1
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
2
|
Berry P, Khanna S. The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection. Indian J Gastroenterol 2025; 44:129-141. [PMID: 39821715 DOI: 10.1007/s12664-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies. Conventional antibiotic treatments, although effective, face limitations due to rising antibiotic resistance and high recurrence rates, which can reach up to 60% after multiple infections. This has prompted exploration of alternative therapies such as fecal microbiota-based therapies, including fecal microbiota transplantation (FMT) and live biotherapeutics (LBPs), which demonstrate superior efficacy in preventing recurrence. They are aimed at restoring the gut microbiota. Fecal microbiota, live-jslm and fecal microbiota spores, live-brpk have been approved by the U.S. Food and Drug Administration in individuals aged 18 years or older for recurrent CDI after standard antimicrobial treatment. They have demonstrated high efficacy and a favorable safety profile in clinical trials. Another LBP under study includes VE-303, which is not derived from human donor stool. This review provides a comprehensive overview of the current therapeutic landscape for CDI, including its epidemiology, pathophysiology, risk factors, diagnostic modalities and treatment strategies. The review delves into the emerging role of live biotherapeutics, with a particular focus on fecal microbiota-based therapies. We explore their development, mechanisms of action, clinical applications and potential to revolutionize CDI management.
Collapse
Affiliation(s)
- Parul Berry
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
L'Huillier JC, Guo WA. The always evolving diagnosis and management of Clostridioides difficile colitis: What you need to know. J Trauma Acute Care Surg 2025; 98:357-367. [PMID: 39509684 DOI: 10.1097/ta.0000000000004474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
ABSTRACT The diagnosis, pharmacologic management, and surgical options for Clostridioides difficile infection (CDI) are rapidly evolving, which presents a challenge for the busy surgeon to remain up to date on the latest clinical guidelines. This review provides an evidence-based practical guide for CDI management tailored to the needs of surgeons and surgical intensivists. Historically, the diagnosis of CDI relied on slow cell culture cytotoxicity neutralization assays, but now, the rapidly resulting nucleic acid amplification tests and enzyme immunoassays have become mainstream. In terms of antibiotic therapy, metronidazole and oral vancomycin were the main "workhorse" antibiotics in the early 2000s, but large randomized controlled trials have now demonstrated that fidaxomicin produces superior results. Regarding surgical intervention, total abdominal colectomy was once the only procedure of choice; however, diverting loop ileostomy with colonic lavage is emerging as a viable alternative. Finally, novel adjuncts such as fecal microbiota transplantation and targeted therapy against toxin B (bezlotoxumab) are playing an increasingly important role in the management of CDI.
Collapse
Affiliation(s)
- Joseph C L'Huillier
- From the Department of Surgery (J.C.L., W.A.G.), Jacobs School of Medicine and Biomedical Sciences, and Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health (J.C.L.), School of Public Health and Health Professions, University at Buffalo; and Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery (J.C.L., W.A.G.), Erie County Medical Center, Buffalo, New York
| | | |
Collapse
|
4
|
Hensen ADO, Vehreschild MJGT, Gerding DN, Krut O, Chen W, Young VB, Tzipori S, Solbach P, Gibani MM, Chiu C, de Keersmaecker SCJ, Dasyam D, Morel S, Devaster JM, Corti N, Kuijper EJ, Roestenberg M, Smits WK. How to develop a controlled human infection model for Clostridioides difficile. Clin Microbiol Infect 2025; 31:373-379. [PMID: 39214188 DOI: 10.1016/j.cmi.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Clostridioides difficile (C. difficile) remains the leading cause of healthcare-associated diarrhoea, posing treatment challenges because of antibiotic resistance and high relapse rates. Faecal microbiota transplantation is a novel treatment strategy to prevent relapses of C. difficile infection (CDI), however, the exact components conferring colonization resistance are unknown, hampering its translation to a medicinal product. The development of novel products independent of antibiotics, which increase colonization resistance or induce protective immune mechanisms is urgently needed. OBJECTIVES To establish a framework for a Controlled Human Infection Model (CHIM) of C. difficile, in which healthy volunteers are exposed to toxigenic C. difficile spores, offering the possibility to test novel approaches and identify microbiota and immunological targets. Whereas experimental exposure to non-toxigenic C. difficile has been done before, a toxigenic C. difficile CHIM faces ethical, scientific, logistical, and biosafety challenges. SOURCES Specific challenges in developing a C. difficile CHIM were discussed by a group of international experts during a workshop organized by Inno4Vac, an Innovative Health Initiative-funded consortium. CONTENT The experts agreed that the main challenges are: developing a clinically relevant CHIM that induces mild to moderate CDI symptoms but not severe CDI, determining the optimal C. difficile inoculum dose, and understanding the timing and duration of antibiotic pretreatment in inducing susceptibility to CDI in healthy volunteers. IMPLICATIONS Should these challenges be tackled, a C. difficile CHIM will not only provide a way forward for the testing of novel products but also offer a framework for a better understanding of the pathophysiology, pathogenesis, and immunology of C. difficile colonization and infection.
Collapse
Affiliation(s)
- Annefleur D O Hensen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF), Cologne, Germany
| | - Dale N Gerding
- Department of Veterans Affairs, Edward Hines Jr VA Hospital, Hines, IL, United States
| | - Oleg Krut
- Paul-Ehrlich-Institut (PEI), Langen, Germany
| | - Wilbur Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent B Young
- Department of Internal Medicine/Infectious Diseases Division and the Department of Microbiology & Immunology, The University of Michigan, Ann Arbor, MI, United States
| | - Saul Tzipori
- Division of Infectious Disease and Global Health, Tufts University, Medford, MA, United States
| | - Philipp Solbach
- First Department of Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Malick Mahdi Gibani
- Department of Infectious Disease, Imperial College London (ICL), London, United Kingdom
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London (ICL), London, United Kingdom
| | | | | | | | | | | | - Ed J Kuijper
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
5
|
Bland CM, Love BL, Jones BM. Human microbiome: Impact of newly approved treatments on C. difficile infection. Am J Health Syst Pharm 2025; 82:174-183. [PMID: 39230353 DOI: 10.1093/ajhp/zxae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 09/05/2024] Open
Abstract
PURPOSE The primary purposes of this review are to provide a brief overview of the microbiome, discuss the most relevant outcome data and key characteristics of each live microbiome agent, and pose questions for consideration going forward as these agents are integrated into clinical practice. SUMMARY The management of Clostridiodes difficile infection (CDI) remains a difficult clinical conundrum, with recurrent CDI occurring in 15% to 35% of patients and causing significant morbidity and decreased quality of life. For patients with frequent CDI recurrences, fecal microbiota transplantation (FMT) has been demonstrated to have significant benefit but also significant risks, and FMT is not approved by the US Food and Drug Administration (FDA) for that indication. FDA has established a new therapeutic class for agents known as live biotherapeutic products (LBPs) that offer significant advantages over FMT, including standardized screening, testing, and manufacturing as well as known quantities of organisms contained within. Two new live microbiome products within this class were recently approved by FDA for prevention of CDI recurrences in adult patients following treatment for recurrent CDI with standard antimicrobial therapy. Both agents had demonstrated efficacy in registry trials in preventing CDI recurrence but differ significantly in a number of characteristics, such as route of administration. Cost as well as logistics are current obstacles to use of these therapies. CONCLUSION Live microbiome therapy is a promising solution for patients with recurrent CDI. Future studies should provide further evidence within yet-to-be-evaluated populations not included in registry studies. This along with real-world evidence will inform future use and clinical guideline placement.
Collapse
Affiliation(s)
| | - Bryan L Love
- University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Bruce M Jones
- St. Joseph's/Candler Health System, Inc., Savannah, GA, and University of Georgia College of Pharmacy, Savannah, GA
| |
Collapse
|
6
|
Bai L, Xu T, Zhang W, Jiang Y, Gu W, Zhao W, Luan Y, Xiong Y, Zou N, Zhang Y, Luo M, Lu J, Zhang B, Wu Y. Abundant geographical divergence of Clostridioides difficile infection in China: a prospective multicenter cross-sectional study. BMC Infect Dis 2025; 25:185. [PMID: 39920584 PMCID: PMC11806848 DOI: 10.1186/s12879-025-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Clostridioides difficile is the predominant pathogen in hospital-acquired infections and antibiotic-associated diarrhea. Dedicated networks and annual reports for C. difficile surveillance have been established in Europe and North America, however the extensive investigation on the prevalence of C. difficile infection (CDI) in China is limited. In this study, 1528 patients with diarrhea were recruited from seven geographically representative regions of China between July 2021 and July 2022. The positivity rate of toxigenic C. difficile using real-time fluorescence quantitative PCR test of feces was 10.2% (156/1528), and 125 (8.2%, 125/1528) strains were successfully isolated. The isolates from different geographical areas had divergent characteristics after multilocus sequence typing, toxin gene profiling, and antimicrobial susceptibility testing. No isolate from clade 2 were found, and clade 1 was still the main clade for these clinical isolates. Interestingly, clade 4, especially ST37, previously known as the characteristic type of China, showed a strong geographical divergence. Clade 3, although rare in China, has been detected in Hainan and Sichuan provinces. Most C. difficile isolates (76.8%, 96/125) were toxigenic. Clindamycin, erythromycin, and moxifloxacin were the top three antibiotics to which resistance was observed, with resistance rates of 81.3%, 63.6%, and 24.0%, respectively. Furthermore, 34 (27.2%, 34/125) multidrug-resistant (MDR) strains were identified. All the strains were sensitive to metronidazole, vancomycin, and meropenem. The genotype of C. difficile varies greatly among the different geographical regions in China, and new types are constantly emerging. Therefore, comprehensive, longitudinal, and standardized surveillance of C. difficile infections is needed in China, covering typical geographical areas.
Collapse
Affiliation(s)
- Lulu Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Telong Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenzhu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yajun Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenpeng Gu
- Institute of Acute Infectious Disease Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, 650500, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 132001, China
| | - Yang Luan
- Xi'an Municipal Center for Disease Control and Prevention, Xi'an, Shaanxi, 710061, China
| | - Yanfeng Xiong
- Ganzhou Center for Disease Control and Prevention, Ganzhou, Jiangxi, 341001, China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, 643002, China
| | - Yalin Zhang
- Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, 570203, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin, Guangxi, 537006, China
| | - Jinxing Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Bike Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
7
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
8
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 PMCID: PMC11731898 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Begum K, Chua HC, Alam MJ, Garey KW, Jo J. A quantitative PCR to detect non-toxigenic Clostridioides difficile. Microbiol Spectr 2025; 13:e0160824. [PMID: 39660903 PMCID: PMC11705841 DOI: 10.1128/spectrum.01608-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 12/12/2024] Open
Abstract
Clostridioides difficile species lacking toxin genes (non-toxigenic C. difficile or NTCD) may confer protection against CDI. However, current diagnostic tests detect either toxin proteins or toxin genes and cannot detect NTCD. This study developed a molecular testing method that uniquely identified NTCD and assessed its prevalence in a clinical cohort. A quantitative PCR (qPCR) assay was developed and validated using reference strains. Analytic sensitivity was determined using DNA from reference NTCD strains, and qPCR efficiency was assessed using the slope of the standard curves of DNA dilutions. A random selection of 95 clinical stool samples, tested using the GDH enzyme and toxin enzyme immunoassay (EIA), was used to evaluate the prevalence of NTCD in hospitalized patients tested for CDI. The KB-1/KB-2 primers and probe designed were specific for NTCD strains and did not amplify with toxigenic C. difficile or other related strains. The NTCD qPCR assay analytical sensitivity was linear between 3 × 101 and 3 × 106 gDNA (R2 = 0.999; P < 0.0001). No NTCD was found in 25 GDH-EIA -/- samples compared to 5 of 25 (20%) GDH-EIA +/- samples and 2 of 23 (8.7%) GDH-EIA +/+ samples. Of samples detected with NTCD, median NTCD DNA was 33,039 (IQR: 22.449-45.688) in GDH-EIA +/- samples and 370 [IQR: 159-583] in GDH-EIA +/+ samples. The new qPCR NTCD assay identified NTCD colonization in 7% of hospitalized patients tested for CDI. This NTCD assay may have important implications for diagnostic and antimicrobial stewardship as colonization with NTCD strains may offer protection against CDI.IMPORTANCECurrent diagnostic strategies do not detect non-toxigenic Clostridioides difficile (NTCD) strains, which may provide protection against C. difficile infection (CDI). Detecting these strains is critical as it underscores the importance of avoiding unnecessary antibiotic treatment in patients colonized with NTCD. To better guide clinical decisions and enhance the understanding of NTCD epidemiology, molecular assays that specifically target non-coding regions unique to NTCD strains are needed. In this study, we developed and validated a qPCR assay capable of uniquely identifying NTCD strains. This innovative assay holds significant potential for applications in public health, infection control, diagnostic, and therapeutic strategies related to CDI.
Collapse
Affiliation(s)
- Khurshida Begum
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy, Houston, Texas, USA
| | - Hubert C. Chua
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy, Houston, Texas, USA
| | - M. Jahangir Alam
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy, Houston, Texas, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy, Houston, Texas, USA
| | - Jinhee Jo
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
10
|
Kuijper EJ, Gerding DN. The End of Toxoid Vaccine Development for Preventing Clostridioides difficile Infections? Clin Infect Dis 2024; 79:1512-1514. [PMID: 39178347 DOI: 10.1093/cid/ciae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 08/25/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Ed J Kuijper
- National Expertise Center for Clostridioides difficile Infections of Leiden University Center for Infectious Diseases, Leiden University Medical Centre (LUMC), Leiden, The Netherlands and Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dale N Gerding
- Edward Hines, Jr, Veterans Affairs Hospital, Hines, Illinois, USA
| |
Collapse
|
11
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
12
|
Herbin SR, Crum H, Gens K. Breaking the Cycle of Recurrent Clostridioides difficile Infections: A Narrative Review Exploring Current and Novel Therapeutic Strategies. J Pharm Pract 2024; 37:1361-1373. [PMID: 38739837 DOI: 10.1177/08971900241248883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is a toxin-producing bacteria that is a main cause of antibiotic-associated diarrhea. Clostridioides difficile infections (CDI) are associated with disruptions within the gastrointestinal (GI) microbiota which can be further exacerbated by CDI-targeted antibiotic treatment thereby causing recurrent CDI (rCDI) and compounding the burden placed on patients and the healthcare system. Treatment of rCDI consists of antibiotics which can be paired with preventative therapeutics, such as bezlotoxumab or fecal microbiota transplants (FMTs), if sustained clinical response is not obtained. Newer preventative strategies have been recently approved to assist in restoring balance within the GI system with the goal of preventing recurrent infections.
Collapse
Affiliation(s)
- Shelbye R Herbin
- Antimicrobial Stewardship and Medication Safety, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Hannah Crum
- Mercy Hospital Southeast, Cape Girardeau, MO, USA
| | - Krista Gens
- Allina Health, Minneapolis, MN, USA
- Abbott Northwestern Hospital, Minneapolis, MN, USA
| |
Collapse
|
13
|
Khanna S. Microbiota restoration for recurrent Clostridioides difficile infection. Panminerva Med 2024; 66:417-426. [PMID: 39382853 DOI: 10.23736/s0031-0808.24.05111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Since the publication of the recent North American and European guidelines on management of Clostridioides difficile infection (CDI), new evidence describing the epidemiology, testing and treatment of CDI has emerged. Despite all advances in infection control and antibiotic stewardship, the incidence and burden of CDI in the hospitals and the community remains at a stable high. Coupled with the incidence of primary CDI, there is a stable high incidence of recurrent CDI. Testing for primary and recurrent CDI remains a clinical challenge owing to high sensitivity of the PCR (leading to false positives) and somewhat limited sensitivity of EIA for toxin. The pathophysiology of recurrent CDI involves an ongoing disruption of the microbiota owing to the infection and the treatment of CDI employed. Broad spectrum antibiotics such as vancomycin leads to further disruption of microbiota compared to fidaxomicin which has a lower disruption of the microbiota and leads to fewer recurrences. Owing to these data fidaxomicin is considered as the first line antibiotic for recurrent CDI. Intravenous bezlotoxumab is a monoclonal antibody that reduces the risk of recurrence in high-risk patients but does not restore the microbiota. Experimental fecal microbiota transplantation (FMT) has been available for more than a decade. Owing to the success of FMT, two new non-invasive donor dependent Food and Drug Administration (FDA) approved therapies have been available since late 2022. This review summarizes all these conundrums regarding CDI and provides clinical pearls to use in day-to-day practice.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA -
| |
Collapse
|
14
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
16
|
Prosty C, Katergi K, Papenburg J, Lawandi A, Lee TC, Shi H, Burnham P, Swem L, Routy B, Yansouni CP, Cheng MP. Causal role of the gut microbiome in certain human diseases: a narrative review. EGASTROENTEROLOGY 2024; 2:e100086. [PMID: 39944364 PMCID: PMC11770457 DOI: 10.1136/egastro-2024-100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 03/19/2025]
Abstract
Composed of an elaborate ecosystem of bacteria, fungi, viruses and protozoa residing in the human digestive tract, the gut microbiome influences metabolism, immune modulation, bile acid homeostasis and host defence. Through observational and preclinical data, the gut microbiome has been implicated in the pathogenesis of a spectrum of chronic diseases ranging from psychiatric to gastrointestinal in nature. Until recently, the lack of unequivocal evidence supporting a causal link between gut microbiome and human health outcomes incited controversy regarding its significance. However, recent randomised controlled trial (RCT) evidence in conditions, such as Clostridioides difficile infection, cancer immunotherapy and ulcerative colitis, has supported a causal relationship and has underscored the potential of the microbiome as a therapeutic target. This review delineates the RCT evidence substantiating the potential for a causal relationship between the gut microbiome and human health outcomes, the seminal observational evidence that preceded these RCTs and the remaining knowledge gaps.
Collapse
Affiliation(s)
- Connor Prosty
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Khaled Katergi
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Todd C Lee
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hao Shi
- Kanvas Biosciences, Princeton, New Jersey, USA
| | | | - Lee Swem
- Kanvas Biosciences, Princeton, New Jersey, USA
| | - Bertrand Routy
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Universite de Montreal, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- JD MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Kanvas Biosciences, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Vitiello A, Rezza G, Silenzi A, Salzano A, Alise M, Boccellino MR, Ponzo A, Zovi A, Sabbatucci M. Therapeutic Strategies to Combat Increasing Rates of Multidrug Resistant Pathogens. Pharm Res 2024; 41:1557-1571. [PMID: 39107513 DOI: 10.1007/s11095-024-03756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/30/2024]
Abstract
The emergence of antimicrobic-resistant infectious pathogens and the consequent rising in the incidence and prevalence of demises caused by or associated to infections which are not sensitive to drug treatments is one of today's major global health challenges. Antimicrobial resistance (AMR) can bring to therapeutic failure, infection's persistence and risk of serious illness, in particular in vulnerable populations such as the elderly, patients with neoplastic diseases or the immunocompromised. It is assessed that AMR will induce until 10 million deaths per year by 2050, becoming the leading cause of disease-related deaths. The World Health Organisation (WHO) and the United Nations General Assembly urgently call for new measures to combat the phenomenon. Research and development of new antimicrobial agents has decreased due to market failure. However, promising results are coming from new alternative therapeutic strategies such as monoclonal antibodies, microbiome modulators, nanomaterial-based therapeutics, vaccines, and phages. This narrative review aimed to analyse the benefits and weaknesses of alternative therapeutic strategies to antibiotics which treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Giovanni Rezza
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Silenzi
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Antonio Salzano
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Mosè Alise
- Directorate General of Animal Health and Veterinary Medicines, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | | | - Annarita Ponzo
- Department of Biology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
18
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
19
|
Quan M, Zhang X, Fang Q, Lv X, Wang X, Zong Z. Fighting against Clostridioides difficile infection: Current medications. Int J Antimicrob Agents 2024; 64:107198. [PMID: 38734214 DOI: 10.1016/j.ijantimicag.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Clostridioides difficile (formerly Clostridium difficile) has been regarded as an 'urgent threat' and a significant global health problem, as life-threatening diarrhoea and refractory recurrence are common in patients with C. difficile infection (CDI). Unfortunately, the available anti-CDI drugs are limited. Recent guidelines recommend fidaxomicin and vancomycin as first-line drugs to treat CDI, bezlotoxumab to prevent recurrence, and faecal microbiota transplantation for rescue treatment. Currently, researchers are investigating therapeutic antibacterial drugs (e.g. teicoplanin, ridinilazole, ibezapolstat, surotomycin, cadazolid, and LFF571), preventive medications against recurrence (e.g. Rebyota, Vowst, VP20621, VE303, RBX7455, and MET-2), primary prevention strategies (e.g. vaccine, ribaxamase, and DAV132) and other anti-CDI medications in the preclinical stage (e.g. Raja 42, Myxopyronin B, and bacteriophage). This narrative review summarises current medications, including newly marketed drugs and products in development against CDI, to help clinicians treat CDI appropriately and to call for more research on innovation.
Collapse
Affiliation(s)
- Min Quan
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxia Zhang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohui Wang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Zhiyong Zong
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
22
|
Benech N, Barbut F, Fitzpatrick F, Krutova M, Davies K, Druart C, Cordaillat-Simmons M, Heritage J, Guery B, Kuijper E. Update on microbiota-derived therapies for recurrent Clostridioides difficile infections. Clin Microbiol Infect 2024; 30:462-468. [PMID: 38101472 DOI: 10.1016/j.cmi.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is the standard treatment for patients with multiple recurrent Clostridioides difficile infection (rCDI). Recently, new commercially developed human microbiota-derived medicinal products have been evaluated and Food and Drug Administration-approved with considerable differences in terms of composition, administration, and targeted populations. OBJECTIVES To review available data on the different microbiota-derived treatments at the stage of advanced clinical evaluation and research in rCDI in comparison with FMT. SOURCES Phase II or III trials evaluating a microbiota-derived medicinal product to prevent rCDI. CONTENT Two commercial microbiota-derived medicinal products are approved by the Food and Drug Administration: Rebyota (RBX2660 Ferring Pharmaceuticals, marketed in the United States) and VOWST (SER-109 -Seres Therapeutics, marketed in the United States), whereas VE303 (Vedanta Biosciences Inc) will be studied in phase III trial. RBX2660 and SER-109 are based on the processing of stools from healthy donors, whereas VE303 consists of a defined bacterial consortium originating from human stools and produced from clonal cell banks. All have proven efficacy to prevent rCDI compared with placebo in patients considered at high risk of recurrence. However, the heterogeneity of the inclusion criteria, and the time between each episode and CDI diagnostics makes direct comparison between trials difficult. The differences regarding the risk of recurrence between the treatment and placebo arms were lower than previously described for FMT (FMT: Δ = 50.5%; RBX2660-phase III: Δ = 13.1%; SER-109-phase III: Δ = 28%; high-dose VE303-phase-II: Δ = 31.7%). All treatments presented a good overall safety profile with mainly mild gastrointestinal symptoms. IMPLICATIONS Stool-derived products and bacterial consortia need to be clearly distinguished in terms of product characterization and their associated risks with specific long-term post-marketing evaluation similar to registries used for FMT. Their place in the therapeutic strategy for patients with rCDI requires further studies to determine the most appropriate patient population and administration route to prevent rCDI.
Collapse
Affiliation(s)
- Nicolas Benech
- French Fecal Transplant Group (GFTF), France; Hepato-Gastroenterology Department, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, CRCL, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; ESGHAMI (ESCMID Study Group for Host and Microbiota Interactions); ESGCD (ESCMID Study Group for Clostridioides difficile); Member of the European Fecal Microbiota Transplantation Network.
| | - Frédéric Barbut
- French Fecal Transplant Group (GFTF), France; ESGCD (ESCMID Study Group for Clostridioides difficile); National Reference Laboratory for Clostridioides difficile, AP-HP, Hôpital Saint-Antoine, Paris, France; Université Paris Cité, INSERM UMR-1139, Paris, France
| | - Fidelma Fitzpatrick
- ESGHAMI (ESCMID Study Group for Host and Microbiota Interactions); ESGCD (ESCMID Study Group for Clostridioides difficile); Departments of Clinical Microbiology, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin, Ireland
| | - Marcela Krutova
- ESGCD (ESCMID Study Group for Clostridioides difficile); Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kerrie Davies
- ESGCD (ESCMID Study Group for Clostridioides difficile); Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, United Kingdom
| | | | | | - John Heritage
- ESGCD (ESCMID Study Group for Clostridioides difficile); Patient representative, ESCMID Study Group for Clostridioides difficile; Faculty of Biological Sciences (retired), University of Leeds, Leeds, United Kingdom
| | - Benoît Guery
- ESGHAMI (ESCMID Study Group for Host and Microbiota Interactions); ESGCD (ESCMID Study Group for Clostridioides difficile); Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Member of the European Fecal Microbiota Transplantation Network
| | - Ed Kuijper
- ESGHAMI (ESCMID Study Group for Host and Microbiota Interactions); ESGCD (ESCMID Study Group for Clostridioides difficile); Department of Medical Microbiology, Center for Microbiota Analysis and Therapeutics at Leiden University Medical Centre, Albinusdreef 2, Leiden, The Netherlands; Member of the European Fecal Microbiota Transplantation Network
| |
Collapse
|
23
|
Lin X, Hu T, Wu Z, Li L, Wang Y, Wen D, Liu X, Li W, Liang H, Jin X, Xu X, Wang J, Yang H, Kristiansen K, Xiao L, Zou Y. Isolation of potentially novel species expands the genomic and functional diversity of Lachnospiraceae. IMETA 2024; 3:e174. [PMID: 38882499 PMCID: PMC11170972 DOI: 10.1002/imt2.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024]
Abstract
The Lachnospiraceae family holds promise as a source of next-generation probiotics, yet a comprehensive delineation of its diversity is lacking, hampering the identification of suitable strains for future applications. To address this knowledge gap, we conducted an in-depth genomic and functional analysis of 1868 high-quality genomes, combining data from public databases with our new isolates. This data set represented 387 colonization-selective species-level clusters, of which eight genera represented multilineage clusters. Pan-genome analysis, single-nucleotide polymorphism (SNP) identification, and probiotic functional predictions revealed that species taxonomy, habitats, and geography together shape the functional diversity of Lachnospiraceae. Moreover, analyses of associations with atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD) indicated that several strains of potentially novel Lachnospiraceae species possess the capacity to reduce the abundance of opportunistic pathogens, thereby imparting potential health benefits. Our findings shed light on the untapped potential of novel species enabling knowledge-based selection of strains for the development of next-generation probiotics holding promise for improving human health and disease management.
Collapse
Affiliation(s)
- Xiaoqian Lin
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | - Zhinan Wu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | | | | | | | - Xudong Liu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Wenxi Li
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | | | - Xun Xu
- BGI Research Shenzhen China
| | - Jian Wang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Huanming Yang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Karsten Kristiansen
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | - Liang Xiao
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| | - Yuanqiang Zou
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| |
Collapse
|
24
|
Newcomer EP, Fishbein SRS, Zhang K, Hink T, Reske KA, Cass C, Iqbal ZH, Struttmann EL, Burnham CAD, Dubberke ER, Dantas G. Genomic surveillance of Clostridioides difficile transmission and virulence in a healthcare setting. mBio 2024; 15:e0330023. [PMID: 38329369 PMCID: PMC10936198 DOI: 10.1128/mbio.03300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a major cause of healthcare-associated diarrhea, despite the widespread implementation of contact precautions for patients with CDI. Here, we investigate strain contamination in a hospital setting and the genomic determinants of disease outcomes. Across two wards over 6 months, we selectively cultured C. difficile from patients (n = 384) and their environments. Whole-genome sequencing (WGS) of 146 isolates revealed that most C. difficile isolates were from clade 1 (131/146, 89.7%), while only one isolate of the hypervirulent ST1 was recovered. Of culture-positive admissions (n = 79), 19 (24%) patients were colonized with toxigenic C. difficile on admission to the hospital. We defined 25 strain networks at ≤2 core gene single nucleotide polymorphisms; two of these networks contain strains from different patients. Strain networks were temporally linked (P < 0.0001). To understand the genomic correlates of the disease, we conducted WGS on an additional cohort of C. difficile (n = 102 isolates) from the same hospital and confirmed that clade 1 isolates are responsible for most CDI cases. We found that while toxigenic C. difficile isolates are associated with the presence of cdtR, nontoxigenic isolates have an increased abundance of prophages. Our pangenomic analysis of clade 1 isolates suggests that while toxin genes (tcdABER and cdtR) were associated with CDI symptoms, they are dispensable for patient colonization. These data indicate that toxigenic and nontoxigenic C. difficile contamination persist in a hospital setting and highlight further investigation into how accessory genomic repertoires contribute to C. difficile colonization and disease. IMPORTANCE Clostridioides difficile infection remains a leading cause of hospital-associated diarrhea, despite increased antibiotic stewardship and transmission prevention strategies. This suggests a changing genomic landscape of C. difficile. Our study provides insight into the nature of prevalent C. difficile strains in a hospital setting and transmission patterns among carriers. Longitudinal sampling of surfaces and patient stool revealed that both toxigenic and nontoxigenic strains of C. difficile clade 1 dominate these two wards. Moreover, quantification of transmission in carriers of these clade 1 isolates underscores the need to revisit infection prevention measures in this patient group. We identified unique genetic signatures associated with virulence in this clade. Our data highlight the complexities of preventing transmission of this pathogen in a hospital setting and the need to investigate the mechanisms of in vivo persistence and virulence of prevalent lineages in the host gut microbiome.
Collapse
Affiliation(s)
- Erin P. Newcomer
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Skye R. S. Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kailun Zhang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimberly A. Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zainab H. Iqbal
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily L. Struttmann
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Erik R. Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Monday L, Tillotson G, Chopra T. Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection- The Devil is in the Details. Infect Drug Resist 2024; 17:623-639. [PMID: 38375101 PMCID: PMC10876012 DOI: 10.2147/idr.s419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant contributor to healthcare costs and morbidity due to high rates of recurrence. Currently, available antibiotic treatment strategies further disrupt the fecal microbiome and do not address the alterations in commensal flora (dysbiosis) that set the stage for CDI. Advances in microbiome-based research have resulted in the development of new agents, classified as live biotherapeutic products (LBPs), for preventing recurrent CDI (rCDI) by restoring eubiosis. Prior to the LBPs, fecal microbiota transplantation (FMT) was available for this purpose; however, lack of large-scale availability and safety concerns have remained barriers to its widespread use. The LBPs are an exciting development, but questions remain. Some are derived directly from human stool while other developmental products contain a defined microbial consortium manufactured ex vivo, and they may be composed of either living bacteria or their spores, making it difficult to compare members of this heterogenous drug class to one another. None have been studied head-to head or against FMT in preventing rCDI. As a class, they have considerable variability in their biologic composition, biopharmaceutic science, route of administration, stages of development, and clinical trial data. This review will start by explaining the role of dysbiosis in CDI, then give the details of the biopharmaceutical components for the LBPs which are approved or in development including how they differ from FMT and from one another. We then discuss the clinical trials of the LBPs currently approved for rCDI and end with the future clinical directions of LBPs beyond C. difficile.
Collapse
Affiliation(s)
- Lea Monday
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Teena Chopra
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Corti N, Chiu C, Cox RJ, Demont C, Devaster JM, Engelhardt OG, Gorringe A, Hassan K, Hoefnagel M, Kamerling I, Krut O, Lane C, Liebers R, Luke C, Van Molle W, Morel S, Neels P, Roestenberg M, Rubbrecht M, Klaas Smits W, Stoughton D, Talaat K, Vehreschild MJGT, Wildfire A, Meln I, Olesen OF. Regulatory workshop on challenge strain development and GMP manufacture - A stakeholder meeting report. Biologicals 2024; 85:101746. [PMID: 38309984 PMCID: PMC11249085 DOI: 10.1016/j.biologicals.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Within the Innovative Health Initiative (IHI) Inno4Vac CHIMICHURRI project, a regulatory workshop was organised on the development and manufacture of challenge agent strains for Controlled Human Infection Model (CHIM) studies. Developers are often uncertain about which GMP requirements or regulatory guidelines apply but should be guided by the 2022 technical white paper "Considerations on the Principles of Development and Manufacturing Qualities of Challenge Agents for Use in Human Infection Models" (published by hVIVO, Wellcome Trust, HIC-Vac consortium members). Where those recommendations cannot be met, regulators advise following the "Principles of GMP" until definitive guidelines are available. Sourcing wild-type virus isolates is a significant challenge for developers. Still, it is preferred over reverse genetics challenge strains for several reasons, including implications and regulations around genetically modified organisms (GMOs). Official informed consent guidelines for collecting isolates are needed, and the characterisation of these isolates still presents risks and uncertainty. Workshop topics included ethics, liability, standardised clinical endpoints, selection criteria, sharing of challenge agents, and addressing population heterogeneity concerning vaccine response and clinical course. The organisers are confident that the workshop discussions will contribute to advancing ethical, safe, and high-quality CHIM studies of influenza, RSV and C. difficile, including adequate regulatory frameworks.
Collapse
Affiliation(s)
| | | | | | | | | | - Othmar G Engelhardt
- The Medicines and Healthcare products Regulatory Agency (MHRA), London, United Kingdom
| | | | - Khaole Hassan
- GlaxoSmithKline Biologicals S.A., Rixensart, Belgium
| | | | | | - Oleg Krut
- Paul-Ehrlich-Institut (PEI), Langen, Germany
| | - Chelsea Lane
- National Institutes of Health (NIH/NIAID), Maryland, United States
| | | | - Catherine Luke
- National Institutes of Health (NIH/NIAID), Maryland, United States
| | | | - Sandra Morel
- GlaxoSmithKline Biologicals S.A., Rixensart, Belgium
| | - Pieter Neels
- International Alliance of Biological Standardization (IABS-EU), Geneva, Switzerland
| | - Meta Roestenberg
- Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Wiep Klaas Smits
- Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniel Stoughton
- National Institutes of Health (NIH/NIAID), Maryland, United States
| | - Kawsar Talaat
- Johns Hopkins Bloomberg School of Public Health, Maryland, United States
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, German Centre for Infection Research (DZIF), Site Bonn-Cologne, Cologne, Germany
| | | | - Irina Meln
- European Vaccine Initiative (EVI), Heidelberg, Germany
| | - Ole F Olesen
- European Vaccine Initiative (EVI), Heidelberg, Germany.
| |
Collapse
|
27
|
Calton CM, Carothers K, Ramamurthy S, Jagadish N, Phanindra B, Garcia A, Viswanathan VK, Halpern MD. Clostridium scindens exacerbates experimental necrotizing enterocolitis via upregulation of the apical sodium-dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 2024; 326:G25-G37. [PMID: 37933481 PMCID: PMC11208032 DOI: 10.1152/ajpgi.00102.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature infants. Evidence indicates that bile acid homeostasis is disrupted during NEC: ileal bile acid levels are elevated in animals with experimental NEC, as is expression of the apical sodium-dependent bile acid transporter (Asbt). In addition, bile acids, which are synthesized in the liver, are extensively modified by the gut microbiome, including via the conversion of primary bile acids to more cytotoxic secondary forms. We hypothesized that the addition of bile acid-modifying bacteria would increase susceptibility to NEC in a neonatal rat model of the disease. The secondary bile acid-producing species Clostridium scindens exacerbated both incidence and severity of NEC. C. scindens upregulated the bile acid transporter Asbt and increased levels of intraenterocyte bile acids. Treatment with C. scindens also altered bile acid profiles and increased hydrophobicity of the ileal intracellular bile acid pool. The ability of C. scindens to enhance NEC requires bile acids, as pharmacological sequestration of ileal bile acids protects animals from developing disease. These findings indicate that bile acid-modifying bacteria can contribute to NEC pathology and provide additional evidence for the role of bile acids in the pathophysiology of experimental NEC.NEW & NOTEWORTHY Necrotizing enterocolitis (NEC), a life-threatening gastrointestinal emergency in premature infants, is characterized by dysregulation of bile acid homeostasis. We demonstrate that administering the secondary bile acid-producing bacterium Clostridium scindens enhances NEC in a neonatal rat model of the disease. C. scindens-enhanced NEC is dependent on bile acids and driven by upregulation of the ileal bile acid transporter Asbt. This is the first report of bile acid-modifying bacteria exacerbating experimental NEC pathology.
Collapse
Affiliation(s)
- Christine M Calton
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States
| | - Katelyn Carothers
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Neha Jagadish
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States
| | - Bhumika Phanindra
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States
| | - Anett Garcia
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Melissa D Halpern
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
28
|
Fischer M, Ray A. Future Microbiome Therapeutics for Clostridioides difficile Infection. Am J Gastroenterol 2024; 119:S27-S29. [PMID: 38153223 DOI: 10.14309/ajg.0000000000002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/29/2023]
Affiliation(s)
| | - Arnab Ray
- Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
29
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Rahman MN, Barua N, Tin MC, Dharmaratne P, Wong SH, Ip M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; a systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024; 16:2356279. [PMID: 38778521 PMCID: PMC11123511 DOI: 10.1080/19490976.2024.2356279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Repeated exposure to antibiotics and changes in the diet and environment shift the gut microbial diversity and composition, making the host susceptible to pathogenic infection. The emergence and ongoing spread of AMR pathogens is a challenging public health issue. Recent evidence showed that probiotics and prebiotics may play a role in decolonizing drug-resistant pathogens by enhancing the colonization resistance in the gut. This review aims to analyze available evidence from human-controlled trials to determine the effect size of probiotic interventions in decolonizing AMR pathogenic bacteria from the gut. We further studied the effects of prebiotics in human and animal studies. PubMed, Embase, Web of Science, Scopus, and CINAHL were used to collect articles. The random-effects model meta-analysis was used to pool the data. GRADE Pro and Cochrane collaboration tools were used to assess the bias and quality of evidence. Out of 1395 citations, 29 RCTs were eligible, involving 2871 subjects who underwent either probiotics or placebo treatment to decolonize AMR pathogens. The persistence of pathogenic bacteria after treatment was 22%(probiotics) and 30.8%(placebo). The pooled odds ratio was 0.59(95% CI:0.43-0.81), favoring probiotics with moderate certainty (p = 0.0001) and low heterogeneity (I2 = 49.2%, p = 0.0001). The funnel plot showed no asymmetry in the study distribution (Kendall'sTau = -1.06, p = 0.445). In subgroup, C. difficile showed the highest decolonization (82.4%) in probiotics group. Lactobacillus-based probiotics and Saccharomyces boulardii decolonize 71% and 77% of pathogens effectively. The types of probiotics (p < 0.018) and pathogens (p < 0.02) significantly moderate the outcome of decolonization, whereas the dosages and regions of the studies were insignificant (p < 0.05). Prebiotics reduced the pathogens from 30% to 80% of initial challenges. Moderate certainty of evidence suggests that probiotics and prebiotics may decolonize pathogens through modulation of gut diversity. However, more clinical outcomes are required on particular strains to confirm the decolonization of the pathogens. Protocol registration: PROSPERO (ID = CRD42021276045).
Collapse
Affiliation(s)
- Md Nannur Rahman
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Martha C.F. Tin
- Faculty of Medical Sciences, University College of London, London, UK
| | - Priyanga Dharmaratne
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Centre for Gut Microbiota, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| |
Collapse
|
31
|
Cheng L, Correia MSP, Higdon SM, Romero Garcia F, Tsiara I, Joffré E, Sjöling Å, Boulund F, Norin EL, Engstrand L, Globisch D, Du J. The protective role of commensal gut microbes and their metabolites against bacterial pathogens. Gut Microbes 2024; 16:2356275. [PMID: 38797999 PMCID: PMC11135852 DOI: 10.1080/19490976.2024.2356275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Multidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.
Collapse
Affiliation(s)
- Liqin Cheng
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- The Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mário S. P. Correia
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M. Higdon
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Fabricio Romero Garcia
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ioanna Tsiara
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elisabeth Lissa Norin
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Daniel Globisch
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| |
Collapse
|
32
|
Fitzpatrick F, Brennan R, van Prehn J, Skally M, Brady M, Burns K, Rooney C, Wilcox MH. European Practice for CDI Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:57-84. [PMID: 38175471 DOI: 10.1007/978-3-031-42108-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) remains a significant cause of morbidity and mortality worldwide. Historically, two antibiotics (metronidazole and vancomycin) and a recent third (fidaxomicin) have been used for CDI treatment; convincing data are now available showing that metronidazole is the least efficacious agent. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) management guidance for CDI were updated in 2021. This guidance document outlines the treatment options for a variety of CDI clinical scenarios and for non-antimicrobial management (e.g., faecal microbiota transplantation, FMT). One of the main changes is that metronidazole is no longer recommended as first-line CDI treatment. Rather, fidaxomicin is preferred on the basis of reduced recurrence rates with vancomycin as an acceptable alternative. Recommended options for recurrent CDI now include bezlotoxumab as well as FMT.A 2017 survey of 20 European countries highlighted variation internationally in CDI management strategies. A variety of restrictions were in place in 65% countries prior to use of new anti-CDI treatments, including committee/infection specialist approval or economic review/restrictions. This survey was repeated in November 2022 to assess the current landscape of CDI management practices in Europe. Of 64 respondents from 17 countries, national CDI guidelines existed in 14 countries, and 11 have already/plan to incorporate the ESCMID 2021 CDI guidance, though implementation has not been surveyed in 6. Vancomycin is the most commonly used first-line agent for the treatment of CDI (n = 42, 66%), followed by fidaxomicin (n = 30, 47%). Six (9%) respondents use metronidazole as first-line agent for CDI treatment, whereas 22 (34%) only in selected low-risk patient groups. Fidaxomicin is more likely to be used in high-risk patient groups. Availability of anti-CDI therapy influenced prescribing in six respondents (9%). Approval pre-prescription was required before vancomycin (n = 3, 5%), fidaxomicin (n = 10, 6%), bezlotoxumab (n = 11, 17%) and FMT (n = 10, 6%). Implementation of CDI guidelines is rarely audited.Novel anti-CDI agents are being evaluated; it is not yet clear what will be the roles of these agents. The treatment of recurrent CDI is particularly troublesome, and several different live biotherapeutics are being developed, in addition to FMT.
Collapse
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland.
| | - Robert Brennan
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mairead Skally
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Melissa Brady
- Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Christopher Rooney
- Microbiology, Leeds Teaching Hospitals, Leeds, UK
- University of Leeds, Leeds, UK
| | - Mark H Wilcox
- University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals and Leeds Regional Public Health Laboratory, UK Health Security Agency (UKHSA), Leeds, UK.
| |
Collapse
|
33
|
Normington C, Chilton CH, Buckley AM. Clostridioides difficile infections; new treatments and future perspectives. Curr Opin Gastroenterol 2024; 40:7-13. [PMID: 37942659 PMCID: PMC10715702 DOI: 10.1097/mog.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW As a significant cause of global morbidity and mortality, Clostridioides difficile infections (CDIs) are listed by the Centres for Disease Control and prevention as one of the top 5 urgent threats in the USA. CDI occurs from gut microbiome dysbiosis, typically through antibiotic-mediated disruption; however, antibiotics are the treatment of choice, which can result in recurrent infections. Here, we highlight new treatments available and provide a perspective on different classes of future treatments. RECENT FINDINGS Due to the reduced risk of disease recurrence, the microbiome-sparing antibiotic Fidaxomicin has been recommended as the first-line treatment for C. difficile infection. Based on the success of faecal microbiota transplantations (FMT) in treating CDI recurrence, defined microbiome biotherapeutics offer a safer and more tightly controlled alterative as an adjunct to antibiotic therapy. Given the association between antibiotic-mediated dysbiosis of the intestinal microbiota and the recurrence of CDI, future prospective therapies aim to reduce the dependence on antibiotics for the treatment of CDI. SUMMARY With current first-in-line antibiotic therapy options associated with high levels of recurrent CDI, the availability of new generation targeted therapeutics can really impact treatment success. There are still unknowns about the long-term implications of these new CDI therapeutics, but efforts to expand the CDI treatment toolbox can offer multiple solutions for clinicians to treat this multifaceted infectious disease to reduce patient suffering.
Collapse
Affiliation(s)
- Charmaine Normington
- Healthcare Associated Infections Research Group, School of Medicine, Faculty of Health and Medicine, University of Leeds
- Leeds Teaching Hospital Trust, Leeds General Infirmary
| | - Caroline H. Chilton
- Healthcare Associated Infections Research Group, School of Medicine, Faculty of Health and Medicine, University of Leeds
- Leeds Teaching Hospital Trust, Leeds General Infirmary
| | - Anthony M. Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| |
Collapse
|
34
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
35
|
Newcomer EP, Fishbein SRS, Zhang K, Hink T, Reske KA, Cass C, Iqbal ZH, Struttmann EL, Dubberke ER, Dantas G. Genomic surveillance of Clostridioides difficile transmission and virulence in a healthcare setting. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.26.23295023. [PMID: 38105952 PMCID: PMC10723495 DOI: 10.1101/2023.09.26.23295023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clostridioides difficile infection (CDI) is a major cause of healthcare-associated diarrhea, despite the widespread implementation of contact precautions for patients with CDI. Here, we investigate strain contamination in a hospital setting and genomic determinants of disease outcomes. Across two wards over six months, we selectively cultured C. difficile from patients (n=384) and their environments. Whole-genome sequencing (WGS) of 146 isolates revealed that most C. difficile isolates were from clade 1 (131/146, 89.7%), while only one isolate of the hypervirulent ST1 was recovered. Of culture-positive admissions (n=79), 19 (24%) of patients were colonized with toxigenic C. difficile on admission to the hospital. We defined 25 strain networks at ≤ 2 core gene SNPs; 2 of these networks contain strains from different patients. Strain networks were temporally linked (p<0.0001). To understand genomic correlates of disease, we conducted WGS on an additional cohort of C. difficile (n=102 isolates) from the same hospital and confirmed that clade 1 isolates are responsible for most CDI cases. We found that while toxigenic C. difficile isolates are associated with the presence of cdtR , nontoxigenic isolates have an increased abundance of prophages. Our pangenomic analysis of clade 1 isolates suggests that while toxin genes ( tcdABER and cdtR ) were associated with CDI symptoms, they are dispensable for patient colonization. These data indicate toxigenic and nontoxigenic C. difficile contamination persists in a hospital setting and highlight further investigation into how accessory genomic repertoires contribute to C. difficile colonization and disease.
Collapse
|
36
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
37
|
Alam MZ, Markantonis JE, Fallon JT. Host Immune Responses to Clostridioides difficile Infection and Potential Novel Therapeutic Approaches. Trop Med Infect Dis 2023; 8:506. [PMID: 38133438 PMCID: PMC10747268 DOI: 10.3390/tropicalmed8120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a leading nosocomial infection, posing a substantial public health challenge within the United States and globally. CDI typically occurs in hospitalized elderly patients who have been administered antibiotics; however, there has been a rise in the occurrence of CDI in the community among young adults who have not been exposed to antibiotics. C. difficile releases toxins, which damage large intestinal epithelium, leading to toxic megacolon, sepsis, and even death. Unfortunately, existing antibiotic therapies do not always prevent these consequences, with up to one-third of treated patients experiencing a recurrence of the infection. Host factors play a crucial role in the pathogenesis of CDI, and accumulating evidence shows that modulation of host immune responses may potentially alter the disease outcome. In this review, we provide an overview of our current knowledge regarding the role of innate and adaptive immune responses on CDI outcomes. Moreover, we present a summary of non-antibiotic microbiome-based therapies that can effectively influence host immune responses, along with immunization strategies that are intended to tackle both the treatment and prevention of CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | | | | |
Collapse
|
38
|
Gilboa M, Baharav N, Melzer E, Regev-Yochay G, Yahav D. Screening for Asymptomatic Clostridioides difficile Carriage Among Hospitalized Patients: A Narrative Review. Infect Dis Ther 2023; 12:2223-2240. [PMID: 37704801 PMCID: PMC10581986 DOI: 10.1007/s40121-023-00856-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Clostridioides difficile infection (CDI) has become the most common healthcare-associated infection in the United States, with considerable morbidity, mortality, and healthcare costs. Assessing new preventive strategies is vital. We present a literature review of studies evaluating a strategy of screening and isolation of asymptomatic carriers in hospital settings. Asymptomatic detection of C. difficile is reported in ~ 10-20% of admitted patients. Risk factors for carriage include recent hospitalization, previous antibiotics, older age, lower functional capacity, immunosuppression, and others. Asymptomatic C. difficile carriers of toxigenic strains are at higher risk for progression to CDI. They are also shedders of C. difficile spores and may contribute to the persistence and transmission of this bacterium. Screening for asymptomatic carriers at hospital admission can theoretically reduce CDI by isolating carriers to reduce transmission, and implementing antibiotic stewardship measures targeting carriers to prevent progression to clinical illness. Several observational studies, summarized in this review, have reported implementing screening and isolation strategies, and found a reduction in CDI rates. Nevertheless, the data are still limited to a few observational studies, and this strategy is not commonly practiced. Studies supporting screening were performed in North America, coinciding with the period of dominance of the 027/BI/NAP1 strain. Additional studies evaluating screening, followed by infection control and antibiotic stewardship measures, are needed.
Collapse
Affiliation(s)
- Mayan Gilboa
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel.
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
| | - Nadav Baharav
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Eyal Melzer
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Gili Regev-Yochay
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Dafna Yahav
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
39
|
Dicks LMT. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023; 11:2161. [PMID: 37764005 PMCID: PMC10534356 DOI: 10.3390/microorganisms11092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
40
|
Jeon CH, Kim SH, Wi YM. Prevalence of Non-Toxigenic Clostridioides difficile in Diarrhoea Patients and Their Clinical Characteristics. Antibiotics (Basel) 2023; 12:1360. [PMID: 37760657 PMCID: PMC10525624 DOI: 10.3390/antibiotics12091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Non-toxigenic Clostridioides difficile (NTCD) has been shown to decrease the risk of recurrent C. difficile infection (CDI) in patients following metronidazole or vancomycin treatment for CDI. Limited data on the prevalence of NTCD strains in symptomatic patients and their clinical characteristics are available. We conducted this study to investigate the prevalence of NTCD in diarrhoea patients and their clinical characteristics. Between July 2017 and June 2018, unduplicated stool specimens were collected from patients with diarrhoea. The characteristics and episodes of C. difficile infection in patients with NTCD and toxigenic strains were compared. Among the 1182 stool specimens collected, 236 (18.5%) were identified as growing C. difficile, and 19.5% of the identified isolates were found to be NTCD. Multivariate analysis showed that community-onset diarrhoea (OR = 4.13, 95% CI 1.07-15.97; p = 0.040), underlying diabetes (OR = 3.64, 95% CI 1.46-9.25; p = 0.006), previous use of glycopeptides (OR = 4.75, 95% CI 1.37-16.42; p = 0.014), and the lack of use of proton pump inhibitors (PPIs) (OR = 3.57, 95% CI 1.39-9.09; p = 0.009) were independently associated with the NTCD group. Although there was no statistical significance, the number of CDI episodes occurring after 90 days tended to be lower in the NTCD group (2.2%) than in the toxigenic group (11.2%). A considerable portion of the C. difficile strains isolated from patients with diarrhoea showed NTCD. Further, more extensive studies are needed to clearly define the protective effects of NTCD strains in patients with diarrhoea.
Collapse
Affiliation(s)
| | | | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea; (C.-H.J.); (S.-H.K.)
| |
Collapse
|
41
|
Akegbe H, Onyeaka H, Michael Mazi I, Alex Olowolafe O, Dolapo Omotosho A, Olatunji Oladunjoye I, Amuda Tajudeen Y, Seun Ofeh A. The need for Africa to develop capacity for vaccinology as a means of curbing antimicrobial resistance. Vaccine X 2023; 14:100320. [PMID: 37293248 PMCID: PMC10244683 DOI: 10.1016/j.jvacx.2023.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
The high prevalence of infectious diseases in Africa, combined with weak healthcare systems, poor antimicrobial stewardship, and an unchecked drug supply chain, is steadily reversing the trend in the fight against infectious diseases in this part of the world, posing severe threats to antimicrobial resistance (AMR). AMR continuously evolves and threatens to undermine antimicrobial efficacy and undo advances against infectious diseases. This brewing pandemic is now recognized as a significant worldwide health danger, implicated in several cases of morbidity, mortality, and increasing healthcare costs. Vaccine technology has been proven to be the principal remedy to this imminent danger since it prevents microbial infections. However, since Africa cannot produce its vaccines, it relies on external sources and, as a result, it is significantly affected by vaccine nationalism, hoarding, and instabilities in global supply chains. This has further adversely impacted the ability of African governments to regulate rollouts, protect their citizens, and ultimately rejoin the global economy. This dependency is a severe challenge to Africa's health resilience, as it is unsustainable. Given the inevitability of potential global pandemics and the alarming incidences of multi-drug resistance infections reported daily, Africa must develop the capability to produce its vaccines. The review utilized a systematic search of academic databases and grey literature, as well as a manual search of relevant reports and articles. In this review, we outline the public health threats and concerns that AMR poses to Africans, and the hurdles and advances achieved in vaccine development over the years. We also highlight possible strategies, particularly collaborative efforts, that will accelerate vaccine production and ease the strain of infectious diseases and antimicrobial resistance in Africa. Key findings indicate that Africa has significant gaps in its vaccine manufacturing and distribution capacity, with only a few countries having the ability to produce vaccines. Additionally, existing vaccine production facilities are often outdated and require significant investment to meet international standards. The review also highlights successful initiatives in Africa, such as the mRNA vaccine hub and the African Vaccine Manufacturing Initiative, which have demonstrated the potential for building local vaccine manufacturing capacity. The study concludes that Africa needs to prioritize investment in vaccine research and development, regulatory capacity, and infrastructure to build a sustainable vaccine manufacturing ecosystem. Overall, this review emphasizes the urgent need for Africa to develop its vaccine manufacturing capacity to improve vaccine access and strengthen its ability to respond to future pandemics. The findings underscore the importance of collaboration between African governments, international organizations, and the private sector to build a resilient vaccine ecosystem in Africa.
Collapse
Affiliation(s)
- Hope Akegbe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ifeanyi Michael Mazi
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Opeyemi Alex Olowolafe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | | | | | - Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Augustine Seun Ofeh
- Department of Microbiology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
42
|
Majeed T, Mir BA, Chauhan A. Similar Cure Rates With Different Routes: Can It Be Generalized? Clin Gastroenterol Hepatol 2023; 21:2432. [PMID: 36307057 DOI: 10.1016/j.cgh.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Tahir Majeed
- Department of Gastroenterology and Hepatology, Indira Gandhi Medical College, Shimla, India
| | - Bilal Ahmad Mir
- Department of Gastroenterology and Hepatology, Indira Gandhi Medical College, Shimla, India
| | - Ashish Chauhan
- Department of Gastroenterology and Hepatology, Indira Gandhi Medical College, Shimla, India
| |
Collapse
|
43
|
Gonzales-Luna AJ, Skinner AM, Alonso CD, Bouza E, Cornely OA, de Meij TGJ, Drew RJ, Garey KW, Gerding DN, Johnson S, Kahn SA, Kato H, Kelly CP, Kelly CR, Kociolek LK, Kuijper EJ, Louie T, Riley TV, Sandora TJ, Vehreschild MJGT, Wilcox MH, Dubberke ER. Redefining Clostridioides difficile infection antibiotic response and clinical outcomes. THE LANCET. INFECTIOUS DISEASES 2023; 23:e259-e265. [PMID: 37062301 DOI: 10.1016/s1473-3099(23)00047-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 04/18/2023]
Abstract
With the approval and development of narrow-spectrum antibiotics for the treatment of Clostridioides difficile infection (CDI), the primary endpoint for treatment success of CDI antibiotic treatment trials has shifted from treatment response at end of therapy to sustained response 30 days after completed therapy. The current definition of a successful response to treatment (three or fewer unformed bowel movements [UBMs] per day for 1-2 days) has not been validated, does not reflect CDI management, and could impair assessments for successful treatment at 30 days. We propose new definitions to optimise trial design to assess sustained response. Primarily, we suggest that the initial response at the end of treatment be defined as (1) three or fewer UBMs per day, (2) a reduction in UBMs of more than 50% per day, (3) a decrease in stool volume of more than 75% for those with ostomy, or (4) attainment of bowel movements of Bristol Stool Form Scale types 1-4, on average, by day 2 after completion of primary CDI therapy (ie, assessed on day 11 and day 12 of a 10-day treatment course) and following an investigator determination that CDI treatment can be ceased.
Collapse
Affiliation(s)
- Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Andrew M Skinner
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Department of Medicine and Department of Research, Edward Hines Jr Veterans Administration Hospital, Hines, IL, USA
| | - Carolyn D Alonso
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emilio Bouza
- Department of Microbiology and Infectious Diseases, Universidad Complutense, Madrid, Spain
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease, Translational Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Clinical Trials Centre Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Tim G J de Meij
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Richard J Drew
- Clinical Innovation Unit, Rotunda Hospital and Children's Health Ireland, Dublin, Ireland; Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Dale N Gerding
- Department of Medicine and Department of Research, Edward Hines Jr Veterans Administration Hospital, Hines, IL, USA
| | - Stuart Johnson
- Department of Medicine and Department of Research, Edward Hines Jr Veterans Administration Hospital, Hines, IL, USA
| | - Stacy A Kahn
- Division of Gastroenterology, Hepatology & Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Haru Kato
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Colleen R Kelly
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Larry K Kociolek
- Division of Pediatric Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Thomas Louie
- Infectious Diseases, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Thomas J Sandora
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Maria J G T Vehreschild
- Infectious Diseases, Department of Internal Medicine, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mark H Wilcox
- Microbiology, Old Medical School, Leeds General Infirmary, Leeds, UK
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
44
|
Naz F, Petri WA. Host Immunity and Immunization Strategies for Clostridioides difficile Infection. Clin Microbiol Rev 2023; 36:e0015722. [PMID: 37162338 PMCID: PMC10283484 DOI: 10.1128/cmr.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents a significant challenge to public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a third of CDI patients, due in part to antibiotics being the primary treatment for CDI and the major cause of the disease. In this review, we summarize the current knowledge of innate immune responses, adaptive immune responses, and the link between innate and adaptive immune responses of the host against CDI. The other major determinants of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also described. Finally, we discuss the known therapeutic approaches and the current status of immunization strategies for CDI, which might help to bridge the knowledge gap in the generation of therapy against CDI.
Collapse
Affiliation(s)
- Farha Naz
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
45
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|
46
|
Pal R, Athamneh AI, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol 2023; 49:414-434. [PMID: 35574602 PMCID: PMC9743071 DOI: 10.1080/1040841x.2022.2072705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmad I.M. Athamneh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jose A. R Ramirez
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
- Cann Group, Walter and Eliza Hall Institute, La Trobe University, Victoria 3083, Australia
| | | | - Shrikant Pawar
- The Anlyan Center Yale Center for Genomic Analysis, Yale School of Medicine, New Haven CT USA
| | - Manuele Biazzo
- The Bioarte Ltd Laboratories at Life Science Park, San Gwann, Malta
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark G. Martens
- Reading Hospital, Tower Health, West Reading, PA 19611, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - George P. Tegos
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
47
|
Heuler J, Chandra H, Sun X. Mucosal Vaccination Strategies against Clostridioides difficile Infection. Vaccines (Basel) 2023; 11:vaccines11050887. [PMID: 37242991 DOI: 10.3390/vaccines11050887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) presents a major public health threat by causing frequently recurrent, life-threatening cases of diarrhea and intestinal inflammation. The ability of C. difficile to express antibiotic resistance and to form long-lasting spores makes the pathogen particularly challenging to eradicate from healthcare settings, raising the need for preventative measures to curb the spread of CDI. Since C. difficile utilizes the fecal-oral route of transmission, a mucosal vaccine could be a particularly promising strategy by generating strong IgA and IgG responses that prevent colonization and disease. This mini-review summarizes the progress toward mucosal vaccines against C. difficile toxins, cell-surface components, and spore proteins. By assessing the strengths and weaknesses of particular antigens, as well as methods for delivering these antigens to mucosal sites, we hope to guide future research toward an effective mucosal vaccine against CDI.
Collapse
Affiliation(s)
- Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harish Chandra
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
48
|
Sambol SP, Skinner AM, Serna-Perez F, Owen B, Gerding DN, Johnson S. Effective Colonization by Nontoxigenic Clostridioides difficile REA Strain M3 (NTCD-M3) Spores following Treatment with Either Fidaxomicin or Vancomycin. Microbiol Spectr 2023; 11:e0051723. [PMID: 36975811 PMCID: PMC10100807 DOI: 10.1128/spectrum.00517-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Colonization with nontoxigenic Clostridioides difficile strain M3 (NTCD-M3) has been demonstrated in susceptible hamsters and humans when administered after vancomycin treatment. NTCD-M3 has also been shown to decrease risk of recurrent C. difficile infection (CDI) in patients following vancomycin treatment for CDI. As there are no data for NTCD-M3 colonization after fidaxomicin treatment, we studied the efficacy of NTCD-M3 colonization and determined fecal antibiotic levels in a well-studied hamster model of CDI. Ten of 10 hamsters became colonized with NTCD-M3 after 5 days of treatment with fidaxomicin when NTCD-M3 was administered daily for 7 days after treatment discontinuation. The findings were nearly identical to 10 vancomycin-treated hamsters also given NTCD-M3. High fecal levels of OP-1118, the major fidaxomicin metabolite, and vancomycin were noted during treatment with the respective agents and modest levels noted 3 days after treatment discontinuation at the time when most of the hamsters became colonized. These findings support the ongoing development of NTCD-M3 for the prevention of recurrent CDI. IMPORTANCE NTCD-M3 is a novel live biotherapeutic, that has been shown in a Phase 2 clinical trial to prevent recurrence of C. difficile infection (CDI) when administered shortly after antibiotic treatment of the initial CDI episode. Fidaxomicin was not, however, in widespread use at the time this study was conducted. A large multi-center Phase 3 clinical trial is now currently in the planning stage, and it is anticipated that many patients eligible for this study will be treated with fidaxomicin. Since efficacy in the hamster model of CDI has predicted success in patients with CDI, we studied the ability of NTCD-M3 to colonize hamsters after treatment with either fidaxomicin or vancomycin.
Collapse
Affiliation(s)
- Susan P. Sambol
- Loyola University Medical Center, Department of Medicine, Maywood, Illinois, USA
| | - Andrew M. Skinner
- Loyola University Medical Center, Department of Medicine, Maywood, Illinois, USA
- Edward Hines Jr., VA Hospital, Research Section, Infection Diseases Section, Hines, Illinois, USA
| | - Fidel Serna-Perez
- Edward Hines Jr., VA Hospital, Research Section, Infection Diseases Section, Hines, Illinois, USA
| | - Benjamin Owen
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Dale N. Gerding
- Edward Hines Jr., VA Hospital, Research Section, Infection Diseases Section, Hines, Illinois, USA
| | - Stuart Johnson
- Loyola University Medical Center, Department of Medicine, Maywood, Illinois, USA
- Edward Hines Jr., VA Hospital, Research Section, Infection Diseases Section, Hines, Illinois, USA
| |
Collapse
|
49
|
Etifa P, Rodríguez C, Harmanus C, Sanders IMJG, Sidorov IA, Mohammed OA, Savage E, Timms AR, Freeman J, Smits WK, Wilcox MH, Baines SD. Non-Toxigenic Clostridioides difficile Strain E4 (NTCD-E4) Prevents Establishment of Primary C. difficile Infection by Epidemic PCR Ribotype 027 in an In Vitro Human Gut Model. Antibiotics (Basel) 2023; 12:435. [PMID: 36978302 PMCID: PMC10044524 DOI: 10.3390/antibiotics12030435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.
Collapse
Affiliation(s)
- Perezimor Etifa
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Reading RG6 6DZ, UK
| | - César Rodríguez
- Facultad de Microbiología & CIET, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Céline Harmanus
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ingrid M. J. G. Sanders
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Igor A. Sidorov
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Olufunmilayo A. Mohammed
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Emily Savage
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Andrew R. Timms
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Wiep Klaas Smits
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark H. Wilcox
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Simon D. Baines
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
50
|
Razim A, Górska S, Gamian A. Non-Toxin-Based Clostridioides difficile Vaccination Approaches. Pathogens 2023; 12:235. [PMID: 36839507 PMCID: PMC9966970 DOI: 10.3390/pathogens12020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive, anaerobic bacterium that infects mainly hospitalized and elderly people who have been treated with long-term antibiotic therapy leading to dysbiosis. The deteriorating demographic structure and the increase in the number of antibiotics used indicate that the problem of CD infections (CDI) will continue to increase. Thus far, there is no vaccine against CD on the market. Unfortunately, clinical trials conducted using the CD toxin-based antigens did not show sufficiently high efficacy, because they did not prevent colonization and transmission between patients. It seems that the vaccine should also include antigens found in the bacterium itself or its spores in order not only to fight the effects of toxins but also to prevent the colonization of the patient. This literature review summarizes the latest advances in research into vaccine antigens that do not contain CD toxins.
Collapse
Affiliation(s)
- Agnieszka Razim
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | | | | |
Collapse
|