1
|
Mataracı-Kara E, Damar-Çelik D, Özbek-Çelik B. The in vitro synergistic and antibiofilm activity of Ceftazidime/avibactam against Achromobacter species recovered from respiratory samples of cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2025; 44:587-596. [PMID: 39702543 DOI: 10.1007/s10096-024-05017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Achromobacter spp. may form biofilm in patients' respiratory tracts and cause serious infections. This research examined the bactericidal and synergistic effects of ceftazidime/avibactam (CZA) alone and in combination with different antibiotics against Achromobacter spp. METHODS MICs of 52 Achromobacter spp. were determined by broth microdilution. In-vitro time-kill curve experiments assessed CZA's bactericidal and synergistic properties alone and in combination with other antibiotics. Moreover, the antibiofilm activity of CZA alone or in combination with the antibiotics was assessed with using microplate method. RESULTS Based on MIC90 values, CZA exhibited four times greater in-vitro activity against tested strains than ceftazidime. The most effective agent was meropenem, with a 92% susceptibility level on the tested strains. On the other hand, ciprofloxacin was found to be bactericidal at both 1 × and 4xMIC concentrations. CZA, chloramphenicol and meropenem were observed to have bactericidal effects alone at 4xMIC concentrations against the tested isolates. CZA + CS and CZA + MEM showed synergy in three out of five and two out of five strains tested at 1xMIC, respectively. Furthermore, the pairing of CZA with colistin, CZA with meropenem and CZA with ciprofloxacin exhibited a synergistic impact at 4xMIC. Moreover, combination therapy CZA with the tested antibiotics showed reduced biofilm formation in a concentration-dependent manner at 24 h. CONCLUSION The outcomes of this research also suggest that CZA plus colistin, meropenem, or ciprofloxacin were more productive against Achromobacter strains. To our knowledge, this is the first article to evaluate the synergistic and antibiofilm activities of CZA alone or in combination with different agents against Achromobacter species.
Collapse
Affiliation(s)
- Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey.
| | - Damla Damar-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Başıbüyük-Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
| |
Collapse
|
2
|
Orsini D, Cristina ML, Spagnolo AM, Minet C, Sartini M, Parrella R, Bragazzi NL, Martini M. Healthcare Settings and Infection Prevention: Today's Procedures in Light of the "Instructions for Disinfection" Issued During the 1817 Typhus Epidemic in the Grand Duchy of Tuscany (Pre-Unification Italy). EPIDEMIOLOGIA 2025; 6:5. [PMID: 39982257 PMCID: PMC11843832 DOI: 10.3390/epidemiologia6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Even today, healthcare-associated infections (HCAIs) remain the most frequent and serious complications in healthcare, with a significant clinical and economic impact. The authors of this manuscript address the causes and conditions that determine this situation and describe them in comparison with the situation in the Grand Duchy of Tuscany more than two centuries ago and with the instructions that were issued at the time to contain the typhus epidemic of 1817, increase hospital sanitation, and disinfect houses. Today, we know that a crucial element in the fight against healthcare-associated infections (HCAIs) is the definition and implementation of best care practices and other measures, according to a combined program that must be tailored to each healthcare setting. In the early nineteenth century, these approaches originated from experience and chemical knowledge that were becoming established, opening the way to the ideas and experiments of Ignác Fülöp Semmelweis and later of Joseph Lister, who traced the path for the birth of hygiene. Two centuries later the pioneering vision of the Grand Duchy of Tuscany at the beginning of the 19th century, when preventive measures in the field of public health were still backward and underdeveloped, is still enlightening and surprisingly topical.
Collapse
Affiliation(s)
- Davide Orsini
- University Museum System of Siena (SIMUS), History of Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Luisa Cristina
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (M.L.C.); (A.M.S.); (C.M.); (M.S.); (M.M.)
| | - Anna Maria Spagnolo
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (M.L.C.); (A.M.S.); (C.M.); (M.S.); (M.M.)
| | - Carola Minet
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (M.L.C.); (A.M.S.); (C.M.); (M.S.); (M.M.)
| | - Marina Sartini
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (M.L.C.); (A.M.S.); (C.M.); (M.S.); (M.M.)
| | - Roberto Parrella
- Unit of Respiratory Infectious Diseases, Cotugno Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada;
| | - Mariano Martini
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (M.L.C.); (A.M.S.); (C.M.); (M.S.); (M.M.)
| |
Collapse
|
3
|
Chaudhary M, Kumar D, Meena DS, Midha NK, Bohra GK, Tak V, Samantaray S, Kaur N, Neetha TR, Mohammed S, Sharma A, Kothari N, Bhatia PK, Garg MK. 'Effectiveness of various sulbactam-based combination antibiotic therapy in the management of ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in a tertiary care Health centre'. Indian J Med Microbiol 2024; 52:100737. [PMID: 39349137 DOI: 10.1016/j.ijmmb.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE Carbapenem-resistant Acinetobacter baumannii (CRAB) is a common cause of ventilator-associated pneumonia (VAP). Some in vitro data favour various combination antibiotic therapy. However, there is a need for more in vivo studies for the management of VAP caused by CRAB. This retrospective study was done to evaluate the effectiveness of various combination antibiotic therapy including sulbactam on outcomes of VAP caused by CRAB. METHODS Adult patients (age ≥18 years) diagnosed with VAP caused by CRAB were included. Patients with polymicrobial infections were excluded from the study. Patients with CRAB associated VAP who were given sulbactam based antibiotic combinations were observed for outcomes. The primary outcome was 28-day mortality after diagnosis of VAP caused by CRAB. Reduction in serum HsCRP (High sensitivity C-reactive protein) during treatment and requirement of inotropes were the secondary outcomes. Outcomes were compared between various sulbactam based antibiotic combination therapies. RESULTS A total of 103 patients were included. A total of 44 (42.7 %) patients received sulbactam and minocycline or sulbactam and polymyxin B dual antibiotic combination, and 59 (57.3 %) patients received sulbactam, polymyxin B and minocycline triple antibiotic combination. The percentage difference in 28 days mortality was 27.51 % (95 % CI 8.03 %-44.06 %; p = 0.005) in dual vs triple sulbactam based antibiotic combination therapy. The percentage difference in requirement of inotropes during therapy and HsCRP reduction after 7 days of therapy was 23.65 % (95 % CI 6.43 %-38.3 %; p = 0.007) and 25.1 % (95%CI 10.1 %-38.2 %; p < 0.001) respectively when compared between dual vs triple sulbactam based antibiotic combination therapy. CONCLUSION Treatment with sulbactam, polymyxin B and minocycline combination antibiotic therapy was associated with significantly lower 28-day mortality. Moreover, the lower requirement of inotropes during treatment and a significant reduction in HsCRP level favours this combination antibiotic therapy in VAP caused by CRAB.
Collapse
Affiliation(s)
- Monika Chaudhary
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Deepak Kumar
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Durga Shankar Meena
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Naresh Kumar Midha
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Subhashree Samantaray
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Navneet Kaur
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - T R Neetha
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Sadik Mohammed
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Ankur Sharma
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Nikhil Kothari
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Pradeep Kumar Bhatia
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - M K Garg
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
4
|
Benyamini P. The Comparative Characterization of a Hypervirulent Acinetobacter baumannii Bacteremia Clinical Isolate Reveals a Novel Mechanism of Pathogenesis. Int J Mol Sci 2024; 25:9780. [PMID: 39337268 PMCID: PMC11432228 DOI: 10.3390/ijms25189780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen with exquisite survival capabilities under various environmental conditions and displays widespread resistance to common antibiotics. A. baumannii is a leading cause of nosocomial infections that result in high morbidity and mortality rates. Accordingly, when multidrug resistance rates surpass threshold levels, the percentage of A. baumannii clinical isolates surges. Research into A. baumannii has increased in the past decade, and multiple mechanisms of pathogenesis have been identified, including mechanisms underlying biofilm development, quorum sensing, exotoxin production, secretion system utilization, and more. To date, the two gold-standard strains used to investigate different aspects of A. baumannii pathogenesis include ATCC 17978 and ATCC 19606. Here, we report a comparative characterization study of three additional A. baumannii clinical isolates obtained from different infection types and derived from different anatomical regions of infected patients. The comparison of three clinical isolates in addition to the ATCC strains revealed that the hypervirulent bacteremia clinical isolate, known as HUMC1, employs a completely different mechanism of pathogenesis when compared to all its counterparts. In stark contrast to the other genetic variants, the hypervirulent HUMC1 isolate does not form biofilms, is antibiotic-susceptible, and has the capacity to reach higher levels of quorum compared to the other clinically relevant strains. Our data also reveal that HUMC1 does not shed endotoxin into the extracellular milieu, rather secretes the evolutionarily conserved, host-mimicking, Zonula occludens toxin (Zot). Taken together, our hypothesis that HUMC1 cells have the ability to reach higher levels of quorum and lack biofilm production and endotoxin shedding, accompanied by the substantial elaboration of Zot, suggests a novel mechanism of pathogenesis that appears to afford the hypervirulent pathogen with stealth-like capabilities when disseminating through the circulatory system in a state of bacteremia.
Collapse
Affiliation(s)
- Payam Benyamini
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
5
|
Han ML, Alsaadi Y, Zhao J, Zhu Y, Lu J, Jiang X, Ma W, Patil NA, Dunstan RA, Le Brun AP, Wickremasinghe H, Hu X, Wu Y, Yu HH, Wang J, Barlow CK, Bergen PJ, Shen HH, Lithgow T, Creek DJ, Velkov T, Li J. Arginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii. Cell Rep 2024; 43:114410. [PMID: 38923457 PMCID: PMC11338987 DOI: 10.1016/j.celrep.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.
Collapse
Affiliation(s)
- Mei-Ling Han
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Yasser Alsaadi
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jing Lu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xukai Jiang
- National Glycoengineering Research Centre, Shandong University, Qingdao 266237, China
| | - Wendong Ma
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Nitin A Patil
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hasini Wickremasinghe
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xiaohan Hu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yimin Wu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jiping Wang
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Phillip J Bergen
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
7
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
8
|
Girija ASS. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 2024; 32:e20230382. [PMID: 38747806 PMCID: PMC11090480 DOI: 10.1590/1678-7757-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/01/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.
Collapse
Affiliation(s)
- A S Smiline Girija
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Department of Microbiology, Chennai-600077, Tamilnadu, India
| |
Collapse
|
9
|
Lucidi M, Imperi F, Artuso I, Capecchi G, Spagnoli C, Visaggio D, Rampioni G, Leoni L, Visca P. Phage-mediated colistin resistance in Acinetobacter baumannii. Drug Resist Updat 2024; 73:101061. [PMID: 38301486 DOI: 10.1016/j.drup.2024.101061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
AIMS Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy.
| | - Francesco Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Cinzia Spagnoli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy.
| |
Collapse
|
10
|
Gautam H, Raza S, Biswas J, Mohapatra S, Sood S, Dhawan B, Kapil A, Das BK. Antimicrobial efficacy of eravacycline against emerging extensively drug-resistant (XDR) Acinetobacter baumannii isolates. Indian J Med Microbiol 2024; 48:100565. [PMID: 38522746 DOI: 10.1016/j.ijmmb.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Drug-resistant Acinetobacter baumannii is an emerging threat. This study has been conducted to observe the efficacy of eravacycline along with the RND-efflux pump system. METHODS A cross-sectional study was done collecting 48 clinical isolates of Acinetobacter baumannii. MICs of 15 antibiotics were detected along with BMD of tigecycline and eravacycline. PCR products of drug-resistant regulatory genes were sequenced and analyzed. RESULTS Of the total 48 Isolates, 35 (72.91%) were XDR and 13 (27.08%) were MDR. Out of all, 60.41% of isolates were found to be susceptible to eravacycline by BMD according to both FDA and EUCAST guidelines. A 2-fold decline of MIC50/90 was observed with the use of eravacycline compared to tigecycline. RND-efflux genes like AdeC in 30 (62.5%) isolates and Regulatory gene AdeS in 29 (60.41%) isolates were detected, explaining the existing resistance mechanism. CONCLUSIONS XDR Acinetobacter poses an escalating threat due to its resistance to multiple antibiotics, raising serious concerns in healthcare settings. Eravacycline is an encouraging new drug for empirical use in severe infection caused due to the same. Molecular investigation and strict antimicrobial stewardship should be followed to control the emergence, and a better understanding of mechanisms of resistance to prevent the spread of drug-resistant isolates.
Collapse
Affiliation(s)
- Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shahid Raza
- All India Institute of Medical Sciences, New Delhi, India.
| | - Jaya Biswas
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Arti Kapil
- Department of Microbiology, North DMC Medical College and Hindu Rao Hospital, New Delhi, India.
| | - Bimal K Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Pal S, Jain D, Biswal S, Rastogi SK, Kumar G, Ghosh AS. The physiological role of Acinetobacter baumannii DacC is exerted through influencing cell shape, biofilm formation, the fitness of survival, and manifesting DD-carboxypeptidase and beta-lactamase dual-enzyme activities. FEMS Microbiol Lett 2024; 371:fnae079. [PMID: 39333031 DOI: 10.1093/femsle/fnae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024] Open
Abstract
With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.
Collapse
Affiliation(s)
- Shilpa Pal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Diamond Jain
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sarmistha Biswal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sumit Kumar Rastogi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gaurav Kumar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Anindya S Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
12
|
Özer B, Özbek Çelık B. Comparative in vitro activities of eravacycline in combination with colistin, meropenem, or ceftazidime against various Achromobacter spp. strains isolated from patients with cystic fibrosis. J Chemother 2023; 35:700-706. [PMID: 37211830 DOI: 10.1080/1120009x.2023.2213600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
The Achromobacter species is an emerging pathogen causing chronic bacterial infections in patients with certain conditions, such as cystic fibrosis (CF), hematologic and solid organ malignancies, renal failure, and certain immune deficiencies. In the present study, we assessed the in vitro bactericidal activities of eravacycline, either alone or in combination with colistin, meropenem, or ceftazidime, using 50 Achromobacter spp. strains isolated from CF patients. We also investigated the synergistic interactions of these combinations using microbroth dilutions against 50 strains of Achromobacter spp. Bactericidal, and we assessed the synergistic effects of the tested antibiotic combinations using the time-kill curve (TKC) technique. Our studies show that meropenem alone is the most effective antibiotic of those tested. Based on the TKCs, we found that eravacycline-colistin combinations display both bactericidal and synergistic activities for 24 h against 5 of the 6 Achromobacter spp. strains, including colistin-resistant ones, at 4xMIC of colistin. Although we did not observe synergistic interactions with eravacycline-meropenem or eravacycline-ceftazidime combinations, we did not observe antagonism with any combination tested.This study's findings could have important implications for antimicrobial therapy with tested antibiotics.
Collapse
Affiliation(s)
- Bekir Özer
- Department of Pharmaceutical Microbiology, Institute of Graduate Studies in Health Sciences, University of Istanbul, Beyazıt, Istanbul, Turkey
- Department of Pharmaceutical Microbiology, University of Istanbul, Beyazıt, Istanbul, Turkey
| | - Berna Özbek Çelık
- Department of Pharmaceutical Microbiology, University of Istanbul, Beyazıt, Istanbul, Turkey
| |
Collapse
|
13
|
Mumtaz L, Farid A, Yousef Alomar S, Ahmad N, Nawaz A, Andleeb S, Amin A. Assesment of polyphenolic compounds against biofilms produced by clinical Acinetobacter baumannii strains using in silico and in vitro models. Saudi J Biol Sci 2023; 30:103743. [PMID: 37564783 PMCID: PMC10410175 DOI: 10.1016/j.sjbs.2023.103743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Several types of microbial infections are caused by Acinetobacter baumanii that has developed resistance to antimicrobial agents. We therefore investigated the role of plant polyphenols against A. baumannii using in silico and in vitro models. The clinical strains of A. baumannii were investigated for determination of resistance pattern and resistance mechanisms including efflux pump, extended spectrum beta lactamase, phenotype detection of AmpC production, and Metallo-β-lactamase. The polyphenolic compounds were docked against transcription regulator BfmR (PDB ID 6BR7) and antimicrobial, antibiofilm, and anti-quorum sensing activities were performed. The antibiogram studies showed that all isolated strains were resistant. Strain A77 was positive in Metallo-β-lactamase production. Similarly, none of strains were producers of AmpC, however, A77, A76, A75 had active efflux pumps. Molecular docking studies confirmed a strong binding affinity of Rutin and Catechin towards transcription regulator 6BR7. A significant antimicrobial activity was recorded in case of quercetin and syringic acid (MIC 3.1 µg/mL) followed by vanillic acid and caffeic acid (MIC 12.5 µg/mL). All tested compounds presented a strong antibiofilm activity against A. baumanii strain A77 (65 to 90%). It was concluded that all tested polyphenols samples posess antimicrobial and antibiofilm activities, and hence they may be utilized to treat multidrug resistance A. baumannii infections.
Collapse
Affiliation(s)
- Laraib Mumtaz
- Gomal Centre of Biochemistry and Biotechnology(GCBB), Gomal University, KPK, 29050 D.I.Khan, Pakistan
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology(GCBB), Gomal University, KPK, 29050 D.I.Khan, Pakistan
| | - Suliman Yousef Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Nawaz
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| | - Saadia Andleeb
- Atta Ur Rehman School of Biological Sciences, National University of Science and Technology, Islamabad Pakistan
| | - Adnan Amin
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| |
Collapse
|
14
|
Cheng Y, Li Y, Yang M, He Y, Shi X, Zhang Z, Zhong Y, Zhang Y, Si H. Emergence of novel tigecycline resistance gene tet(X5) variant in multidrug-resistant Acinetobacter indicus of swine farming environments. Vet Microbiol 2023; 284:109837. [PMID: 37531842 DOI: 10.1016/j.vetmic.2023.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Antibiotic-resistant bacteria are emerging all the time, but the continued emergence of novel resistance genes and genetic structures is even more alarming. Tigecycline is currently the important last barrier in the treatment of multidrug-resistant (MDR) infections. tet(X), a resistance gene to tigecycline, is the most prevalent and constantly emerging novel variants. In this research, we characterized two MDR Acinetobacter indicus strains to tigecycline that were identified and analyzed by antimicrobial susceptibility testing, conjugation transfer, whole genome sequencing (WGS) and bioinformatics analysis, and gene function analysis. The results showed that three tet(X) variants were carried in BDT201, including tet(X6) on the chromosome, tet(X3) on the plasmid pBDT201-2, and a novel tet(X5) variant adjacent to the ISAba1 elements on the plasmid pBDT201-3. The novel Tet(X5) variant showed 98.7% amino acid identity with Tet(X5) and was named Tet(X5.4). By expressing tet(X5.4) gene, the tigecycline minimum inhibitory concentration (MIC) values for Escherichia coli JM109 increased 32- fold (from 0.13 to 4 mg/L). BDT2076 contained tigecycline and carbapenems resistance genes, such as tet(X3), blaOXA-58, blaNDM-3, and blaCARB-2. The continuous emergence of MDR bacteria and resistance genes is a global environmental health issue that can not be ignored and therefore needs to pay more urgent attention to it.
Collapse
Affiliation(s)
- Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yakun Li
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Meng Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Xinru Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yesheng Zhong
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
Khoshbakht R, Panahi S, Neshani A, Ghavidel M, Ghazvini K. Novel approaches to overcome Colistin resistance in Acinetobacter baumannii: Exploring quorum quenching as a potential solution. Microb Pathog 2023; 182:106264. [PMID: 37474078 DOI: 10.1016/j.micpath.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Acinetobacter baumannii is responsible for a variety of infections, such as nosocomial infections. In recent years, this pathogen has gained resistance to many antibiotics, and thus, carbapenems were used to treat infections with MDR A. baumannii strains in clinical settings. However, as carbapenem-resistant isolates are becoming increasingly prevalent, Colistin is now used as the last line of defense against resistant A. baumannii strains. Unfortunately, reports are increasing on the presence of Colistin-resistant phenotypes in infections caused by A. baumannii, creating an urgent need to find a substitute way to combat these resistant isolates. Quorum sensing inhibition, also known as quorum quenching, is an efficient alternative way of reversing resistance in different Gram-negative bacteria. Quorum sensing is a mechanism used by bacteria to communicate with each other by secreting signal molecules. When the population of bacteria increases and the concentration of signal molecules reaches a certain threshold, bacteria can implement mechanisms to adapt to a hostile environment, such as biofilm formation. Biofilms have many advantages for pathogens, such as antibiotic resistance. Different studies have revealed that disrupting the biofilm of A. baumannii makes it more susceptible to antibiotics. Although very few studies have been conducted on the biofilm disruption through quorum quenching in Colistin-resistant A. baumannii, these studies and similar studies bring hope in finding an alternative way of treating the Colistin-resistant isolates. In conclusion, quorum quenching has the potential to be used against Colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Reza Khoshbakht
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdis Ghavidel
- Shahid Hasheminejad Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Plasencia-Rebata S, Levy-Blitchtein S, Del Valle-Mendoza J, Silva-Caso W, Peña-Tuesta I, Vicente Taboada W, Barreda Bolaños F, Aguilar-Luis MA. Effect of Phenylalanine-Arginine Beta-Naphthylamide on the Values of Minimum Inhibitory Concentration of Quinolones and Aminoglycosides in Clinical Isolates of Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1071. [PMID: 37370390 DOI: 10.3390/antibiotics12061071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Acinetobacter baumannii has become the most important pathogen responsible for nosocomial infections in health systems. It expresses several resistance mechanisms, including the production of β-lactamases, changes in the cell membrane, and the expression of efflux pumps. (2) Methods: A. baumannii was detected by PCR amplification of the blaOXA-51-like gene. Antimicrobial susceptibility to fluoroquinolones and aminoglycosides was assessed using the broth microdilution technique according to 2018 CLSI guidelines. Efflux pump system activity was assessed by the addition of a phenylalanine-arginine beta-naphthylamide (PAβN) inhibitor. (3) Results: A total of nineteen A. baumannii clinical isolates were included in the study. In an overall analysis, in the presence of PAβN, amikacin susceptibility rates changed from 84.2% to 100%; regarding tobramycin, they changed from 68.4% to 84.2%; for nalidixic acid, they changed from 73.7% to 79.0%; as per ciprofloxacin, they changed from 68.4% to 73.7%; and, for levofloxacin, they stayed as 79.0% in both groups. (4) Conclusions: The addition of PAβN demonstrated a decrease in the rates of resistance to antimicrobials from the family of quinolones and aminoglycosides. Efflux pumps play an important role in the emergence of multidrug-resistant A. baumannii strains, and their inhibition may be useful as adjunctive therapy against this pathogen.
Collapse
Affiliation(s)
- Stefany Plasencia-Rebata
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Saul Levy-Blitchtein
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Microbiology Department, Vall d'Hebron University Hospital, 08034 Barcelona, Spain
| | - Juana Del Valle-Mendoza
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Laboratorio de Biomedicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Wilmer Silva-Caso
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Laboratorio de Biomedicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Isaac Peña-Tuesta
- Laboratorio de Biomedicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | | | | | - Miguel Angel Aguilar-Luis
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Laboratorio de Biomedicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Instituto de Investigación Nutricional, Lima 15024, Peru
| |
Collapse
|
17
|
Kumar H, Williford EE, Blake KS, Virgin-Downey B, Dantas G, Wencewicz TA, Tolia NH. Structure of anhydrotetracycline-bound Tet(X6) reveals the mechanism for inhibition of type 1 tetracycline destructases. Commun Biol 2023; 6:423. [PMID: 37062778 PMCID: PMC10106456 DOI: 10.1038/s42003-023-04792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Inactivation of tetracycline antibiotics by tetracycline destructases (TDases) remains a clinical and agricultural threat. TDases can be classified as type 1 Tet(X)-like TDases and type 2 soil-derived TDases. Type 1 TDases are widely identified in clinical pathogens. A combination therapy of tetracycline and a TDase inhibitor is much needed to rescue the clinical efficacy of tetracyclines. Anhydrotetracycline is a pan-TDase inhibitor that inhibits both type 1 and type 2 TDases. Here, we present structural, biochemical, and phenotypic evidence that anhydrotetracycline binds in a substrate-like orientation and competitively inhibits the type 1 TDase Tet(X6) to rescue tetracycline antibiotic activity as a sacrificial substrate. Anhydrotetracycline interacting residues of Tet(X6) are conserved within type 1 TDases, indicating a conserved binding mode and mechanism of inhibition. This mode of binding and inhibition is distinct from anhydrotetracycline's inhibition of type 2 TDases. This study forms the framework for development of next-generation therapies to counteract enzymatic tetracycline resistance.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett Virgin-Downey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| | - Niraj H Tolia
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
18
|
Ghieh F, Bizri AR, Beaineh P, Chalhoub R, Abu Sittah G. Systematic review of the microbiology of osteomyelitis associated with war injuries in the Middle East and North Africa. Med Confl Surviv 2023:1-12. [PMID: 37045606 DOI: 10.1080/13623699.2023.2193862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Osteomyelitis is a serious complication associated with war-related limb injuries requiring complicated treatment regimens and management. Few reports have been published from the Middle-East and North-Africa regions about the microbial aetiology of osteomyelitis caused by war injuries. The aim of this review is to collect published data about the microbiology of osteomyelitis in war-related injuries in the region and to derive targeted treatment regimens to manage these serious and limb-threatening infections. A thorough literature search was done using six search engines for pertinent articles. Articles with a minimum of five cases of osteomyelitis from war wounds, citation of microbial aetiology and mention of the timing of cultures obtained in relation to injury were included. Nine studies that met the eligibility criteria were included, involving 1644 patients and a total of 2332 cultures. Gram-negative bacteria were isolated from 1184 cultures, and Gram-positive bacteria were identified from 1148 cultures. Antibiotic coverage should be tailored for Gram-negative organisms in the early stages and Gram-positives in the chronic phase, respectively, with broader coverage reserved for critically ill patients. There is a dire need for further and larger studies about osteomyelitis from war injuries for targeted treatment.
Collapse
Affiliation(s)
- Fadi Ghieh
- Department of Surgery, Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdul Rahman Bizri
- Department of Internal Medicine, Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Paul Beaineh
- Department of Surgery, Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rawad Chalhoub
- Department of Surgery, Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan Abu Sittah
- Department of Surgery, Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
- Conflict Medicine Program, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
19
|
Zhang J, Song C, Wu M, Yue J, Zhu S, Zhu P, Oo C, Schlender JF, Lv Z, Zhu Y, Sy SKB, Yu M. Physiologically-based pharmacokinetic modeling to inform dosing regimens and routes of administration of rifampicin and colistin combination against Acinetobacter baumannii. Eur J Pharm Sci 2023; 185:106443. [PMID: 37044198 DOI: 10.1016/j.ejps.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to major antibiotics such as penicillin, cephalosporin, fluoroquinolone and aminoglycoside, and has become a significant nosocomial pathogen. The efficacy of rifampicin and colistin combination against CRAB could be dependent on the administration routes and drug concentrations at the site of infection. OBJECTIVE The objective is to predict drug disposition in biological tissues. Treatment efficacy is extrapolated by assessing respective pharmacodynamic (PD) indices, as well as parameters associated with the emergence of resistance. METHODS Physiologically-based pharmacokinetic models of rifampicin and colistin were utilized to predict tissue exposures. Dosing regimens and administration routes for combination therapy were evaluated in terms of in vitro antimicrobial susceptibility of A. baumannii associated with targeted PD indices and resistance parameters. RESULTS Simulated exposures in blood, heart, lung, skin and brain were consistent with reported penetration rates. The results demonstrated that a combination of colistin and rifampicin using conventional intravenous (i.v.) doses could achieve effective exposures in the blood and skin. However, for lung infections, colistin by inhalation would be required due to low lung penetration from intravenous route. Inhaled colistin alone provided good PD coverage but this practice could encourage the emergence of additional resistance which may be overcome by a combination regimen that includes inhaled colistin. CONCLUSION This in silico extrapolation provides valuable information on dosing regimens and routes of administration against CRAB infections in specific tissues. The PBPK modeling approach could be a non-invasive way to inform therapeutic benefits of combination antimicrobial therapy.
Collapse
Affiliation(s)
- Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Mengyuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiali Yue
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, New Jersey, USA
| | | | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Yuanqi Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
20
|
Acinetobacter baumannii from Samples of Commercially Reared Turkeys: Genomic Relationships, Antimicrobial and Biocide Susceptibility. Microorganisms 2023; 11:microorganisms11030759. [PMID: 36985332 PMCID: PMC10052703 DOI: 10.3390/microorganisms11030759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acinetobacter baumannii is especially known as a cause of nosocomial infections worldwide. It shows intrinsic and acquired resistances to numerous antimicrobial agents, which can render the treatment difficult. In contrast to the situation in human medicine, there are only few studies focusing on A. baumannii among livestock. In this study, we have examined 643 samples from turkeys reared for meat production, including 250 environmental and 393 diagnostic samples, for the presence of A. baumannii. In total, 99 isolates were identified, confirmed to species level via MALDI-TOF-MS and characterised with pulsed-field gel electrophoresis. Antimicrobial and biocide susceptibility was tested by broth microdilution methods. Based on the results, 26 representative isolates were selected and subjected to whole-genome sequencing (WGS). In general, A. baumannii was detected at a very low prevalence, except for a high prevalence of 79.7% in chick-box-papers (n = 118) of one-day-old turkey chicks. The distributions of the minimal inhibitory concentration values were unimodal for the four biocides and for most of the antimicrobial agents tested. WGS revealed 16 Pasteur and 18 Oxford sequence types, including new ones. Core genome MLST highlighted the diversity of most isolates. In conclusion, the isolates detected were highly diverse and still susceptible to many antimicrobial agents.
Collapse
|
21
|
Li Z, Zeng Q, Xu S, Li Y, Tang T, Shi J, Song X, He W, Chen L, Liu G, Gao B, Zheng J, Huang L, Chen M, Jiang S. Development and Validation of a Nomogram for Predicting Tigecycline-Related Coagulopathy: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:423-434. [PMID: 36718461 PMCID: PMC9884007 DOI: 10.2147/idr.s388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Background Although tigecycline is an effective drug against drug-resistant bacteria, it demonstrated a higher all-cause mortality than comparator antibiotics and a high incidence of coagulation disorders which can be accompanied by severe bleeding. At present, a predictive model for tigecycline-related coagulopathy is not readily available, and the prognostic value of coagulopathy in tigecycline-administered patients has not been elucidated. In this paper, we investigate the association between tigecycline-related coagulopathy and in-hospital mortality to develop a nomogram for the prediction of tigecycline-related coagulopathy. Methods This retrospective cohort study includes 311 adults prescribed with tigecycline from 2018 to 2020. The primary cohort and validation cohort were constructed by dividing the participants in a ratio of 7:3. The endpoint is tigecycline-related coagulopathy, defined as a condition with no abnormality in coagulation prior to tigecycline application but developed the following symptoms upon prescription: activated partial thromboplastin time (APTT) extended by >10 s than the upper limit of normal (ULN), prothrombin time (PT) prolonged for >3 s than the ULN or reduced serum level of fibrinogen to <2.0 g/L. A predictive nomogram based on logistic regression was subsequently constructed. Results Tigecycline intake for over 7 days, combined other antibiotics, initial PT, initial fibrinogen and estimated glomerular filtration rate (eGFR), are independent prognostic factors of tigecycline-related coagulopathy. The primary and validation cohort each has an area under the receiver operating characteristic curve (AUC) of 0.792 (0.732-0.851) and 0.730 (0.629-0.832) for nomogram, respectively. Furthermore, the fitted calibration curve illustrated adequate fit of the model, while the decision curve analysis demonstrated good clinical value. Survival curves showed a high mortality rate among patients with tigecycline-related coagulopathy. Conclusion This nomogram exhibited helpful clinical value in predicting tigecycline-related coagulopathy that could reduce the high mortality rate of patients prescribed with tigecycline.
Collapse
Affiliation(s)
- Zhaolin Li
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiaojun Zeng
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuwan Xu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yuewei Li
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tiantian Tang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xueming Song
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenman He
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liang Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guirong Liu
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Boying Gao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianming Zheng
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Linjie Huang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China,Correspondence: Shanping Jiang; Ming Chen, Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yan-jiang Xi Road 107, Guangzhou, 510120, People’s Republic of China, Tel +86-20-81332441, Email ;
| |
Collapse
|
22
|
Yang N, Jin X, Zhu C, Gao F, Weng Z, Du X, Feng G. Subunit vaccines for Acinetobacter baumannii. Front Immunol 2023; 13:1088130. [PMID: 36713441 PMCID: PMC9878323 DOI: 10.3389/fimmu.2022.1088130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterium and a crucial opportunistic pathogen in hospitals. A. baumannii infection has become a challenging problem in clinical practice due to the increasing number of multidrug-resistant strains and their prevalence worldwide. Vaccines are effective tools to prevent and control A. baumannii infection. Many researchers are studying subunit vaccines against A. baumannii. Subunit vaccines have the advantages of high purity, safety, and stability, ease of production, and highly targeted induced immune responses. To date, no A. baumannii subunit vaccine candidate has entered clinical trials. This may be related to the easy degradation of subunit vaccines in vivo and weak immunogenicity. Using adjuvants or delivery vehicles to prepare subunit vaccines can slow down degradation and improve immunogenicity. The common immunization routes include intramuscular injection, subcutaneous injection, intraperitoneal injection and mucosal vaccination. The appropriate immunization method can also enhance the immune effect of subunit vaccines. Therefore, selecting an appropriate adjuvant and immunization method is essential for subunit vaccine research. This review summarizes the past exploration of A. baumannii subunit vaccines, hoping to guide current and future research on these vaccines.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghua Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fenglin Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqi Weng
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingran Du
- Department of Infectious Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| |
Collapse
|
23
|
Deshwal PR, Fathima R, Aggarwal M, Reddy NS, Tiwari P. A systematic review and meta-analysis for risk factor profiles in patients with resistant Acinetobacter baumannii infection relative to control patients. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2023; 34:337-355. [PMID: 37154184 DOI: 10.3233/jrs-220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Acinetobacter baumannii is a major cause of nosocomial infections and high mortality rates. Evaluation of risk factors for such resistant infections may aid surveillance and diagnostic initiatives, as well as, can be crucial in early and appropriate antibiotic therapy. OBJECTIVE To identify the risk factors in patients with resistant A. baumannii infection with respect to controls. METHODS Prospective or retrospective cohort and case-control studies reporting the risk factors for resistant A. baumannii infection were collected through two data sources, MEDLINE/PubMed and OVID/Embase. Studies published in the English language were included while animal studies were excluded. The Newcastle-Ottawa Scale was used to assess the quality of studies. The odds ratio of developing antibiotic resistance in patients with A. baumannii infection was pooled using a random-effect model. RESULTS The results are based on 38 studies with 60878 participants (6394 cases and 54484 controls). A total of 28, 14, 25, and 11 risk factors were identified for multi-drug resistant (MDRAB), extensive-drug resistant (XDRAB), carbapenem-resistant (CRAB) and imipenem resistant A. baumannii infection (IRAB), respectively. In the MDRAB infection group, exposure to carbapenem (OR 5.51; 95% CI: 3.88-7.81) and tracheostomy (OR 5.01; 95% CI: 2.12-11.84) were identified with maximal pool odd's ratio. While previous use of amikacin (OR 4.94; 95% CI: 1.89-12.90) and exposure to carbapenem (OR 4.91; 95% CI: 2.65-9.10) were the foremost factors associated with developing CRAB infection. Further analysis revealed, mechanical ventilation (OR 7.21; 95% CI: 3.79-13.71) and ICU stay (OR 5.88; 95% CI: 3.27-10.57) as the most significant factors for XDRAB infection. CONCLUSION The exposure of carbapenem, amikacin (previous) and mechanical ventilation were the most significant risk factors for multidrug, extensive-drug, and carbapenem resistance in patients with A. baumannii infection respectively. These findings may guide to control and prevent resistant infections by identifying the patients at higher risk of developing resistance.
Collapse
Affiliation(s)
- Prity Rani Deshwal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Raisa Fathima
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Muskan Aggarwal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Nalla Surender Reddy
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| |
Collapse
|
24
|
Abdeta A, Negeri AA, Beyene D, Adamu E, Fekede E, Fentaw S, Tesfaye M, Wakoya GK. Prevalence and Trends of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter Species Isolated from Clinical Specimens at the Ethiopian Public Health Institute, Addis Ababa, Ethiopia: A Retrospective Analysis. Infect Drug Resist 2023; 16:1381-1390. [PMID: 36937143 PMCID: PMC10015948 DOI: 10.2147/idr.s403360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023] Open
Abstract
Purpose Carbapenem-resistant Acinetobacter species and P. aeruginosa are the leading cause of nosocomial infections. Therefore, the objective of this study was to analyze the prevalence, antimicrobial susceptibility profile, and trends of carbapenem-resistant P. aeruginosa and Acinetobacter species isolated from clinical specimens. Patients and Methods This retrospective study included data from Ethiopian Public Health Institute from 2017 to 2021. BD phoenix M50, Vitek 2 compact, and conventional identification methods were used to identify the organisms. The Kirby-Bauer disc diffusion, BD phoenix M50, and Vitek 2 compact methods were used to determine the antimicrobial susceptibility profiles of the isolates. Chi-square for linear trends using Epi Info was employed to test the significance of carbapenem resistance trends over time. The p-values of ≤0.05 were considered statistically significant. Results Following data cleaning, 7110 reports were used. Out of this, (N=185, 2.6%) and (N=142, 2%), Acinetobacter species and P. aeruginosa were isolated, respectively. Twenty-four Acinetobacter species and fourteen P. aeruginosa species were omitted because carbapenem antimicrobial agents were not tested for them. The overall prevalence of carbapenem-resistant Acinetobacter species and P. aeruginosa were 61% and 22%, respectively. The prevalence of carbapenem-resistant Acinetobacter species increased significantly from 50% in 2017 to 76.2% in 2021 (p=0.013). The trend of carbapenem-resistant P. aeruginosa was fluctuating (p=0.99). Carbapenem-resistant Acinetobacter had a lower resistance rate to amikacin (44%) and tobramycin (55%); similarly, carbapenem-resistant P. aeruginosa had a lower resistance rate to amikacin (27%) and tobramycin (47%). Conclusion This study revealed a high prevalence of carbapenem-resistant Acinetobacter species and P. aeruginosa, both of which showed better sensitivity to amikacin and tobramycin. Furthermore, Acinetobacter species showed a statistically significant increasing trend in carbapenem resistance.
Collapse
Affiliation(s)
- Abera Abdeta
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Correspondence: Abera Abdeta, 1242, Tel +251911566420, Email
| | - Abebe Aseffa Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Degefu Beyene
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Etsehiwot Adamu
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ebissa Fekede
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mheret Tesfaye
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Getu Kusa Wakoya
- Department of Internal Medicine, Madda Walabu University, Oromia, Ethiopia
| |
Collapse
|
25
|
Li Y, Li Y, Bu K, Wang M, Wang Z, Li R. Antimicrobial Resistance and Genomic Epidemiology of tet(X4)-Bearing Bacteria of Pork Origin in Jiangsu, China. Genes (Basel) 2022; 14:36. [PMID: 36672777 PMCID: PMC9858217 DOI: 10.3390/genes14010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence of tigecycline-resistant bacteria in agri-food chains poses a public health concern. Recently, plasmid-mediated tet(X4) was found to be resistant to tigecycline. However, genome differences between tet(X4)-positive Escherichia coli of human and pork origins are still under-investigated. In this study, 53 pork samples were collected from markets in Jiangsu, China, and 23 tet(X4)-positive isolates were identified and shown to confer resistance to multiple antibiotics, including tigecycline. tet(X4)-positive isolates were mainly distributed in E. coli (n = 22), followed by Klebsiella pneumoniae (n = 1). More than half of the tet(X4) genes were able to be successfully transferred into E. coli C600. We downloaded all tet(X4)-positive E. coli isolates from humans and pork found in China from the NCBI database. A total of 42 known STs were identified, of which ST10 was the dominant ST. The number of ARGs and plasmid replicons carried by E. coli of human origin were not significantly different from those carried by E. coli of pork origin. However, the numbers of insertion sequences and virulence genes carried by E. coli of human origin were significantly higher than those carried by E. coli of pork origin. In addition to E. coli, we analyzed all 23 tet(X4)-positive K. pneumoniae strains currently reported. We found that these tet(X4)-positive K. pneumoniae were mainly distributed in China and had no dominant STs. This study systematically investigated the tet(X4)-positive isolates, emphasizing the importance of the continuous surveillance of tet(X4) in pork.
Collapse
Affiliation(s)
- Yuhan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kefan Bu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mianzhi Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Cheng Y, Li Y, Yu R, Ma M, Yang M, Si H. Identification of Novel tet(X3) Variants Resistant To Tigecycline in Acinetobacter Species. Microbiol Spectr 2022; 10:e0133322. [PMID: 36409072 PMCID: PMC9784759 DOI: 10.1128/spectrum.01333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of the tet(X) gene is a severe challenge to global public health security, as clinical tigecycline resistance shows a rapidly rising trend. In this research, we identified two tigecycline-resistant Acinetobacter sp. strains containing seven novel tet(X3) variants recovered from fecal samples from Chinese farms. The seven Tet(X3) variants showed 15.4% to 99.7% amino acid identity with Tet(X3). By expressing tet(X3.7) and tet(X3.9), the tigecycline MIC values for Escherichia coli JM109 increased 64-fold (from 0.13 to 8 mg/L). However, the other tet(X3) variants did not have a significant change in the MIC of tigecycline. We found that the 26th amino acid site of Tet(X3.7) changed from proline to serine, and the 25th amino acid site of Tet(X3.9) changed from glycine to alanine, which reduced the MIC of tigecycline by 2-fold [the MIC of tet(X3) to tigecycline was 16 mg/L] but did not affect its expression to tigecycline. The tet(X3) variants surrounded by mobile genetic elements appeared in the structure of gene clusters with tandem repeat sequences and were adjacent to the site-specific recombinase-encoding gene xerD. Therefore, there is a risk of horizontal transfer of resistant genes. Our study reports seven novel tet(X3) variants; the continuing emergence of tigecycline variants makes continuous monitoring of resistance to tigecycline even more critical. IMPORTANCE Although it is illegal to use tigecycline and carbapenems to treat bacterial infections in animals, we can still isolate bacteria containing both mobile resistance genes from animals, and tet(X) is currently an essential factor in degrading tigecycline. Here, we characterized two multidrug-resistant Acinetobacter sp. strains that contained vital resistance genes, such as sul2, a blaOXA-164-like gene, floR, tetM, and multiple novel tet(X3) variants with different tandem structures. It is of paramount significance that their mechanism may transfer to other Gram-negative pathogens, even if their tandem structures have no cumulative effect on tigecycline resistance.
Collapse
Affiliation(s)
- Yumeng Cheng
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yakun Li
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingxiang Ma
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Meng Yang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
27
|
The prevalence of antibiotic-resistant Acinetobacter baumannii infections among the Iranian ICU patients: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Specific egg yolk antibody raised to biofilm associated protein (Bap) is protective against murine pneumonia caused by Acinetobacter baumannii. Sci Rep 2022; 12:12576. [PMID: 35869264 PMCID: PMC9307575 DOI: 10.1038/s41598-022-16894-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acinetobacter baumannii easily turns into pan drug-resistant (PDR) with a high mortality rate. No effective commercial antibiotic or approved vaccine is available against drug-resistant strains of this pathogen. Egg yolk immunoglobulin (IgY) could be used as a simple and low-cost biotherapeutic against its infections. This study evaluates the prophylactic potential of IgY against A. baumannii in a murine pneumonia model. White Leghorn hens were immunized with intramuscular injection of the recombinant biofilm-associated protein (Bap) from A. baumannii on days 0, 21, 42, and 63. The reactivity and antibiofilm activity of specific IgYs raised against the Bap was evaluated by indirect ELISA and a microtiter plate assay for biofilm formation. The IgYs against Bap were able to decrease the biofilm formation ability of A. baumannii and protect the mice against the challenge of A. baumannii. IgYs antibody raised here shows a good antigen-specificity and protectivity which can be used in passive immunotherapy against A. baumannii. In conclusion, the IgY against biofilm-associated protein proves prophylactic in a murine pneumonia model.
Collapse
|
29
|
Paranos P, Vourli S, Pournaras S, Meletiadis J. Assessing Clinical Potential of Old Antibiotics against Severe Infections by Multi-Drug-Resistant Gram-Negative Bacteria Using In Silico Modelling. Pharmaceuticals (Basel) 2022; 15:1501. [PMID: 36558952 PMCID: PMC9781251 DOI: 10.3390/ph15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
In the light of increasing antimicrobial resistance among gram-negative bacteria and the lack of new more potent antimicrobial agents, new strategies have been explored. Old antibiotics, such as colistin, temocillin, fosfomycin, mecillinam, nitrofurantoin, minocycline, and chloramphenicol, have attracted the attention since they often exhibit in vitro activity against multi-drug-resistant (MDR) gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The current review provides a summary of the in vitro activity, pharmacokinetics and PK/PD characteristics of old antibiotics. In silico modelling was then performed using Monte Carlo simulation in order to combine all preclinical data with human pharmacokinetics and determine the probability of target (1-log kill in thigh/lung infection animal models) attainment (PTA) of different dosing regimens. The potential of clinical efficacy of a drug against severe infections by MDR gram-negative bacteria was considered when PTA was >95% at the epidemiological cutoff values of corresponding species. In vitro potent activity against MDR gram-negative pathogens has been shown for colistin, polymyxin B, temocillin (against E. coli and K. pneumoniae), fosfomycin (against E. coli), mecillinam (against E. coli), minocycline (against E. coli, K. pneumoniae, A. baumannii), and chloramphenicol (against E. coli) with ECOFF or MIC90 ≤ 16 mg/L. When preclinical PK/PD targets were combined with human pharmacokinetics, Monte Carlo analysis showed that among the old antibiotics analyzed, there is clinical potential for polymyxin B against E. coli, K. pneumoniae, and A. baumannii; for temocillin against K. pneumoniae and E. coli; for fosfomycin against E. coli and K. pneumoniae; and for mecillinam against E. coli. Clinical studies are needed to verify the potential of those antibiotics to effectively treat infections by multi-drug resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
30
|
A Randomized Controlled Trial of Colistin Combined with Sulbactam: 9 g per Day versus 12 g per Day in the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Pneumonia: An Interim Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081112. [PMID: 36009980 PMCID: PMC9405071 DOI: 10.3390/antibiotics11081112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Extensively drug-resistant A. baumannii (XDRAB) pneumonia has a high mortality rate in hospitalized patients. One of the recommended treatments is colistin combined with sulbactam; however, the optimal dosage of sulbactam is unclear. In an open-label, superiority, randomized controlled trial, patients diagnosed with XDRAB pneumonia were randomly assigned (1:1) to receive colistin in combination with sulbactam at either 9 g/day or 12 g/day. The primary outcome was the 28-day mortality rate in the intention-to-treat population. A total of 88 patients received colistin in combination with sulbactam at a dosage of either 12 g/day (n = 45) or 9 g/day (n = 43). Trends toward a lower mortality rate were observed in the 12 g/day group at 7 days (11.1% vs. 23.3%), 14 days (33.3% vs. 41.9%), and 28 days (46.7% vs. 58.1%). The microbiological cure rate at day 7 was significantly higher in the 12 g/day group (90.5% vs. 58.1%; p = 0.02). Factors associated with mortality at 28 days were asthma, cirrhosis, APACHEII score ≥ 28, and a dosage of sulbactam of 9 g/day for mortality at any timepoint. Treatment with colistin combined with sulbactam at 12 g/day was not superior to the combination treatment with sulbactam at 9 g/day. However, due to being an interim analysis, this trial was underpowered to detect mortality differences.
Collapse
|
31
|
Rizk NA, Zahreddine N, Haddad N, Ahmadieh R, Hannun A, Bou Harb S, Haddad SF, Zeenny RM, Kanj SS. The Impact of Antimicrobial Stewardship and Infection Control Interventions on Acinetobacter baumannii Resistance Rates in the ICU of a Tertiary Care Center in Lebanon. Antibiotics (Basel) 2022; 11:911. [PMID: 35884165 PMCID: PMC9311570 DOI: 10.3390/antibiotics11070911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance is a serious threat to global health, causing increased mortality and morbidity especially among critically ill patients. This toll is expected to rise following the COVID-19 pandemic. Carbapenem-resistant Acinetobacter baumannii (CRAb) is among the Gram-negative pathogens leading antimicrobial resistance globally; it is listed as a critical priority pathogen by the WHO and is implicated in hospital-acquired infections and outbreaks, particularly in critically ill patients. Recent reports from Lebanon describe increasing rates of infection with CRAb, hence the need to develop concerted interventions to control its spread. We set to describe the impact of combining antimicrobial stewardship and infection control measures on resistance rates and colonization pressure of CRAb in the intensive care units of a tertiary care center in Lebanon before the COVID-19 pandemic. The antimicrobial stewardship program introduced a carbapenem-sparing initiative in April 2019. During the same period, infection control interventions involved focused screening, monitoring, and tracking of CRAb, as well as compliance with specific measures. From January 2018 to January 2020, we report a statistically significant decrease in carbapenem consumption and a decrease in resistance rates of isolated A. baumannii. The colonization pressure of CRAb also decreased significantly, reaching record low levels at the end of the intervention period. The results indicate that a multidisciplinary approach and combined interventions between the stewardship and infection control teams can lead to a sustained reduction in resistance rates and CRAb spread in ICUs.
Collapse
Affiliation(s)
- Nesrine A. Rizk
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.A.R.); (S.B.H.); (S.F.H.)
| | - Nada Zahreddine
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.Z.); (R.A.)
| | - Nisrine Haddad
- Department of Pharmacy, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.H.); (A.H.); (R.M.Z.)
| | - Rihab Ahmadieh
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.Z.); (R.A.)
| | - Audra Hannun
- Department of Pharmacy, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.H.); (A.H.); (R.M.Z.)
| | - Souad Bou Harb
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.A.R.); (S.B.H.); (S.F.H.)
| | - Sara F. Haddad
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.A.R.); (S.B.H.); (S.F.H.)
| | - Rony M. Zeenny
- Department of Pharmacy, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.H.); (A.H.); (R.M.Z.)
| | - Souha S. Kanj
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (N.A.R.); (S.B.H.); (S.F.H.)
| |
Collapse
|
32
|
Kim D, Lee H, Choi JS, Croney CM, Park KS, Park HJ, Cho J, Son S, Kim JY, Choi SH, Huh HJ, Ko KS, Lee NY, Kim YJ. The Changes in Epidemiology of Imipenem-Resistant Acinetobacter baumannii Bacteremia in a Pediatric Intensive Care Unit for 17 Years. J Korean Med Sci 2022; 37:e196. [PMID: 35726147 PMCID: PMC9247723 DOI: 10.3346/jkms.2022.37.e196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii infections cause high morbidity and mortality in intensive care unit (ICU) patients. However, there are limited data on the changes of long-term epidemiology of imipenem resistance in A. baumannii bacteremia among pediatric ICU (PICU) patients. METHODS A retrospective review was performed on patients with A. baumannii bacteremia in PICU of a tertiary teaching hospital from 2000 to 2016. Antimicrobial susceptibility tests, multilocus sequence typing (MLST), and polymerase chain reaction for antimicrobial resistance genes were performed for available isolates. RESULTS A. baumannii bacteremia occurred in 27 patients; imipenem-sensitive A. baumannii (ISAB, n = 10, 37%) and imipenem-resistant A. baumannii (IRAB, n = 17, 63%). There was a clear shift in the antibiogram of A. baumannii during the study period. From 2000 to 2003, all isolates were ISAB (n = 6). From 2005 to 2008, both IRAB (n = 5) and ISAB (n = 4) were isolated. However, from 2009, all isolates were IRAB (n = 12). Ten isolates were available for additional test and confirmed as IRAB. MLST analysis showed that among 10 isolates, sequence type 138 was predominant (n = 7). All 10 isolates were positive for OXA-23-like and OXA-51-like carbapenemase. Of 27 bacteremia patients, 11 were male (41%), the median age at bacteremia onset was 5.2 years (range, 0-18.6 years). In 33% (9/27) of patients, A. baumannii was isolated from tracheal aspirate prior to development of bacteremia (median, 8 days; range, 5-124 days). The overall case-fatality rate was 63% (17/27) within 28 days. There was no statistical difference in the case fatality rate between ISAB and IRAB groups (50% vs. 71%; P = 0.422). CONCLUSION IRAB bacteremia causes serious threat in patients in PICU. Proactive infection control measures and antimicrobial stewardship are crucial for managing IRAB infection in PICU.
Collapse
Affiliation(s)
- Dongsub Kim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Haejeong Lee
- Department of Pediatrics, Severance Children's Hospital, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sik Choi
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Christina M Croney
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ki-Sup Park
- Samkwang Medical Laboratories Genetree, Seoul, Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hyo Jung Park
- Department of Pharmaceutical Services, Samsung Medical Center, Seoul, Korea
| | - Joongbum Cho
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sohee Son
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | | | - Soo-Han Choi
- Department of Pediatrics, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Seoul, Korea.
| |
Collapse
|
33
|
McKay SL, Vlachos N, Daniels JB, Albrecht VS, Stevens VA, Rasheed JK, Johnson JK, Lutgring JD, Sjölund-Karlsson M, Halpin AL. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in the United States, 2013-2017. Microb Drug Resist 2022; 28:645-653. [PMID: 35639112 DOI: 10.1089/mdr.2021.0352] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Healthcare-associated carbapenem-resistant Acinetobacter baumannii (CRAB) infections are a serious threat associated with global epidemic clones and a variety of carbapenemase gene classes. In this study, we describe the molecular epidemiology, including whole-genome sequencing analysis and antimicrobial susceptibility profiles of 92 selected, nonredundant CRAB collected through public health efforts in the United States from 2013 to 2017. Among the 92 isolates, the Oxford (OX) multilocus sequence typing scheme identified 30 sequence types (STs); the majority of isolates (n = 59, 64%) represented STs belonging to the international clonal complex 92 (CC92OX). Among these, ST208OX (n = 21) and ST281OX (n = 20) were the most common. All isolates carried an OXA-type carbapenemase gene, comprising 20 alleles. Ninety isolates (98%) encoded an intrinsic OXA-51-like enzyme; 67 (73%) harbored an additional acquired blaOXA gene, most commonly blaOXA-23 (n = 45; 49%). Compared with isolates harboring only intrinsic oxacillinase genes, acquired blaOXA gene presence was associated with higher prevalence of resistance and a higher median minimum inhibitory concentration to the carbapenem imipenem (64 μg/mL vs. 8 μg/mL), and antibiotics from other drug classes, including penicillin, aminoglycosides, cephalosporins, and polymyxins. These data illustrate the wide distribution of CC92OX and high prevalence of acquired blaOXA carbapenemase genes among CRAB in the United States.
Collapse
Affiliation(s)
- Susannah L McKay
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicholas Vlachos
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan B Daniels
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie S Albrecht
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie A Stevens
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kristie Johnson
- Department of Pathology and University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Ruamsap N, Thomas CS, Imerbsin R, Reed MC, Gonwong S, Lurchachaiwong W, Islam D, Wojnarski M, Vesely BA, Lugo-Roman LA, Waters NC, Zurawski DV, Demons ST. Chronic Wound Infection Model of Acinetobacter baumannii in Outbred Mice. Mil Med 2022; 188:usac020. [PMID: 35134989 DOI: 10.1093/milmed/usac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION We established a murine wound infection model with doxycycline treatment against multidrug-resistant Acinetobacter baumannii (AB5075) in Institute of Cancer Research (ICR) outbred mice. METHODS Using three groups of neutropenic ICR mice, two full-thickness dorsal dermal wounds (6 mm diameter) were made on each mouse. In two groups, wounds were inoculated with 7.0 × 104 colony-forming units of AB5075. Of these two groups, one received a 6-day regimen of doxycycline while the other was sham treated with phosphate-buffered saline as placebo control. Another uninfected/untreated group served as a control. Wound closure, clinical symptoms, bacterial burden in wound beds and organs, and wound histology were investigated. RESULTS Doxycycline-treated wounds completely healed by day 21, but untreated, infected wounds failed to heal. Compared to controls, wound infections without treatment resulted in significant reductions in body weight and higher bacterial loads in wound beds, lung, liver, and spleen by day 7. Histological evaluation of wounds on day 21 revealed ulcerated epidermis, muscle necrosis, and bacterial presence in untreated wounds, while wounds treated with doxycycline presented intact epidermis. CONCLUSIONS Compared to the previously developed BALB/c dermal wound model, this study demonstrates that the mouse strain selected impacts wound severity and resolution. Furthermore, this mouse model accommodates two dorsal wounds rather than only one. These variations offer investigators increased versatility when designing future studies of wound infection. In conclusion, ICR mice are a viable option as a model of dermal wound infection. They accommodate two simultaneous dorsal wounds, and upon infection, these wounds follow a different pattern of resolution compared to BALB/c mice.
Collapse
|
35
|
Naing SY, Hordijk J, Duim B, Broens EM, van der Graaf-van Bloois L, Rossen JW, Robben JH, Leendertse M, Wagenaar JA, Zomer AL. Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands. Pathogens 2022; 11:pathogens11020123. [PMID: 35215067 PMCID: PMC8875366 DOI: 10.3390/pathogens11020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.
Collapse
Affiliation(s)
- Soe Yu Naing
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Els M. Broens
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Linda van der Graaf-van Bloois
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - John W. Rossen
- Department of Medical Microbiology, University Medical Center, University of Groningen, 9700 AB Groningen, The Netherlands;
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joris H. Robben
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Masja Leendertse
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
- Correspondence:
| |
Collapse
|
36
|
Li R, Li Y, Peng K, Yin Y, Liu Y, He T, Bai L, Wang Z. Comprehensive Genomic Investigation of Tigecycline Resistance Gene tet(X4)-Bearing Strains Expanding among Different Settings. Microbiol Spectr 2021; 9:e0163321. [PMID: 34937176 PMCID: PMC8694195 DOI: 10.1128/spectrum.01633-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance genes has attracted a great deal of attention globally. Currently, no comprehensive in-depth genomic epidemiology study of tet(X4)-bearing pathogens present of pork origin as the One Health approach has been performed. Herein, 139 fresh pork samples were collected from multiple regions in China and 58 tet(X4)-positive strains were identified. The tet(X4) gene mainly distributed in Escherichia coli (n = 55). Besides, 4 novel tet(X4)-positive bacterial species Klebsiella pneumoniae (n = 2), Klebsiella quasipneumoniae (n = 1), Citrobacter braakii (n = 1) and Citrobacter freundii (n = 1) were first characterized here. Four different core tet(X4)-bearing genetic environments and five types of tet(X4)-bearing tandem duplications were discovered among 58 strains. The results of the phylogenetic tree showed that there was some correlation between E. coli strains from pork, human, pig farms, and slaughterhouses. A total of seven types of plasmid replicons were found in tet(X4)-positive plasmids, among which multireplicon plasmids were observed. Notably, two tet(X4)-positive fusion plasmids pCSZ11R (IncX1-IncFIA-IncFIB-IncFIC) and pCSX5G-tetX4 (IncX1-IncFII-IncFIA) were formed by IS26 in the hot spot. Besides, six samples were identified to harbor two different tet(X4)-bearing strains. More interestingly, the absolute quantitative results showed that the expression levels of tet(X4) between different strains with different tet(X4) copies were approximate. In this study, the genetic environment of tet(X4)-positive plasmids containing different plasmid replicons was analyzed to provide a basis for the further development of effective control measures. It is also highlighted that animal-borne tet(X4)-bearing pathogens incur a transmission risk to consumed food. Therefore, there is an urgent need for large-scale monitoring as well as the development of effective control measures. IMPORTANCE Tigecycline was considered the last-line drug against serious infections caused by multidrug-resistant Gram-negative bacteria. However, the plasmid-mediated tigecycline resistance gene tet(X) has been widely reported in different sources of Enterobacterales and Acinetobacter in China. China is one of the largest pig-producing nations in the world, and in-depth investigation of gene in pork is vital to figure out the fundamental dissemination of these genes and set up a reasonable control framework. In this study, we conducted an in-depth and systematic analysis of the diversity of tet(X4)-positive plasmids and the genetic environment of tet(X4) contained in pork samples from multiple regions of China, providing a basis for further development of effective control measures. It is also highlighted that animal-borne tet(X4)-bearing pathogens incur a transmission risk to consumed food. Therefore, there is an urgent need for large-scale monitoring as well as the development of effective control measures.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yi Yin
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
37
|
Khalid K, Irum S, Ullah SR, Andleeb S. In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. Int J Pept Res Ther 2021; 28:16. [PMID: 34873398 PMCID: PMC8636788 DOI: 10.1007/s10989-021-10316-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is notorious for causing serious infections of the skin, lungs, soft tissues, bloodstream, and urinary tract. Despite the overwhelming information available so far, there has still been no approved vaccine in the market to prevent these infections. Therefore, this study focuses on developing a rational vaccine design using the technique of epitope mapping to curb the infections caused by A. baumannii. An outer membrane protein with immunogenic potential as well as all the properties of a good vaccine candidate was selected and used to calculate epitopes for selection on the basis of a low percentile rank, high binding scores, good immunological properties, and non-allergenicity. Thus, a 240 amino-acid vaccine sequence was obtained by manually joining all the epitopes in sequence-wise manner with the appropriate linkers, namely AAY, GPGPG, and EAAAK. Additionally, a 50S ribosomal protein L7/L12, agonist to the human innate immune receptors was attached to the N-terminus to increase the overall immune response towards the vaccine. As a result, enhanced overall protein stability, expression, immunostimulatory capabilities, and solubility of the designed construct were observed. Molecular dynamic simulations revealed the compactness and stability of the polypeptide construct. Moreover, molecular docking exhibited strong binding of the designed vaccine with TLR-4 and TLR-9. In-silico immune simulations indicated an immense increment in T-cell and B-cell populations. Bioinformatic tools also significantly assisted with optimizing codons which allowed for successful cloning of constructs into desired host vectors. Using in-silico tools to design a vaccine against A. baumannii demonstrated that this construct could pave the way for successfully combating infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Kashaf Khalid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Sidra Irum
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Sidra Rahmat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| |
Collapse
|
38
|
Ergonul O, Tokca G, Keske Ş, Donmez E, Madran B, Kömür A, Gönen M, Can F. Elimination of healthcare-associated Acinetobacter baumannii infection in a highly endemic region. Int J Infect Dis 2021; 114:11-14. [PMID: 34653659 DOI: 10.1016/j.ijid.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
This paper describes the elimination of healthcare-associated Acinetobacter baumannii infections in a highly endemic region. A prospective, observational study was performed between October 2012 and October 2017. Acinetobacter baumannii were isolated from 59 patients, and >95% similarity was demonstrated among isolates of seven patients (DiversiLab™, BioMérieux). Carbapenemase activity was detected in 15 of 17 (88%) isolates, and all were OXA-23 type. The control of Acinetobacter baumannii outbreaks can be achieved by close follow-up supported by molecular techniques, strict application of infection control measures, and isolation of transferred patients.
Collapse
Affiliation(s)
- Onder Ergonul
- Department of Infectious Diseases, School of Medicine, Koç University, Istanbul, Turkey.
| | | | - Şiran Keske
- Department of Infectious Diseases, School of Medicine, Koç University, Istanbul, Turkey
| | | | | | | | - Mehmet Gönen
- College of Engineering and School of Medicine, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Infectious Diseases, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
39
|
Brajkovic D, Zjalić S, Kiralj A. Prognostic factors for descending necrotizing mediastinitis development in deep space neck infections-a retrospective study. Eur Arch Otorhinolaryngol 2021; 279:2641-2649. [PMID: 34542654 DOI: 10.1007/s00405-021-07081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Descending necrotizing mediastinitis (DNM) is the most serious complication of deep neck infections (DNI). The objective of this retrospective study was to evaluate prognostic factors for DNM development in deep space neck infections. METHODS The study enrolled patients admitted to the Emergency Center of Vojvodina with the diagnosis of multispace DNI with or without DNM either as the primary diagnosis or with discharged diagnosis after surgical treatment during 7-year period. The data were obtained from patient medical records. RESULTS After final analysis total of 141 charts were randomized for statystical analysis, 124 charts in DNI and 17 in DNI + DNM groups. The most common cause of infection in both groups was odontogenic. On multivariate regression analysis of collected data infection of retropharyngeal, pretracheal and carotid space, C-reactive protein and procalcitonine values were statistically significant predictors for DNM development. CONCLUSIONS Treatment and diagnosis of DNM requires multidisciplinary approach, with prompt clinical and radiological examinations, empirical broad spectrum antibiotic therapy and radical surgical debridement. Multispace neck infection and especially infection of retropharyngeal, carotid and pretracheal spaces are the most sensitive predictors for DNM development in deep space neck infections. CLINICAL RELEVANCE If the infection from deep neck spaces reach retropharyngeal, carotid or pretracheal space, the DNM is probable to occur. TRIAL REGISTRATION ClinicalTrials.gov ID NCT04865003. Date of registration 27.4.2021.
Collapse
Affiliation(s)
- Denis Brajkovic
- Clinical Center of Vojvodina, Clinic for Maxillofacial and Oral Surgery, Hajduk Veljkova 1-9, 21000, Novi Sad, Serbia.
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia.
| | - Severina Zjalić
- Clinical Center of Vojvodina, Clinic for Anesthesiology, Intensive Care and Pain Management, Novi Sad, Serbia
| | - Aleksandar Kiralj
- Clinical Center of Vojvodina, Clinic for Maxillofacial and Oral Surgery, Hajduk Veljkova 1-9, 21000, Novi Sad, Serbia
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
40
|
Shahryari S, Mohammadnejad P, Noghabi KA. Screening of anti- Acinetobacter baumannii phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201652. [PMID: 34457318 PMCID: PMC8371366 DOI: 10.1098/rsos.201652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/27/2021] [Indexed: 05/08/2023]
Abstract
Therapeutic options including last-line or combined antibiotic therapies for multi-drug-resistant strains of Acinetobacter baumannii are ineffective. The outer membrane protein A (OmpA) and outer membrane protein W (OmpW) are two porins known for their different cellular functions. Identification of natural compounds with the potentials to block these putative porins can attenuate the growth of the bacteria and control the relating diseases. The current work aimed to screen a library of 384 phytochemicals according to their potentials to be used as a drug, and potentials to inhibit the function of OmpA and OmpW in A. baumannii. The phytocompounds were initially screened based on their physico-chemical, absorption, distribution, metabolism, excretion and toxicity (ADMET) drug-like properties. Afterwards, the selected ligands were subjected to standard docking calculations against the predicted three-dimensional structure of OmpA and OmpW in A. baumannii. We identified three phytochemicals (isosakuranetin, aloe-emodin and pinocembrin) possessing appreciable binding affinity towards the selected binding pocket of OmpA and OmpW. Molecular dynamics simulation analysis confirmed the stability of the complexes. Among them, isosakuranetin was suggested as the best phytocompound for further in vitro and in vivo study.
Collapse
Affiliation(s)
- Shahab Shahryari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14155-6343, Tehran, Iran
| | - Parvin Mohammadnejad
- Division of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14965/161, Tehran, Iran
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14155-6343, Tehran, Iran
| |
Collapse
|
41
|
Alfei S, Caviglia D, Piatti G, Zuccari G, Schito AM. Bactericidal Activity of a Self-Biodegradable Lysine-Containing Dendrimer against Clinical Isolates of Acinetobacter Genus. Int J Mol Sci 2021; 22:7274. [PMID: 34298891 PMCID: PMC8306826 DOI: 10.3390/ijms22147274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
The genus Acinetobacter consists of Gram-negative obligate aerobic pathogens, including clinically relevant species, such as A. baumannii, which frequently cause hospital infections, affecting debilitated patients. The growing resistance to antimicrobial therapies shown by A. baumannii is reaching unacceptable levels in clinical practice, and there is growing concern that the serious conditions it causes may soon become incurable. New therapeutic possibilities are, therefore, urgently needed to circumvent this important problem. Synthetic cationic macromolecules, such as cationic antimicrobial peptides (AMPs), which act as membrane disrupters, could find application in these conditions. A lysine-modified cationic polyester-based dendrimer (G5-PDK), capable of electrostatically interacting with bacterial surfaces as AMPs do, has been synthesized and characterized here. Given its chemical structure, similar to that of a fifth-generation lysine containing dendrimer (G5K) with a different core, and previously found inactive against Gram-positive bacterial species and Enterobacteriaceae, the new G5-PDK was also ineffective on the species mentioned above. In contrast, it showed minimum inhibitory concentration values (MICs) lower than reported for several AMPs and other synthetic cationic compounds on Acinetobacter genus (3.2-12.7 µM). Time-kill experiments on A. baumannii, A. pittii, and A. ursingii ascertained the rapid bactericidal effects of G5-PDK, while subsequent bacterial regrowth supported its self-biodegradability.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| |
Collapse
|
42
|
Smith AR, Vowles M, Horth RZ, Smith L, Rider L, Wagner JM, Sangster A, Young EL, Schuckel H, Stewart J, Gruninger RJ, Rossi A, Oakeson KF, Nakashima AK. Infection control response to an outbreak of OXA-23 carbapenemase-producing carbapenem-resistant Acinetobacter baumannii in a skilled nursing facility in Utah. Am J Infect Control 2021; 49:792-799. [PMID: 33217512 DOI: 10.1016/j.ajic.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Antibiotic-resistant Acinetobacter species are a growing public health threat, yet are not nationally notifiable, and most states do not mandate reporting. Additionally, there are no standardized methods to detect Acinetobacter species colonization. METHODS An outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) was identified at a Utah ventilator unit in a skilled nursing facility. An investigation was conducted to identify transmission modes in order to control spread of CRAB. Culture-based methods were used to identify patient colonization and environmental contamination in the facility. RESULTS Of the 47 patients screened, OXA-23-producing CRAB were detected in 10 patients (21%), with 7 patients (15%) having been transferred from out-of-state facilities. Of patients who screened positive, 60% did not exhibit any signs or symptoms of active infection by chart review. A total of 38 environmental samples were collected and CRAB was recovered from 37% of those samples. Whole genome sequencing analyses of patient and environmental isolates suggested repeated CRAB introduction into the facility and highlighted the role of shared equipment in transmission. CONCLUSIONS The investigation demonstrated this ventilated skilled nursing facility was an important reservoir for CRAB in the community and highlights the need for improved surveillance, strengthened infection control and inter-facility communication within and across states.
Collapse
|
43
|
Zhong S, He S. Quorum Sensing Inhibition or Quenching in Acinetobacter baumannii: The Novel Therapeutic Strategies for New Drug Development. Front Microbiol 2021; 12:558003. [PMID: 33597937 PMCID: PMC7882596 DOI: 10.3389/fmicb.2021.558003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen, which can cause ventilator-related and blood infection in critically ill patients. The resistance of A. baumannii clinical isolates to common antimicrobials and their tolerance to desiccation have emerged as a serious problem to public health. In the process of pathogenesis, bacteria release signals, which regulate virulence and pathogenicity-related genes. Such bacteria coordinate their virulent behavior in a cell density-dependent phenomenon called quorum sensing (QS). In contrast, the two main approaches of QS interference, quorum sensing inhibitors (QSIs) and quorum quenching (QQ) enzymes, have been developed to reduce the virulence of bacteria, thus reducing the pressure to produce bacterial drug resistance. Therefore, QSIs or QQ enzymes, which interfere with these processes, might potentially inhibit bacterial QS and ultimately biofilm formation. In this review, we aim to describe the state-of-art in the QS process in A. baumannii and elaborate on the use of QSIs or QQ enzymes as antimicrobial drugs in various potential sites of the QS pathway.
Collapse
Affiliation(s)
- Shan Zhong
- Department of Acupuncture, Guilin Hospital of Traditional Chinese Medicine, Guilin, China
| | - Songzhe He
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China.,Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Minocycline Alone and in Combination with Polymyxin B, Meropenem, and Sulbactam against Carbapenem-Susceptible and -Resistant Acinetobacter baumannii in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2021; 65:AAC.01680-20. [PMID: 33318006 DOI: 10.1128/aac.01680-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter baumannii is recognized as an urgent public health threat by the Centers for Disease Control and Prevention (CDC). Current treatment options are scarce, particularly against carbapenem-resistant Acinetobacter baumannii (CRAB). We simulated the impact of minocycline standard (200 mg load + 100 mg Q12h) and high (700 mg load + 350 mg Q12h) doses, polymyxin B (2.5 mg/kg Q12h), sulbactam (1 g Q6h and 9 g/24 h as continuous infusion), and meropenem (intermittent 1 or 2 g Q8h and 6 g/24 h as continuous infusion) alone or in combination against CRAB and non-CRAB isolates by simulating human therapeutic dosing regimens in a 72-h, in vitro pharmacodynamic (IVPD) model. There were no monotherapy regimens that demonstrated bactericidal activity against the tested non-CRAB and CRAB strains. Resistance development was common in monotherapy regimens. Against the CRAB isolate, the triple combination of high-dose minocycline (fAUC/MIC 21.2), polymyxin B (fAUC/MIC 15.6), and continuous-infusion sulbactam (67% T >MIC) was the most consistently active regimen. Against non-CRAB, the triple therapy regimen of high-dose minocycline (fAUC/MIC 84.8) with continuous-infusion meropenem (100% T >MIC) and continuous-infusion sulbactam (83% T >MIC), as well as the double therapy of high-dose minocycline (fAUC/MIC 84.8) with continuous-infusion meropenem (100% T >MIC), resulted in persistently bactericidal activity. In conclusion, triple therapy with high-dose minocycline, continuous-infusion sulbactam, and polymyxin B produced the most significant kill against the carbapenem-resistant Acinetobacter baumannii, with no regrowth and minimal resistance development.
Collapse
|
45
|
Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine. Pathogens 2021; 10:pathogens10020127. [PMID: 33513701 PMCID: PMC7911418 DOI: 10.3390/pathogens10020127] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen, causing severe infections difficult to treat. The A. baumannii infection rate has increased year by year in human medicine and it is also considered as a major cause of nosocomial infections worldwide. This bacterium, also well known for its ability to form biofilms, has a strong environmental adaptability and the characteristics of multi-drug resistance. Indeed, strains showing fully resistant profiles represent a worrisome problem in clinical therapeutic treatment. Furthermore, A. baumannii-associated veterinary nosocomial infections has been reported in recent literature. Particularly, carbapenem-resistant A. baumannii can be considered an emerging opportunistic pathogen in human medicine as well as in veterinary medicine.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence:
| |
Collapse
|
46
|
Li W, Li DD, Yin B, Lin DD, Sheng HS, Zhang N. Successful treatment of pyogenic ventriculitis caused by extensively drug-resistant Acinetobacter baumannii with multi-route tigecycline: A case report. World J Clin Cases 2021; 9:651-658. [PMID: 33553404 PMCID: PMC7829735 DOI: 10.12998/wjcc.v9.i3.651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pyogenic ventriculitis caused by extensively drug-resistant Acinetobacter baumannii (A. baumannii) is one of the most severe complications associated with craniotomy. However, limited therapeutic options exist for the treatment of A. baumannii ventriculitis due to the poor penetration rate of most antibiotics through the blood-brain barrier.
CASE SUMMARY A 68-year-old male patient with severe traumatic brain injury developed pyogenic ventriculitis on postoperative day 24 caused by extensively drug-resistant A. baumannii susceptible to tigecycline only. Successful treatment was accomplished through multi-route administration of tigecycline, including intravenous combined with continuous ventricular irrigation plus intraventricular administration. The pus was cleared on the 3rd day post-irrigation, and cerebrospinal fluid cultures were negative after 12 d.
CONCLUSION Our findings suggest that multi-route administration of tigecycline can be a therapeutic option against pyogenic ventriculitis caused by extensively drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Dong-Dong Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Han-Song Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
47
|
Al Menabbawy A, El Refaee E, Soliman MAR, Elborady MA, Katri MA, Fleck S, Schroeder HWS, Zohdi A. Outcome improvement in cerebral ventriculitis after ventricular irrigation: a prospective controlled study. J Neurosurg Pediatr 2020; 26:682-690. [PMID: 32886918 DOI: 10.3171/2020.5.peds2063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cerebral ventriculitis remains one of the most challenging neurosurgical conditions, with poor outcome and a long course of treatment and duration of hospital stay. Despite the current conventional management plans, i.e., using antibiotics in addition to CSF drainage, the outcome remains unsatisfactory in some cases, with no definitive therapeutic guidelines. This study aims to compare the outcome of ventricular irrigation/lavage (endoscopic irrigation or the double-drain technique) to conventional currently accepted therapy using just drainage and antibiotics. METHODS The authors conducted a prospective controlled study in 33 patients with cerebral ventriculitis in which most of the cases were complications of CSF shunt operations. Patients were divided into two groups. Removal of the ventricular catheter whenever present was performed in both groups. The first group was managed by ventricular lavage/irrigation, while the other group was managed using conventional therapy by inserting an external ventricular drain. Both systemic and intraventricular antibiotics were used in both groups. The outcomes were compared regarding mortality rate, modified Rankin Scale (mRS) score, and duration of hospital stay. RESULTS The mean age of the study population was 5.98 ± 7.02 years. The mean follow-up duration was 7.6 ± 3.2 months in the conventional group and 5.7 ± 3.4 months in the lavage group. The mortality rate was 25% (4/16) in the lavage group and 52.9% (9/17) in the nonlavage group (p = 0.1). The mRS score was less than 3 (good outcome) in 68.8% (11/16) of the lavage group cases and in 23.5% (4/17) of the conventional group (p < 0.05). The mean hospital stay duration was 20.5 ± 14.2 days in the lavage group, whereas it was 39.7 ± 16.9 days in the conventional group (p < 0.05). CONCLUSIONS Ventricular lavage or irrigation together with antibiotics is useful in the management of cerebral ventriculitis and associated with a better outcome and shorter hospital stay duration compared to current conventional lines of treatment.
Collapse
Affiliation(s)
- Ahmed Al Menabbawy
- 1Department of Neurosurgery, Cairo University, Cairo, Egypt; and
- 2Department of Neurosurgery, University Medicine Greifswald, Germany
| | - Ehab El Refaee
- 1Department of Neurosurgery, Cairo University, Cairo, Egypt; and
- 2Department of Neurosurgery, University Medicine Greifswald, Germany
| | | | | | - Mohamed A Katri
- 1Department of Neurosurgery, Cairo University, Cairo, Egypt; and
| | - Steffen Fleck
- 2Department of Neurosurgery, University Medicine Greifswald, Germany
| | | | - Ahmed Zohdi
- 1Department of Neurosurgery, Cairo University, Cairo, Egypt; and
| |
Collapse
|
48
|
Salmani A, Shakerimoghaddam A, Pirouzi A, Delkhosh Y, Eshraghi M. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Carvalheira A, Silva J, Teixeira P. Acinetobacter spp. in food and drinking water - A review. Food Microbiol 2020; 95:103675. [PMID: 33397609 DOI: 10.1016/j.fm.2020.103675] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Acinetobacter spp. has emerged as a pathogen of major public health concern due to their increased resistance to antibiotics and their association with a wide range of nosocomial infections, community-acquired infections and war and natural disaster-related infections. It is recognized as a ubiquitous organism however, information about the prevalence of different pathogenic species of this genus in food sources and drinking water is scarce. Since the implementation of molecular techniques, the role of foods as a source of several species, including the Acinetobacter baumannii group, has been elucidated. Multidrug resistance was also detected among Acinetobacter spp. isolated from food products. This highlights the importance of foods as potential sources of dissemination of Acinetobacter spp. between the community and clinical environments and reinforces the need for further investigations on the potential health risks of Acinetobacter spp. as foodborne pathogens. The aim of this review was to summarize the published data on the occurrence of Acinetobacter spp. in different food sources and drinking water. This information should be taken into consideration by those responsible for infection control in hospitals and other healthcare facilities.
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
50
|
Farouk F, El Shimy R, Abdel-Motaleb A, Essam S, Azzazy HM. Detection of Acinetobacter baumannii in fresh produce using modified magnetic nanoparticles and PCR. Anal Biochem 2020; 609:113890. [DOI: 10.1016/j.ab.2020.113890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
|