1
|
Jia X, Qiang W, Chang L, Xiao K, Zhou R, Qiu Q, Jiang G, Li X, Chi C, Liu W, Zhang D. Integrative whole-genome methylation and transcriptome analysis reveals epigenetic modulation of glucose metabolism by dietary berberine in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111098. [PMID: 40250795 DOI: 10.1016/j.cbpb.2025.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The present research was designed to explore the epigenetic mechanism by which dietary berberine (BBR) affects glucose metabolism in fish. Blunt snout bream (Megalobrama amblycephala) is susceptible to disturbances in glucose metabolism when subjected to prolonged high-carbohydrate diets. This study aimed to elucidate whether BBR can enhance glucose regulation in M. amblycephala via modulating DNA methylation levels. Fish (average weight of 20.36 ± 1.44 g) were administered a normal-carbohydrate diet (NC, 30 % carbohydrate), a high-carbohydrate diet (HC, 43 % carbohydrate), or a high-carbohydrate diet supplemented with 50 mg/kg berberine (HB) for 10 weeks. Subsequently, global DNA methylation level, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR, and real-time quantitative PCR were employed to analyze the DNA methylation patterns and transcription results of the liver genome. The findings indicated that high carbohydrate diets induced glucose metabolism disorders in M. amblycephala, whereas BBR mitigated these metabolic disturbances by reducing methylation levels. WGBS results revealed that CG-type cytosine methylation predominated, and that DNA methylation mainly occurred in promoter, intron, and exon regions. Furthermore, analyses demonstrated a negative correlation between DNA methylation around the transcriptional start site and gene expression levels for 47 genes. Functional enrichment analysis revealed that these genes were associated with 60 KEGG pathways, including 12 genes implicated in the amelioration of insulin resistance, reduction of gluconeogenesis, and maintenance of glucose homeostasis. Consequently, we generated a comprehensive catalog of liver DNA methylation in M. amblycephala, which provides a foundational framework for future investigations into the epigenetic regulation of glucose metabolism by BBR.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ronghua Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyong Qiu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Xu F, Chen H, Chen C, Liu J, Song Z, Ding C. Genome-wide DNA methylation analysis of Medicago sativa L. treated with plasma and plasma-activated water. iScience 2025; 28:111901. [PMID: 40051829 PMCID: PMC11883386 DOI: 10.1016/j.isci.2025.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
To explore the effects of plasma and plasma-activated water on whole-genome DNA methylation, in this study we used the Medicago sativa L. cultivar, as the experimental material, and mutant plants were obtained after treatment and screening. Changes in whole-genome DNA methylation in Medicago sativa L. were analyzed before and after mutagenesis using whole-genome bisulfite sequencing (WGBS) technology. We found that the percentage of methylated cytosines varied depending on the local sequence context (CG [dinucleotide context]), CHG and CHH (non-CG contexts, H is A [adenine] or T [thymine] or C [cytosine]) and external treatment. Differential methylated region (DMR) analysis revealed 41067 (CG), 5379 (CHG), and 257 (CHH) differentially methylated genes. This study quantitatively measured methylation levels, methylation sites, differentially methylated regions (DMRs), distribution of methylation in the genome, and methylation-related genes and pathways, for further investigations of the mechanism of plasma-induced mutagenesis.
Collapse
Affiliation(s)
- Fei Xu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Chan Chen
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Jiaqi Liu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Zhiqing Song
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| |
Collapse
|
3
|
Mariner BL, McCoy BM, Greenier A, Brassington L, Slikas E, Adjangba C, Marye A, Harrison BR, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617286. [PMID: 39416178 PMCID: PMC11482827 DOI: 10.1101/2024.10.08.617286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Within a species, larger individuals often have shorter lives and higher rates of age-related disease. Despite this well-known link, we still know little about underlying age-related epigenetic differences, which could help us better understand inter-individual variation in aging and the etiology, onset, and progression of age-associated disease. Dogs exhibit this negative correlation between size, health, and longevity and thus represent an excellent system in which to test the underlying mechanisms. Here, we quantified genome-wide DNA methylation in a cohort of 864 dogs in the Dog Aging Project. Age strongly patterned the dog epigenome, with the majority (66% of age-associated loci) of regions associating age-related loss of methylation. These age effects were non-randomly distributed in the genome and differed depending on genomic context. We found the LINE1 (long interspersed elements) class of TEs (transposable elements) were the most frequently hypomethylated with age (FDR < 0.05, 40% of all LINE1 regions). This LINE1 pattern differed in magnitude across breeds of different sizes- the largest dogs lost 0.26% more LINE1 methylation per year than the smallest dogs. This suggests that epigenetic regulation of TEs, particularly LINE1s, may contribute to accelerated age and disease phenotypes within a species. Since our study focused on the methylome of immune cells, we looked at LINE1 methylation changes in golden retrievers, a breed highly susceptible to hematopoietic cancers, and found they have accelerated age-related LINE1 hypomethylation compared to other breeds. We also found many of the LINE1s hypomethylated with age are located on the X chromosome and are, when considering X chromosome inactivation, counter-intuitively more methylated in males. These results have revealed the demethylation of LINE1 transposons as a potential driver of intra-species, demographic-dependent aging variation.
Collapse
|
4
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Mahendran G, Shangaradas AD, Romero-Moreno R, Wickramarachchige Dona N, Sarasija SHGS, Perera S, Silva GN. Unlocking the epigenetic code: new insights into triple-negative breast cancer. Front Oncol 2024; 14:1499950. [PMID: 39744000 PMCID: PMC11688480 DOI: 10.3389/fonc.2024.1499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets. This review delves into the therapeutic potential of epigenetic interventions in TNBC, with a focus on DNA methylation, histone modifications, and miRNA therapeutics. We examine the role of DNA methylation in gene silencing within TNBC and the development of DNA methylation inhibitors designed to reactivate silenced tumor suppressor genes. Histone modifications, through histone deacetylation and acetylation in particular, are critical in regulating gene expression. We explore the efficacy of histone deacetylase inhibitors (HDACi), which have shown promise in reversing aberrant histone deacetylation patterns, thereby restoring normal gene function, and suppressing tumor growth. Furthermore, the review highlights the dual role of miRNAs in TNBC as both oncogenes and tumor suppressors and discusses the therapeutic potential of miRNA mimics and inhibitors in modulating these regulatory molecules to inhibit cancer progression. By integrating these epigenetic therapies, we propose a multifaceted approach to target the underlying epigenetic mechanisms that drive TNBC progression. The synergistic use of DNA methylation inhibitors, HDACi, and the miRNA-based therapies offers a promising avenue for personalized treatment strategies, aiming to enhance the clinical outcome for patients with TNBC.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | - Sumeth Perera
- Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Gayathri N. Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
6
|
Gillespie CA, Chowdhury A, Quinn KA, Jenkins MW, Rollins AM, Watanabe M, Ford SM. Fundamentals of DNA methylation in development. Pediatr Res 2024:10.1038/s41390-024-03674-7. [PMID: 39658604 DOI: 10.1038/s41390-024-03674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024]
Abstract
DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases. IMPACT: Fundamentals of DNA methylation including its significance are made accessible to a broad audience. Common assays for detecting DNA methylation are explained succinctly. Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained. Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.
Collapse
Affiliation(s)
- Caitlyn A Gillespie
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amrin Chowdhury
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katie A Quinn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stephanie M Ford
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Divisions of Neonatology and Pediatric Cardiology, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Takenaka Y, Watanabe M. Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. EPIGENOMES 2024; 8:44. [PMID: 39584967 PMCID: PMC11587003 DOI: 10.3390/epigenomes8040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The dynamic interaction between genomic DNA, epigenetic modifications, and phenotypic traits was examined in identical twins. Environmental perturbations can induce epigenetic changes in DNA methylation, influencing gene expression and phenotypes. Although DNA methylation mediates gene-environment correlations, the quantitative effects of external factors on DNA methylation remain underexplored. This study aimed to quantify these effects using a novel approach. METHODS A cohort study was conducted on healthy monozygotic twins to evaluate the influence of environmental stimuli on DNA methylation. We developed the Environmental Factor Index (EFI) to identify methylation sites showing statistically significant changes in response to environmental stimuli. We analyzed the identified sites for associations with disorders, DNA methylation markers, and CpG islands. RESULTS The EFI identified methylation sites that exhibited significant associations with genes linked to various disorders, particularly cancer. These sites were overrepresented on CpG islands compared to other genomic features, highlighting their regulatory importance. CONCLUSIONS The EFI is a valuable tool for understanding the molecular mechanisms underlying disease pathogenesis. It provides insights into the development of preventive and therapeutic strategies and offers a new perspective on the role of environmental factors in epigenetic regulation.
Collapse
Affiliation(s)
- Yoichi Takenaka
- Faculty of Informatics, Kansai University, Osaka 569-1052, Japan
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Osaka Twin Research Group
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Mikio Watanabe
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Hajmousa G, de Almeida RC, Bloks N, Ruiz AR, Bouma M, Slieker R, Kuipers TB, Nelissen RGHH, Ito K, Freund C, Ramos YFM, Meulenbelt I. The role of DNA methylation in chondrogenesis of human iPSCs as a stable marker of cartilage quality. Clin Epigenetics 2024; 16:141. [PMID: 39407288 PMCID: PMC11481477 DOI: 10.1186/s13148-024-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Lack of insight into factors that determine purity and quality of human iPSC (hiPSC)-derived neo-cartilage precludes applications of this powerful technology toward regenerative solutions in the clinical setting. Here, we set out to generate methylome-wide landscapes of hiPSC-derived neo-cartilages from different tissues-of-origin and integrated transcriptome-wide data to identify dissimilarities in set points of methylation with associated transcription and the respective pathways in which these genes act. METHODS We applied in vitro chondrogenesis using hiPSCs generated from two different tissue sources: skin fibroblasts and articular cartilage. Upon differentiation toward chondrocytes, these are referred to as hFiCs and hCiC, respectively. Genome-wide DNA methylation and RNA sequencing datasets were generated of the hiPSC-derived neo-cartilages, and the epigenetically regulated transcriptome was compared to that of neo-cartilage deposited by human primary articular cartilage (hPAC). RESULTS Methylome-wide landscapes of neo-cartilages of hiPSCs reprogrammed from two different somatic tissues were 85% similar to that of hPACs. By integration of transcriptome-wide data, differences in transcriptionally active CpGs between hCiC relative to hPAC were prioritized. Among the CpG-gene pairs lower expressed in hCiCs relative to hPACs, we identified genes such as MGP, GDF5, and CHAD enriched in closely related pathways and involved in cartilage development that likely mark phenotypic differences in chondrocyte states. Vice versa, among the CpG-gene pairs higher expressed, we identified genes such as KIF1A or NKX2-2 enriched in neurogenic pathways and likely reflecting off target differentiation. CONCLUSIONS We did not find significant variation between the neo-cartilages derived from hiPSCs of different tissue sources, suggesting that application of a robust differentiation protocol such as we applied here is more important as compared to the epigenetic memory of the cells of origin. Results of our study could be further exploited to improve quality, purity, and maturity of hiPSC-derived neo-cartilage matrix, ultimately to realize introduction of sustainable, hiPSC-derived neo-cartilage implantation into clinical practice.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Niek Bloks
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Marga Bouma
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Roderick Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Lu H, Jiang H, Li C, Derisoud E, Zhao A, Eriksson G, Lindgren E, Pui HP, Risal S, Pei Y, Maxian T, Ohlsson C, Benrick A, Haider S, Stener-Victorin E, Deng Q. Dissecting the Impact of Maternal Androgen Exposure on Developmental Programming through Targeting the Androgen Receptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309429. [PMID: 39075722 PMCID: PMC11423211 DOI: 10.1002/advs.202309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/15/2024] [Indexed: 07/31/2024]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification. Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.
Collapse
Affiliation(s)
- Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Theresa Maxian
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
- School of Health Sciences, University of Skövde, Skövde, 54128, Sweden
| | - Sandra Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
10
|
Gu Y, Jin CX, Tong ZH, Jiang T, Yao FC, Zhang Y, Huang J, Song FB, Sun JL, Luo J. Expression of genes related to gonadal development and construction of gonadal DNA methylation maps of Trachinotus blochii under hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173172. [PMID: 38740210 DOI: 10.1016/j.scitotenv.2024.173172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.
Collapse
Affiliation(s)
- Yue Gu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zai Hui Tong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Tian Jiang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fu Cheng Yao
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yu Zhang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Yadav B, Singh D, Mantri S, Rishi V. Genome-wide Methylation Dynamics and Context-dependent Gene Expression Variability in Differentiating Preadipocytes. J Endocr Soc 2024; 8:bvae121. [PMID: 38966711 PMCID: PMC11222978 DOI: 10.1210/jendso/bvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.
Collapse
Affiliation(s)
- Binduma Yadav
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Regional Center for Biotechnology, Faridabad, Haryana 160014, India
| | - Dalwinder Singh
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Shrikant Mantri
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Vikas Rishi
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
12
|
Triebelhorn J, Cardon I, Kuffner K, Bader S, Jahner T, Meindl K, Rothhammer-Hampl T, Riemenschneider MJ, Drexler K, Berneburg M, Nothdurfter C, Manook A, Brochhausen C, Baghai TC, Hilbert S, Rupprecht R, Milenkovic VM, Wetzel CH. Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties. Mol Psychiatry 2024; 29:1217-1227. [PMID: 35732695 PMCID: PMC11189806 DOI: 10.1038/s41380-022-01660-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder.
Collapse
Affiliation(s)
- Julian Triebelhorn
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Kerstin Kuffner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Katrin Meindl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | | | - Konstantin Drexler
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - André Manook
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
- Central Biobank of the University of Regensburg and the Regensburg University Hospital, 93053, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Sven Hilbert
- Institute of Educational Research, Faculty of Human Sciences, University of Regensburg, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Teschendorff AE. On epigenetic stochasticity, entropy and cancer risk. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230054. [PMID: 38432318 PMCID: PMC10909509 DOI: 10.1098/rstb.2023.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/26/2023] [Indexed: 03/05/2024] Open
Abstract
Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| |
Collapse
|
14
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
15
|
Kelly A, Lavender P. Epigenetic Approaches to Identifying Asthma Endotypes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:130-141. [PMID: 38528381 DOI: 10.4168/aair.2024.16.2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
The prevalence of asthma escalated rapidly in the late 20th century. In 2019, the World Health Organization estimated the global number of people affected by the condition to be approximately 260 million, causing 450,000 deaths during that year. While there have been advances in therapeutics with the emergence of biologics targeting T2-high asthma, there is still little clarity on the mechanisms underlying the origins of both the condition and all of its endotypes. Several biomarkers for particular asthma phenotypes have been documented. These are generally identified from transcriptomics and proteomics protocols and tend to be biased to T2-high phenotypes. In this review, we summarize some suggestions that analysis of epigenomes may provide alternative datasets that inform of broader asthma endotypes and might highlight pathways amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom.
| |
Collapse
|
16
|
Takeuchi C, Yamashita S, Liu YY, Takeshima H, Sasaki A, Fukuda M, Hashimoto T, Naka T, Ishizu K, Sekine S, Yoshikawa T, Hamada A, Yamamichi N, Fujishiro M, Ushijima T. Precancerous nature of intestinal metaplasia with increased chance of conversion and accelerated DNA methylation. Gut 2024; 73:255-267. [PMID: 37751933 DOI: 10.1136/gutjnl-2023-329492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The presence of intestinal metaplasia (IM) is a risk factor for gastric cancer. However, it is still controversial whether IM itself is precancerous or paracancerous. Here, we aimed to explore the precancerous nature of IM by analysing epigenetic alterations. DESIGN Genome-wide DNA methylation analysis was conducted by EPIC BeadArray using IM crypts isolated by Alcian blue staining. Chromatin immunoprecipitation sequencing for H3K27ac and single-cell assay for transposase-accessible chromatin by sequencing were conducted using IM mucosa. NOS2 was induced using Tet-on gene expression system in normal cells. RESULTS IM crypts had a methylation profile unique from non-IM crypts, showing extensive DNA hypermethylation in promoter CpG islands, including those of tumour-suppressor genes. Also, the IM-specific methylation profile, namely epigenetic footprint, was present in a fraction of gastric cancers with a higher frequency than expected, and suggested to be associated with good overall survival. IM organoids had remarkably high NOS2 expression, and NOS2 induction in normal cells led to accelerated induction of aberrant DNA methylation, namely epigenetic instability, by increasing DNA methyltransferase activity. IM mucosa showed dynamic enhancer reprogramming, including the regions involved in higher NOS2 expression. NOS2 had open chromatin in IM cells but not in gastric cells, and IM cells had frequent closed chromatin of tumour-suppressor genes, indicating their methylation-silencing. NOS2 expression in IM-derived organoids was upregulated by interleukin-17A, a cytokine secreted by extracellular bacterial infection. CONCLUSIONS IM cells were considered to have a precancerous nature potentially with an increased chance of converting into cancer cells, and an accelerated DNA methylation induction due to abnormal NOS2 expression.
Collapse
Affiliation(s)
- Chihiro Takeuchi
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Akiko Sasaki
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Masahide Fukuda
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Oita, Japan
| | - Taiki Hashimoto
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Tomoaki Naka
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kenichi Ishizu
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
17
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Díez-Villanueva A, Martín B, Moratalla-Navarro F, Morón-Duran FD, Galván-Femenía I, Obón-Santacana M, Carreras A, de Cid R, Peinado MA, Moreno V. Identification of intergenerational epigenetic inheritance by whole genome DNA methylation analysis in trios. Sci Rep 2023; 13:21266. [PMID: 38042866 PMCID: PMC10693549 DOI: 10.1038/s41598-023-48517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Genome-wide association studies have identified thousands of loci associated with common diseases and traits. However, a large fraction of heritability remains unexplained. Epigenetic modifications, such as the observed in DNA methylation have been proposed as a mechanism of intergenerational inheritance. To investigate the potential contribution of DNA methylation to the missing heritability, we analysed the methylomes of four healthy trios (two parents and one offspring) using whole genome bisulphite sequencing. Of the 1.5 million CpGs (19%) with over 20% variability between parents in at least one family and compatible with a Mendelian inheritance pattern, only 3488 CpGs (0.2%) lacked correlation with any SNP in the genome, marking them as potential sites for intergenerational epigenetic inheritance. These markers were distributed genome-wide, with some preference to be located in promoters. They displayed a bimodal distribution, being either fully methylated or unmethylated, and were often found at the boundaries of genomic regions with high/low GC content. This analysis provides a starting point for future investigations into the missing heritability of simple and complex traits.
Collapse
Affiliation(s)
- Anna Díez-Villanueva
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Berta Martín
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Francisco D Morón-Duran
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Iván Galván-Femenía
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain.
| |
Collapse
|
19
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
20
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
21
|
Bar-Sadeh B, Pnueli L, Keestra S, Bentley GR, Melamed P. Srd5a1 is Differentially Regulated and Methylated During Prepubertal Development in the Ovary and Hypothalamus. J Endocr Soc 2023; 7:bvad108. [PMID: 37646011 PMCID: PMC10461783 DOI: 10.1210/jendso/bvad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Indexed: 09/01/2023] Open
Abstract
5α-reductase-1 catalyzes production of various steroids, including neurosteroids. We reported previously that expression of its encoding gene, Srd5a1, drops in murine ovaries and hypothalamic preoptic area (POA) after early-life immune stress, seemingly contributing to delayed puberty and ovarian follicle depletion, and in the ovaries the first intron was more methylated at two CpGs. Here, we hypothesized that this CpG-containing locus comprises a methylation-sensitive transcriptional enhancer for Srd5a1. We found that ovarian Srd5a1 mRNA increased 8-fold and methylation of the same two CpGs decreased up to 75% between postnatal days 10 and 30. Estradiol (E2) levels rise during this prepubertal stage, and exposure of ovarian cells to E2 increased Srd5a1 expression. Chromatin immunoprecipitation in an ovarian cell line confirmed ESR1 binding to this differentially methylated genomic region and enrichment of the enhancer modification, H3K4me1. Targeting dCas9-DNMT3 to this locus increased CpG2 methylation 2.5-fold and abolished the Srd5a1 response to E2. In the POA, Srd5a1 mRNA levels decreased 70% between postnatal days 7 and 10 and then remained constant without correlation to CpG methylation levels. Srd5a1 mRNA levels did not respond to E2 in hypothalamic GT1-7 cells, even after dCas9-TET1 reduced CpG1 methylation by 50%. The neonatal drop in POA Srd5a1 expression occurs at a time of increasing glucocorticoids, and treatment of GT1-7 cells with dexamethasone reduced Srd5a1 mRNA levels; chromatin immunoprecipitation confirmed glucocorticoid receptor binding at the enhancer. Our findings on the tissue-specific regulation of Srd5a1 and its methylation-sensitive control by E2 in the ovaries illuminate epigenetic mechanisms underlying reproductive phenotypic variation that impact life-long health.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sarai Keestra
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
22
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
23
|
Sun JM, Chow WY, Xu G, Hicks MJ, Nakka M, Shen J, Ng PKS, Taylor AM, Yu A, Farrar JE, Barkauskas DA, Gorlick R, Guidry Auvil JM, Gerhard D, Meltzer P, Guerra R, Man TK, Lau CC. The Role of FAS Receptor Methylation in Osteosarcoma Metastasis. Int J Mol Sci 2023; 24:12155. [PMID: 37569529 PMCID: PMC10418590 DOI: 10.3390/ijms241512155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.
Collapse
Affiliation(s)
- Jiayi M. Sun
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.M.T.); (T.-K.M.)
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
| | - Wing-Yuk Chow
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Gufeng Xu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - M. John Hicks
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manjula Nakka
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | | | - Aaron M. Taylor
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.M.T.); (T.-K.M.)
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Jason E. Farrar
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaime M. Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA; (J.M.G.A.)
| | - Daniela Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA; (J.M.G.A.)
| | - Paul Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rudy Guerra
- Department of Statistics, Rice University, Houston, TX 77005, USA;
| | - Tsz-Kwong Man
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.M.T.); (T.-K.M.)
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Ching C. Lau
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.M.T.); (T.-K.M.)
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (W.-Y.C.); (G.X.); (M.N.); (J.S.); (A.Y.)
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | | |
Collapse
|
24
|
Sereshki S, Lee N, Omirou M, Fasoula D, Lonardi S. On the prediction of non-CG DNA methylation using machine learning. NAR Genom Bioinform 2023; 5:lqad045. [PMID: 37206627 PMCID: PMC10189801 DOI: 10.1093/nargab/lqad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
DNA methylation can be detected and measured using sequencing instruments after sodium bisulfite conversion, but experiments can be expensive for large eukaryotic genomes. Sequencing nonuniformity and mapping biases can leave parts of the genome with low or no coverage, thus hampering the ability of obtaining DNA methylation levels for all cytosines. To address these limitations, several computational methods have been proposed that can predict DNA methylation from the DNA sequence around the cytosine or from the methylation level of nearby cytosines. However, most of these methods are entirely focused on CG methylation in humans and other mammals. In this work, we study, for the first time, the problem of predicting cytosine methylation for CG, CHG and CHH contexts on six plant species, either from the DNA primary sequence around the cytosine or from the methylation levels of neighboring cytosines. In this framework, we also study the cross-species prediction problem and the cross-context prediction problem (within the same species). Finally, we show that providing gene and repeat annotations allows existing classifiers to significantly improve their prediction accuracy. We introduce a new classifier called AMPS (annotation-based methylation prediction from sequence) that takes advantage of genomic annotations to achieve higher accuracy.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Nathan Lee
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Michalis Omirou
- Department of Agrobiotechnology, Agricultural Microbiology Laboratory, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Dionysia Fasoula
- Department of Plant Breeding, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Stefano Lonardi
- To whom correspondence should be addressed. Tel: +1 951 827 2203; Fax: +1 951 827 4643;
| |
Collapse
|
25
|
Holdsworth EA, Schell LM, Appleton AA. Maternal-infant interaction quality is associated with child NR3C1 CpG site methylation at 7 years of age. Am J Hum Biol 2023; 35:e23876. [PMID: 36779373 PMCID: PMC10909417 DOI: 10.1002/ajhb.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Infancy is both a critical window for hypothalamic-pituitary-adrenal (HPA) axis development, and a sensitive period for social-emotional influences. We hypothesized that the social-emotional quality of maternal-infant interactions are associated with methylation of HPA-axis gene NR3C1 later in childhood. METHODS Using a subsample of 114 mother-infant pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC), linear regression models were created to predict variance in methylation of seven selected CpG sites from NR3C1 in whole blood at age 7 years, including the main predictor variable of the first principal component score of observed maternal-infant interaction quality (derived from the Thorpe Interaction Measure at 12 months of age) and covariates of cell-type proportion, maternal financial difficulties and marital status at 8 months postnatal, child birthweight, and sex. RESULTS CpG site cg27122725 methylation was negatively associated with warmer, more positive maternal interaction with her infant (β = 0.19, p = .02, q = 0.13). In sensitivity analyses, the second highest quartile of maternal behavior (neutral, hesitant behavior) was positively associated with cg12466613 methylation. The other five CpG sites were not significantly associated with maternal-infant interaction quality. CONCLUSIONS Narrow individual variation of maternal interaction with her infant is associated with childhood methylation of two CpG sites on NR3C1 that may be particularly sensitive to environmental influences. Infancy may be a sensitive period for even small influences from the social-emotional environment on the epigenetic determinants of HPA-axis function.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
| | - Lawrence M. Schell
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| | - Allison A. Appleton
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| |
Collapse
|
26
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Majumdar S, Deep A, Sharma MR, Canestrari J, Stone M, Smith C, Koripella RK, Keshavan P, Banavali NK, Wade JT, Gray TA, Derbyshire KM, Agrawal RK. The small mycobacterial ribosomal protein, bS22, modulates aminoglycoside accessibility to its 16S rRNA helix-44 binding site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535098. [PMID: 37034768 PMCID: PMC10081302 DOI: 10.1101/2023.03.31.535098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Treatment of tuberculosis continues to be challenging due to the widespread latent form of the disease and the emergence of antibiotic-resistant strains of the pathogen, Mycobacterium tuberculosis. Bacterial ribosomes are a common and effective target for antibiotics. Several second line anti-tuberculosis drugs, e.g. kanamycin, amikacin, and capreomycin, target ribosomal RNA to inhibit protein synthesis. However, M. tuberculosis can acquire resistance to these drugs, emphasizing the need to identify new drug targets. Previous cryo-EM structures of the M. tuberculosis and M. smegmatis ribosomes identified two novel ribosomal proteins, bS22 and bL37, in the vicinity of two crucial drug-binding sites: the mRNA-decoding center on the small (30S), and the peptidyl-transferase center on the large (50S) ribosomal subunits, respectively. The functional significance of these two small proteins is unknown. In this study, we observe that an M. smegmatis strain lacking the bs22 gene shows enhanced susceptibility to kanamycin compared to the wild-type strain. Cryo-EM structures of the ribosomes lacking bS22 in the presence and absence of kanamycin suggest a direct role of bS22 in modulating the 16S rRNA kanamycin-binding site. Our structures suggest that amino-acid residue Lys-16 of bS22 interacts directly with the phosphate backbone of helix 44 of 16S rRNA to influence the micro-configuration of the kanamycin-binding pocket. Our analysis shows that similar interactions occur between eukaryotic homologues of bS22, and their corresponding rRNAs, pointing to a common mechanism of aminoglycoside resistance in higher organisms.
Collapse
Affiliation(s)
| | - Ayush Deep
- Division of Translational Medicine, Albany, NY 12237
| | | | - Jill Canestrari
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
| | - Melissa Stone
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
| | - Carol Smith
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
| | | | | | - Nilesh K Banavali
- Division of Translational Medicine, Albany, NY 12237
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Todd A Gray
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Keith M Derbyshire
- Division of Genetics, Wadsworth Center, New York State, Department of Health, Albany, NY 12237
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Rajendra K Agrawal
- Division of Translational Medicine, Albany, NY 12237
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12222
| |
Collapse
|
28
|
Miao N, Zeng Z, Lee T, Guo Q, Zheng W, Cai W, Chen W, Wang J, Sun T. Integrative epigenome profiling of 47XXY provides insights into whole genomic DNA hypermethylation and active chromatin accessibility. Front Mol Biosci 2023; 10:1128739. [PMID: 37051325 PMCID: PMC10083376 DOI: 10.3389/fmolb.2023.1128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Klinefelter syndrome (KS, 47XXY) is a disorder characterized by sex chromosomal aneuploidy, which may lead to changes in epigenetic regulations of gene expression. To define epigenetic architectures in 47XXY, we annotated DNA methylation in euploid males (46XY) and females (46XX), and 47XXY individuals using whole genome bisulfite sequencing (WGBS) and integrated chromatin accessbilty, and detected abnormal hypermethylation in 47XXY. Furthermore, we detected altered chromatin accessibility in 47XXY, in particular in chromosome X, using Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) in cultured amniotic cells. Our results construct the whole genome-wide DNA methylation map in 47XXY, and provide new insights into the early epigenomic dysregulation resulting from an extra chromosome X in 47XXY.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenwei Zheng
- Quanzhou Women and Children’s Hospital, Quanzhou, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- *Correspondence: Tao Sun,
| |
Collapse
|
29
|
Ren J, Zhang X, Zhang Z, Pan J, Hao Z, Li J, Liu J. Apoptosis inhibition enhances induced pluripotent stem cell generation during T cell reprogramming. Biochem Biophys Res Commun 2023; 656:30-37. [PMID: 36947964 DOI: 10.1016/j.bbrc.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
The widespread adoption of chimeric antigen receptor (CAR)-T cell therapy has been hindered by its complex and costly manufacturing process. Induced pluripotent stem cells (iPSCs) have shown promise as a cellular immunotherapy alternative, due to their unlimited self-renewal potential in culture and capacity to differentiate into functional immune cell types. However, it is imperative to carefully select the original cell for iPSC seed preparation, as iPSCs have been found to retain the epigenetic imprint of the original somatic cells. Additionally, the efficiency of reprogramming terminal differentiated cells for immunotherapy must be addressed. Our research highlights the superiority of lymphocyte-origin cells over embryonic stem cells in functional immune cell differentiation. Furthermore, blocking Fas-FasL induced apoptosis in T cells significantly improves iPSC generation. Interestingly, transient Fas suppression in T cells does not alter the expression of Fas in the resulting iPSCs or affect their differentiation potential. This finding brings up new avenues in the field of cellular immunotherapy and provides a solution for creating high-quality and suitable iPSCs for lymphocyte differentiation for immunotherapy purposes.
Collapse
Affiliation(s)
- Jiangtao Ren
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Nanjing Bioheng Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Xuhua Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Zhenhui Zhang
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Jiafeng Pan
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Zhexue Hao
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Jin Li
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China.
| | - Jun Liu
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China.
| |
Collapse
|
30
|
Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 2023; 141:846-855. [PMID: 36327161 PMCID: PMC10023718 DOI: 10.1182/blood.2022016205] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sjoukje J. C. van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology Program, Sloan Kettering Institute, New York, NY
| | | |
Collapse
|
31
|
Karami Z, Moradi S, Eidi A, Soleimani M, Jafarian A. Induced pluripotent stem cells: Generation methods and a new perspective in COVID-19 research. Front Cell Dev Biol 2023; 10:1050856. [PMID: 36733338 PMCID: PMC9887183 DOI: 10.3389/fcell.2022.1050856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) exhibit an unlimited ability to self-renew and produce various differentiated cell types, thereby creating high hopes for both scientists and patients as a great tool for basic research as well as for regenerative medicine purposes. The availability and safety of iPSCs for therapeutic purposes require safe and highly efficient methods for production of these cells. Different methods have been used to produce iPSCs, each of which has advantages and disadvantages. Studying these methods would be very helpful in developing an easy, safe, and efficient method for the generation of iPSCs. Since iPSCs can be generated from somatic cells, they can be considered as valuable cellular resources available for important research needs and various therapeutic purposes. Coronavirus disease 2019 (COVID-19) is a disease that has endangered numerous human lives worldwide and currently has no definitive cure. Therefore, researchers have been rigorously studying and examining all aspects of COVID-19 and potential treatment modalities and various drugs in order to enable the treatment, control, and prevention of COVID-19. iPSCs have become one of the most attractive and promising tools in this field by providing the ability to study COVID-19 and the effectiveness of drugs on this disease outside the human body. In this study, we discuss the different methods of generation of iPSCs as well as their respective advantages and disadvantages. We also present recent applications of iPSCs in the study and treatment of COVID-19.
Collapse
Affiliation(s)
- Zahra Karami
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharif Moradi
- 2Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Akram Eidi
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- 3Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,4Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- 5Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Arefeh Jafarian,
| |
Collapse
|
32
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
33
|
Chatterton Z, Lamichhane P, Ahmadi Rastegar D, Fitzpatrick L, Lebhar H, Marquis C, Halliday G, Kwok JB. Single-cell DNA methylation sequencing by combinatorial indexing and enzymatic DNA methylation conversion. Cell Biosci 2023; 13:2. [PMID: 36600255 PMCID: PMC9811750 DOI: 10.1186/s13578-022-00938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific processes. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA methylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) with enzymatic conversion (sciEM) of unmethylated cytosines. RESULTS The sciEM method facilitates DNA methylation profiling of single-cells that is highly correlated with single-cell bisulfite-based workflows (r2 > 0.99) whilst improving sequencing alignment rates, reducing adapter contamination and over-estimation of DNA methylation levels (CpG and non-CpG). As proof-of-concept we perform sciEM analysis of the temporal lobe, motor cortex, hippocampus and cerebellum of the human brain to resolve single-cell DNA methylation of all major cell-types. CONCLUSION To our knowledge sciEM represents the first non-bisulfite single-cell DNA methylation sequencing approach with single-base resolution.
Collapse
Affiliation(s)
- Zac Chatterton
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Praves Lamichhane
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Diba Ahmadi Rastegar
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Lauren Fitzpatrick
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Hélène Lebhar
- grid.1005.40000 0004 4902 0432Recombinant Products Facility, University of New South Wales, Kensington, Australia
| | - Christopher Marquis
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Australia
| | - Glenda Halliday
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
34
|
Yazar V, Dawson VL, Dawson TM, Kang SU. DNA Methylation Signature of Aging: Potential Impact on the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:145-164. [PMID: 36710687 PMCID: PMC10041453 DOI: 10.3233/jpd-223517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of gene expression by epigenetic modifications means lasting and heritable changes in the function of genes without alterations in the DNA sequence. Of all epigenetic mechanisms identified thus far, DNA methylation has been of particular interest in both aging and age-related disease research over the last decade given the consistency of site-specific DNA methylation changes during aging that can predict future health and lifespan. An increasing line of evidence has implied the dynamic nature of DNA (de)methylation events that occur throughout the lifespan has a role in the pathophysiology of aging and age-associated neurodegenerative conditions, including Parkinson's disease (PD). In this regard, PD methylome shows, to some extent, similar genome-wide changes observed in the methylome of healthy individuals of matching age. In this review, we start by providing a brief overview of studies outlining global patterns of DNA methylation, then its mechanisms and regulation, within the context of aging and PD. Considering diverging lines of evidence from different experimental and animal models of neurodegeneration and how they combine to shape our current understanding of tissue-specific changes in DNA methylome in health and disease, we report a high-level comparison of the genomic methylation landscapes of brain, with an emphasis on dopaminergic neurons in PD and in natural aging. We believe this will be particularly useful for systematically dissecting overlapping genome-wide alterations in DNA methylation during PD and healthy aging, and for improving our knowledge of PD-specific changes in methylation patterns independent of aging process.
Collapse
Affiliation(s)
- Volkan Yazar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
36
|
Yan J, Wu X, Zhu Y, Cang S. Genome-wide DNA methylation profile analysis identifies an individualized predictive signature for melanoma immune response. J Cancer Res Clin Oncol 2023; 149:343-356. [PMID: 36595044 DOI: 10.1007/s00432-022-04566-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE The current evaluation methods for tumor infiltrating lymphocytes (TILs), particularly CD8 + TILs, mainly rely on semiquantitative immunohistochemistry with high variability. We aimed to construct an individualized DNA methylation-based signature for CD8 + TILs (CD8 + MeTIL) that may characterize melanoma immune microenvironment and guide therapeutic selection. METHODS The transcriptome profiles and DNA methylation data of 457 melanoma patients from The Cancer Genome Atlas (TCGA) database were analyzed. Differential methylation analysis between groups with high and low CD8 + TILs was performed to select differentially methylated positions (DMPs) and define CD8 + MeTIL. The prognostic value of CD8 + MeTIL and its predictive value for immunotherapy response were investigated using multiple melanoma cohorts. RESULTS We successfully constructed the CD8 + MeTIL signature based on four DMPs. The survival analyses showed that higher CD8 + MeTIL score was associated with worse survival outcomes in TCGA-SKCM and GSE144487 cohorts. The ROC curve for the predictive analysis revealed that the survival prediction of CD8 + MeTIL score was superior compared with CD8 + TILs (CIBERSORT) and CD8B mRNA expression. Furthermore, we founded that tumors with higher CD8 + MeTIL score were marked with immunosuppressive characteristics, including low immune score and downregulated immune-related pathways. More importantly, the CD8 + MeTIL score showed a potential predictive value for the benefit from immunotherapy in two published cohorts. When combined CD8 + MeTIL with PD-L1 expression, the patient classification showed significantly different immunotherapy response rates and long-term survival outcomes. CONCLUSIONS The CD8 + MeTIL signature might be as a novel method to evaluate CD8 + TILs and guide immunotherapy approaches.
Collapse
Affiliation(s)
- Junya Yan
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanyan Zhu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
37
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Liu C, Li M, Yin Q, Fan Y, Shen C, Yang R. HTRA1 methylation in peripheral blood as a potential marker for the preclinical detection of stroke: a case-control study and a prospective nested case-control study. Clin Epigenetics 2022; 14:191. [PMID: 36581876 PMCID: PMC9801609 DOI: 10.1186/s13148-022-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stroke is the leading cause of mortality in China. DNA methylation has essential roles in multiple diseases, but its association with stroke was barely studied. We hereby explored the association between blood-based HTRA serine protease 1 (HTRA1) methylation and the risk of stroke. RESULTS The association was discovered in a hospital-based case-control study (cases/controls = 190:190) and further validated in a prospective nested case-control study including 139 cases who developed stroke within 2 years after recruitment and 144 matched stroke-free controls. We observed stroke-related altered HTRA1 methylation and expression in both case-control study and prospective study. This blood-based HTRA1 methylation was associated with stroke independently from the known risk factors and mostly affected the older population. The prospective results further showed that the altered HTRA1 methylation was detectable 2 years before the clinical determination of stroke and became more robust with increased discriminatory power for stroke along with time when combined with other known stroke-related variables [onset time ≤ 1 year: area under the curve (AUC) = 0.76]. CONCLUSIONS In our study, altered HTRA1 methylation was associated with stroke at clinical and preclinical stages and thus may provide a potential biomarker in the blood for the risk evaluation and preclinical detection of stroke.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| |
Collapse
|
39
|
DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes 2022; 12:50. [PMID: 36535927 PMCID: PMC9763387 DOI: 10.1038/s41387-022-00228-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance, and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone-epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity. METHODS We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without (OND = 9) or with T2D (OD = 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also tested. RESULTS We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs (n = 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these, 16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels. CONCLUSIONS Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.
Collapse
|
40
|
Kirk NA, Kim KB, Park KS. Effect of chromatin modifiers on the plasticity and immunogenicity of small-cell lung cancer. Exp Mol Med 2022; 54:2118-2127. [PMID: 36509828 PMCID: PMC9794818 DOI: 10.1038/s12276-022-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.
Collapse
Affiliation(s)
- Nicole A. Kirk
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Kee-Beom Kim
- grid.258803.40000 0001 0661 1556BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Kwon-Sik Park
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
41
|
De Riso G, Sarnataro A, Scala G, Cuomo M, Della Monica R, Amente S, Chiariotti L, Miele G, Cocozza S. MC profiling: a novel approach to analyze DNA methylation heterogeneity in genome-wide bisulfite sequencing data. NAR Genom Bioinform 2022; 4:lqac096. [PMID: 36601577 PMCID: PMC9803872 DOI: 10.1093/nargab/lqac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is an epigenetic mark implicated in crucial biological processes. Most of the knowledge about DNA methylation is based on bulk experiments, in which DNA methylation of genomic regions is reported as average methylation. However, average methylation does not inform on how methylated cytosines are distributed in each single DNA molecule. Here, we propose Methylation Class (MC) profiling as a genome-wide approach to the study of DNA methylation heterogeneity from bulk bisulfite sequencing experiments. The proposed approach is built on the concept of MCs, groups of DNA molecules sharing the same number of methylated cytosines. The relative abundances of MCs from sequencing reads incorporates the information on the average methylation, and directly informs on the methylation level of each molecule. By applying our approach to publicly available bisulfite-sequencing datasets, we individuated cell-to-cell differences as the prevalent contributor to methylation heterogeneity. Moreover, we individuated signatures of loci undergoing imprinting and X-inactivation, and highlighted differences between the two processes. When applying MC profiling to compare different conditions, we identified methylation changes occurring in regions with almost constant average methylation. Altogether, our results indicate that MC profiling can provide useful insights on the epigenetic status and its evolution at multiple genomic regions.
Collapse
Affiliation(s)
- Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonella Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy
| | - Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Rosa Della Monica
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Gennaro Miele
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, 80126 Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
42
|
Leighton GO, Irvin EM, Kaur P, Liu M, You C, Bhattaram D, Piehler J, Riehn R, Wang H, Pan H, Williams DC. Densely methylated DNA traps Methyl-CpG-binding domain protein 2 but permits free diffusion by Methyl-CpG-binding domain protein 3. J Biol Chem 2022; 298:102428. [PMID: 36037972 PMCID: PMC9520026 DOI: 10.1016/j.jbc.2022.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/29/2022] Open
Abstract
The methyl-CpG-binding domain 2 and 3 proteins (MBD2 and MBD3) provide structural and DNA-binding function for the Nucleosome Remodeling and Deacetylase (NuRD) complex. The two proteins form distinct NuRD complexes and show different binding affinity and selectivity for methylated DNA. Previous studies have shown that MBD2 binds with high affinity and selectivity for a single methylated CpG dinucleotide while MBD3 does not. However, the NuRD complex functions in regions of the genome that contain many CpG dinucleotides (CpG islands). Therefore, in this work, we investigate the binding and diffusion of MBD2 and MBD3 on more biologically relevant DNA templates that contain a large CpG island or limited CpG sites. Using a combination of single-molecule and biophysical analyses, we show that both MBD2 and MBD3 diffuse freely and rapidly across unmethylated CpG-rich DNA. In contrast, we found methylation of large CpG islands traps MBD2 leading to stable and apparently static binding on the CpG island while MBD3 continues to diffuse freely. In addition, we demonstrate both proteins bend DNA, which is augmented by methylation. Together, these studies support a model in which MBD2-NuRD strongly localizes to and compacts methylated CpG islands while MBD3-NuRD can freely mobilize nucleosomes independent of methylation status.
Collapse
Affiliation(s)
- Gage O Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Parminder Kaur
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Ming Liu
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University of Medicine, Atlanta, Georgia, USA
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA; Department of Physics, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Hai Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
43
|
Zhang Y, Zhu F, Teng J, Zheng B, Lou Z, Feng H, Xue L, Qian Y. Effects of salinity stress on methylation of the liver genome and complement gene in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 129:207-220. [PMID: 36058436 DOI: 10.1016/j.fsi.2022.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Salinity is an important environmental factor that affects the yield and quality of large yellow croaker (Larimichthys crocea) during aquaculture. Here, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR (BSP), quantitative real-time PCR (qPCR), and dual luciferase reporter gene detection technologies were used to analyze the DNA methylation characteristics and patterns of the liver genome, the expression and methylation levels of important immune genes in large yellow croaker in response to salinity stress. The results of WGBS showed that the cytosine methylation of CG type was dominant, CpGIsland and repeat regions were important regions where DNA methylation occurred, and the DNA methylation in upstream 2k (2000bp upstream of the promoter) and repeat regions had different changes in the liver tissue of large yellow croaker in the response to the 12‰, 24‰, 36‰ salinity stress of 4 w (weeks). In the combined analysis of WGBS and transcriptome, the complement and coagulation cascade pathways were significantly enriched, in which the complement-related genes C7, C3, C5, C4, C1R, MASP1, and CD59 were mainly changed in response to salinity stress. In the studied area of MASP1 gene promoter, the methylation levels of many CpG sites as well as total cytosine were strongly negatively correlated with mRNA expression level. Methylation function analysis of MASP1 promoter further proved that DNA methylation could inhibit the activity of MASP1 promoter, indicating that salinity may affect the expressions of complement-related genes by DNA methylation of gene promoter region.
Collapse
Affiliation(s)
- Yu Zhang
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Fisheries College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fei Zhu
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jian Teng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| | - Yunxia Qian
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| |
Collapse
|
44
|
Uddin MDM, Nguyen NQH, Yu B, Brody JA, Pampana A, Nakao T, Fornage M, Bressler J, Sotoodehnia N, Weinstock JS, Honigberg MC, Nachun D, Bhattacharya R, Griffin GK, Chander V, Gibbs RA, Rotter JI, Liu C, Baccarelli AA, Chasman DI, Whitsel EA, Kiel DP, Murabito JM, Boerwinkle E, Ebert BL, Jaiswal S, Floyd JS, Bick AG, Ballantyne CM, Psaty BM, Natarajan P, Conneely KN. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat Commun 2022; 13:5350. [PMID: 36097025 PMCID: PMC9468335 DOI: 10.1038/s41467-022-33093-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD.
Collapse
Affiliation(s)
- M D Mesbah Uddin
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ngoc Quynh H Nguyen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Akhil Pampana
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Tetsushi Nakao
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Michael C Honigberg
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Romit Bhattacharya
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gabriel K Griffin
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Varuna Chander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Boston University and NHLBI/NIH, Framingham, MA, 01702, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Daniel I Chasman
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27516, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Douglas P Kiel
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Joanne M Murabito
- Framingham Heart Study, Boston University and NHLBI/NIH, Framingham, MA, 01702, USA
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, 02118, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 20815, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, 98101, USA
| | - Pradeep Natarajan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
45
|
Fabrizio FP, Castellana S, Centra F, Sparaneo A, Mastroianno M, Mazza T, Coco M, Trombetta D, Cingolani N, Centonza A, Graziano P, Maiello E, Fazio VM, Muscarella LA. Design and experimental validation of OPERA_MET-A panel for deep methylation analysis by next generation sequencing. Front Oncol 2022; 12:968804. [PMID: 36033501 PMCID: PMC9404304 DOI: 10.3389/fonc.2022.968804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is the most recognized epigenetic mark that leads to a massive distortion in cancer cells. It has been observed that a large number of DNA aberrant methylation events occur simultaneously in a group of genes, thus providing a growth advantage to the cell in promoting cell differentiation and neoplastic transformation. Due to this reason, methylation profiles have been suggested as promising cancer biomarkers. Here, we designed and performed a first step of validation of a novel targeted next generation sequencing (NGS) panel for methylation analysis, which can simultaneously evaluate the methylation levels at CpG sites of multiple cancer-related genes. The OPERA_MET-A methylation panel was designed using the Ion AmpliSeq™ technology to amplify 155 regions with 125-175 bp mean length and covers a total of 1107 CpGs of 18 cancer-related genes. The performance of the panel was assessed by running commercially available fully methylated and unmethylated control human genomic DNA (gDNA) samples and a variable mixture of them. The libraries were run on Ion Torrent platform and the sequencing output was analyzed using the “methylation_analysis” plugin. DNA methylation calls on both Watson (W) and Crick (C) strands and methylated:unmethylated ratio for each CpG site were obtained. Cell lines, fresh frozen and formalin-fixed paraffin-embedded (FFPE) lung cancer tissues were tested. The OPERA_MET-A panel allows to run a minimum of 6 samples/530 chip to reach an observed mean target depth ≥2,500X (W and C strands) and an average number of mapped reads >750,000/sample. The conversion efficiency, determined by spiking-in unmethylated Lambda DNA into each sample before the bisulfite conversion process, was >97% for all samples. The observed percentage of global methylation for all CpGs was >95% and <5% for fully methylated and unmethylated gDNA samples, respectively, and the observed results for the variable mixtures were in agreement with what was expected. Methylation-specific NGS analysis represents a feasible method for a fast and multiplexed screening of cancer patients by a high-throughput approach. Moreover, it offers the opportunity to construct a more robust algorithm for disease prediction in cancer patients having a low quantity of biological material available.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- *Correspondence: Federico Pio Fabrizio, ; Lucia Anna Muscarella,
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Flavia Centra
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mario Mastroianno
- Scientific Direction, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Michelina Coco
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Domenico Trombetta
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Nicola Cingolani
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Centonza
- Unit of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Evaristo Maiello
- Unit of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vito Michele Fazio
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS, Scientific Institute for Research and Health Care Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- *Correspondence: Federico Pio Fabrizio, ; Lucia Anna Muscarella,
| |
Collapse
|
46
|
Inagaki E, Yoshimatsu S, Okano H. Accelerated neuronal aging in vitro ∼melting watch ∼. Front Aging Neurosci 2022; 14:868770. [PMID: 36016855 PMCID: PMC9397486 DOI: 10.3389/fnagi.2022.868770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In developed countries, the aging of the population and the associated increase in age-related diseases are causing major unresolved medical, social, and environmental matters. Therefore, research on aging has become one of the most important and urgent issues in life sciences. If the molecular mechanisms of the onset and progression of neurodegenerative diseases are elucidated, we can expect to develop disease-modifying methods to prevent neurodegeneration itself. Since the discovery of induced pluripotent stem cells (iPSCs), there has been an explosion of disease models using disease-specific iPSCs derived from patient-derived somatic cells. By inducing the differentiation of iPSCs into neurons, disease models that reflect the patient-derived pathology can be reproduced in culture dishes, and are playing an active role in elucidating new pathological mechanisms and as a platform for new drug discovery. At the same time, however, we are faced with a new problem: how to recapitulate aging in culture dishes. It has been pointed out that cells differentiated from pluripotent stem cells are juvenile, retain embryonic traits, and may not be fully mature. Therefore, attempts are being made to induce cell maturation, senescence, and stress signals through culture conditions. It has also been reported that direct conversion of fibroblasts into neurons can reproduce human neurons with an aged phenotype. Here, we outline some state-of-the-art insights into models of neuronal aging in vitro. New frontiers in which stem cells and methods for inducing differentiation of tissue regeneration can be applied to aging research are just now approaching, and we need to keep a close eye on them. These models are forefront and intended to advance our knowledge of the molecular mechanisms of aging and contribute to the development of novel therapies for human neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Japanese Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Hideyuki Okano,
| |
Collapse
|
47
|
Establishment and characterization of IPS-OGC-C1: a novel induced pluripotent stem cell line from healthy human ovarian granulosa cells. Hum Cell 2022; 35:1612-1620. [PMID: 35876985 DOI: 10.1007/s13577-022-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Ovarian granulosa cell (OGC) is a critical somatic component of the ovary, which provides physical support and the microenvironment required for the developing oocyte. Human OGCs are easy to obtain and culture as a by-product of follicular aspiration performed during in vitro fertilization (IVF) procedures. Therefore, OGCs offer a potent cell source to generate induced pluripotent stem cells (iPSCs). This study established a novel OGCs-derived iPSC cell line from the follicular fluid of a healthy female donor with a Chinese Han genetic background and named it IPS-OGC-C1. IPS-OGC-C1 was verified for embryonic stem cell morphology, cell marker expression, alkaline phosphatase (AP) activity, transcriptomic profile, and pluripotency capability in developing all three embryonic germ layers in vivo and in vitro.
Collapse
|
48
|
Zhang M, Zhao J, Dong H, Xue W, Xing J, Liu T, Yu X, Gu Y, Sun B, Lu H, Zhang Y. DNA Methylation-Specific Analysis of G Protein-Coupled Receptor-Related Genes in Pan-Cancer. Genes (Basel) 2022; 13:genes13071213. [PMID: 35885996 PMCID: PMC9320183 DOI: 10.3390/genes13071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Collapse
Affiliation(s)
- Mengyan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jiyun Zhao
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Huili Dong
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Wenhui Xue
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jie Xing
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Ting Liu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Xiuwen Yu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Yue Gu
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
| | - Haibo Lu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| |
Collapse
|
49
|
Heidari Z, Asemi-Rad A, Moudi B, Mahmoudzadeh-Sagheb H. mRNA expression and epigenetic-based role of chromodomain helicase DNA-binding 5 in hepatocellular carcinoma. J Int Med Res 2022; 50:3000605221105344. [PMID: 35808817 PMCID: PMC9274423 DOI: 10.1177/03000605221105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Chromodomain helicase DNA-binding 5 (CHD5) acts as a tumor
suppressor gene in some cancers. CHD5 expression levels may affect an
individual’s susceptibility to hepatocellular carcinoma (HCC). This study
aimed to evaluate the methylation pattern of the CHD5
promoter region and the gene’s corresponding mRNA expression in HCC patients
compared with healthy individuals. Methods In this case–control study, CHD5 mRNA gene expression levels
and DNA methylation patterns were analyzed in 81 HCC patients and 90 healthy
individuals by quantitative reverse transcription polymerase chain reaction
and methylation-specific polymerase chain reaction, respectively. Results The CHD5 gene was hypermethylated in 61.8% of the HCC
patients and 54.4% of the controls, and this difference was statistically
significant. The CHD5 mRNA expression levels were
significantly lower in the HCC patient group. Conclusions Hypermethylation of the CHD5 promoter region may
significantly lower the expression of this gene, affecting the incidence and
severity of HCC. The methylation status of CHD5 can also be
further studied as a prognostic factor in HCC.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemi-Rad
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
50
|
Moonen L, Mangiante L, Leunissen DJG, Lap LMV, Gabriel A, Hillen LM, Roemen GM, Koch A, van Engeland M, Dingemans AC, Foll M, Alcala N, Fernandez‐Cuesta L, Derks JL, Speel EM. Differential Orthopedia Homeobox expression in pulmonary carcinoids is associated with changes in DNA methylation. Int J Cancer 2022; 150:1987-1997. [PMID: 35076935 PMCID: PMC9303689 DOI: 10.1002/ijc.33939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Limited number of tumor types have been examined for Orthopedia Homeobox (OTP) expression. In pulmonary carcinoids, loss of expression is a strong indicator of poor prognosis. Here, we investigated OTP expression in 37 different tumor types, and the association between OTP expression and DNA methylation levels in lung neuroendocrine neoplasms. We analyzed publicly available multi-omics data (whole-exome-, whole-genome-, RNA sequencing and Epic 850K-methylation array) of 58 typical carcinoids, 27 atypical carcinoids, 69 large cell neuroendocrine carcinoma and 51 small cell lung cancer patients and TCGA (The Cancer Genome Atlas) data of 33 tumor types. 850K-methylation analysis was cross-validated using targeted pyrosequencing on 35 carcinoids. We report bimodality of OTP expression in carcinoids (OTPhigh vs OTPlow group, likelihood-ratio test P = 1.5 × 10-2 ), with the OTPhigh group specific to pulmonary carcinoids while absent from all other cohorts analyzed. Significantly different DNA methylation levels were observed between OTPhigh and OTPlow carcinoids in 12/34 OTP infinium probes (FDR < 0.05 and β-value effect size > .2). OTPlow carcinoids harbor high DNA methylation levels as compared to OTPhigh carcinoids. OTPlow carcinoids showed a significantly worse overall survival (log-rank test P = .0052). Gene set enrichment analysis for somatically mutated genes associated with hallmarks of cancer showed robust enrichment of three hallmarks in the OTPlow group, that is, sustaining proliferative signaling, evading growth suppressor and genome instability and mutation. Together our data suggest that high OTP expression is a unique feature of pulmonary carcinoids with a favorable prognosis and that in poor prognostic patients, OTP expression is lost, most likely due to changes in DNA methylation levels.
Collapse
Affiliation(s)
- Laura Moonen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Daphne J. G. Leunissen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Lisa M. V. Lap
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Aurelie Gabriel
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Lisa M. Hillen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Guido M. Roemen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
- Epify BVMaastrichtThe Netherlands
| | - Manon van Engeland
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Anne‐Marie C. Dingemans
- Department of Pulmonary DiseasesGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
- Department of Pulmonary MedicineErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Lynnette Fernandez‐Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Jules L. Derks
- Department of Pulmonary DiseasesGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Ernst‐Jan M. Speel
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| |
Collapse
|