1
|
Chen J, Dai W, Wang H, Lei W, Fang G, Dai D. Cloning and Expression of Pigeon-Derived Escherichia coli Type 1 Pilus Clusters and Analysis of Amino Acid Sequence Characteristics of Functional Proteins. Genes (Basel) 2024; 15:1253. [PMID: 39457377 PMCID: PMC11508147 DOI: 10.3390/genes15101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Type 1 pili, as an important virulence factor of E. coli, has certain homology between APEC and UPEC, but the homology degree is not clear enough. OBJECTIVES This study aims to compare the homology between them. METHODS The recombinant bacteria were constructed by homologous recombination. The pili were observed by TEM, and the hemagglutination characteristics were determined by MHSA. The complete gene sequence was determined by sequencing, and the amino acid sequences of the functional proteins of type 1 pili of APEC and UPEC were compared. RESULTS TEM showed that they could express pili, which were slender, straight, and dense. Stable-pUC-fimBH has MHSA but stable-pUC-fimBG does not. The amino acid sequence similarity of FimB of NJ05 and UPEC was 98.8%, FimE was 99.4%, and the similarity between them was 51.5%. Compared with UPEC's type 1 pili FimC and FimD sequences, the similarity was 99.52% and 87.8%, respectively. The amino acid sequence of FimA of NJ05 was 89-96%, similar to UPEC, and the N-terminal and C-terminal amino acid sequences were exactly the same. The gene sequence and amino acid sequence similarity of FimH between them were both above 99%. The similarity of the pilus binding domain of FimH was 52.8%, but only 27.6% in the receptor binding domain. A few of the same amino acid residues were found in the corresponding regions of FimA, FimF, FimG, and FimH. CONCLUSIONS The type 1 pili of APEC and UPEC come from the same origin, which is helpful to further reveal the pathogenic mechanism of E. coli infection in the poultry respiratory tract.
Collapse
Affiliation(s)
- Junhong Chen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210046, China; (J.C.); (W.D.); (W.L.); (G.F.)
| | - Wei Dai
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210046, China; (J.C.); (W.D.); (W.L.); (G.F.)
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Weiqiang Lei
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210046, China; (J.C.); (W.D.); (W.L.); (G.F.)
| | - Guangyuan Fang
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210046, China; (J.C.); (W.D.); (W.L.); (G.F.)
| | - Dingzhen Dai
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210046, China; (J.C.); (W.D.); (W.L.); (G.F.)
| |
Collapse
|
2
|
Wu J, Liu C, Wang R, Yan S, Chen B, Zhu X. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation. WATER RESEARCH 2023; 242:120319. [PMID: 37441870 DOI: 10.1016/j.watres.2023.120319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 μg/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Reichhardt C. The Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Has Similarities to Other Fibrillar Adhesin Proteins. J Bacteriol 2023; 205:e0001923. [PMID: 37098957 PMCID: PMC10210978 DOI: 10.1128/jb.00019-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The ability of bacteria to adhere to each other and both biotic and abiotic surfaces is key to biofilm formation, and one way that bacteria adhere is using fibrillar adhesins. Fibrillar adhesins share several key characteristics, including (i) they are extracellular, surface-associated proteins, (ii) they contain an adhesive domain as well as a repetitive stalk domain, and (iii) they are either a monomer or homotrimer (i.e., identical, coiled-coil) of a high molecular weight protein. Pseudomonas aeruginosa uses the fibrillar adhesin called CdrA to promote bacterial aggregation and biofilm formation. Here, the current literature on CdrA is reviewed, including its transcriptional and posttranslational regulation by the second messenger c-di-GMP as well as what is known about its structure and ability to interact with other molecules. I highlight its similarities to other fibrillar adhesins and discuss open questions that remain to be answered toward a better understanding of CdrA.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
6
|
Usui M, Yoshii Y, Thiriet-Rupert S, Ghigo JM, Beloin C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun Biol 2023; 6:275. [PMID: 36928386 PMCID: PMC10020551 DOI: 10.1038/s42003-023-04601-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| |
Collapse
|
7
|
Tomasek K, Leithner A, Glatzova I, Lukesch MS, Guet CC, Sixt M. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife 2022; 11:e78995. [PMID: 35881547 PMCID: PMC9359703 DOI: 10.7554/elife.78995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.
Collapse
Affiliation(s)
- Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Ivana Glatzova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michael Sixt
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
8
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
9
|
Graniczkowska KB, Shaffer CL, Cassone VM. Transcriptional effects of melatonin on the gut commensal bacterium Klebsiella aerogenes. Genomics 2022; 114:110321. [PMID: 35218872 PMCID: PMC8934286 DOI: 10.1016/j.ygeno.2022.110321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/26/2021] [Accepted: 02/19/2022] [Indexed: 11/04/2022]
Abstract
Klebsiella (nee Enterobacter) aerogenes is the first human gut commensal bacterium with a documented sensitivity to the pineal/gastrointestinal hormone melatonin. Exogenous melatonin specifically increases the size of macrocolonies on semisolid agar and synchronizes the circadian clock of K. aerogenes in a concentration dependent manner. However, the mechanisms driving these phenomena are unknown. In this study, we applied RNA sequencing to identify melatonin sensitive transcripts during culture maturation. This work demonstrates that the majority of melatonin sensitive genes are growth stage specific. Melatonin exposure induced differential gene expression of 81 transcripts during exponential growth and 30 during early stationary phase. This indole molecule affects genes related to biofilm formation, fimbria biogenesis, transcriptional regulators, carbohydrate transport and metabolism, phosphotransferase systems (PTS), stress response, metal ion binding and transport. Differential expression of biofilm and fimbria-related genes may be responsible for the observed differences in macrocolony area. These data suggest that melatonin enhances Klebsiella aerogenes host colonization.
Collapse
Affiliation(s)
| | - Carrie L Shaffer
- University of Kentucky, Department of Veterinary Science, USA; University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, USA; University of Kentucky, Department of Pharmaceutical Sciences, Lexington, KY 40506, USA
| | | |
Collapse
|
10
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
11
|
Katani R, Kudva IT, Srinivasan S, Stasko JB, Schilling M, Li L, Cote R, DebRoy C, Arthur TM, Sokurenko EV, Kapur V. Strain and host-cell dependent role of type-1 fimbriae in the adherence phenotype of super-shed Escherichia coli O157:H7. Int J Med Microbiol 2021; 311:151511. [PMID: 33975122 PMCID: PMC8605689 DOI: 10.1016/j.ijmm.2021.151511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Super-shed (SS) Escherichia coli O157 (E. coli O157) demonstrate a strong, aggregative, locus of enterocyte effacement (LEE)-independent adherence phenotype on bovine recto-anal junction squamous epithelial (RSE) cells, and harbor polymorphisms in non-LEE-adherence-related loci, including in the type 1 fimbriae operon. To elucidate the role of type 1 fimbriae in strain- and host-specific adherence, we evaluated the entire Fim operon (FimB-H) and its adhesion (FimH) deletion mutants in four E. coli O157 strains, SS17, SS52, SS77 and EDL933, and evaluated the adherence phenotype in bovine RSE and human HEp-2 adherence assays. Consistent with the prevailing dogma that fimH expression is genetically switched off in E. coli O157, the ΔfimHSS52, ΔfimB-HSS52, ΔfimB-HSS17, and ΔfimHSS77 mutants remained unchanged in adherence phenotype to RSE cells. In contrast, the ΔfimHSS17 and ΔfimB-HSS77 mutants changed from a wild-type strong and aggregative, to a moderate and diffuse adherence phenotype, while both ΔfimHEDL933 and ΔfimB-HEDL933 mutants demonstrated enhanced binding to RSE cells (p < 0.05). Additionally, both ΔfimHSS17 and ΔfimHEDL933 were non-adherent to HEp-2 cells (p < 0.05). Complementation of the mutant strains with their respective wild-type genes restored parental phenotypes. Microscopy revealed that the SS17 and EDL933 strains indeed carry type 1 fimbriae-like structures shorter than those seen in uropathogenic E. coli. Taken together, these results provide compelling evidence for a strain and host cell type-dependent role of fimH and the fim operon in E. coli O157 adherence that needs to be further evaluated.
Collapse
Affiliation(s)
- Robab Katani
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA.
| | - Sreenidhi Srinivasan
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Judith B Stasko
- Microscopy Services, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Megan Schilling
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca Cote
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Terrance M Arthur
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | | | - Vivek Kapur
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Department of Animal Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
13
|
Hatton NE, Baumann CG, Fascione MA. Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections. Chembiochem 2021; 22:613-629. [PMID: 32876368 PMCID: PMC7894189 DOI: 10.1002/cbic.202000406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022]
Abstract
During their lifetime almost half of women will experience a symptomatic urinary tract infection (UTI) with a further half experiencing a relapse within six months. Currently UTIs are treated with antibiotics, but increasing antibiotic resistance rates highlight the need for new treatments. Uropathogenic Escherichia coli (UPEC) is responsible for the majority of symptomatic UTI cases and thus has become a key pathological target. Adhesion of type one pilus subunit FimH at the surface of UPEC strains to mannose-saturated oligosaccharides located on the urothelium is critical to pathogenesis. Since the identification of FimH as a therapeutic target in the late 1980s, a substantial body of research has been generated focusing on the development of FimH-targeting mannose-based anti-adhesion therapies. In this review we will discuss the design of different classes of these mannose-based compounds and their utility and potential as UPEC therapeutics.
Collapse
Affiliation(s)
- Natasha E. Hatton
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| | | | - Martin A. Fascione
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
14
|
Wilms D, Schröer F, Paul TJ, Schmidt S. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12555-12562. [PMID: 32975417 DOI: 10.1021/acs.langmuir.0c02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion processes at the cellular scale are dominated by carbohydrate interactions, including the attachment and invasion of pathogens. Carbohydrate-presenting responsive polymers can bind pathogens and inhibit pathogen invasion by remote stimuli for the development of new antibiotic strategies. In this work, the adhesion forces of E. coli to monolayers composed of mannose-functionalized microgels with thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)) (PEG) networks are quantified using single-cell force spectroscopy (SCFS). When exceeding the microgels' lower critical solution temperature (LCST), the adhesion increases up to 2.5-fold depending on the polymer backbone and the mannose density. For similar mannose densities, the softer PNIPAM microgels show a significantly stronger adhesion increase when crossing the LCST as compared to the stiffer PEG microgels. This is explained by a stronger shift in swelling, mannose density, and surface roughness of the softer gels when crossing the LCST. When using nonbinding galactose instead of mannose, or when inhibiting bacterial receptors, a certain level of adhesion remains, indicating that also polymer-fimbria entanglements contribute to adhesion. The presented quantitative analysis provides insights into carbohydrate-mediated bacterial adhesion and the relation to material properties and shows the prospects and limitations of interactive polymer materials to control the attachment of bacteria.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja J Paul
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Tseng CC, Lin WH, Wu AB, Wang MC, Teng CH, Wu JJ. Escherichia coli FimH adhesins act synergistically with PapGII adhesins for enhancing establishment and maintenance of kidney infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 55:44-50. [PMID: 33023843 DOI: 10.1016/j.jmii.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND FimH adhesin is proposed to enhance Escherichia coli kidney infection by acting with PapGII adhesin, but genetic epidemiology study and animal study have not been widely conducted to confirm this hypothesis. METHODS We compared the prevalence of adhesin gene and their coexistent pattern between upper and lower urinary tract infection (UTI) strains. fimH mutant (EC114FM), papGII mutant (EC114PM) and fimH/papGII double mutant (EC114DM) were constructed from a pylonephritogenic strain (EC114). We compared among these strains for the infection ability in bladders and kidneys of female BALB/c mice challenged transurethrally with these bacteria and assessed 1, 3, and 7 days after inoculation. RESULTS Strains carrying fimH-only genotype were significantly more prevalent in lower UTI (P < 0.001). Strains carrying the fimH/papGII, but not papGII-only, were significantly associated with upper UTI (P = 0.001). Incidence of kidney infection increased after inoculation with EC114 on days 1 and 3, at both low and high dose, as compared with EC114DM; and the effect was greater than the sum of individual effect of EC114PM and EC114FM. Geometric means of quantitative bacterial counts in the kidneys significantly decreased when challenged with EC114FM on days 3 and 7, EC114PM on day 3 and EC114DM on day 1 after inoculation at high dose, as compared with EC114 (all P < 0.05). CONCLUSIONS We confirmed the advantage and synergistic action of FimH and PapGII for E. coli kidney infection and concluded that antagonists against FimH and PapGII adhesin may prevent kidney infection and enable its management.
Collapse
Affiliation(s)
- Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - An-Bang Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Specific Immobilization of Escherichia coli Expressing Recombinant Glycerol Dehydrogenase on Mannose-Functionalized Magnetic Nanoparticles. Catalysts 2018. [DOI: 10.3390/catal9010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mannose-functionalized magnetic nanoparticles were prepared for the immobilization of Escherichia coli cells harboring the recombinant glycerol dehydrogenase gene. Immobilization of whole E. coli cells on the carrier was carried out through specific binding between mannose on the nanoparticles and the FimH lectin on the E. coli cell surface via hydrogen bonds and hydrophobic interactions. The effects of various factors including cell concentration, pH, temperature, and buffer concentration were investigated. High degrees of immobilization (84%) and recovery of activity (82%) were obtained under the following conditions: cell/support 1.3 mg/mL, immobilization time 2 h, pH 8.0, temperature 4°C, and buffer concentration 50 mM. Compared with the free cells, the thermostability of the immobilized cells was improved 2.56-fold at 37 °C. More than 50% of the initial activity of the immobilized cells remained after 10 cycles. The immobilized cells were evaluated functionally by monitoring the catalytic conversion of glycerol to 1,3-dihydroxyacetone (DHA). After a 12 h reaction, the DHA produced by the immobilized cells was two-fold higher than that produced by the free cells. These results indicate that mannose-functionalized magnetic nanoparticles can be used for the specific recognition of gram-negative bacteria, which gives them great potential in applications such as the preparation of biocatalysts and biosensors and clinical diagnosis.
Collapse
|
17
|
Li D, Shen M, Xu Y, Liu C, Wang W, Wu J, Luo X, Jia X, Ma Y. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog 2018; 10:35. [PMID: 30127859 PMCID: PMC6097206 DOI: 10.1186/s13099-018-0262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China. Methods A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study. Results Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types. Conclusions To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
Collapse
Affiliation(s)
- Dan Li
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China.,2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Min Shen
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ying Xu
- 4Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Chao Liu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Wen Wang
- 5West China School of Public Health, Sichuan University, Chengdu, 610041 Sichuan China
| | - Jinyan Wu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xianmei Luo
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xu Jia
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Yongxin Ma
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
18
|
Type I fimbriae mediate in vitro adherence of porcine F18ac+ enterotoxigenic Escherichia coli (ETEC). ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Ranjbar R, Pezeshknejad P, Khamesipour F, Amini K, Kheiri R. Genomic fingerprints of Escherichia coli strains isolated from surface water in Alborz province, Iran. BMC Res Notes 2017; 10:295. [PMID: 28728566 PMCID: PMC5520297 DOI: 10.1186/s13104-017-2575-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/28/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Consistent use of suitable diagnostic methods is essential to evaluate the genomic diversity of E. coli strains. Advance of efficient methods to discriminate the causes of E. coli in aquatic environments is important. This study aimed to describe the strain diversity of an E. coli population retrieved from surface water. METHODS One hundred water samples were drawn within a period of 1 year, from May 2012 to May 2013, and E. coli bacteria have been isolated from water samples. The genomic diversity analysis of 100 isolates of E. coli (one isolate per sample) has been carried out with the use of the ERIC-PCR fingerprinting method. RESULTS Overall, our data indicated that complex fingerprint patterns have been obtained for totally of the isolates. Highest number of strains were in E4 (20 strains with more than 20% similarity) and lowest number of strains were in E3 (5 strains) group. In addition, there was no similarity in E1 (9 strains), E8 (10 strains) and E9 (7 strains) clusters. CONCLUSION Therefore, the occurrence of potential pathogenic E. coli and diversity of E. coli strains in surface water in Alborz province, Iran could pose a possible risk to animal health and human if not disinfected well.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parichehr Pezeshknejad
- Department of Microbiology, Saveh Science and Research Branch, Islamic Azad University, Saveh, Iran
| | - Faham Khamesipour
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiumars Amini
- Department of Microbiology, Saveh Science and Research Branch, Islamic Azad University, Saveh, Iran
| | - Roohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| |
Collapse
|
20
|
Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. J Clin Microbiol 2017; 55:2538-2543. [PMID: 28592545 DOI: 10.1128/jcm.00737-17] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to construct a valid publicly available method for in silico fimH subtyping of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multilocus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available at https://bitbucket.org/genomicepidemiology/fimtyper, the database is freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software is available at https://cge.cbs.dtu.dk/services/FimTyper FimTyper was validated on three data sets: one containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study (data set 1), one containing whole-genome sequence (WGS) data of 243 third-generation-cephalosporin-resistant E. coli isolates (data set 2), and one containing a randomly chosen subset of 40 E. coli isolates from data set 2 that were subjected to conventional fimH subtyping (data set 3). The combination of the three data sets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 42 fimH subtypes from the Sanger sequences from data set 1 and successfully analyzed all 243 draft genomes from data set 2. FimTyper subtyping of the Sanger sequences and WGS data from data set 3 were in complete agreement. Additionally, fimH subtyping was evaluated on a phylogenetic network of 122 sequence type 131 (ST131) E. coli isolates. There was perfect concordance between the typology and fimH-based subclones within ST131, with accurate identification of the pandemic multidrug-resistant clonal subgroup ST131-H30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH subtyping, highly suitable for surveillance and outbreak detection.
Collapse
|
21
|
Prevalence of Adherent-Invasive Escherichia coli with fimH Gene Isolated from Iranian Patients with Ulcerative Colitis. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Romero-Lastra P, Sánchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS One 2017; 12:e0174669. [PMID: 28369099 PMCID: PMC5378342 DOI: 10.1371/journal.pone.0174669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.
Collapse
Affiliation(s)
- P. Romero-Lastra
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - MC. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - H. Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - A. Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - E. Figuero
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - D. Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Hur J, Özgür A, He Y. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks. J Biomed Semantics 2017; 8:12. [PMID: 28288685 PMCID: PMC5348867 DOI: 10.1186/s13326-017-0122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Background Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. Methods In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Results Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Conclusions Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types. Electronic supplementary material The online version of this article (doi:10.1186/s13326-017-0122-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| | - Arzucan Özgür
- Department of Computer Engineering, Bogazici University, Istanbul, 34342, Turkey
| | - Yongqun He
- Department of Microbiology and Immunology, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Feenstra T, Thøgersen MS, Wieser E, Peschel A, Ball MJ, Brandes R, Satchell SC, Stockner T, Aarestrup FM, Rees AJ, Kain R. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur J Clin Microbiol Infect Dis 2016; 36:467-478. [PMID: 27816993 PMCID: PMC5309269 DOI: 10.1007/s10096-016-2820-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
Abstract
FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists.
Collapse
Affiliation(s)
- T Feenstra
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M S Thøgersen
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark.,Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology Group, Technical University of Denmark, Matematiktorvet 301, 2800, Kongens Lyngby, Denmark
| | - E Wieser
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M J Ball
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Nephrology, Ipswich Hospital, Heath Road, Ipswich, IP4 5PD, UK
| | - R Brandes
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - S C Satchell
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - T Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - A J Rees
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - R Kain
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Why Serological Responses during Cystitis are Limited. Pathogens 2016; 5:pathogens5010019. [PMID: 26907352 PMCID: PMC4810140 DOI: 10.3390/pathogens5010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/02/2016] [Indexed: 11/17/2022] Open
Abstract
The high frequency of urinary tract infections (UTIs), some of which appear to be endogenous relapses rather than reinfections by new isolates, point to defects in the host's memory immune response. It has been known for many decades that, whereas kidney infections evoked an antibody response to the infecting bacteria, infections limited to the bladder failed to do so. We have identified the existence of a broadly immunosuppressive transcriptional program associated with the bladder, but not the kidneys, during infection of the urinary tract that is dependent on bladder mast cells. This involves the localized secretion of IL-10 and results in the suppression of humoral immune responses in the bladder. Mast cell-mediated immune suppression could suggest a role for these cells in critically balancing the needs to clear infections with the imperative to prevent harmful immune reactions in the host.
Collapse
|
26
|
Estrela N, Franquelim HG, Lopes C, Tavares E, Macedo JA, Christiansen G, Otzen DE, Melo EP. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins 2015; 83:2039-51. [DOI: 10.1002/prot.24921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/14/2015] [Accepted: 08/28/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Nídia Estrela
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Henri G. Franquelim
- Instituto De Medicina Molecular; Faculdade De Medicina Da Universidade De Lisboa; Av. Prof. Egas Moniz, Edifício Egas Moniz Lisboa 1649-028 Portugal
| | - Carlos Lopes
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Evandro Tavares
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | - Joana A. Macedo
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
| | | | - Daniel E. Otzen
- Department of Molecular Biology and Genetics; Aarhus University, iNANO (Interdisciplinary Nanoscience Centre); Gustav Wieds Vej 14 Aarhus C 8000 Denmark
| | - Eduardo P. Melo
- Centre for Biomedical Research (CBMR); University of Algarve, Campus of Gambelas; Faro 8005-139 Portugal
- Instituto Superior Técnico, Centro De Química Estrutural; Av. Rovisco Pais Lisboa 1049-001 Portugal
| |
Collapse
|
27
|
Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC, Tchesnokova V, Kramer JJ, Beskhlebnaya V, Samadpour M, Grzymajlo K, Ugorski M, Lankau EW, Mackie RI, Clegg S, Sokurenko EV. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012; 8:e1002733. [PMID: 22685400 PMCID: PMC3369946 DOI: 10.1371/journal.ppat.1002733] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.
Collapse
Affiliation(s)
- Dagmara I. Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sujay Chattopadhyay
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Libby
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jeremy J. Kramer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Viktoriya Beskhlebnaya
- Institute for Environmental Health, Lake Forest Park, Washington, United States of America
| | - Mansour Samadpour
- Institute for Environmental Health, Lake Forest Park, Washington, United States of America
| | - Krzysztof Grzymajlo
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Emily W. Lankau
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Roderick I. Mackie
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Steven Clegg
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Knöbl T, Moreno AM, Paixão R, Gomes TAT, Vieira MAM, da Silva Leite D, Blanco JE, Ferreira AJP. Prevalence of avian pathogenic Escherichia coli (APEC) clone harboring sfa gene in Brazil. ScientificWorldJournal 2012; 2012:437342. [PMID: 22666122 PMCID: PMC3361264 DOI: 10.1100/2012/437342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR) and amplified fragment length polymorphism (AFLP). Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC), thus alerting for potential zoonotic risk.
Collapse
Affiliation(s)
- Terezinha Knöbl
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo. Avenue Prof. Dr. Orlando Marques de Paiva, 87 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
30
|
Francius G, Polyakov P, Merlin J, Abe Y, Ghigo JM, Merlin C, Beloin C, Duval JFL. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress. PLoS One 2011; 6:e20066. [PMID: 21655293 PMCID: PMC3105017 DOI: 10.1371/journal.pone.0020066] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/17/2011] [Indexed: 11/19/2022] Open
Abstract
The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions.
Collapse
Affiliation(s)
- Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Pavel Polyakov
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jenny Merlin
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| | - Yumiko Abe
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Christophe Merlin
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Jérôme F. L. Duval
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Korea CG, Ghigo JM, Beloin C. The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli. Bioessays 2011; 33:300-11. [DOI: 10.1002/bies.201000121] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Giraud C, Bernard CS, Calderon V, Yang L, Filloux A, Molin S, Fichant G, Bordi C, de Bentzmann S. The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. Environ Microbiol 2010; 13:666-83. [DOI: 10.1111/j.1462-2920.2010.02372.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Klemm P, Hancock V, Schembri MA. Fimbrial adhesins from extraintestinal Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:628-640. [PMID: 23766248 DOI: 10.1111/j.1758-2229.2010.00166.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment to host tissue surfaces (tissue tropism). Some ExPEC fimbriae have additional functions such as the promotion of biofilm formation, cell aggregation and adherence to abiotic surfaces. Here we review the structure, function and contribution to virulence of fimbriae associated with ExPEC strains.
Collapse
Affiliation(s)
- Per Klemm
- Microbial Adhesion Group, DTU Food, Technical University of Denmark, Lyngby, Denmark. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
34
|
Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol 2010; 12:1957-77. [PMID: 20345943 DOI: 10.1111/j.1462-2920.2010.02202.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Commensal and pathogenic Escherichia coli adherence to host and environmental surfaces is mediated by a variety of adhesins. Although extensively studied as a model bacterium, 34% of the genes in the E. coli K-12 genome have no known function. We hypothesized that some of them may correspond to functional adhesins. We characterized E. coli K-12 ycb, ybg, yfc, yad, yra, sfm and yeh operons, which display sequence and organizational homologies to type 1 fimbriae exported by the chaperone/usher pathway. We showed that, although these operons are poorly expressed under laboratory conditions, six of them are nevertheless functional when expressed, and promote adhesion to abiotic and/or epithelial cell surfaces. While the studied fimbriae display different binding specificities, we obtained evidence of synergy/interference with other adhesins such as Ag43 or type 1 fimbriae. We showed that their expression is under the negative control of H-NS and, except for yad, subjected to cAMP receptor protein-mediated activation and carbon catabolite repression. These results therefore demonstrate that ycb, yfc, yad, yra, sfm and yeh operons encode cryptic but functional fimbriae adhesins whose expression following environmental modifications could contribute to E. coli's ability to adhere to and colonize a wide diversity of surfaces in its various ecological niches.
Collapse
Affiliation(s)
- Charalampia-Georgia Korea
- Institut Pasteur, Unité de Génétique des Biofilms, CNRS URA 2172, 25-28 rue du Dr Roux, 750724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
35
|
Use of fimH single-nucleotide polymorphisms for strain typing of clinical isolates of Escherichia coli for epidemiologic investigation. J Clin Microbiol 2009; 48:483-8. [PMID: 20018817 DOI: 10.1128/jcm.01858-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain typing methods that compare electrophoresis banding patterns are commonly used but are difficult to standardize and poorly portable. Multilocus sequence typing (MLST) is a sequence-based alternative, but it is not practical for large-scale epidemiological studies. In the present study, the usefulness of fimH single-nucleotide polymorphisms (SNPs) for Escherichia coli typing was explored. fimH SNPs were determined for 345 E. coli clinical isolates (including 3 reference strains) and compared to PCR-based ECOR (E. coli reference collection) phylogrouping. The fimH gene could be amplified for 316 (92%) of the 345 isolates. fimH SNP analysis found 46 distinct terminal groups in the nucleotide sequence-based phylogenetic tree (fimH types). A subset of the E. coli isolates (162 clinical isolates and the 3 reference strains) were compared by fimH type, PCR phylogroup, and MLST. These isolates fell into 27 fimH types and 18 MLST clonal complexes (CCs) that contained 2 to 28 isolates per complex. The combination of PCR phylogroup and fimH type corresponded to a single CC for 113 (68%) isolates and 2 or 3 CCs for the other 52 (32%) isolates. We propose that the combination of PCR phylogrouping and fimH SNP analysis may be a useful method to type a large collection of clinical E. coli isolates for epidemiologic studies.
Collapse
|
36
|
Antão EM, Wieler LH, Ewers C. Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog 2009; 1:22. [PMID: 20003270 PMCID: PMC2797515 DOI: 10.1186/1757-4749-1-22] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/10/2009] [Indexed: 12/25/2022] Open
Abstract
The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC) including both human and animal pathogens like Uropathogenic E. coli (UPEC), Newborn meningitic E. coli (NMEC) and Avian pathogenic E. coli (APEC), have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.
Collapse
Affiliation(s)
- Esther-Maria Antão
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Philippstr, 13, 10115 Berlin, Germany.
| | | | | |
Collapse
|
37
|
Chattopadhyay S, Paranjpye RN, Dykhuizen DE, Sokurenko EV, Strom MS. Comparative evolutionary analysis of the major structural subunit of Vibrio vulnificus type IV pili. Mol Biol Evol 2009; 26:2185-96. [PMID: 19556347 PMCID: PMC2766934 DOI: 10.1093/molbev/msp124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2009] [Indexed: 12/29/2022] Open
Abstract
Type IV pili contribute to virulence in Vibrio vulnificus, the bacterium responsible for the majority of fatal seafood-related infections. Here, we performed within- and between-species evolutionary analysis of the gene that encodes the major structural subunit of the pilus, pilA, by comparing it with pilD and gyrB, the genes encoding the type IV prepilin peptidase and beta subunit of DNA gyrase, respectively. Although the diversity in pilD and gyrB is similar to each other and likely to have accumulated after speciation of V. vulnificus, pilA is several times more diverse at both nonsynonymous and synonymous levels. Also, in contrast to pilD and gyrB, there are virtually unrestricted and highly localized horizontal movements of pilA alleles between the major phylogenetic groups of V. vulnificus. The frequent movement of pilA involves homologous recombination of the entire gene with no evidence for intragenic recombination between the alleles. We propose that pilA allelic diversity and horizontal movement is maintained in the population by both diversifying and frequency-dependent selection most likely to escape shellfish innate immunity defense or lytic phages. Other possibilities leading to such selection dynamics of V. vulnificus pilA could involve adaptation to diverse host populations or within-host compartments, or natural DNA uptake and transformation. We show that the history of nucleotide diversification in pilA predates V. vulnificus speciation and this diversification started at or before the time of the last common ancestor for V. vulnificus, Vibrio parahaemolyticus, and Vibrio cholerae. At the same time, it appears that within the various pilA groups of V. vulnificus, there is no positive selection for structural mutations and consequently no evidence for source-sink selection. In contrast, pilD has accumulated a number of apparently adaptive mutations in the regions encoding the membrane-spanning portions of the prepilin peptidase, possibly affecting fimbrial expression and/or function, and is being subjected to source-sink selection dynamics.
Collapse
|
38
|
Huang YJ, Liao HW, Wu CC, Peng HL. MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res Microbiol 2008; 160:71-9. [PMID: 19028568 DOI: 10.1016/j.resmic.2008.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
Klebsiella pneumoniae type 3 fimbriae are encoded by mrkABCDF genes which produce the major pilin subunit MrkA, chaperone MrkB, outer membrane usher MrkC, adhesin MrkD and MrkF of unknown function, respectively. RT-PCR analysis demonstrated that the mrkF gene is contained within the mrk operon. Deletion of mrkF in K. pneumoniae CG43 was found to reduce biofilm formation. A higher level of biofilm formation activity was also observed in recombinant Escherichia coli JM109[pmrkABCDF] compared to that observed for JM109[pmrkABCD]. Immunoelectron microscopy analysis of recombinant type 3 fimbriae using anti-MrkA and anti-MrkF antibody-labeled gold particles revealed that MrkF intermittently inserted into the MrkA filament. An interaction between recombinant MrkA and MrkF was demonstrated by co-immunoprecipitation analysis, further supporting the notion that MrkF is a structural component of the fimbriae. Intriguingly, the incorporation of MrkF appeared to decrease fimbrial length but increased activity of autoaggregation and biofilm formation in the bacteria JM109[pmrkABCDF]. This suggested that MrkF may play a role in assembly of the filament.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, 30050 Taiwan, Republic of China
| | | | | | | |
Collapse
|
39
|
Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R, Gill N, Ashkar AA. Cutting Edge: FimH Adhesin of Type 1 Fimbriae Is a Novel TLR4 Ligand. THE JOURNAL OF IMMUNOLOGY 2008; 181:6702-6. [DOI: 10.4049/jimmunol.181.10.6702] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lee SI, Kang SG, Kang ML, Yoo HS. Development of Multiplex Polymerase Chain Reaction Assays for Detecting Enterotoxigenic Escherichia Coli and their Application to Field Isolates from Piglets with Diarrhea. J Vet Diagn Invest 2008; 20:492-6. [DOI: 10.1177/104063870802000413] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fimbriae and enterotoxins are major virulence factors associated with enterotoxigenic Escherichia coli (ETEC). In this study, 3 sets of multiplex polymerase chain reaction (mPCR) assays targeting fimbriae, enterotoxins, and other adherence factors were developed for detecting ETEC. A total number of 188 E. coli field isolates were examined, and percentages of E. coli strains carrying each virulence factors were as follows: F4 (7.45%), F5 (29.79%), F6 (6.38%), F18 (15.43%), F41 (3.72%), STa (10.11%), STb (20.74%), LT (9.57%), Stx2e (2.13%), EAST1 (42.02%), F1 (67.55%), AIDA-I (2.66%), and pAA (7.45%). Of the 188 E. coli field isolates examined, 25.53% were found to be pathogenic ETEC, having both fimbriae and enterotoxins. However, the ratio increased to 44.68% when the presence of other adhesins was considered as criteria for virulence. Among the adherence factors, F1 was found to be the most prevalent. AIDA-I and pAA were also found with similar ratio as compared with other virulence factors. In addition, virulence patterns carrying these alternate adhesive genes with enterotoxins were detected with significant ratio. Therefore, it is desirable that alternate adhesins be considered as markers for diagnosis of ETEC.
Collapse
Affiliation(s)
- Su In Lee
- From the Department of Infectious Disease, College of Veterinary Medicine, KRF Zoonotic Disease Priority Research Institute and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang Gyun Kang
- From the Department of Infectious Disease, College of Veterinary Medicine, KRF Zoonotic Disease Priority Research Institute and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Mi Lan Kang
- From the Department of Infectious Disease, College of Veterinary Medicine, KRF Zoonotic Disease Priority Research Institute and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- From the Department of Infectious Disease, College of Veterinary Medicine, KRF Zoonotic Disease Priority Research Institute and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
41
|
Abstract
Bacterial urinary tract infections represent the most common type of nosocomial infection. In many cases, the ability of bacteria to both establish and maintain these infections is directly related to biofilm formation on indwelling devices or within the urinary tract itself. This chapter will focus on the role of biofilm formation in urinary tract infections with an emphasis on Gram-negative bacteria. The clinical implications of biofilm formation will be presented along with potential strategies for prevention. In addition, the role of specific pathogen-encoded functions in biofilm development will be discussed.
Collapse
|
42
|
Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun 2008; 76:3346-56. [PMID: 18474655 DOI: 10.1128/iai.00340-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Type 1 pili mediate binding, invasion, and biofilm formation of uropathogenic Escherichia coli (UPEC) in the host urothelium during urinary tract infection (UTI) via the adhesin FimH. In this study, we characterized the molecular basis of functional differences between FimH of the UPEC isolate UTI89 and the Klebsiella pneumoniae cystitis isolate TOP52. Type 1 pili characteristically mediate mannose-sensitive hemagglutination of guinea pig erythrocytes. Although the adhesin domain of K. pneumoniae TOP52 FimH (FimH(52)) is highly homologous to that of E. coli, with an identical mannose binding pocket and surrounding hydrophobic ridge, it lacks the ability to agglutinate guinea pig erythrocytes. In addition, FimH-dependent biofilm formation in K. pneumoniae is inhibited by heptyl mannose, but not methyl mannose, suggesting the need for contacts outside of the mannose binding pocket. The binding specificity differences observed for FimH(52) resulted in significant functional differences seen in the pathogenesis of K. pneumoniae UTI compared to E. coli UTI. Infections in a murine model of UTI demonstrated that although the K. pneumoniae strain TOP52 required FimH(52) for invasion and IBC formation in the bladder, FimH(52) was not essential for early colonization. This work reveals that a limited amount of sequence variation between the FimH of E. coli and K. pneumoniae results in significant differences in function and ability to colonize the urinary tract.
Collapse
|
43
|
Jung SY, Alsam S, Kim KS, Khan NA. Pathogen–pathogen interactions: a comparative study of Escherichia coli interactions with the clinical and environmental isolates of Acanthamoeba. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9754-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Nishiyama M, Ishikawa T, Rechsteiner H, Glockshuber R. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 2008; 320:376-9. [PMID: 18369105 DOI: 10.1126/science.1154994] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. We reconstituted type 1 pilus biogenesis from purified pilus proteins. The usher FimD acted as a catalyst to accelerate the ordered assembly of protein subunits independently of cellular energy. Its activity was highly dependent on the adhesin subunit FimH, which triggered the conversion of FimD into a high-efficiency assembly catalyst. Furthermore, a simple kinetic model adequately rationalized usher-catalyzed pilus assembly in vivo. Our results contribute to a mechanistic understanding of protein-catalyzed biogenesis of supramolecular protein complexes at the bacterial outer cell membrane.
Collapse
Affiliation(s)
- Mireille Nishiyama
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
45
|
Otzen DE, Nesgaard LW, Andersen KK, Hansen JH, Christiansen G, Doe H, Sehgal P. Aggregation of S6 in a quasi-native state by sub-micellar SDS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:400-14. [DOI: 10.1016/j.bbapap.2007.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
|
46
|
Tartof SY, Solberg OD, Riley LW. Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J Med Microbiol 2007; 56:1363-1369. [PMID: 17893175 DOI: 10.1099/jmm.0.47262-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of genotyping techniques for subtyping uropathogenic Escherichia coli has contributed to better understanding of the epidemiology of community-acquired urinary tract infection (UTI). However, the current techniques are hampered by limited reproducibility, poor discriminatory power, labour-intensive performance or high cost. A screening test that is sequence-based would provide an inexpensive, reproducible way to subtype E. coli isolates. Such a test, if also discriminatory, would be highly useful for epidemiological studies. The discriminatory ability of 12 putative virulence genes (fimH, fliD, fliM, iha, motA, papA/H, kpsMTII, fepE, fimA, flgA, malG, purD) was evaluated based on single nucleotide polymorphisms (SNPs) in nine uropathogenic E. coli isolates, all previously found to belong to a single multilocus sequence type (MLST) complex (ST69). An additional 25 epidemiologically well-characterized E. coli isolates belonging to 12 distinct MLST clonal complexes were analysed for fimH SNP. None of the 12 genes except fimH were able to further discriminate the nine ST69-complex strains. Isolates belonging to the 12 non-ST69 MLST groups were separated into 10 fimH SNP subgroups. While fimH SNP analysis may not be an appropriate phylogenetic method, it offers discriminatory power similar to that of MLST and could be used as a simple, inexpensive screening test for epidemiological studies of uropathogenic E. coli.
Collapse
Affiliation(s)
- Sara Y Tartof
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Owen D Solberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lee W Riley
- Division of Infectious Diseases, University of California, Berkeley, CA, USA
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
47
|
Regulatory Interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect Immun 2007; 76:771-80. [PMID: 18039830 DOI: 10.1128/iai.01010-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli strain J96 carries multiple determinants for fimbrial adhesins. The regulatory protein PapB of P fimbriae has previously been implicated in potential coregulatory events. The focB gene of the F1C fimbria determinant is highly homologous to papB; the translated sequences share 81% identity. In this study we investigated the role of PapB and FocB in regulation of the F1C fimbriae. By using gel mobility shift assays, we showed that FocB binds to sequences in both the pap and foc operons in a somewhat different manner than PapB. The results of both in vitro cross-linking and in vivo oligomerization tests indicated that FocB could function in an oligomeric fashion. Furthermore, our results suggest that PapB and FocB can form heterodimers and that these complexes can repress expression of the foc operon. The effect of FocB on expression of type 1 fimbriae was also tested. Taken together, the results that we present expand our knowledge about a regulatory network for different adhesin gene systems in uropathogenic E. coli and suggest a hierarchy for expression of the fimbrial adhesins.
Collapse
|
48
|
Holm NK, Jespersen SK, Thomassen LV, Wolff TY, Sehgal P, Thomsen LA, Christiansen G, Andersen CB, Knudsen AD, Otzen DE. Aggregation and fibrillation of bovine serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1128-38. [PMID: 17689306 DOI: 10.1016/j.bbapap.2007.06.008] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/26/2007] [Accepted: 06/26/2007] [Indexed: 12/21/2022]
Abstract
The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology and characteristic amyloid X-ray fiber diffraction peaks. Fibrillation occurs over minutes to hours without a lag phase, is independent of seeding and shows only moderate concentration dependence, suggesting intramolecular aggregation nuclei. Nevertheless, multi-exponential increases in dye-binding signal and changes in morphology suggest the existence of different aggregate species. Although beta-sheet content increases from 0 to ca. 40% upon aggregation, the aggregates retain significant amounts of alpha-helix structure, and lack a protease-resistant core. Thus BSA is able to form well-ordered beta-sheet rich aggregates which nevertheless do not possess the same structural rigidity as classical fibrils. The aggregates do not permeabilize synthetic membranes and are not cytotoxic. The ease with which a multidomain all-alpha helix protein can form higher-order beta-sheet structure, while retaining significant amounts of alpha-helix, highlights the universality of the fibrillation mechanism. However, the presence of non-beta-sheet structure may influence the final fibrillar structure and could be a key component in aggregated BSA's lack of cytotoxicity.
Collapse
Affiliation(s)
- Nikolaj K Holm
- Centre for Insoluble Protein Structures (inSPIN) at Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology (Reading) 2007; 153:2321-2331. [PMID: 17600076 DOI: 10.1099/mic.0.2006/004648-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate attachment to specific receptors, enhance persistence and trigger innate host responses. UPEC produce a range of fimbrial adhesins, with type 1 and P fimbriae of the chaperone-usher subclass being the best characterized. The prototype UPEC strain CFT073 contains ten gene clusters that contain genes characteristic of this class of fimbriae. However, only five of these gene clusters have been characterized in detail. In this study the F9 fimbrial gene cluster (c1931-c1936) from CFT073 has been characterized. The F9 fimbriae-encoding genes were PCR amplified, cloned and expressed in a K-12 background devoid of type 1 fimbriae. While F9 fimbrial expression was not associated with any haemagglutination or cellular adherence properties, a role in biofilm formation was observed. E. coli K-12 cells expressing F9 fimbriae produced a dense and uniform biofilm in both microtitre plate and continuous-flow biofilm model systems. In wild-type UPEC CFT073, expression of the F9 major subunit-encoding gene was detected during exponential growth in M9 minimal medium. F9 expression could also be detected following selection and enrichment for pellicle growth in a CFT073fim foc double mutant. The F9 genes appear to be common in UPEC and other types of pathogenic E. coli. However, their precise contribution to disease remains to be determined.
Collapse
Affiliation(s)
- Glen C Ulett
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda N Mabbett
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Khe C Fung
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
Munera D, Hultgren S, Fernández LA. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 2007; 64:333-46. [PMID: 17378923 DOI: 10.1111/j.1365-2958.2007.05657.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we discover that a specific recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is essential for the biogenesis of type 1 pili in Escherichia coli. These filamentous organelles are assembled by the chaperone-usher pathway, in which binary complexes between fimbrial subunits and the periplasmic chaperone FimC are recognized by the outer membrane protein FimD (the usher). FimH adhesin initiates fimbriae polymerization and is the first subunit incorporated in the filament. Accordingly, FimD shows higher affinity for the FimC/FimH complex although the structural basis of this specificity is unknown. We have analysed the assembly into fimbria, and the interaction with FimD in vivo, of FimH variants in which the N-terminal lectin domain of FimH was deleted or substituted by different immunoglobulin (Ig) domains, or in which these Ig domains were fused to the N-terminus of full-length FimH. From these data, along with the analysis of a FimH mutant with a single amino acid change (G16D) in the N-terminal lectin domain, we conclude that the lectin domain of FimH is recognized by FimD usher as an essential step for type 1 pilus biogenesis.
Collapse
Affiliation(s)
- Diana Munera
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|