1
|
Turner DGP, De Lange WJ, Zhu Y, Coe CL, Simcox J, Ge Y, Kamp TJ, Ralphe JC, Glukhov AV. Neutral sphingomyelinase regulates mechanotransduction in human engineered cardiac tissues and mouse hearts. J Physiol 2024; 602:4387-4407. [PMID: 37889115 PMCID: PMC11052922 DOI: 10.1113/jp284807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the USA and is known to be exacerbated by elevated mechanical stress from hypertension. Caveolae are plasma membrane structures that buffer mechanical stress but have been found to be reduced in pathological conditions associated with chronically stretched myocardium. To explore the physiological implications of the loss of caveolae, we used human engineered cardiac tissue (ECT) constructs, composed of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts, to develop a long-term cyclic stretch protocol that recapitulates the effects of hypertension on caveolae expression, membrane tension, and the β-adrenergic response. Leveraging this new stretch protocol, we identified neutral sphingomyelinases (nSMase) as mechanoregulated mediators of caveolae loss, ceramide production and the blunted β-adrenergic response in this human cardiac model. Specifically, in our ECT model, nSMase inhibition via GW4869 prevented stretch-induced loss of caveolae-like structures, mitigated nSMase-dependent ceramide production, and maintained the ECT contractile kinetic response to isoprenaline. These findings are correlated with a blood lipidomic analysis in middle-aged and older adults, which revealed an increase of the circulating levels of ceramides in adults with hypertension. Furthermore, we found that conduction slowing from increased pressure loading in mouse left ventricle was abolished in the context of nSMase inhibition. Collectively, these findings identify nSMase as a potent drug target for mitigating stretch-induced effects on cardiac function. KEY POINTS: We have developed a new stretch protocol for human engineered cardiac tissue that recapitulates changes in plasma membrane morphology observed in animal models of pressure/volume overload. Stretch of engineered cardiac tissue induces activation of neutral sphingomyelinase (nSMase), generation of ceramide, and disassembly of caveolae. Activation of nSMase blunts cardiac β-adrenergic contractile kinetics and mediates stretch-induced slowing of conduction and upstroke velocity. Circulating ceramides are increased in adults with hypertension, highlighting the clinical relevance of stretch-induced nSMase activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Willem J De Lange
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
3
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Khomari F, Kiani B, Alizadeh-Fanalou S, Babaei M, Kalantari-Hesari A, Alipourfard I, Mirzaei F, Yarahmadi S, Bahreini E. Effectiveness of Hydroalcoholic Seed Extract of Securigera securidaca on Pancreatic Local Renin-Angiotensin System and Its Alternative Pathway in Streptozotocin-Induced Diabetic Animal Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7285036. [PMID: 36647426 PMCID: PMC9840543 DOI: 10.1155/2023/7285036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Background Available data suggest inhibition of the pancreatic local-renin-angiotensin system (RAS) reduces tissue complications of diabetes. The purpose of the present study was to investigate the effect of hydroalcoholic seed extract of Securigera securidaca (S. securidaca) (HESS) on the pancreatic local-RAS and its alternative pathway. Methods Three doses of HESS were orally administered to three groups of diabetic male Wistar rats, and the results were compared with both diabetic and healthy control groups. After 35 days of treatment, the groups were assessed for the levels of pancreatic local-RAS components, including renin, angiotensinogen, ACE, and Ang II, as well as ACE2 and Ang-(1-7) in the alternative pathway. The effect of herbal medicine treatment on tissue damage status was investigated by evaluating tissue levels of oxidative stress, proinflammatory and anti-inflammatory cytokines, and through histopathological examination of the pancreas. Results HESS showed a dose-dependent palliative effect on the tissue oxidative stress profile (P < 0.05) as well as the levels of pancreatic local-RAS components (P < 0.05), compared to diabetic control group. Considering the interrelationship between tissue oxidative stress and local-RAS activity, the moderating effect of HESS on this relationship could be attributed to the increase in total tissue antioxidant capacity (TAC) and pancreatic Ang-(1-7) concentration. Decrease in local-RAS activity was associated with decrease in the tissue levels of inflammatory cytokines (IL1, IL6, and TNFα) (P < 0.05) and increase in the levels of anti-inflammatory cytokine of IL-10 (P < 0.05). In addition, histological results were consistent with tissue biochemical results. Conclusions Due to the reduction of local pancreatic RAS activity as well as oxidative stress and proinflammatory cytokines following treatment with HESS, S. securidaca seed can be proposed as a suitable herbal supplement in the drug-treatment of diabetes.
Collapse
Affiliation(s)
- Fatemeh Khomari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Kiani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Nephrology and Kidney Transplant center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Kalantari-Hesari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007 Katow, Poland
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Huo C, Liu Y, Li X, Xu R, Jia X, Hou L, Wang X. LRRC8A contributes to angiotensin II-induced cardiac hypertrophy by interacting with NADPH oxidases via the C-terminal leucine-rich repeat domain. Free Radic Biol Med 2021; 165:191-202. [PMID: 33515753 DOI: 10.1016/j.freeradbiomed.2021.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022]
Abstract
Cardiac hypertrophy, an important cause of heart failure, is characterized by an increase in heart weight, the ventricular wall, and cardiomyocyte volume. The volume regulatory anion channel (VRAC) is an important regulator of cell volume. However, its role in cardiac hypertrophy remains unclear. The purpose of this study was to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of the VRAC, on angiotensin II (AngII)-induced cardiac hypertrophy. Our results showed that LRRC8A expression, NADPH oxidase activity, and reactive oxygen species (ROS) production were increased in AngII-induced hypertrophic neonatal mouse cardiomyocytes and the myocardium of C57/BL/6 mice. In addition, AngII activated VRAC currents in cardiomyocytes. The delivery of adeno-associated viral (AAV9) bearing siRNA against mouse LRRC8A into the left ventricular wall inhibited AngII-induced cardiac hypertrophy and fibrosis. Accordingly, the knockdown of LRRC8A attenuated AngII-induced cardiomyocyte hypertrophy and VRAC currents in vitro. Furthermore, knockdown of LRRC8A suppressed AngII-induced ROS production, NADPH oxidase activity, the expression of NADPH oxidase membrane-bound subunits Nox2, Nox4, and p22phox, and the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox. Immunofluorescent staining showed that LRRC8A co-localized with NADPH oxidase membrane subunits Nox2, Nox4, and p22phox. Co-immunoprecipitation and analysis of a C-terminal leucine-rich repeat domain (LRRD) mutant showed that LRRC8A physically interacts with Nox2, Nox4, and p22phox via the LRRD. Taken together, the results of this study suggested that LRRC8A might play an important role in promoting AngII-induced cardiac hypertrophy by interacting with NADPH oxidases via the LRRD.
Collapse
Affiliation(s)
- Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
7
|
Binding of the protein ICln to α-integrin contributes to the activation of ICl swell current. Sci Rep 2019; 9:12195. [PMID: 31434921 PMCID: PMC6704128 DOI: 10.1038/s41598-019-48496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
IClswell is the chloride current induced by cell swelling, and plays a fundamental role in several biological processes, including the regulatory volume decrease (RVD). ICln is a highly conserved, ubiquitously expressed and multifunctional protein involved in the activation of IClswell. In platelets, ICln binds to the intracellular domain of the integrin αIIb chain, however, whether the ICln/integrin interaction plays a role in RVD is not known. Here we show that a direct molecular interaction between ICln and the integrin α-chain is not restricted to platelets and involves highly conserved amino acid motifs. Integrin α recruits ICln to the plasma membrane, thereby facilitating the activation of IClswell during hypotonicity. Perturbation of the ICln/integrin interaction prevents the transposition of ICln towards the cell surface and, in parallel, impedes the activation of IClswell. We suggest that the ICln/integrin interaction interface may represent a new molecular target enabling specific IClswell suppression in pathological conditions when this current is deregulated or plays a detrimental role.
Collapse
|
8
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
10
|
Xiao GS, Zhang YH, Wang Y, Sun HY, Baumgarten CM, Li GR. Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes. Br J Pharmacol 2018; 175:3422-3432. [PMID: 29900525 DOI: 10.1111/bph.14392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Adrenergic regulation of cell volume-regulated chloride current (ICl.vol ) is species-dependent. The present study investigates the mechanism underlying adrenergic regulation of ICl.vol in human atrial myocytes. EXPERIMENTAL APPROACH Conventional whole-cell patch voltage-clamp techniques were used to record membrane current in human atrial myocytes. ICl.vol was evoked by hyposmotic bath solution (0.6 times isosmotic, 0.6 T). KEY RESULTS ICl.vol was augmented by noradrenaline (1 μM) during cell swelling in 0.6 T but not under isosmotic (1 T) conditions. Up-regulation of ICl.vol in 0.6 T was blocked by the β-adrenoceptor antagonist propranolol (2 μM), but not by the α1 -adrenoceptor antagonist prazosin (2 μM). This β-adrenergic response involved cAMP but was independent of PKA; the protein kinase inhibitor H-89 (2 μM) or PKI (10 μM in pipette solution) failed to prevent ICl.vol up-regulation by noradrenaline. Moreover, the PI3K/PKB inhibitor LY294002 (50 μM) and the PKG inhibitor KT5823 (10 μM) did not affect noradrenaline-induced increases in ICl.vol . Interestingly, the exchange protein directly activated by cAMP (Epac) agonist 8-pCPT-2'-O-Me-cAMP (50 μM) also up-regulated ICl.vol , and the noradrenaline-induced increase of ICl.vol in 0.6 T was reversed or prevented by the Epac inhibitor ESI-09 (10 μM). CONCLUSION AND IMPLICATIONS These data show that ICl.vol evoked by cell swelling of human atrial myocytes is up-regulated by noradrenaline via a PKA-independent cAMP/Epac pathway in human atrial myocytes. cAMP/Epac-induced ICl.vol is expected to shorten action potential duration during human atrial myocytes swelling and may be involved in abnormal cardiac electrical activity during cardiac pathologies that evoke β-adrenoceptor signalling.
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Clive M Baumgarten
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
11
|
Liang J, Huang B, Yuan G, Chen Y, Liang F, Zeng H, Zheng S, Cao L, Geng D, Zhou S. Stretch-activated channel Piezo1 is up-regulated in failure heart and cardiomyocyte stimulated by AngII. Am J Transl Res 2017; 9:2945-2955. [PMID: 28670382 PMCID: PMC5489894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Mechanotransduction is the conversion of extracellular mechanical stimuli into intracellular biochemical signals, and plays an important role in heart responses to its own mechanical environment. Piezo1 as a distinct stretch-activated channel (SAC) in mammal involves in not only vascular remodeling during embryonic development but also arterial remodeling upon to hypertension at adult stage. In the present study, the expression of Piezo1 was up-regulated in failure heart induced by myocardial infarction (MI) by real-time PCR, Western blot and immunohistochemistry analysis. Expression of Piezo1 mRNA and protein was enhanced by AngiotensinII (AngII) in neonatal rat ventricular myocytes via AT1 receptor depended methods. Furthermore, the Piezo1 expression was attenuated by Erk1/2 chemical inhibitor (U0126) only, but not by p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). Finally, systolic function improvement followed by chronic treatment with angiotensin receptor blocker (ARB) losartan prevented Piezo1 up-regulation in failure heart in vivo. In conclusion, our studies linked mechanotransduction which involved renin-angiotensin system that mediated up-regulation of Piezo1 to a clinically relevant heart failure.
Collapse
Affiliation(s)
- Jianlin Liang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Shunde Hospital of Southern Medical UniversityFoshan 528300, People’s Republic of China
| | - Boshui Huang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Guiyi Yuan
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Ying Chen
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Fasheng Liang
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Huayuan Zeng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Shaoxin Zheng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicago, United States
| | - Dengfeng Geng
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| | - Shuxian Zhou
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, People’s Republic of China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, People’s Republic of China
| |
Collapse
|
12
|
Wang L, Shen M, Guo X, Wang B, Xia Y, Wang N, Zhang Q, Jia L, Wang X. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation. Sci Rep 2017; 7:44265. [PMID: 28300155 PMCID: PMC5353972 DOI: 10.1038/srep44265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4'-diisothiocya-natostilbene-2,2'- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl- channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl- channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Mingzhi Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya 572031, China
| | - Xiaowang Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yuesheng Xia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ning Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Qian Zhang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
13
|
Wang R, Lu Y, Gunasekar S, Zhang Y, Benson CJ, Chapleau MW, Sah R, Abboud FM. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH. JCI Insight 2017; 2:e90632. [PMID: 28289711 DOI: 10.1172/jci.insight.90632] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo-conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox-mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate-induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.
Collapse
Affiliation(s)
- Runping Wang
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Yongjun Lu
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Susheel Gunasekar
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Yanhui Zhang
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Christopher J Benson
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Mark W Chapleau
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Rajan Sah
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - François M Abboud
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Choi H, Ettinger N, Rohrbough J, Dikalova A, Nguyen HN, Lamb FS. LRRC8A channels support TNFα-induced superoxide production by Nox1 which is required for receptor endocytosis. Free Radic Biol Med 2016; 101:413-423. [PMID: 27838438 PMCID: PMC5206799 DOI: 10.1016/j.freeradbiomed.2016.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
Leucine Rich Repeat Containing 8A (LRRC8A) is a required component of volume-regulated anion channels (VRACs). In vascular smooth muscle cells, tumor necrosis factor-α (TNFα) activates VRAC via type 1 TNFα receptors (TNFR1), and this requires superoxide (O2•-) production by NADPH oxidase 1 (Nox1). VRAC inhibitors suppress the inflammatory response to TNFα by an unknown mechanism. We hypothesized that LRRC8A directly supports Nox1 activity, providing a link between VRAC current and inflammatory signaling. VRAC inhibition by 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) impaired NF-κB activation by TNFα. LRRC8A siRNA reduced the magnitude of VRAC and inhibited TNFα-induced NF-κB activation, iNOS and VCAM expression, and proliferation of VSMCs. Signaling steps disrupted by both siLRRC8A and DCPIB included; extracellular O2•- production by Nox1, c-Jun N-terminal kinase (JNK) phosphorylation and endocytosis of TNFR1. Extracellular superoxide dismutase, but not catalase, selectively inhibited TNFR1 endocytosis and JNK phosphorylation. Thus, O2•- is the critical extracellular oxidant for TNFR signal transduction. Reducing JNK expression (siJNK) increased extracellular O2•- suggesting that JNK provides important negative feedback regulation to Nox1 at the plasma membrane. LRRC8A co-localized by immunostaining, and co-immunoprecipitated with, both Nox1 and its p22phox subunit. LRRC8A is a component of the Nox1 signaling complex. It is required for extracellular O2•- production, which is in turn essential for TNFR1 endocytosis. These data are the first to provide a molecular mechanism for the potent anti-proliferative and anti-inflammatory effects of VRAC inhibition.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Nicholas Ettinger
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jeffrey Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Anna Dikalova
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
15
|
Fu ZJ, Zhong XZ, Ma WH, Zhang WD, Shi CY. Lipophilic but not hydrophilic statin functionally inhibit volume-activated chloride channels by inhibiting NADPH oxidase in monocytes. Biochem Biophys Res Commun 2016; 481:117-124. [PMID: 27818195 DOI: 10.1016/j.bbrc.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 11/27/2022]
Abstract
Volume-activated Cl- channels (VACCs) can be activated by hypotonic solutions and have been identified in many cell types. Here, we investigated the effects of different statins on VACCs in monocytes. Whole-cell patch clamp recordings demonstrated that a hypotonic solution induced 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB)- and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS)-sensitive VACC currents in human peripheral monocytes and RAW 264.7 cells. The VACC currents were inhibited by the lipophilic statin (simvastatin) but not by the hydrophilic simvastatin acid and pravastatin. A low-molecular-weight superoxide anion scavenger (tiron, 1 mM) and inhibitor of NADPH oxidase (DPI 10 μM) was able to abolish the VACC currents. A hypotonic solution increased the reactive oxygen species (ROS) detected by the fluorescence of dichlorodihydrofluorescein (DCF), which was abolished by tiron and DPI. NPPB, DIDS, and simvastatin but not pravastatin decreased the fluorescence of DCF. Simvastatin could not further decrease VACC currents when pretreated with tiron or DPI, whereas exogenous H2O2 (100 μM), increased the VACC currents and overcame the blockade of VACC currents by simvastatin. Functionally, hypotonic solution increased the TNF-α mRNA expression, which could be decreased by tiron, DPI, NPPB, DIDS and simvastatin but not pravastatin. However, simvastatin could not decrease the TNF-α expression further when pretreatment with tiron, DPI, NPPB or DIDS. We conclude that lipophilic (simvastatin) rather than hydrophilic statin inhibit VACCs and decrease hyposmolality induced inflammation in monocytes by inhibiting NADPH oxidase.
Collapse
Affiliation(s)
- Zhi-Jie Fu
- Department of Otorhinolaryngology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Xue-Zhen Zhong
- Department of Cardiovascular Disease, Jinan Central Hospital Affiliated to Shandong University, Shandong, Jinan 250013, China
| | - Wei-Hong Ma
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wen-Dong Zhang
- Department of Pharmacy, QiLu Hospital, Shandong University, Jinan 250012, China.
| | - Cheng-Yao Shi
- Department of Pharmacy, QiLu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
Zhang J, Jiang H, Xie L, Hu J, Li L, Yang M, Cheng L, Liu B, Qian X. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway. Onco Targets Ther 2016; 9:2885-95. [PMID: 27307747 PMCID: PMC4888730 DOI: 10.2147/ott.s102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Jiang
- Department of Oncology, Affiliated Changzhou No 2 People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Xie
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Hu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Li
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mi Yang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Cheng
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baorui Liu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Greene AS, Hajduk SL. Trypanosome Lytic Factor-1 Initiates Oxidation-stimulated Osmotic Lysis of Trypanosoma brucei brucei. J Biol Chem 2016; 291:3063-75. [PMID: 26645690 PMCID: PMC4742767 DOI: 10.1074/jbc.m115.680371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/12/2015] [Indexed: 01/18/2023] Open
Abstract
Human innate immunity against the veterinary pathogen Trypanosoma brucei brucei is conferred by trypanosome lytic factors (TLFs), against which human-infective T. brucei gambiense and T. brucei rhodesiense have evolved resistance. TLF-1 is a subclass of high density lipoprotein particles defined by two primate-specific apolipoproteins: the ion channel-forming toxin ApoL1 (apolipoprotein L1) and the hemoglobin (Hb) scavenger Hpr (haptoglobin-related protein). The role of oxidative stress in the TLF-1 lytic mechanism has been controversial. Here we show that oxidative processes are involved in TLF-1 killing of T. brucei brucei. The lipophilic antioxidant N,N'-diphenyl-p-phenylenediamine protected TLF-1-treated T. brucei brucei from lysis. Conversely, lysis of TLF-1-treated T. brucei brucei was increased by the addition of peroxides or thiol-conjugating agents. Previously, the Hpr-Hb complex was postulated to be a source of free radicals during TLF-1 lysis. However, we found that the iron-containing heme of the Hpr-Hb complex was not involved in TLF-1 lysis. Furthermore, neither high concentrations of transferrin nor knock-out of cytosolic lipid peroxidases prevented TLF-1 lysis. Instead, purified ApoL1 was sufficient to induce lysis, and ApoL1 lysis was inhibited by the antioxidant DPPD. Swelling of TLF-1-treated T. brucei brucei was reminiscent of swelling under hypotonic stress. Moreover, TLF-1-treated T. brucei brucei became rapidly susceptible to hypotonic lysis. T. brucei brucei cells exposed to peroxides or thiol-binding agents were also sensitized to hypotonic lysis in the absence of TLF-1. We postulate that ApoL1 initiates osmotic stress at the plasma membrane, which sensitizes T. brucei brucei to oxidation-stimulated osmotic lysis.
Collapse
Affiliation(s)
- Amy Styer Greene
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Stephen L Hajduk
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
18
|
Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, Zhou JG, Wang GL, Guan YY. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol 2016; 173:529-44. [PMID: 26562480 DOI: 10.1111/bph.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) induces migration and growth of vascular smooth muscle cell (VSMC), which is responsible for vascular remodelling in some cardiovascular diseases. Ang II also activates a Cl(-) current, but the underlying mechanism is not clear. EXPERIMENTAL APPROACH The A10 cell line and primary cultures of VSMC from control, ClC-3 channel null mice and WT mice made hypertensive with AngII infusions were used. Techniques employed included whole-cell patch clamp, co-immunoprecipitation, site-specific mutagenesis and Western blotting, KEY RESULTS In VSMC, AngII induced Cl(-) currents was carried by the chloride ion channel ClC-3. This current was absent in VSMC from ClC-3 channel null mice. The AngII-induced Cl(-) current involved interactions between ClC-3 channels and Rho-kinase 2 (ROCK2), shown by N- or C-terminal truncation of ClC-3 protein, ROCK2 siRNA and co-immunoprecipitation assays. Phosphorylation of ClC-3 channels at Thr(532) by ROCK2 was critical for AngII-induced Cl(-) current and VSMC migration. The ClC-3 T532D mutant (mutation of Thr(532) to aspartate), mimicking phosphorylated ClC-3 protein, significantly potentiated AngII-induced Cl(-) current and VSMC migration, while ClC-3 T532A (mutation of Thr(532) to alanine) had the opposite effects. AngII-induced cell migration was markedly decreased in VSMC from ClC-3 channel null mice that was insensitive to Y27632, an inhibitor of ROCK2. In addition, AngII-induced cerebrovascular remodelling was decreased in ClC-3 null mice, possibly by the ROCK2 pathway. CONCLUSIONS AND IMPLICATIONS ClC-3 protein phosphorylation at Thr(532) by ROCK2 is required for AngII-induced Cl(-) current and VSMC migration that are involved in AngII-induced vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Xia Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Can-Zhao Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Bo Tang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Pernomian L, Pernomian L, Gomes MS, da Silva CH. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists. Eur J Pharmacol 2015; 769:143-6. [DOI: 10.1016/j.ejphar.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
|
20
|
Pernomian L, do Prado AF, Gomes MS, Pernomian L, da Silva CH, Gerlach RF, de Oliveira AM. MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2–angiotensin-(1-7)–MAS axis functionality. Eur J Pharmacol 2015; 764:173-188. [DOI: 10.1016/j.ejphar.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/15/2022]
|
21
|
Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine. PLoS One 2015; 10:e0127936. [PMID: 26039516 PMCID: PMC4454666 DOI: 10.1371/journal.pone.0127936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022] Open
Abstract
Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.
Collapse
|
22
|
Zeng JW, Wang XG, Ma MM, Lv XF, Liu J, Zhou JG, Guan YY. Integrin β3 mediates cerebrovascular remodelling through Src/ClC-3 volume-regulated Cl(-) channel signalling pathway. Br J Pharmacol 2015; 171:3158-70. [PMID: 24611720 DOI: 10.1111/bph.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/24/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular remodelling is one of the important risk factors of stroke. The underlying mechanisms are unclear. Integrin β3 and volume-regulated ClC-3 Cl(-) channels have recently been implicated as important contributors to vascular cell proliferation. Therefore, we investigated the role of integrin β3 in cerebrovascular remodelling and related Cl(-) signalling pathway. EXPERIMENTAL APPROACH Cl(-) currents were recorded using a patch clamp technique. The expression of integrin β3 in hypertensive animals was examined by Western blot and immunohistochemisty. Immunoprecipitation, cDNA and siRNA transfection were employed to investigate the integrin β3/Src/ClC-3 signalling. KEY RESULTS Integrin β3 expression was up-regulated in stroke-prone spontaneously hypertensive rats, 2-kidney 2-clip hypertensive rats and angiotensin II-infused hypertensive mice. Integrin β3 expression was positively correlated with medial cross-sectional area and ClC-3 expression in the basilar artery of 2-kidney 2-clip hypertensive rats. Knockdown of integrin β3 inhibited the proliferation of rat basilar vascular smooth muscle cells induced by angiotensin II. Co-immunoprecipitation and immunofluorescence experiments revealed a physical interaction between integrin β3, Src and ClC-3 protein. The integrin β3/Src/ClC-3 signalling pathway was shown to be involved in the activation of volume-regulated chloride channels induced by both hypo-osmotic stress and angiotensin II. Tyrosine 284 within a concensus Src phosphorylation site was the key point for ClC-3 channel activation. ClC-3 knockout significantly attenuated angiotensin II-induced cerebrovascular remodelling. CONCLUSIONS AND IMPLICATIONS Integrin β3 mediates cerebrovascular remodelling during hypertension via Src/ClC-3 signalling pathway.
Collapse
Affiliation(s)
- Jia-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, China; Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Shen M, Wang L, Wang B, Wang T, Yang G, Shen L, Wang T, Guo X, Liu Y, Xia Y, Jia L, Wang X. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt. Cell Death Dis 2014; 5:e1528. [PMID: 25412307 PMCID: PMC4260737 DOI: 10.1038/cddis.2014.479] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl(-) currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl(-) channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl(-) channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl(-) channel blockers against ER stress-associated cardiac anomalies.
Collapse
Affiliation(s)
- M Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, China
| | - L Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - B Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - T Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - G Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - L Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - T Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - X Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Y Liu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Y Xia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - L Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - X Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Rasmussen LJH, Müller HSH, Jørgensen B, Pedersen SF, Hoffmann EK. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells. Am J Physiol Cell Physiol 2014; 308:C101-10. [PMID: 25377086 DOI: 10.1152/ajpcell.00070.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process.
Collapse
Affiliation(s)
| | | | - Bente Jørgensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Else Kay Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
ROS and RNS signaling in skeletal muscle: critical signals and therapeutic targets. ANNUAL REVIEW OF NURSING RESEARCH 2014; 31:367-87. [PMID: 24894146 DOI: 10.1891/0739-6686.31.367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The health of skeletal muscle is promoted by optimal nutrition and activity/exercise through the activation of molecular signaling pathways. Reactive oxygen species (ROS) or reactive nitrogen species (RNS) have been shown to modulate numerous biochemical processes including glucose uptake, gene expression, calcium signaling, and contractility. In pathological conditions, ROS/RNS signaling excess or dysfunction contributes to contractile dysfunction and myopathy in skeletal muscle. Here we provide a brief review of ROS/RNS chemistry and discuss concepts of ROS/RNS signaling and its role in physiological and pathophysiological processes within striated muscle.
Collapse
|
26
|
Lambert IH, Jensen JV, Pedersen PA. mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts. Am J Physiol Cell Physiol 2014; 306:C1028-40. [DOI: 10.1152/ajpcell.00005.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Jane Vendelbo Jensen
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Per Amstrup Pedersen
- Department of Biology, Section for Molecular Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Nakanishi A, Wada Y, Kitagishi Y, Matsuda S. Link between PI3K/AKT/PTEN Pathway and NOX Proteinin Diseases. Aging Dis 2014; 5:203-11. [PMID: 24900943 DOI: 10.14336/ad.2014.0500203] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed that thePI3K/AKT/PTENpathway acts as a pivotal determinant of cell fate regarding senescence and apoptosis, which is mediated by intracellular reactive oxygen species (ROS) generation. NADPH oxidase (NOX) family of enzymes generates the ROS. The regulation of NOX enzymes is complex, with many members of this family exhibiting complexity in terms of subunit composition, cellular location, and tissue-specific expression. Cells are continuously exposed to the ROS, which represent mutagens and are thought to be a major contributor to several diseases including cancer and aging process. Therefore, cellular ROS sensing and metabolism are firmly regulated by a variety of proteins involved in the redox mechanism. In this review, the roles of oxidative stress in PI3K/AKT/PTEN signaling are summarized with a focus on the links between the pathways and NOX protein in several diseases including cancer and aging.
Collapse
Affiliation(s)
| | - Yoko Wada
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
28
|
Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience 2014; 273:39-51. [PMID: 24814023 DOI: 10.1016/j.neuroscience.2014.04.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/14/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production.
Collapse
Affiliation(s)
- J Zheng
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - G Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - S Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Bihl
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Buck
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - Y Zhu
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - H Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - E Lazartigues
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Y Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| | - J E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
29
|
MAS-mediated antioxidant effects restore the functionality of angiotensin converting enzyme 2-angiotensin-(1-7)-MAS axis in diabetic rat carotid. BIOMED RESEARCH INTERNATIONAL 2014; 2014:640329. [PMID: 24877125 PMCID: PMC4022170 DOI: 10.1155/2014/640329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 12/29/2022]
Abstract
We hypothesized that endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species during type I-diabetes impairs carotid ACE2-angiotensin-(1–7)-Mas axis functionality, which accounts for the impaired carotid flow in diabetic rats. We also hypothesized that angiotensin-(1–7) chronic treatment of diabetic rats restores carotid ACE2-angiotensin-(1–7)-Mas axis functionality and carotid flow. Relaxant curves for angiotensin II or angiotensin-(1–7) were obtained in carotid from streptozotocin-induced diabetic rats. Superoxide or hydrogen peroxide levels were measured by flow cytometry in carotid endothelial cells. Carotid flow was also determined. We found that endothelial AT1-activated NAD(P)H oxidase-driven generation of superoxide and hydrogen peroxide in diabetic rat carotid impairs ACE2-angiotensin-(1–7)-Mas axis functionality, which reduces carotid flow. In this mechanism, hydrogen peroxide derived from superoxide dismutation inhibits ACE2 activity in generating angiotensin-(1–7) seemingly by activating ICl,SWELL, while superoxide inhibits the nitrergic Mas-mediated vasorelaxation evoked by angiotensin-(1–7). Angiotensin-(1–7) treatment of diabetic rats restored carotid ACE2-angiotensin-(1–7)-Mas axis functionality by triggering a positive feedback played by endothelial Mas receptors, that blunts endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species. Mas-mediated antioxidant effects also restored diabetic rat carotid flow, pointing to the contribution of ACE2-angiotensin-(1–7)-Mas axis in maintaining carotid flow.
Collapse
|
30
|
Abstract
Forward genetic studies have identified several chloride (Cl-) channel genes, including CFTR, ClC-2, ClC-3, CLCA, Bestrophin, and Ano1, in the heart. Recent reverse genetic studies using gene targeting and transgenic techniques to delineate the functional role of cardiac Cl- channels have shown that Cl- channels may contribute to cardiac arrhythmogenesis, myocardial hypertrophy and heart failure, and cardioprotection against ischemia reperfusion. The study of physiological or pathophysiological phenotypes of cardiac Cl- channels, however, is complicated by the compensatory changes in the animals in response to the targeted genetic manipulation. Alternatively, tissue-specific conditional or inducible knockout or knockin animal models may be more valuable in the phenotypic studies of specific Cl- channels by limiting the effect of compensation on the phenotype. The integrated function of Cl- channels may involve multiprotein complexes of the Cl- channel subproteome. Similar phenotypes can be attained from alternative protein pathways within cellular networks, which are influenced by genetic and environmental factors. The phenomics approach, which characterizes phenotypes as a whole phenome and systematically studies the molecular changes that give rise to particular phenotypes achieved by modifying the genotype under the scope of genome/proteome/phenome, may provide more complete understanding of the integrated function of each cardiac Cl- channel in the context of health and disease.
Collapse
Affiliation(s)
- Dayue Darrel Duan
- The Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada, School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
31
|
Catacuzzeno L, Michelucci A, Sforna L, Aiello F, Sciaccaluga M, Fioretti B, Castigli E, Franciolini F. Identification of key signaling molecules involved in the activation of the swelling-activated chloride current in human glioblastoma cells. J Membr Biol 2013; 247:45-55. [PMID: 24240542 DOI: 10.1007/s00232-013-9609-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
The swelling-activated chloride current (I Cl,Vol) is abundantly expressed in glioblastoma (GBM) cells, where it controls cell volume and invasive migration. The transduction pathway mediating I Cl,Vol activation in GBM cells is, however, poorly understood. By means of pharmacological and electrophysiological approaches, on GL-15 human GBM cells we found that I Cl,Vol activation by hypotonic swelling required the activity of a U73122-sensitive phospholipase C (PLC). I Cl,Vol activation could also be induced by the membrane-permeable diacylglycerol (DAG) analog OAG. In contrast, neither calcium (Ca(2+)) chelation by BAPTA-AM nor changes in PKC activity were able to affect I Cl,Vol activation by hypotonic swelling. We further found that R59022, an inhibitor of diacylglycerol kinase (DGK), reverted I Cl,Vol activation, suggesting the involvement of phosphatidic acid. In addition, I Cl,Vol activation required the activity of a EHT1864-sensitive Rac1 small GTPase and the resulting actin polymerization, as I Cl,Vol activation was prevented by cytochalasin B. We finally show that I Cl,Vol can be activated by the promigratory fetal calf serum in a PLC- and DGK-dependent manner. This observation is potentially relevant because blood serum can likely come in contact with glioblastoma cells in vivo as a result of the tumor-related partial breakdown of the blood-brain barrier. Given the relevance of I Cl,Vol in GBM cell volume regulation and invasiveness, the several key signaling molecules found in this study to be involved in the activation of the I Cl,Vol may represent potential therapeutic targets against this lethal cancer.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Dipartimento di Biologia Cellulare e Ambientale, Universita' di Perugia, Via Pascoli 1, 06123, Perugia, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mitsuyama H, Yokoshiki H, Irie Y, Watanabe M, Mizukami K, Tsutsui H. Involvement of the phosphatidylinositol kinase pathway in augmentation of ATP-sensitive K+ channel currents by hypo-osmotic stress in rat ventricular myocytes. Can J Physiol Pharmacol 2013; 91:686-92. [DOI: 10.1139/cjpp-2012-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the mechanisms of increase in the efficacy of ATP-sensitive K+ channel (KATP) openings by hypo-osmotic stress. The whole-cell KATP currents (IK,ATP) stimulated by 100 μmol/L pinacidil, a K+ channel opening drug, were significantly augmented during hypo-osmotic stress (189 mOsmol/L) compared with normal conditions (303 mOsmol/L). The EC50 and Emax value for pinacidil-activated IK,ATP (measured at 0 mV) was 154 μmol/L and 844 pA, respectively, in normal solution and 16.6 μmol/L and 1266 pA, respectively, in hypo-osmotic solution. Augmentation of IK,ATP during hypo-osmotic stress was attenuated by wortmannin (50 μmol/L), an inhibitor of phosphatidylinositol 3- and 4-kinases, but not by (i) phalloidin (30 μmol/L), an actin filament stabilizer, (ii) the absence of Ca2+ from the internal and external solutions, and (iii) the presence of creatine phosphate (3 mmol/L), which affects creatine kinase regulation of the KATP channels. In the single-channel recordings, an inside-out patch was made after approximately 5 min exposure of the myocyte to hypo-osmotic solution. However, the IC50 value for ATP under such conditions was not different from that obtained in normal osmotic solution. In conclusion, hypo-osmotic stress could augment cardiac IK,ATP through intracellular mechanisms involving the phosphatidylinositol kinase pathway.
Collapse
Affiliation(s)
- Hirofumi Mitsuyama
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Yuki Irie
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kazuya Mizukami
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
33
|
Ma Z, Qi J, Fu Z, Ling M, Li L, Zhang Y. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats. PLoS One 2013; 8:e61018. [PMID: 23580361 PMCID: PMC3620281 DOI: 10.1371/journal.pone.0061018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
Severe acidic pH-activated chloride channel (ICl,acid) has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and 4,4′-diisothiocyanatostilbene-2, 2′-disulfonic acid (DIDS) inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4) was lower for SHRs than Wistar rats (all <1). However, with nifedipine, the R4.4/5.4 was higher for SHRs than Wistar rats (both >1). Furthermore, patch clamp recordings of ICl,acid and intracellular Ca2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.
Collapse
Affiliation(s)
- Zhiyong Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Jia Qi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhijie Fu
- Department of Otorhinolaryngology, Shandong Provincial Qianfoshan Hospital, Clinical Medical College of Shandong University, Jinan, China
| | - Mingying Ling
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
34
|
Wang XG, Tao J, Ma MM, Tang YB, Zhou JG, Guan YY. Tyrosine 284 phosphorylation is required for ClC-3 chloride channel activation in vascular smooth muscle cells. Cardiovasc Res 2013; 98:469-78. [DOI: 10.1093/cvr/cvt063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca²⁺]i. J Mol Cell Cardiol 2012; 58:172-81. [PMID: 23220288 DOI: 10.1016/j.yjmcc.2012.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/23/2012] [Accepted: 11/22/2012] [Indexed: 02/02/2023]
Abstract
X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Department of Physiology, Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
36
|
Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J Hypertens 2012; 2:34-44. [PMID: 24587981 PMCID: PMC3936474 DOI: 10.5494/wjh.v2.i4.34] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II), an endogenous peptide hormone, plays critical roles in the pathophysiological modulation of cardiovascular functions. Ang II is the principle effector of the renin-angiotensin system for maintaining homeostasis in the cardiovascular system, as well as a potent stimulator of NAD(P)H oxidase, which is the major source and primary trigger for reactive oxygen species (ROS) generation in various tissues. Recent accumulating evidence has demonstrated the importance of oxidative stress in Ang II-induced heart diseases. Here, we review the recent progress in the study on oxidative stress-mediated effects of Ang II in the cardiovascular system. In particular, the involvement of Ang II-induced ROS generation in arrhythmias, cell death/heart failure, ischemia/reperfusion injury, cardiac hypertrophy and hypertension are discussed. Ca2+/calmodulin-dependent protein kinase II is an important molecule linking Ang II, ROS and cardiovascular pathological conditions.
Collapse
|
37
|
Tamma G, Dossena S, Nofziger C, Valenti G, Svelto M, Paulmichl M. EGF stimulates IClswell by a redistribution of proteins involved in cell volume regulation. Cell Physiol Biochem 2011; 28:1191-202. [PMID: 22179007 DOI: 10.1159/000335851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND ICln is a multifunctional protein involved in the generation of chloride currents activated during regulatory volume decrease (RVD) after cell swelling (ICl(swell)). Growth factor receptors play a key role in different cellular processes and epidermal growth factor (EGF) regulates swelling-activated chloride permeability. AIM We set out to investigate if the EGF-induced upregulation of ICl(swell) could be explained by a rearrangement of ICln subcellular distribution and interaction with its molecular partners. METHODS NIH-3T3 fibroblasts were serum-deprived for 24 hours and stimulated with EGF (40 ng/ml) for 30 minutes. ICl(swell) activation, ICln distribution and interaction with its molecular partner HSPC038 were assessed by whole cell patch clamp and fluorescence resonance energy transfer (FRET). RESULTS EGF treatment significantly enhanced the direct molecular interaction between ICln and HSPC038 and also resulted in an increase of ICln and HSPC038 association with the plasma membrane. Importantly, these events are associated with a significant increase of ICl(swell). CONCLUSIONS The present data indicate that EGF might exert its role in the modulation of volume-sensitive chloride currents in part through activation and translocation of ICln and HSPC038 to the plasma membrane.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Bari
| | | | | | | | | | | |
Collapse
|
38
|
Akita T, Okada Y. Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes. J Physiol 2011; 589:3909-27. [PMID: 21690189 DOI: 10.1113/jphysiol.2011.208173] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Volume-sensitive outwardly rectifying (VSOR) anion channels play a key role in a variety of essential cell functions including cell volume regulation, cell death induction and intercellular communications. We previously demonstrated that, in cultured mouse cortical astrocytes, VSOR channels are activated in response to an inflammatory mediator, bradykinin, even without an increase in cell volume. Here we report that this VSOR channel activation must be mediated firstly by 'nanodomains' of high [Ca2+]i generated at the sites of both Ca2+ release from intracellular Ca2+ stores and Ca2+ entry at the plasma membrane. Bradykinin elicited a [Ca2+]i rise, initially caused by Ca2+ release and then by Ca2+ entry. Suppression of the [Ca2+]i rise by removal of extracellular Ca2+ and by depletion of Ca2+ stores suppressed the VSOR channel activation in a graded manner. Quantitative RT-PCR and suppression of gene expression with small interfering RNAs indicated that Orai1, TRPC1 and TRPC3 channels are involved in the Ca2+ entry and especially the entry through TRPC1 channels is strongly involved in the bradykinin-induced activation of VSOR channels. Moreover, Ca2+-dependent protein kinases Cα and β were found to mediate the activation after the [Ca2+]i rise through inducing generation of reactive oxygen species. Intracellular application of a slow Ca2+ chelator, EGTA, at 10 mM or a fast chelator, BAPTA, at 1 mM, however, had little effect on the VSOR channel activation. Application of BAPTA at 10 mM suppressed significantly the activation to one-third. These suggest that the VSOR channel activation induced by bradykinin is regulated by Ca2+ in the vicinity of individual Ca2+ release and entry channels, providing a basis for local control of cell volume regulation and intercellular communications.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
39
|
Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv XF, Zhou JG, Guan YY. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis 2011; 216:59-66. [DOI: 10.1016/j.atherosclerosis.2011.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/28/2010] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
|
40
|
Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50:777-93. [PMID: 21236334 PMCID: PMC3049876 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.
Collapse
Key Words
- aif, apoptosis-inducing factor
- arc, apoptosis repressor with caspase recruitment domain
- camkii, calmodulin kinase ii
- ctgf, connective tissue growth factor
- eb, embryoid body
- ecc, excitation–contraction coupling
- er, endoplasmic reticulum
- es, embryonic stem
- etc, electron transport chain
- g6pdh, glucose-6-phosphate dehydrogenase
- gpcr, g-protein-coupled receptor
- hdac, histone deacetylase
- hif, hypoxia-inducible factor
- mao-a, monoamine oxidase-a
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mptp, mitochondrial permeability transition pore
- mtdna, mitochondrial dna
- ncx, na/ca exchanger
- nos, nitric oxide synthase
- phd, prolyl hydroxylase dioxygenase
- pka, protein kinase a
- pkc, protein kinase c
- pkg, protein kinase g
- ros, reactive oxygen species
- ryr, ryanodine receptor
- serca, sarcoplasmic reticulum calcium atpase
- sr, sarcoplasmic reticulum
- trx1, thioredoxin1
- tnfα, tumor necrosis factor-α
- vegf, vascular endothelial growth factor
- cardiac myocyte
- reactive oxygen species
- redox signaling
- hypertrophy
- heart failure
- nadph oxidase
- mitochondria
- free radicals
Collapse
|
41
|
Ichishima K, Yamamoto S, Iwamoto T, Ehara T. alpha-Adrenoceptor-mediated depletion of phosphatidylinositol 4, 5-bisphosphate inhibits activation of volume-regulated anion channels in mouse ventricular myocytes. Br J Pharmacol 2010; 161:193-206. [PMID: 20718750 DOI: 10.1111/j.1476-5381.2010.00896.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Volume-regulated anion channels (VRACs) play an important role in cell-volume regulation. alpha(1)-Adrenoceptor stimulation by phenylephrine (PE) suppressed the hypotonic activation of VRAC current in mouse ventricular cells and regulatory volume decrease (RVD) was also absent in PE-treated cells. We examined whether the effects of alpha(1)-adrenoceptor stimuli on VRAC current were modulated by phosphatidylinositol signalling. EXPERIMENTAL APPROACH Whole-cell patch-clamp method was used to record the hypotonicity-induced VRAC current in mouse ventricular cells. RVD was analyzed by videomicroscopic measurement of cell images. KEY RESULTS The attenuation of VRAC current by PE was suppressed by alpha(1A)-adrenoceptor antagonists (prazosin and WB-4101), anti-G(q) protein antibody and a specific phosphoinositide-specific phospholipase C (PLC) inhibitor (U-73122), but not by antagonists for alpha(1B)-, alpha(1D)- or beta-adrenoceptor, or protein kinase C inhibitors. The inhibition of VRAC by PE was antagonized by intracellular excess phosphatidylinositol 4,5-bisphosphate (PIP(2)), while intracellular anti-PIP(2) antibody (PIP(2) Ab) inhibited the activation of VRAC currents. When cells were loaded with phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) with or without PIP(2) Ab, PE little affected the VRAC current. Extracellular m-3M3FBS (an activator of PLC) suppressed VRAC in the absence of PE, and this effect was reversed by intracellular excess PIP(2). CONCLUSIONS AND IMPLICATIONS Our results indicate that the stimulation of alpha(1A)-adrenoceptors by PE inhibited the activation of cardiac VRAC current via PIP(3) depletion brought about by PLC-dependent reduction of membrane PIP(2) level.
Collapse
Affiliation(s)
- K Ichishima
- Department of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | |
Collapse
|
42
|
De Mello WC. Angiotensin (1-7) reduces the cell volume of swollen cardiac cells and decreases the swelling-dependent chloride current. Implications for cardiac arrhythmias and myocardial ischemia. Peptides 2010; 31:2322-4. [PMID: 20816713 DOI: 10.1016/j.peptides.2010.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/29/2022]
Abstract
The influence of angiotensin II and angiotensin (1-17) on cell volume and on the activation of ionic channels including the swelling-dependent chloride channel was reviewed. Particular emphasis was given to the influence of the balance between the ACE-angiotensin II and of the ACE2-angiotensin (1-7)-Mas receptor axis on heart cell volume regulation and on the swelling-dependent chloride current. The implications for myocardial ischemia and cardiac arrhythmias are discussed.
Collapse
Affiliation(s)
- Walmor C De Mello
- Medical Sciences Campus, UPR, School of Medicine, PO BOX 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
43
|
HIV protease inhibitors elicit volume-sensitive Cl- current in cardiac myocytes via mitochondrial ROS. J Mol Cell Cardiol 2010; 49:746-52. [PMID: 20736017 DOI: 10.1016/j.yjmcc.2010.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 07/26/2010] [Accepted: 08/13/2010] [Indexed: 12/19/2022]
Abstract
HIV protease inhibitors (HIV PI) reduce morbidity and mortality of HIV infection but cause multiple untoward effects. Because certain HIV PI evoke production of reactive oxygen species (ROS) and volume-sensitive Cl(-) current (I(Cl,swell)) is activated by ROS, we tested whether HIV PI stimulate I(Cl,swell) in ventricular myocytes. Ritonavir and lopinavir elicited outwardly rectifying Cl(-) currents under isosmotic conditions that were abolished by the selective I(Cl,swell)-blocker DCPIB. In contrast, amprenavir, nelfinavir, and raltegravir, an integrase inhibitor, did not modulate I(Cl,swell) acutely. Ritonavir also reduced action potential duration, but amprenavir did not. I(Cl,swell) activation was attributed to ROS because ebselen, an H(2)O(2) scavenger, suppressed ritonavir- and lopinavir-induced I(Cl,swell). Major ROS sources in cardiomyocytes are sarcolemmal NADPH oxidase and mitochondria. The specific NADPH oxidase inhibitor apocynin failed to block ritonavir- or lopinavir-induced currents, although it blocks I(Cl,swell) elicited by osmotic swelling or stretch. In contrast, rotenone, a mitochondrial e(-) transport inhibitor, suppressed both ritonavir- and lopinavir-induced I(Cl,swell). ROS production was measured in HL-1 cardiomyocytes with C-H(2)DCFDA-AM and mitochondrial membrane potential (ΔΨ(m)) with JC-1. Flow cytometry confirmed that ritonavir and lopinavir but not amprenavir, nelfinavir, or raltegravir augmented ROS production, and HIV PI-induced ROS production was suppressed by rotenone but not NADPH oxidase blockade. Moreover, ritonavir, but not amprenavir, depolarized ΔΨ(m). These data suggest ritonavir and lopinavir activated I(Cl,swell) via mitochondrial ROS production that was independent of NADPH oxidase. ROS-dependent modulation of I(Cl,swell) and other ion channels by HIV PI may contribute to some of their actions in heart and perhaps other tissues.
Collapse
|
44
|
De Mello WC, Gerena Y. Further studies on the effects of intracrine and extracellular angiotensin II on the regulation of heart cell volume. On the influence of aldosterone and spironolactone. ACTA ACUST UNITED AC 2010; 165:200-5. [PMID: 20692299 DOI: 10.1016/j.regpep.2010.07.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/01/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
The influence of extracellular and intracellular angiotensin II (Ang II) on the cell volume in the failing heart of cardiomyopathic hamsters (TO2) was further investigated as well as the influence of aldosterone and spironolactone on the Ang II action on cell volume. Measurements of cell width and area of quiescent ventricular cardiomyocytes were performed using a video camera and computer analysis and the relative cell volume was calculated. All measurements of cell volume were performed in the same cell before and after the administration of Ang II (10⁻⁸M). The results indicated that: a) the increase in cell volume caused by extracellular Ang II(10⁻⁸ M) was enhanced in cells incubated with aldosterone (100 nM) for 48 h; b) the effect of aldosterone was abolished by spironolactone (10⁻⁸ M); c) the decline in cell volume elicited by intracellular administration of Ang II (10⁻⁸ M) was increased by aldosterone and inhibited by spironolactone; d) the effects of aldosterone and spironolactone were related, in part, to a change in expression of AT1 receptors; and e) the intracellular administration of Ang II reduced the swelling-dependent chloride current (I(Clswell)). The implications of these findings to the failing heart and myocardial ischemia are discussed.
Collapse
Affiliation(s)
- W C De Mello
- Medical Sciences Campus, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA.
| | | |
Collapse
|
45
|
Matsuda JJ, Filali MS, Moreland JG, Miller FJ, Lamb FS. Activation of swelling-activated chloride current by tumor necrosis factor-alpha requires ClC-3-dependent endosomal reactive oxygen production. J Biol Chem 2010; 285:22864-73. [PMID: 20479003 DOI: 10.1074/jbc.m109.099838] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ClC-3 is a Cl(-)/H(+) antiporter required for cytokine-induced intraendosomal reactive oxygen species (ROS) generation by Nox1. ClC-3 current is distinct from the swelling-activated chloride current (ICl(swell)), but overexpression of ClC-3 can activate currents that resemble ICl(swell). Because H(2)O(2) activates ICl(swell) directly, we hypothesized that ClC-3-dependent, endosomal ROS production activates ICl(swell). Whole-cell perforated patch clamp methods were used to record Cl(-) currents in cultured aortic vascular smooth muscle cells from wild type (WT) and ClC-3 null mice. Under isotonic conditions, tumor necrosis factor-alpha (TNF-alpha) (10 ng/ml) activated outwardly rectifying Cl(-) currents with time-dependent inactivation in WT but not ClC-3 null cells. Inhibition by tamoxifen (10 microm) and by hypertonicity (340 mosm) identified them as ICl(swell). ICl(swell) was also activated by H(2)O(2) (500 microm), and the effect of TNF-alpha was completely inhibited by polyethylene glycol-catalase. ClC-3 expression induced ICl(swell) in ClC-3 null cells in the absence of swelling or TNF-alpha, and this effect was also blocked by catalase. ICl(swell) activation by hypotonicity (240 mosm) was only partially inhibited by catalase, and the size of these currents did not differ between WT and ClC-3 null cells. Disruption of endosome trafficking with either mutant Rab5 (S34N) or Rab11 (S25N) inhibited TNF-alpha-mediated activation of ICl(swell). Thrombin also activates ROS production by Nox1 but not in endosomes. Thrombin caused H(2)O(2)-dependent activation of ICl(swell), but this effect was not ClC-3- or Rab5-dependent. Thus, activation of ICl(swell) by TNF-alpha requires ClC-3-dependent endosomal H(2)O(2) production. This demonstrates a functional link between two distinct anion currents, ClC-3 and ICl(swell).
Collapse
Affiliation(s)
- James J Matsuda
- Department of Pediatrics, University of Iowa Children's Hospital and the University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
46
|
Deng W, Baki L, Baumgarten CM. Endothelin signalling regulates volume-sensitive Cl- current via NADPH oxidase and mitochondrial reactive oxygen species. Cardiovasc Res 2010; 88:93-100. [PMID: 20444986 DOI: 10.1093/cvr/cvq125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS We assessed regulation of volume-sensitive Cl(-) current (I(Cl,swell)) by endothelin-1 (ET-1) and characterized the signalling pathway responsible for its activation in rabbit atrial and ventricular myocytes. METHODS AND RESULTS ET-1 elicited I(Cl,swell) under isosmotic conditions. Outwardly rectified Cl(-) current was blocked by the I(Cl,swell)-selective inhibitor DCPIB or osmotic shrinkage and involved ET(A) but not ET(B) receptors. ET-1-induced current was abolished by inhibiting epidermal growth factor receptor (EGFR) kinase or phosphoinositide-3-kinase (PI-3K), indicating that these kinases were downstream. Regarding upstream events, activation of I(Cl,swell) by osmotic swelling or angiotensin II (AngII) was suppressed by ET(A) blockade, whereas AngII AT(1) receptor blockade failed to alter ET-1-induced current. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) stimulate I(Cl,swell). As expected, blockade of NOX suppressed ET-1-induced I(Cl,swell), but blockade of mitochondrial ROS production with rotenone also suppressed I(Cl,swell). I(Cl,swell) was activated by augmenting complex III ROS production with antimycin A or diazoxide; in this case, I(Cl,swell) was insensitive to NOX inhibitors, indicating that mitochondria were downstream from NOX. ROS generation in HL-1 cardiomyocytes measured by flow cytometry confirmed the electrophysiological findings. ET-1-induced ROS production was inhibited by blocking either NOX or mitochondrial complex I, whereas complex III-induced ROS production was insensitive to NOX blockade. CONCLUSION ET-1-ET(A) signalling activated I(Cl,swell) via EGFR kinase, PI-3K, and NOX ROS production, which triggered mitochondrial ROS production. ET(A) receptors were downstream effectors when I(Cl,swell) was elicited by osmotic swelling or AngII. These data suggest that ET-1-induced ROS-dependent I(Cl,swell) is likely to participate in multiple physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Wu Deng
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | | | | |
Collapse
|
47
|
Neveux I, Doe J, Leblanc N, Valencik ML. Influence of the extracellular matrix and integrins on volume-sensitive osmolyte anion channels in C2C12 myoblasts. Am J Physiol Cell Physiol 2010; 298:C1006-17. [PMID: 20164377 DOI: 10.1152/ajpcell.00359.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether extracellular matrix (ECM) composition through integrin receptors modulated the volume-sensitive osmolyte anion channels (VSOACs) in skeletal muscle-derived C2C12 cells. Cl(-) currents were recorded in whole cell voltage-clamped cells grown on laminin (LM), fibronectin (FN), or in the absence of a defined ECM (NM). Basal membrane currents recorded in isotonic media (300 mosmol/kg) were larger in cells grown on FN (3.8-fold at +100 mV) or LM (8.8-fold at +100 mV) when compared with NM. VSOAC currents activated by cell exposure to hypotonic solution were larger in cells grown on LM (1.72-fold at +100 mV) or FN (1.75-fold at +100 mV) compared with NM. Additionally, the kinetics of VSOAC activation was approximately 27% quicker on FN and LM. These currents were tamoxifen sensitive, displayed outward rectification, reversed at the equilibrium potential of Cl(-) and inactivated at potentials >+60 mV. Specific knockdown of beta(1)-integrin by short hairpin RNA interference strongly inhibited the VSOAC Cl(-) currents in cells plated on FN. In conclusion, ECM composition and integrins profoundly influence the biophysical properties and mechanisms of onset of VSOACs.
Collapse
Affiliation(s)
- Iva Neveux
- Dept. of Biochemistry, Univ. of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
48
|
Integrin structure and functional relation with ion channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:1-7. [PMID: 20549935 DOI: 10.1007/978-1-4419-6066-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical and functional link between cell adhesion molecules and ion channels provide a rapid connection between extracellular environment and cell physiology. Growing evidence does shows that frequent cross talk occurs between these classes of membrane proteins. These interactions are being addressed in ever increasing molecular detail. Recent advances have given X-ray resolved structure of the extracellular domains of integrin receptors. Such a level of resolution is still not available for the transmembrane and intracellular domains. Nonetheless, current molecular biological work is unraveling an intricate network connecting the cytoplasmic integrin domains with the cytoskeleton, ion channels and variety of cellular messengers. Overall, these studies show that integrins and ion channels both present bidirectional signaling features. Extracellular signals are usually transduced by integrins to trigger cellular responses that may involve ion fluxes, which can offer further relay. Intracellular processes and ion channel engagement can in turn affect integrin activation and expression and thus cell adhesion to the extracellular matrix. Moreover, ion channels themselves can communicate extracellular messages to both the cytoplasmic environment and integrin themselves. These interactions appear to often depend on formation of multiprotein membrane complexes that can recruit other elements, such as growth factor receptors and cytoplasmic signaling proteins. This chapter provides a general introduction to the field by giving a brief historical introduction and summarizing the main features of integrin structure and link to the cytoplasmic proteins. In addition, it outlines the main cellular processes inwhich channel-integrin interplay is known to exert clear physiological and pathological roles.
Collapse
|
49
|
Raucci FJ, Wijesinghe DS, Chalfant CE, Baumgarten CM. Exogenous and endogenous ceramides elicit volume-sensitive chloride current in ventricular myocytes. Cardiovasc Res 2009; 86:55-62. [PMID: 20008476 DOI: 10.1093/cvr/cvp399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Because ceramide accumulates in several forms of cardiovascular disease and ceramide-induced apoptosis may involve the volume-sensitive Cl(-) current, I(Cl,swell), we assessed whether ceramide activates I(Cl,swell). METHODS AND RESULTS I(Cl,swell) was measured in rabbit ventricular myocytes by whole-cell patch clamp after isolating anion currents. Exogenous C(2)-ceramide (C(2)-Cer), a membrane-permeant short-chain ceramide, elicited an outwardly rectifying Cl(-) current in both physiological and symmetrical Cl(-) solutions that was fully inhibited by DCPIB, a specific I(Cl,swell) blocker. In contrast, the metabolically inactive C(2)-Cer analogue C(2)-dihydroceramide (C(2)-H(2)Cer) failed to activate Cl(-) current. Bacterial sphingomyelinase (SMase), which generates endogenous long-chain ceramides as was confirmed by tandem mass spectrometry, also elicited an outwardly rectifying Cl(-) current that was inhibited by DCPIB and tamoxifen, another I(Cl,swell) blocker. Bacterial SMase-induced current was partially reversed by osmotic shrinkage and fully suppressed by ebselen, a scavenger of reactive oxygen species. Outward rectification with physiological and symmetrical Cl(-) gradients, block by DCPIB and tamoxifen, and volume sensitivity are characteristics that identify I(Cl,swell). Insensitivity to C(2)-H(2)Cer and block by ebselen suggest involvement of ceramide signalling rather than direct lipid-channel interaction. CONCLUSION Exogenous and endogenous ceramide elicited I(Cl,swell) in ventricular myocytes. This may contribute to persistent activation of I(Cl,swell) and aspects of altered myocyte function in cardiovascular diseases associated with by ceramide accumulation.
Collapse
Affiliation(s)
- Frank J Raucci
- Department of Physiology and Biophysics, Medical College of Virginia, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980551, Richmond, VA 23298-0551, USA
| | | | | | | |
Collapse
|
50
|
Akki A, Zhang M, Murdoch C, Brewer A, Shah AM. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol 2009; 47:15-22. [PMID: 19374908 DOI: 10.1016/j.yjmcc.2009.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/02/2009] [Accepted: 04/08/2009] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase family of enzymes has emerged as a major source of reactive oxygen species (ROS) that is important in diverse cellular functions including anti-microbial defence, inflammation and redox signaling. Of the five known NADPH oxidase isoforms, several are expressed in cardiovascular cells where they are involved in physiological and pathological processes such as the regulation of vascular tone, cell growth, migration, proliferation, hypertrophy, apoptosis and matrix deposition. This article reviews current knowledge regarding the role of NADPH oxidases in cardiomyocyte function in health and disease.
Collapse
Affiliation(s)
- Ashwin Akki
- Department of Cardiology, King's College London British Heart Foundation Centre of Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | | | | | | | | |
Collapse
|