the older adults: A randomized controlled trial. Arch Gerontol Geriatr 2024; 116:105136. [PMID: 37541052 DOI: 10.1016/j.archger.2023.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This study investigated the intensity-effects of strength training on thigh muscle mass, cytokines, and immunocytes in the older adults. MATERIALS AND METHODS A total of 81 participated in this study. Participants were assigned randomly to four groups: control group (CON), low- (LSE), moderate- (MSE), and high-intensity strength exercise (HSE) groups. Three exercise groups worked out for 50 min/day, 3 days/week for 12 weeks. RESULTS In the thigh volume analyzed by computed tomography, the exercise groups showed a significant increase in the muscle mass, with a clear pattern of change observed in the groups who exercised with moderate to high intensity. The lowest levels of interleukin (IL)-6 in the MSE group (-20.94%) and tumor necrosis factor-α in the HSE group (-28.75%) were observed. Notably, IL-10 showed a significant increase (35.72%) only in the MSE group. In the CON group, natural killer (NK) cells showed a decrease, while in the exercise groups, their levels increased. The highest levels of NK cells were observed in the HSE group. Similar patterns of change were observed in CD4 T cells and CD19 B cells. CD3 and CD8 T cells exhibited significant increases in the MSE and HSE groups. CONCLUSIONS This study presents evidence that engaging in moderate to high-intensity exercise may have a positive impact on cytokines and immunocytes by increasing muscle mass in older adults who may have sarcopenia. SIMPLE SUMMARY Engaging in strength training exercises is considered crucial for maintaining the health of older individuals who are susceptible to sarcopenia. When resistance exercises are performed at a moderate to strenuous intensity, it is anticipated that positive changes can occur in cytokines and immunocytes. These changes can be observed through improvements in thigh muscle volumes as measured by computed tomography.
Collapse
Affiliation(s)
- Seung-Jae Heo
- Department of Physical Education, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Yong-Seok Jee
- Research Institute of Sports and Industry Science, Hanseo University, #1 Hanseo-ro, Haemi-myeon, Seosan, 31962, Korea.
| |
Collapse
|
24
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
26
|
Lee KS, Kim Y, Lee JH, Shon S, Kim A, Pham AVQ, Kim C, Kim DH, Kim YK, Cho EG. Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin. Cells 2023; 12:2789. [PMID: 38132109 PMCID: PMC10741892 DOI: 10.3390/cells12242789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Lactic acid bacteria (LAB), a probiotic, provide various health benefits. We recently isolated a new Lactobacillus paracasei strain with strong anti-inflammatory effects under lipopolysaccharide-induced conditions and proposed a new mode of action-augmenting the endoplasmic reticulum stress pathway for anti-inflammatory functions in host cells. The beneficial effects of the L. paracasei strains on the skin have been described; however, the effects of L. paracasei-derived extracellular vesicles (LpEVs) on the skin are poorly understood. Herein, we investigated whether LpEVs can improve inflammation-mediated skin phenotypes by determining their effects on primary human skin cells and a three-dimensional (3D) full-thickness human skin equivalent under tumor necrosis factor (TNF)-α-challenged inflammatory conditions. LpEVs were efficiently taken up by the human skin cells and were much less cytotoxic to host cells than bacterial lysates. Furthermore, low LpEV concentrations efficiently restored TNF-α-induced cellular phenotypes, resulting in increased cell proliferation and collagen synthesis, but decreased inflammatory factor levels (matrix metalloproteinase 1, interleukin 6, and interleukin 8) in the human dermal fibroblasts, which was comparable to that of retinoic acid, a representative antiaging compound. The beneficial effects of LpEVs were validated in a 3D full-thickness human skin equivalent model. LpEV treatment remarkably restored the TNF-α-induced epidermal malformation, abnormal proliferation of keratinocytes in the basal layer, and reduction in dermal collagen synthesis. Additionally, LpEVs penetrated and reached the deepest dermal layer within 24 h when overlaid on top of a 3D full-thickness human skin equivalent. Furthermore, they possessed superior antioxidant capacity compared with the human cell-derived EVs. Taken together, the anti-inflammatory probiotic LpEVs can be attractive antiaging and antioxidant substances for improving inflammation-induced skin phenotypes and disorders.
Collapse
Affiliation(s)
- Kwang-Soo Lee
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Republic of Korea
| | - Yunsik Kim
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
| | - Jin Hee Lee
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
| | - Suji Shon
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Aram Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - An Vuong Quynh Pham
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | | | - Eun-Gyung Cho
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Republic of Korea
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
27
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Canalis E, Yu J, Singh V, Mocarska M, Schilling L. NOTCH2 sensitizes the chondrocyte to the inflammatory response of tumor necrosis factor α. J Biol Chem 2023; 299:105372. [PMID: 37865314 PMCID: PMC10692730 DOI: 10.1016/j.jbc.2023.105372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Computational Biology Core, Institute for System Genomics, UConn, Storrs, Connecticut, USA
| | - Magda Mocarska
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
29
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
30
|
Sara JDS, Lerman LO, Lerman A. What Can Biologic Aging Tell Us About the Effects of Mental Stress on Vascular Health. Hypertension 2023; 80:2515-2522. [PMID: 37814855 DOI: 10.1161/hypertensionaha.123.19418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cardiovascular disease is often a disease of aging. Considerable advances in our understanding of the biological mechanisms of aging have been made; yet, cardiovascular disease remains the leading cause of death in the United States urging a continued search for novel risk factors to target for preventing and treating disease. Mental stress (MS) is emerging as an important risk factor, and while progress has been made in understanding the link between MS and cardiovascular disease, the precise mechanisms of a putative causal relationship require greater clarification. In the current review, we (1) summarize our current understanding of the pathological effects of MS on vascular health; (2) describe important aspects of the pathobiology of vascular aging including inflammation, oxidative stress, mitochondrial dysfunction as well as novel processes such as genomic instability, epigenetic alterations, and nutrient signal pathways; (3) highlight similarities in the downstream biologic effects of aging and MS on vascular health with an emphasis on cellular and molecular processes that could be used to develop novel prognostic markers and treatment strategies for cardiovascular disease; (4) discuss lifestyle and pharmacological methods that target indicators of aging whose role could be translated into approaches managing the effects of MS; and (5) outline important future steps that should be considered in this area of research including the need for prospective clinical trials and for creating greater collaboration between preclinical aging researchers and clinical investigators managing MS.
Collapse
Affiliation(s)
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (L.O.L.)
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN (J.D.S.S., A.L.)
| |
Collapse
|
31
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
32
|
Abstract
Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
33
|
Pirabe A, Frühwirth S, Brunnthaler L, Hackl H, Schmuckenschlager A, Schrottmaier WC, Assinger A. Age-Dependent Surface Receptor Expression Patterns in Immature Versus Mature Platelets in Mouse Models of Regenerative Thrombocytopenia. Cells 2023; 12:2419. [PMID: 37830633 PMCID: PMC10571991 DOI: 10.3390/cells12192419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Aging is a multifaceted process that unfolds at both the individual and cellular levels, resulting in changes in platelet count and platelet reactivity. These alterations are influenced by shifts in platelet production, as well as by various environmental factors that affect circulating platelets. Aging also triggers functional changes in platelets, including a reduction in RNA content and protein production capacity. Older individuals and RNA-rich immature platelets often exhibit hyperactivity, contributing significantly to pathologic conditions such as cardiovascular diseases, sepsis, and thrombosis. However, the impact of aging on surface receptor expression of circulating platelets, particularly whether these effects vary between immature and mature platelets, remains largely unexplored. Thus, we investigated the expression of certain surface and activation receptors on platelets from young and old mice as well as on immature and mature platelets from mouse models of regenerative thrombocytopenia by flow cytometry. Our findings indicate that aged mice show an upregulated expression of the platelet endothelial cell adhesion molecule-1 (CD31), tetraspanin-29 (CD9), and Toll-like receptor 2 (TLR2) compared to their younger counterparts. Interestingly, when comparing immature and mature platelets in both young and old mice, no differences were observed in mature platelets. However, immature platelets from young mice displayed higher surface expression compared to immature platelets from old mice. Additionally, in mouse models of regenerative thrombocytopenia, the majority of receptors were upregulated in immature platelets. These results suggest that distinct surface receptor expressions are increased on platelets from old mice and immature platelets, which may partially explain their heightened activity and contribute to an increased thrombotic risk.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Frühwirth
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
34
|
Jeon S, Yoon S, Kim Y, Shin S, Ji H, Cho E, Park D, Jung E. The effect of Salix alba L. bark extract on dark circles in vitro and in vivo. Int J Cosmet Sci 2023; 45:636-646. [PMID: 37235713 DOI: 10.1111/ics.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Dark circles in the infraorbital area are a common cosmetic concern among individuals because they exhibit fatigue and are undesirable across all ages. Of the dark circle etiologies, blood stasis by poor-vascular integrity can cause darkening of the lower eyelid skin, which might be alleviated by reduced endothelial permeability. In this study, we investigated the effects of Salix alba bark extract (SABE) on the synthesis of hyaluronic acid (HA) in fibroblasts and vascular integrity protection from inflammatory cytokine. We also performed a clinical trial investigating the effect of SABE on dark circles. METHODS To confirm the effect of SABE on HA synthesis in human dermal fibroblasts (HDFs), we performed ELISA and real-time PCR. We investigated the interaction HDF-secreted substance with vascular integrity, and human dermal microvascular endothelial cells (HMEC-1) were treated with conditioned medium (CM) from HDF treated with or without SABE. Subsequently, we conducted a clinical study on 29 subjects by having them apply SABE containing cream for 8 weeks. RESULTS Salix alba bark extract treatment increased HA synthesis and regulated HMW-HA-related gene expressions in HDF. CM from SABE-treated HDF alleviated endothelial permeability and led to improved vascular integrity in HMEC-1 cells. Treatment with the cream containing 2% SABE for 8 weeks improved the parameters measuring dark circles, skin microcirculation and elasticity. CONCLUSION Our results showed that SABE could protect against dark circles in vitro, and that topical treatment of SABE improved the clinical indexes of dark circles in a clinical study. Therefore, SABE can be used as an active ingredient for improving dark circles.
Collapse
Affiliation(s)
- Suwon Jeon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Sohyun Yoon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Yuna Kim
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Hyanggi Ji
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Eunsun Jung
- BioSpectrum Life Science Institute, Yongin, Korea
| |
Collapse
|
35
|
Özkan Karasu Y, Orbak R, Kaşalı K, Berker E, Kantarci A. Porphyromonas gingivalis enhances the senescence-induced increase of 5-alpha reductase in gingival fibroblasts. Clin Oral Investig 2023; 27:5977-5989. [PMID: 37608238 DOI: 10.1007/s00784-023-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Aging is characterized by chronic inflammatory activity. Senescent cells increase with chronic inflammation and age-related pathologies, including periodontal disease. As a critical regulator of tissue inflammaging, we hypothesized that 5α reductase (5αR) is associated with periodontal disease and bacteria-induced senescence in gingival fibroblasts. MATERIALS AND METHODS We recruited 36 patients with periodontitis, measured 5αR immunohistochemically before and after periodontal treatment, and compared the expression of 5αR in gingival biopsies from 12 healthy individuals. We then tested the impact of Porphyromonas gingivalis on gingival fibroblasts treated with or without D-galactose-induced cell senescence. We treated primary gingival fibroblasts with D-galactose-supplemented media (0 µM, 50 µM, 100 µM, 1 mM, 10 mM, 50 mM) to induce senescence. The expression of type 1 and type 2 5αR was analyzed with real-time PCR and immunocytochemistry. The levels of IL-6, IL-8, TNF-α, and MCP-1 in fibroblast cultures were evaluated by multiplex immunoassay. RESULTS In gingival biopsies from patients with periodontal disease, the expression of 5αR was significantly higher than in samples from individuals without periodontal disease (p < 0.001). Periodontal treatment significantly reduced the expression of 5αR in gingival tissues (p < 0.001) to levels comparable in healthy individuals. Gingival fibroblasts exposed to D-galactose-supplemented media had a dose-dependent and significant increase in 5αR expression (p < 0.001). P. gingivalis caused statistically higher type 1 and type 2 5αR expression in gingival fibroblast cells. This effect was exacerbated by the lower doses of D-galactose (p = 0.037). Cells infected with P. gingivalis produced significantly higher levels of IL-6, IL-8, TNF-α, and MCP-1 (p < 0.05) regardless of the D-galactose exposure. CONCLUSION The results suggested that 5αR plays a role in periodontal disease and mediates the senescence-induced response to P. gingivalis in gingival fibroblasts. CLINICAL RELEVANCE Periodontal diseases and aging can increase the production of 5-alpha reductase in the gingival tissue.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- The Forsyth Institute, Cambridge, MA, USA
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Recep Orbak
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Kamber Kaşalı
- Faculty of Medicine, Department of Biostatistics, Ataturk University, Erzurum, Turkey
| | - Ezel Berker
- Faculty of Dentistry, Department of Periodontology, Hacettepe University, Ankara, Turkey
- Faculty of Dentistry, Department of Periodontology, Istanbul Medipol University, Istanbul, Turkey
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA.
- School of Dental Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
36
|
Mohebi F, Ostadhadi S, Vaziri MS, Hassanzadeh M, Koochakkhani S, Azarkish F, Farshidi H, Eftekhar E. The effect of magnesium sulfate on gene expression and serum level of inflammatory cytokines in coronary artery disease patients. Inflammopharmacology 2023; 31:2421-2430. [PMID: 37665448 DOI: 10.1007/s10787-023-01328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To evaluate the effect of oral magnesium sulfate (MgSO4) on the gene expression and serum levels of inflammatory cytokines including TNF-α, IL-18, IL-1β, IL-6, and IFN-γ in patients with moderate coronary artery disease (CAD). METHODS 60 CAD patients were selected based on angiography findings and were randomly divided into two groups that received 300 mg/day MgSO4 (n = 30) or placebo (n = 30) for 3 months. Gene expression and serum levels of inflammatory cytokines were assessed. RESULTS After 3 months of intervention, gene expression and serum levels of IL-18 and TNF-α in the MgSO4 group were significantly less than the placebo group (P < 0.05). However, no significant difference in gene expression and serum levels of IL-1β, IL-6, and IFN-γ was observed between the two groups (P > 0.05). In addition, within group analysis demonstrate that Mg-treatment significantly decrease serum level of TNF-α and IL-18 as compared to pretreatment. CONCLUSION The results of our study demonstrate that 3-month magnesium sulfate administration (300 mg/day) to CAD patients could significantly decrease serum concentration and gene expression levels of IL-18 and TNF-α. Our findings support the potential beneficial effect of magnesium supplementation on alleviating CAD complications through modulating inflammatory cytokines.
Collapse
Affiliation(s)
- Fatemeh Mohebi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Ostadhadi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Sadegh Vaziri
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marziyeh Hassanzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fariba Azarkish
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
37
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
38
|
Lu K, Wu YM, Shi Q, Gong YQ, Zhang T, Li C. The impact of acute-phase reaction on mortality and re-fracture after zoledronic acid in hospitalized elderly osteoporotic fracture patients. Osteoporos Int 2023; 34:1613-1623. [PMID: 37247006 DOI: 10.1007/s00198-023-06803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
This study involving 674 elderly osteoporotic fracture (OPF) patients undergoing orthopedic surgery investigated the long-term outcomes of acute phase reaction (APR) after initial zoledronic acid (ZOL). Those who had an APR had a 97% higher risk of mortality and a 73% lower rate of re-fracture than patients who did not. INTRODUCTION Annual infusion of ZOL efficiently decreases the risk of fracture. A temporary APR, consisting of flu-like symptoms, myalgia, and fever, is frequently observed within 3 days after the first dose. This work aimed to identify whether the occurrence of APR after initial ZOL infusion is a reliable indicator of drug efficacy for mortality and re-fracture in elderly OPF patients undergoing orthopedic surgery. METHODS This retrospectively observed work was constructed on a database prospectively collected from the Osteoporotic Fracture Registry System of a tertiary level A hospital in China. Six hundred seventy-four patients 50 years old or older with newly identified hip/morphological vertebral OPF who received ZOL for the first time after orthopedic surgery were included in the final analysis. APR was identified as a maximum axillary body temperature greater than 37.3 °C for the first 3 days after ZOL infusion. We utilized models of multivariate Cox proportional hazards to compare the risk of all-cause mortality in OPF patients with APR (APR+) and without APR (APR-). Competing risks regression analysis was used to examine the association between the occurrence of APR and re-fracture when mortality was taken into account. RESULTS In a fully adjusted Cox proportional hazards model, APR+ patients had a significantly higher risk of death than APR- patients with a hazard ratio [HR] 1.97 (95% CI, 1.09-3.56; P-value = 0.02). Furthermore, in an adjusted competing risk regression analysis, APR+ patients had a significantly reduced risk of re-fracture compared with APR- patients with a sub-distribution HR, 0.27 (95% CI, 0.11-0.70; P-value = 0.007). CONCLUSIONS Our findings suggested a potential association between the occurrence of APR and increased mortality risk. An initial dose of ZOL following orthopedic surgery was found to be protective against re-fracture in older patients with OPFs.
Collapse
Affiliation(s)
- K Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Y-M Wu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Q Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, Jiangsu, China
| | - Y-Q Gong
- Information Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - T Zhang
- Chronic Disease Department, Kunshan Center For Disease Control and Prevention, Suzhou, Jiangsu, China
| | - C Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
39
|
Zhang JJ, Wu ZX, Tan W, Liu D, Cheng GR, Xu L, Hu FF, Zeng Y. Associations among multidomain lifestyles, chronic diseases, and dementia in older adults: a cross-sectional analysis of a cohort study. Front Aging Neurosci 2023; 15:1200671. [PMID: 37600519 PMCID: PMC10438989 DOI: 10.3389/fnagi.2023.1200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background Unhealthy lifestyles and chronic diseases are commonly seen and treatable factors in older adults and are both associated with dementia. However, the synergistic effect of the interaction of lifestyles and chronic diseases on dementia is unknown. Methods We determined independent associations of multidomain lifestyles and chronic diseases (cerebrovascular disease, diabetes, and hypertension) with dementia and examined their synergistic impact on dementia among older adults. The data were drawn from the Hubei Memory and Aging Cohort Study. We created a summary score of six factors for multidomain lifestyles. Dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders IV. Logistic regression and multiple correspondence analyses were used to explore the relationships among multidomain lifestyles, chronic diseases, and dementia. A sensitivity analysis was performed to minimize the interference of reverse causality and potential confounders. Results Independent associations with dementia were found in unhealthy (OR = 1.90, 95% CI: 1.38-2.61) and intermediate healthy lifestyles (OR, 3.29, 2.32-4.68), hypertension (OR, 1.21, 1.01-1.46), diabetes (OR, 1.30, 1.04-1.63), and cerebrovascular disease (OR, 1.39, 1.12-1.72). Interactions of diabetes (p = 0.004), hypertension (p = 0.004), and lifestyles were significant, suggesting a combined impact on dementia. Sensitivity analysis supported the strong association among multidomain lifestyles, chronic diseases, and dementia prevalence. Conclusion An unhealthy lifestyle was associated with a higher prevalence of dementia, regardless of whether the participants had chronic diseases; however, this association was stronger in individuals with chronic diseases. Multidomain lifestyles and chronic diseases may have an enhanced impact on dementia.
Collapse
Affiliation(s)
- Jing-jing Zhang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao-xia Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Dan Liu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Gui-rong Cheng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Fei-fei Hu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Nguyen JP, Ramirez-Sanchez I, Garate-Carrillo A, Navarrete-Yañez V, Carballo-Castañeda RA, Ceballos G, Moreno-Ulloa A, Villarreal F. Effects of aging and type 2 diabetes on cardiac structure and function: Underlying mechanisms. Exp Gerontol 2023; 173:112108. [PMID: 36708752 DOI: 10.1016/j.exger.2023.112108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
We characterized long-term changes in cardiac structure and function in a high-fat diet/streptozotocin mouse model of aging and type 2 diabetes mellitus (T2D) and examined how the intersection of both conditions alters plasma metabolomics. We also evaluated the possible roles played by oxidative stress, arginase activity and pro-inflammatory cytokines. C57BL/6 male mice (13-month-old) were used. Control animals (n = 13) were fed regular chow for 10 months (aged group). T2D animals (n = 25) were provided a single injection of streptozotocin and fed a high fat diet for 10 months. In select endpoints, young animals were used for comparison. To monitor changes in left ventricular (LV) structure and function, echocardiography was used. At the terminal study (23 months), blood was collected and hearts processed for biochemical or histological analysis. Echo yielded diminished diastolic function with aging and T2D. LV fractional shortening and ejection fraction decreased with T2D by 16 months peaking at 23 months. Western blots noted increases in fibronectin and type I collagen with aging/T2D and greater levels with T2D in α-smooth muscle actin. Increases in plasma and/or myocardial protein carbonyls, arginase activity and pro-inflammatory cytokines occurred with aging and T2D. Untargeted metabolomics and cheminformatics revealed differences in the plasma metabolome of T2D vs. aged mice while select classes of lipid metabolites linked to insulin resistance, were dysregulated. We thus, document changes in LV structure and function with aging that in select endpoints, are accentuated with T2D and link them to increases in OS, arginase activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Mexico
| | - Francisco Villarreal
- Veteran Affairs San Diego Health Care, San Diego, CA, USA; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Dugan B, Conway J, Duggal NA. Inflammaging as a target for healthy ageing. Age Ageing 2023; 52:7024516. [PMID: 36735849 DOI: 10.1093/ageing/afac328] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Indexed: 02/05/2023] Open
Abstract
Life expectancy has been on the rise for the past few decades, but healthy life expectancy has not kept pace, leading to a global burden of age-associated disorders. Advancing age is accompanied by a chronic increase in basal systemic inflammation, termed inflammaging, contributing towards an increased risk of developing chronic diseases in old age. This article reviews the recent literature to formulate hypotheses regarding how age-associated inflammaging plays a crucial role in driving chronic diseases and ill health in older adults. Here, we discuss how non-pharmacological intervention strategies (diet, nutraceutical supplements, phytochemicals, physical activity, microbiome-based therapies) targeting inflammaging restore health in older adults. We also consider alternative existing pharmacological interventions (Caloric restriction mimetics, p38 mitogen-activated protein kinase inhibitors) and explore novel targets (senolytics) aimed at combating inflammaging and optimising the ageing process to increase healthy lifespan.
Collapse
Affiliation(s)
- Ben Dugan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Zhou Q, Zhao Y, Chen H, Sun H, Sun Y, Li J, Yu H, Zhao Q, Zhang Z. Influence of lifestyle on stroke risk among adults over 65 years in northern China: A propensity score matched study. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
43
|
Winicki NM, Nanavati AP, Morrell CH, Moen JM, Axsom JE, Krawczyk M, Petrashevskaya NN, Beyman MG, Ramirez C, Alfaras I, Mitchell SJ, Juhaszova M, Riordon DR, Wang M, Zhang J, Cerami A, Brines M, Sollott SJ, de Cabo R, Lakatta EG. A small erythropoietin derived non-hematopoietic peptide reduces cardiac inflammation, attenuates age associated declines in heart function and prolongs healthspan. Front Cardiovasc Med 2023; 9:1096887. [PMID: 36741836 PMCID: PMC9889362 DOI: 10.3389/fcvm.2022.1096887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction. Can ARA290 ameliorate these age-associated cardiac changes and the severity of frailty in advanced age? Methods We conducted an integrated longitudinal (n = 48) and cross-sectional (n = 144) 15 months randomized controlled trial in which 18-month-old Fischer 344 x Brown Norway rats were randomly assigned to either receive chronic ARA290 treatment or saline. Serial echocardiography, tail blood pressure and body weight were evaluated repeatedly at 4-month intervals. A frailty index was calculated at the final timepoint (33 months of age). Tissues were harvested at 4-month intervals to define inflammatory markers and left ventricular tissue remodeling. Mitochondrial and myocardial cell health was assessed in isolated left ventricular myocytes. Kaplan-Meier survival curves were established. Mixed ANOVA tests and linear mixed regression analysis were employed to determine the effects of age, treatment, and age-treatment interactions. Results Chronic ARA290 treatment mitigated age-related increases in the cardiac non-myocyte to myocyte ratio, infiltrating leukocytes and monocytes, pro-inflammatory cytokines, total NF-κB, and p-NF-κB. Additionally, ARA290 treatment enhanced cardiomyocyte autophagy flux and reduced cellular accumulation of lipofuscin. The cardiomyocyte mitochondrial permeability transition pore response to oxidant stress was desensitized following chronic ARA290 treatment. Concurrently, ARA290 significantly blunted the age-associated elevation in blood pressure and preserved the LV ejection fraction. Finally, ARA290 preserved body weight and significantly reduced other markers of organism-wide frailty at the end of life. Conclusion Administration of ARA290 reduces cell and tissue inflammation, mitigates structural and functional changes within the cardiovascular system leading to amelioration of frailty and preserved healthspan.
Collapse
Affiliation(s)
- Nolan M. Winicki
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Alay P. Nanavati
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jack M. Moen
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jessie E. Axsom
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Melissa Krawczyk
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Natalia N. Petrashevskaya
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Max G. Beyman
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher Ramirez
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Irene Alfaras
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Sarah J. Mitchell
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Anthony Cerami
- Araim Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Michael Brines
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Steven J. Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Rafael de Cabo
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States,*Correspondence: Edward G. Lakatta,
| |
Collapse
|
44
|
Jergović M, Watanabe M, Bhat R, Coplen CP, Sonar SA, Wong R, Castaneda Y, Davidson L, Kala M, Wilson RC, Twigg HL, Knox K, Erickson HE, Weinkauf CC, Bime C, Bixby BA, Parthasarathy S, Mosier JM, LaFleur BJ, Bhattacharya D, Nikolich JZ. T-cell cellular stress and reticulocyte signatures, but not loss of naïve T lymphocytes, characterize severe COVID-19 in older adults. GeroScience 2023:10.1007/s11357-022-00724-y. [PMID: 36633825 PMCID: PMC9838276 DOI: 10.1007/s11357-022-00724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
In children and younger adults up to 39 years of age, SARS-CoV-2 usually elicits mild symptoms that resemble the common cold. Disease severity increases with age starting at 30 and reaches astounding mortality rates that are ~330 fold higher in persons above 85 years of age compared to those 18-39 years old. To understand age-specific immune pathobiology of COVID-19, we have analyzed soluble mediators, cellular phenotypes, and transcriptome from over 80 COVID-19 patients of varying ages and disease severity, carefully controlling for age as a variable. We found that reticulocyte numbers and peripheral blood transcriptional signatures robustly correlated with disease severity. By contrast, decreased numbers and proportion of naïve T-cells, reported previously as a COVID-19 severity risk factor, were found to be general features of aging and not of COVID-19 severity, as they readily occurred in older participants experiencing only mild or no disease at all. Single-cell transcriptional signatures across age and severity groups showed that severe but not moderate/mild COVID-19 causes cell stress response in different T-cell populations, and some of that stress was unique to old severe participants, suggesting that in severe disease of older adults, these defenders of the organism may be disabled from performing immune protection. These findings shed new light on interactions between age and disease severity in COVID-19.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Ruchika Bhat
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Rachel Wong
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Vir, Inc., CA, San Francisco, USA
| | - Yvonne Castaneda
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Lisa Davidson
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Mrinalini Kala
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Rachel C Wilson
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Homer L Twigg
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kenneth Knox
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Heidi E Erickson
- Department of Medicine, Arizona Respiratory Center, Tucson, AZ, USA
| | - Craig C Weinkauf
- The Division of Vascular Surgery, University of Arizona, Tucson, AZ, USA
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Billie A Bixby
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Jarrod M Mosier
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ, USA
- Department of Emergency Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Bonnie J LaFleur
- BIO5 Institute, University of Arizona, Tucson, USA
- R. Ken Coit College of Pharmacy, Tucson, AZ, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA
- R. Ken Coit College of Pharmacy, Tucson, AZ, USA
| | - Janko Z Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, P.O. Box 245221, 1501 N. Campbell Ave, Tucson, AZ, USA.
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- R. Ken Coit College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
45
|
Kabir I, Zhang X, Dave JM, Chakraborty R, Qu R, Chandran RR, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin KA, Fernández-Hernando C, Greif DM. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. NATURE AGING 2023; 3:64-81. [PMID: 36743663 PMCID: PMC9894379 DOI: 10.1038/s43587-022-00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin β3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin β3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Rihao Qu
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Rachana R. Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Binod Aryal
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Noemi Rotllan
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Department of Bioinformatics Support Program, Yale University, New Haven, CT 06511, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| |
Collapse
|
46
|
Ahn J, Jeong H, Seo BG, Park KS, Hwangbo C, Kim HG, Koh JS, Kim J. Genome-wide association study for vascular aging highlights pathways shared with cardiovascular traits in Koreans. Front Cardiovasc Med 2022; 9:1058308. [PMID: 36620623 PMCID: PMC9813851 DOI: 10.3389/fcvm.2022.1058308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular aging plays a pivotal role in the morbidity and mortality of older people. Reactive hyperemia index (RHI) detected by pulse amplitude tonometry (PAT) is a non-invasive measure of vascular endothelial function and aging-induced pathogenesis of both microvascular and macrovascular diseases. We conducted a genome-wide association study (GWAS) to comprehensively identify germline genetic variants associated with vascular aging in a Korean population, which revealed 60 suggestive genes underlying angiogenesis, inflammatory response in blood vessels, and cardiovascular diseases. Subsequently, we show that putative protective alleles were significantly enriched in an independent population with decelerated vascular aging phenotypes. Finally, we show the differential mRNA expression levels of putative causal genes in aging human primary endothelial cells via quantitative real-time polymerase chain reaction (PCR). These results highlight the potential contribution of genetic variants in the etiology of vascular aging and may suggest the link between vascular aging and cardiovascular traits.
Collapse
Affiliation(s)
- JaeKyoung Ahn
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hankyeol Jeong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo-Gyeong Seo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea,Division of Life Science, College of National Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Soo Park
- Department of Preventive Medicine, College of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea,Center for Farmer’s Safety and Health, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea,Division of Life Science, College of National Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Gyul Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea,*Correspondence: Jin-Sin Koh,
| | - Jaemin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea,Jaemin Kim,
| |
Collapse
|
47
|
Jergović M, Watanabe M, Bhat R, Coplen CP, Sonar SA, Wong R, Castaneda Y, Davidson L, Kala M, Wilson RC, Twigg HL, Knox K, Erickson HE, Weinkauf CC, Bime C, Bixby BA, Parthasarathy S, Mosier JM, LaFleur BJ, Bhattacharya D, Nikolich JŽ. T-cell cellular stress and reticulocyte signatures, but not loss of naïve T lymphocytes, characterize severe COVID-19 in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521463. [PMID: 36597549 PMCID: PMC9810235 DOI: 10.1101/2022.12.21.521463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In children and younger adults up to 39 years of age, SARS-CoV-2 usually elicits mild symptoms that resemble the common cold. Disease severity increases with age starting at 30 and reaches astounding mortality rates that are ~330 fold higher in persons above 85 years of age compared to those 18-39 years old. To understand age-specific immune pathobiology of COVID-19 we have analyzed soluble mediators, cellular phenotypes, and transcriptome from over 80 COVID-19 patients of varying ages and disease severity, carefully controlling for age as a variable. We found that reticulocyte numbers and peripheral blood transcriptional signatures robustly correlated with disease severity. By contrast, decreased numbers and proportion of naïve T-cells, reported previously as a COVID-19 severity risk factor, were found to be general features of aging and not of COVID-19 severity, as they readily occurred in older participants experiencing only mild or no disease at all. Single-cell transcriptional signatures across age and severity groups showed that severe but not moderate/mild COVID-19 causes cell stress response in different T-cell populations, and some of that stress was unique to old severe participants, suggesting that in severe disease of older adults, these defenders of the organism may be disabled from performing immune protection. These findings shed new light on interactions between age and disease severity in COVID-19.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Ruchika Bhat
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Rachel Wong
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Yvonne Castaneda
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Lisa Davidson
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Mrinalini Kala
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Rachel C Wilson
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Homer L Twigg
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kenneth Knox
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Heidi E Erickson
- Department of Medicine, Arizona Respiratory Center, Tucson, AZ, USA
| | - Craig C Weinkauf
- The Division of Vascular Surgery, University of Arizona, Tucson, AZ, USA
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Billie A Bixby
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Jarrod M Mosier
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
- Department of Emergency Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Bonnie J LaFleur
- R. Ken Coit College of Pharmacy
- BIO5 Institute, University of Arizona, Tucson, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- R. Ken Coit College of Pharmacy
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- R. Ken Coit College of Pharmacy
| |
Collapse
|
48
|
Inflammaging and body composition: New insights in diabetic and hypertensive elderly men. Exp Gerontol 2022; 170:112005. [PMID: 36341786 DOI: 10.1016/j.exger.2022.112005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/29/2022]
Abstract
Age-related changes in the body's physiological responses play a critical role in systemic arterial hypertension (SAH) and type 2 Diabetes mellitus (T2DM). SAH and T2DM have clinically silent low-grade inflammation as a common risk factor. This inflammation has a relevant element, the excess of fatty tissue. In this scenario, little is known about how inflammatory markers interact with each other. Therefore, this work evaluated the interplay among anthropometric, biochemical, and inflammatory markers in the elderly with SAH and T2DM. Men aged 60-80 years old with SAH and T2DM were classified by body mass index (BMI) as eutrophic elderly (EE, 24 individuals) or overweight elderly (OE, 25 individuals). Body composition analysis was performed using bioimpedance. Blood samples were collected to perform inflammatory and biochemical evaluations. The cytokines IL-17A, IL-1β, IFN-y, TNF-α, and IL-10, were evaluated by ELISA. Triglycerides, total and fractions of cholesterol, and glucose were measured by spectrophotometry. Overweight elderly men had a higher glycemic index and an increase in most anthropometric markers, as well as higher means for all pro-inflammatory cytokines analyzed (IL-17A, IL-1β, IFN-y, and TNF-α) in comparison to their eutrophic elderly counterparts. However, there was a decrease in IL-10 anti-inflammatory cytokine and IL-10/IL-17A ratio compared to their eutrophic elderly counterparts. Although overweight elderly men have worsening inflammatory parameters, the magnitude of their correlations with anthropometric and biochemical parameters becomes less evident. The Bayesian networks highlight that in the eutrophic elderly, IL-17A and TNF-α are the cytokines most associated with interactions, and most of these interactions occur with biochemical parameters. It is worth highlighting the role of IFN-y in overweight elderly men. This cytokine influences IL-10 and TNF-α production, contributing to the inflammatory profile exacerbated in this group.
Collapse
|
49
|
Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem Biophys Rep 2022; 32:101380. [DOI: 10.1016/j.bbrep.2022.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
|
50
|
Zhao H, He Z, Yun H, Wang R, Liu C. A Meta-Analysis of the Effects of Different Exercise Modes on Inflammatory Response in the Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10451. [PMID: 36012088 PMCID: PMC9407701 DOI: 10.3390/ijerph191610451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the effects of different exercise modes on improving inflammatory response in the elderly. For the research methodology, databases such as CNKI (China National Knowledge Infrastructure), Wanfang Data, Pubmed, Web of Science, and EBSCO were selected for searching. The Cochrane Risk of Bias (ROB) tool was used to evaluate the methodological quality of the included studies, and RevMan5.4.1 analysis software was applied for the statistical analysis. A total of 31 studies (20 randomized controlled trials and 11 self-controlled trials) with 1528 subjects were included. The results of this meta-analysis showed that aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all significantly reduced the levels of IL-6, TNF-α, and CRP in the elderly, and the improvement effects of aerobic + resistance exercise on IL-6, HIIT on TNF-α, and resistance exercise on CRP in the elderly were better than those of the other three exercise modes, respectively. In conclusion, aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all contribute to ameliorating the inflammatory status of the elderly, among which resistance exercise is a noteworthy exercise mode for the elderly to improve inflammatory status.
Collapse
Affiliation(s)
- Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou 730000, China
| | - Hezhang Yun
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Ruifu Wang
- Department of Physical Education, Beijing Forestry University, Beijing 100083, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|