1
|
Dohle E, Schmeinck L, Parkhoo K, Sader R, Ghanaati S. Platelet rich fibrin as a bioactive matrix with proosteogenic and proangiogenic properties on human healthy primary cells in vitro. Platelets 2024; 35:2316744. [PMID: 38390838 DOI: 10.1080/09537104.2024.2316744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Blood concentrates like platelet rich fibrin (PRF) have been established as a potential autologous source of cells and growth factors with regenerative properties in the field of dentistry and regenerative medicine. To further analyze the effect of PRF on bone tissue regeneration, this study investigated the influence of liquid PRF matrices on human healthy primary osteoblasts (pOB) and co-cultures composed of pOB and human dermal vascular endothelial cells (HDMEC) as in vitro model for bone tissue regeneration. Special attention was paid to the PRF mediated influence on osteoblastic differentiation and angiogenesis. Based on the low-speed centrifugation concept, cells were treated indirectly with PRF prepared with a low (44 g) and high relative centrifugal force (710 g) before the PRF mediated effect on osteoblast proliferation and differentiation was assessed via gene and protein expression analyses and immunofluorescence. The results revealed a PRF-mediated positive effect on osteogenic proliferation and differentiation accompanied by increased concentration of osteogenic growth factors and upregulated expression of osteogenic differentiation factors. Furthermore, it could be shown that PRF treatment resulted in an increased formation of angiogenic structures in a bone tissue mimic co-culture of endothelial cells and osteoblasts induced by the PRF mediated increased release of proangiogenic growth factors. The effects on osteogenic proliferation, differentiation and vascularization were more evident when low RCF PRF was applied to the cells. In conclusion, PRF possess proosteogenic, potentially osteoconductive as well as proangiogenic properties, making it a beneficial tool for bone tissue regeneration.
Collapse
Affiliation(s)
- Eva Dohle
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lena Schmeinck
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Kamelia Parkhoo
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Robert Sader
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Zhang S, Tan H, Cheng X, Dou X, Fang H, Zhang C, Yang G, Yang H, Zhao Y, Feng T, Fan H, Sha W. Autologous platelet-rich fibrin enhances skin wound healing in a feline trauma model. BMC Vet Res 2024; 20:504. [PMID: 39508248 PMCID: PMC11539556 DOI: 10.1186/s12917-024-04358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Trauma is a common cause of cutaneous surgical disease with an increased risk of secondary infection in cat clinics. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing multiple cytokines and growth factors, is known to accelerate the healing of wounds. However, how PRF affects wound healing in the cat trauma model has not been fully investigated. The study aimed to examine the impact of PRF on skin wound healing in the cat trauma model. In this study, PRF from cats was successfully produced for our investigation. The models of feline trauma were effectively established. A total of 18 cats were randomly divided into 3 groups (n = 6): (1) Control group (CON); (2) PRF group; (3) Manuka honey group (MAN, as a positive control). Experiments were performed separately on days 7, 14, 21, and 28. Our results showed that PRF was a safe and efficient method of wound healing that did not influence the cat's body temperature, respiration rate, and heart rate (HR). PRF accelerated skin wound healing in the cat trauma model based on the rate and histological observation of wound healing. In addition, PRF promoted the production of growth factors and suppressed inflammation during wound healing. PRF accelerated wound healing by increasing the formation of collagen fibers, as shown by Masson-trichrome staining. The outcomes of the PRF and MAN groups were comparable. In conclusion, PRF improves the healing of skin wounds in cats by boosting the synthesis of growth factors, reducing inflammation, and enhancing the synthesis of collagen fibers.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyang Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyi Dou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Fang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Cuihong Zhang
- Hui Zhou Third People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haotian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tongtong Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Wanli Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132109, China.
| |
Collapse
|
3
|
Alagappan A, Muthu J, Ravindran S, Balu P, Ramkumar N, Arulanandan S. Collagen matrix versus free gingival graft for augmentation of keratinized tissue in mandibular anterior teeth: A comparative clinical study. J Indian Soc Periodontol 2024; 28:685-690. [PMID: 40313341 PMCID: PMC12043215 DOI: 10.4103/jisp.jisp_119_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 05/03/2025] Open
Abstract
Background Insufficient width of keratinized gingiva (WKG) leads to clinical attachment loss (CAL) and eventually periodontal destruction. Free gingival graft (FGG) is the gold standard to increase WKG but requires a second surgical site and poor esthetics outcomes. Hence, alternatives like collagen matrix (CM) have been developed. Aim The present study aims to evaluate the efficacy of CM versus FGG in augmenting WKG in the lower anterior. Materials and Methods Twenty patients with inadequate WKG were enrolled and allocated into two groups. Group I participants received augmentation of WKG using CM and Group II participants with FGG. Clinical parameters such as probing pocket depth, CAL, WKG, and gingival thickness were recorded at baseline, 3rd month, and 6th month. Plaque score was recorded at baseline and 6th month and wound healing index was recorded at 14th and 21st days. The parameters within the group and between the groups were compared using repeated measures of analysis of variance and independent t-test. Results The mean WKG of Group I and Group II in 6th month after augmentation was 3.88 ± 0.3 mm and 5.21 ± 1.0 mm, respectively, and the difference was statistically significant (P = 0.001). The mean wound healing index for Group I and Group II measured on 21st day was 5.00 ± 0.1 and 2.50 ± 0.5, respectively, and the difference in the wound healing index was statistically significant (P = 0.001). Conclusion Both CM and FGG are suitable for increasing the WKG. FGG aided in a marginally greater increase in WKG than CM and healing was better with CM as compared to FGG.
Collapse
Affiliation(s)
- Arthi Alagappan
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Jananni Muthu
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Saravanakumar Ravindran
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Pratebha Balu
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Narayane Ramkumar
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Sushma Arulanandan
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Mahatma Gandhi Medical College and Research Institute Campus, Sri Balaji Vidyapeeth University, Puducherry, India
| |
Collapse
|
4
|
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J Funct Biomater 2024; 15:302. [PMID: 39452600 PMCID: PMC11508515 DOI: 10.3390/jfb15100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Niyaz Al-Sharabi
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Katarina Fritz-Wallace
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- ETEP Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
6
|
Rossato A, Miguel MMV, Bonafé ACF, Mathias-Santamaria IF, Nunes MP, Santamaria MP. Treatment of single gingival recessions using biofunctionalized collagen matrix: A case series. Clin Adv Periodontics 2024; 14:180-184. [PMID: 38087882 DOI: 10.1002/cap.10276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 09/25/2024]
Abstract
BACKGROUND Connective tissue graft substitutes have been used widely to overcome autogenous graft limitations. Nevertheless, they do not provide comparable results in the treatment of periodontal and peri-implant soft tissue defects. Based on the principles of tissue-engineered materials, injectable platelet-rich fibrin (i-PRF) has been combined with collagen matrices (CMs) to enhance their clinical efficacy. To the best of our knowledge, this is the first case series demonstrating the use of i-PRF for the biofunctionalization of a volume-stable collagen matrix (VCMX) as an adjunct to coronally advanced flap (CAF) to treat single gingival recession (GR) defects. METHODS & RESULTS The study included 10 patients. Bleeding on probing, probing depth, GR height, clinical attachment level, esthetics, and dentin hypersensitivity were evaluated. After 6 months, a significant GR reduction (RecRed: 2.15 ± 0.7 mm; p = 0.005) and percentage of root coverage (% RC) of 81.13% were observed. Additionally, 40% of the sites showed complete root coverage. Gingival thickness increased 0.64 mm. Patient-centered evaluations demonstrated dentin hypersensitivity and esthetics improvements by the end of follow-up. CONCLUSION VCMX biofunctionalized with i-PRF associated with CAF technique showed promising clinical outcomes in the treatment of single RT1 GR defects.
Collapse
Affiliation(s)
- Amanda Rossato
- Division of Periodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos - São Paulo, San Francisco, Brazil
| | - Manuela Maria Viana Miguel
- Division of Periodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos - São Paulo, San Francisco, Brazil
| | - Ana Carolina Ferreira Bonafé
- Division of Periodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos - São Paulo, San Francisco, Brazil
| | | | | | - Mauro Pedrine Santamaria
- Division of Periodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos - São Paulo, San Francisco, Brazil
- College of Dentistry - Lexington, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Al-Maawi S, Dohle E, Sader R, Ghanaati S. Three Milliliters of Peripheral Blood Is Sufficient for Preparing Liquid Platelet-Rich Fibrin (PRF): An In Vitro Study. Bioengineering (Basel) 2024; 11:253. [PMID: 38534527 DOI: 10.3390/bioengineering11030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Platelet-rich fibrin (PRF) has assumed an important role in supporting tissue regeneration in different fields. To date, the standard protocol for liquid PRF requires at least 10 mL of peripheral blood. The present study aimed to analyze the composition, growth factor release, and effects on the cell proliferation of PRF samples produced using 3 mL vs. 10 mL of peripheral blood in vitro. Peripheral venous blood from six healthy donors was used to prepare liquid PRF using either 3 mL or 10 mL tubes. Three different centrifugation protocols were used according to the low-speed centrifugation concept. The cellular distribution was evaluated using immunohistology and automated cell count. ELISA was used to determine the release of different growth factors (EGF, TGF-β1, and PDGF) and interleukin 8 at different time points. Primary human osteoblasts (pOBs) were cultivated for 7 days using PRF-conditioned media acquired from either 3 mL or 10 mL of peripheral blood. The results showed that 3 mL of peripheral blood is sufficient to produce a liquid PRF concentrate similar to that acquired when using 10 mL blood. The concentrations of platelets and leukocytes were comparable regardless of the initial blood volume (3 mL vs. 10 mL). Similarly, the release of growth factors (EGF, TGF-β1, and PDGF) and interleukin 8 was often comparable in both groups over 7 days. The cultivation of pOBs using PRF-conditioned media showed a similar proliferation rate regardless of the initial blood volume. This proliferation rate was also similar to that of pOBs treated with 20% FBS-conditioned media. These findings validated the use of 3 mL of peripheral blood to generate liquid PRF matrices according to the low-speed centrifugation concept, which may open new application fields for research purposes such as in vivo experiments and clinical applications such as pediatric surgery.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- FORM (Frankfurt Oral Regenerative Medicine) Clinic for Maxillofacial and Plastic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Eva Dohle
- FORM (Frankfurt Oral Regenerative Medicine) Clinic for Maxillofacial and Plastic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Robert Sader
- FORM (Frankfurt Oral Regenerative Medicine) Clinic for Maxillofacial and Plastic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- FORM (Frankfurt Oral Regenerative Medicine) Clinic for Maxillofacial and Plastic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Egle K, Dohle E, Hoffmann V, Salma I, Al-Maawi S, Ghanaati S, Dubnika A. Fucoidan/chitosan hydrogels as carrier for sustained delivery of platelet-rich fibrin containing bioactive molecules. Int J Biol Macromol 2024; 262:129651. [PMID: 38280707 DOI: 10.1016/j.ijbiomac.2024.129651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-β1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.
Collapse
Affiliation(s)
- Karina Egle
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| | - Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Verena Hoffmann
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Ilze Salma
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia; Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sarah Al-Maawi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany.
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia.
| |
Collapse
|
9
|
Schröger SV, Blatt S, Sagheb K, Al-Nawas B, Kämmerer PW, Sagheb K. Platelet-rich fibrin for rehydration and pre-vascularization of an acellular, collagen membrane of porcine origin. Clin Oral Investig 2024; 28:99. [PMID: 38227215 PMCID: PMC10791820 DOI: 10.1007/s00784-023-05485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES Pre-vascularization of the collagen membranes with autologous platelet concentrates is a standard procedure in oral and maxillofacial surgery. This study analyzed the possible interaction of an acellular collagen membrane of porcine origin (NM) with platelet-rich fibrin (PRF) regarding its rehydration protocol with differences in pH values and effect on angiogenesis. MATERIALS AND METHODS NM was analyzed alone and combined with solid PRF by plotting or co-culturing with injectable PRF. Different media (venous blood, buffer solution with a fixed pH value of 7, saline solution, and injectable PRF) were used to analyze the influence on pH value during rehydration. Chorion allantois membrane assay (CAM) was applied to check pro-angiogenic effects after 24, 48, and 72 h, followed by immunohistochemical analysis. RESULTS Rehydration in injectable PRF showed acidity over time (p < 0.05). A definite pro-angiogenic effect of NM alone was found regarding neo-vessel formation supported by the respective light microscopically analysis without significant differences to PRF alone (p > 0.005). This pro-angiogenic effect could not be exaggerated when NM was combined with liquid/solid PRF (each p > 0.005). CONCLUSIONS Rehydration with liquid PRF of the collagen membrane results in acidity compared to a saline solution or patient's blood. The significant pro-angiogenic potential of the membrane alone resulted in enhanced neo-vessel formation that could not be optimized with the addition of PRF. CLINICAL RELEVANCE STATEMENT Using injectable PRF for rehydration protocol of the collagen membrane leads to acidosis that can ultimately optimize wound healing. Differences in the physio-mechanical interplay of collagen matrices and autologous platelet concentrates must result in clinical algorithms if pre-vascularization can maximize outcomes.
Collapse
Affiliation(s)
- Saskia-Vanessa Schröger
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Kawe Sagheb
- Department of Prosthodontics University Medical Center Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
10
|
Zwittnig K, Mukaddam K, Vegh D, Herber V, Jakse N, Schlenke P, Zrnc TA, Payer M. Platelet-Rich Fibrin in Oral Surgery and Implantology: A Narrative Review. Transfus Med Hemother 2023; 50:348-359. [PMID: 37767284 PMCID: PMC10521222 DOI: 10.1159/000527526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Background The application of blood concentrates has gained popularity in dentistry in recent years. Platelet-rich fibrin (PRF) has been discussed frequently due to a high content of growth factors and the option of chair-side manufacturing in a simple centrifugation process. PRF is free from adjuvants and inexpensive to produce. The number of studies reporting beneficial effects of PRF in various clinical applications such as alveolar ridge preservation, sinus floor elevation, management and prevention of medical-related osteonecrosis of the jaw, third molar extractions, and guided bone regeneration in dentistry has increased recently. However, to date, neither clinical recommendations nor guidelines are available. The present narrative review aims to summarize the level of evidence on the clinical application of PRF within the field of oral surgery and implantology. Summary A literature search in Pubmed and Medline has identified 34 articles as a basis for this narrative review. The effectiveness of the clinical application of PRF has been analyzed for five indications within dentistry: medical-related osteonecrosis of the jaw, wisdom tooth extraction, guided bone regeneration, sinus floor elevation, and alveolar ridge preservation. The amount of data for third molar extractions, socket preservation, and guided bone regeneration is extensive. Less data were available for the use of PRF in combination with sinus floor elevations. There is a lack of studies with scientific evidence on PRF and medical-related osteonecrosis of the jaw; however, studies positively impact patient-related outcome measures. Most studies report on beneficial effects when PRF is additionally applied in intrabony defects. There is no evidence of the positive effects of PRF combined with bone graft materials during sinus floor elevation. However, some benefits are reported with PRF as a sole filling material. Key Messages Many recently published studies show the positive clinical impact of PRF. Yet, further research is needed to ensure the validity of the evidence.
Collapse
Affiliation(s)
- Katharina Zwittnig
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel, University of Basel, Mattenstrasse, Basel, Switzerland
| | - Daniel Vegh
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
- Department of Prosthodontics, Semmelweis University Faculty of Dentistry, Budapest, Hungary
| | - Valentin Herber
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Norbert Jakse
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Tomislav Ante Zrnc
- Division of Oral and Maxillofacial Surgery, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Michael Payer
- Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
12
|
Saboia-Dantas CJ, Dechichi P, Fech RL, de Carvalho Furst RV, Raimundo RD, Correa JA. Progressive Platelet Rich Fibrin tissue regeneration matrix: Description of a novel, low cost and effective method for the treatment of chronic diabetic ulcers-Pilot study. PLoS One 2023; 18:e0284701. [PMID: 37141233 PMCID: PMC10159142 DOI: 10.1371/journal.pone.0284701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Chronic lower limb ulcers (CLLU) are those injuries that persist for more than six weeks despite adequate care. They are relatively common; it is estimated that 10/1,000 people will develop CLLU in their lifetime. Diabetic ulcer, because of its unique pathophysiology (association between neuropathy, microangiopathy, and immune deficiency), is considered one of the most complex and difficult etiologies of CLLU for treatment. This treatment is complex, costly, and sometimes frustrating, as it is often ineffective, which worsens the quality of life of patients and makes its treatment a challenge. OBJECTIVE To describe a new method for treating diabetic CLLU and the initial results of using a new autologous tissue regeneration matrix. METHOD This is a pilot, prospective, an interventional study that used a novel protocol of autologous tissue regeneration matrix for the treatment of diabetic CLLU. RESULTS Three male cases with a mean age of 54 years were included. A total of six Giant Pro PRF Membrane (GMPro) were used varying their application between one to three sessions during treatment. A total of 11 liquid phase infiltrations were performed varying their application between three and four sessions. The patients were evaluated weekly and a reduction in the wound area and scar retraction was observed during the period studied. CONCLUSION The new tissue regeneration matrix described is an effective and low-cost method for the treatment of chronic diabetic ulcers.
Collapse
Affiliation(s)
- Carlos José Saboia-Dantas
- Laboratorio de Pesquisa em Reparo Tecidual, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Paula Dechichi
- Laboratorio de Pesquisa em Reparo Tecidual, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | | | | | - Rodrigo Daminello Raimundo
- Laboratório de Delineamento de Pesquisas e Escrita Científica, Centro Universitário FMABC, Santo André, São Paulo, Brasil
| | - João Antonio Correa
- Departamento de Cirurgia, Centro Universitário FMABC, Santo André, São Paulo, Brasil
| |
Collapse
|
13
|
Zwittnig K, Kirnbauer B, Jakse N, Schlenke P, Mischak I, Ghanaati S, Al-Maawi S, Végh D, Payer M, Zrnc TA. Growth Factor Release within Liquid and Solid PRF. J Clin Med 2022; 11:jcm11175070. [PMID: 36078998 PMCID: PMC9456595 DOI: 10.3390/jcm11175070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Aim: The purpose of this study was to obtain data concerning growth factor release within liquid and solid platelet-rich fibrin (PRF) matrices and to estimate the amount of potential interindividual variations as a basis for further preclinical and clinical trials. Therefore, we aimed to determine possible differences in the release of growth factors between liquid and solid PRF. Materials and Methods: Blood samples obtained from four subjects were processed to both liquid and solid PRF matrices using a standard centrifugation protocol. Five growth factors (vascular endothelial growth factor, VEGF; epidermal growth factor, EGF; platelet-derived growth factor-BB, PDGF-BB; transforming growth factor-β1, TGF-β1; and matrix metallopeptidase 9, MMP-9) have been evaluated at six time points by ELISA over a total observation period of 10 days (1 h, 7 h, 1 d, 2 d, 7 d, and 10 d). Results: Growth factor release could be measured in all samples at each time point. Comparing liquid and solid PRF matrices, no significant differences were detected (p > 0.05). The mean release of VEGF, TGFβ-1, PDGF-BB, and MMP-9 raised to a peak at time point five (day 7) in both liquid and solid PRF matrices. VEGF release was lower in liquid PRF than in solid PRF, whereas those of PDGF-BB and MMP-9 were higher in liquid PRF than in solid PRF at all time points. EGF had its peak release already at time point two after 7 h in liquid and solid matrices (hour 7 EGF solid: mean = 180 pg/mL, SD = 81; EGF liquid: mean = 218 pg/mL, SD = 64), declined rapidly until day 2, and had a second slight peak on day 7 in both groups (day 7 EGF solid: mean = 182 pg/mL, SD = 189; EGF liquid: mean = 81 pg/mL, SD = 70). Conclusions: This study detected growth factor release within liquid and solid PRF matrices with little variations. Further preclinical trials are needed to precisely analyze the growth factor release in larger samples and to better understand their effects on wound healing in different clinical indications.
Collapse
Affiliation(s)
- Katharina Zwittnig
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Barbara Kirnbauer
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Norbert Jakse
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Irene Mischak
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, FORM (Frankfurt Orofacial Regenerative Medicine) Lab, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sarah Al-Maawi
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, FORM (Frankfurt Orofacial Regenerative Medicine) Lab, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dániel Végh
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
- Department of Prosthodontics, Semmelweis University, 1088 Budapest, Hungary
| | - Michael Payer
- Division of Oral Surgery and Orthodontics, Department of Dental and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-38512936
| | - Tomislav A. Zrnc
- Division of Oral and Maxillofacial Surgery, Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| |
Collapse
|
14
|
Patra L, Raj SC, Katti N, Mohanty D, Pradhan SS, Tabassum S, Mishra AK, Patnaik K, Mahapatra A. Comparative evaluation of effect of injectable platelet-rich fibrin with collagen membrane compared with collagen membrane alone for gingival recession coverage. World J Exp Med 2022; 12:68-91. [PMID: 36157336 PMCID: PMC9350719 DOI: 10.5493/wjem.v12.i4.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Collagen membrane and platelet-rich fibrin (PRF) have emerged as vital biomaterials in the field of periodontal regeneration. Minimally invasive techniques are being preferred by most periodontists, as it is patient compliant with fewer post-surgical complications as compared to conventional surgical techniques. Thus, in this study we have evaluated the effect of injectable PRF (i-PRF) with collagen membrane compared with collagen membrane alone using vestibular incision subperiosteal tunnel access (VISTA) technique for gingival recession coverage.
AIM To compare the efficacy of VISTA using collagen membrane with collagen membrane soaked in injectable PRF for gingival recession coverage.
METHODS A split mouth randomized controlled clinical trial was designed;13 subjects having at least 2 teeth indicated for recession coverage were enrolled in this study. The sites were randomly assigned to control group (VISTA using collagen membrane alone) and the test group (VISTA using collagen membrane with i-PRF). The clinical parameters assessed were pocket depth, recession depth (RD), recession width (RW), relative attachment level, keratinised tissue width (KTW), keratinised tissue thickness (KTT), and percentage root coverage.
RESULTS RD showed a statistically significant difference between the test group at 3 mo (0.5 ± 0.513) and 6 mo (0.9 ± 0.641) and the control group at 3 mo (0.95 ± 0.51) and 6 mo (1.5 ± 0.571), with P values of 0.008 and 0.04, respectively. RW also showed a statistically significant difference between the test group at 3 mo (1 ± 1.026) and 6 mo (1.65 ± 1.04) and the control group at 3 mo (1.85 ± 0.875) and 6 mo (2.25 ± 0.759), with P values of 0.008 and 0.001, respectively. Results for KTW showed statistically significant results between the test group at 1 mo (2.85 ± 0.489), 3 mo (3.5 ± 0.513), and 6 mo (3.4 ± 0.598) and the control group at 1 mo (2.45 ± 0.605), 3 mo (2.9 ± 0.447), and 6 mo (2.75 ± 0.444), with P values of 0.04, 0.004, and 0.003, respectively. Results for KTT also showed statistically significant results between test group at 1 mo (2.69 ± 0.233), 3 mo (2.53 ± 0.212), and 6 mo (2.46 ± 0.252) and the control group at 1 mo (2.12 ± 0.193), 3 mo (2.02 ± 0.18), and 6 mo (1.91 ± 0.166), with P values of 0.001, 0.001, and 0.001, respectively. The test group showed 91.6%, 81.6%, and 67% root coverage at 1 mo, 3 mo, and 6 mo, while the control group showed 82.3%, 66.4%, and 53.95% of root coverage at 1 mo, 3 mo, and 6 mo, respectively.
CONCLUSION The use of minimally invasive VISTA technique along with collagen membrane and injectable form of platelet-rich fibrin can be successfully used as a treatment method for multiple or isolated gingival recessions of Miller’s class-I and class-II defects.
Collapse
Affiliation(s)
- Laxmikanta Patra
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Subash Chandra Raj
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Neelima Katti
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Devapratim Mohanty
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Shib Shankar Pradhan
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Shaheda Tabassum
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Asit Kumar Mishra
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Kaushik Patnaik
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| | - Annuroopa Mahapatra
- Department of Periodontics, SCB Dental College and Hospital, Odisha 753007, India
| |
Collapse
|
15
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
16
|
Santamaria MP, Rossato A, Ferreira Ferraz LF, Bonafé AC, Miguel MMV, Nunes MP. Collagen matrix biofunctionalizated with injectable platelet‐rich fibrin (iPRF) for the treatment of single gingival recession. A case report. Clin Adv Periodontics 2022. [DOI: 10.1002/cap.10207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mauro Pedrine Santamaria
- São Paulo State University (Unesp). Division of Periodontics. Institute of Science and Technology São José dos Campos São Paulo Brazil
- University of Kentucky, College of Dentistry Lexington Kentucky USA
| | - Amanda Rossato
- São Paulo State University (Unesp). Division of Periodontics. Institute of Science and Technology São José dos Campos São Paulo Brazil
| | - Laís Fernanda Ferreira Ferraz
- São Paulo State University (Unesp). Division of Periodontics. Institute of Science and Technology São José dos Campos São Paulo Brazil
| | - Ana Carolina Bonafé
- São Paulo State University (Unesp). Division of Periodontics. Institute of Science and Technology São José dos Campos São Paulo Brazil
| | - Manuela Maria Viana Miguel
- São Paulo State University (Unesp). Division of Periodontics. Institute of Science and Technology São José dos Campos São Paulo Brazil
| | | |
Collapse
|
17
|
Al-Hallak N, Hamadah O, Mouhamad M, Kujan O. The efficacy of injectable platelet-rich fibrin in the treatment of symptomatic oral lichen planus. Oral Dis 2022. [PMID: 35593522 DOI: 10.1111/odi.14261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The use of autologous platelet concentrates has shown growing evidence as a promising therapy. We conducted a split-mouth study to evaluate the effectiveness of injectable platelet-rich fibrin (PRF) compared to triamcinolone acetonide (TA) in the treatment of oral lichen planus (OLP). MATERIALS AND METHODS This split-mouth randomized trial included twelve patients with symptomatic, bilateral OLP lesions. The participants were randomly allocated to receive a 1-mL intralesional PRF injection on one side of the buccal mucosa and a 0.5-mL TA injection on the counterpart side. The application was performed once a week for 4 weeks. The outcomes were measured using a visual analog scale score, REU score, and lesion areas. RESULTS Both injectable TA and PRF were effective in the management of oral lichen planus. After four weeks of treatment, there was an average reduction in the VAS score (68.5% i-PRF, 91% TA) and an average reduction in the REU score (74% i-PRF, 91% TA). There were no statistically significant differences between the two treatment methods (P > 0.05). CONCLUSIONS Intralesional injection with TA showed more effectiveness than i-PRF in the management of OPL lesions. Although, i-PRF cannot be considered a first-line treatment option, it showed promising alternative therapy choice with no side effects.
Collapse
Affiliation(s)
- Noor Al-Hallak
- Department of Oral Medicine, The Faculty of Dental Medicine, Damascus University, Damascus, Syria
| | - Omar Hamadah
- Department of Oral Medicine, The Faculty of Dental Medicine, Damascus University, Damascus, Syria.,Department of Oral Medicine and Pathology, The Faculty of Dental Medicine, AL-Sham Privat University, Damascus, Syria
| | - Manal Mouhamad
- Department of Dermatology, The Faculty of Medicine, Damascus University, Syria
| | - Omar Kujan
- Oral Diagnostic and Surgical Sciences, UWA Dental School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate-Influence on Rehydration Protocol and Angiogenesis. Biomedicines 2022; 10:biomedicines10030706. [PMID: 35327506 PMCID: PMC8945896 DOI: 10.3390/biomedicines10030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.
Collapse
|
19
|
Different angiogenic response and bone regeneration following the use of various types of collagen membranes - in vivo histomorphometric study in rabbit calvarial critical-size defects. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh220402070s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. Success of guided bone regeneration depends on the size and morphology of defect, characteristics of barrier membranes and adequate angiogenesis. The aim of the study was to reveal impact of three different collagen membranes on angiogenesis and bone production in critical-size defects. Methods. Defects were created in rabbit calvarias, filled with bovine bone graft and randomly covered with one of three investigated collagen membranes (Biogide ? BG, Heart ? PC, Mucograft ? MG) or left without a membrane for the control group (C). After two and four weeks of healing, a total of 10 animals were sacrificed for histological and histomorphometric analysis of angiogenesis, bone regeneration, and inflammatory response. Results. In the early healing phase, the highest values of trabecular thickness and trabecular area were recorded with PC and BG membranes, respectively. After four weeks, significantly improved bone healing was noted in the MG group, as well as significantly pronounced inflammation. Initially, vessel density was significantly higher in the C group compared to all three membranes. After four weeks, significantly better results were observed in the MG compared to the other groups, BG compared to the rest of groups, and between PC and C groups. Conclusion. The use of collagen membranes significantly affects angiogenesis, reducing it in the early and enhancing it at the later healing phase. All three tested membranes in combination with bone graft significantly improved the amount of regenerated bone. Among the investigated groups, MG favored more pronounced angiogenic, osteogenic, and inflammatory response in the observation period of four weeks.
Collapse
|
20
|
Al-Maawi S, Becker K, Schwarz F, Sader R, Ghanaati S. Efficacy of platelet-rich fibrin in promoting the healing of extraction sockets: a systematic review. Int J Implant Dent 2021; 7:117. [PMID: 34923613 PMCID: PMC8684569 DOI: 10.1186/s40729-021-00393-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To address the focused question: in patients with freshly extracted teeth, what is the efficacy of platelet-rich fibrin (PRF) in the prevention of pain and the regeneration of soft tissue and bone compared to the respective control without PRF treatment? METHODS After an electronic data search in PubMed database, the Web of Knowledge of Thomson Reuters and hand search in the relevant journals, a total of 20 randomized and/or controlled studies were included. RESULTS 66.6% of the studies showed that PRF significantly reduced the postoperative pain, especially in the first 1-3 days after tooth extraction. Soft tissue healing was significantly improved in the group of PRF compared to the spontaneous wound healing after 1 week (75% of the evaluated studies). Dimensional bone loss was significantly lower in the PRF group compared to the spontaneous wound healing after 8-15 weeks but not after 6 months. Socket fill was in 85% of the studies significantly higher in the PRF group compared to the spontaneous wound healing. CONCLUSIONS Based on the analyzed studies, PRF is most effective in the early healing period of 2-3 months after tooth extraction. A longer healing period may not provide any benefits. The currently available data do not allow any statement regarding the long-term implant success in sockets treated with PRF or its combination with biomaterials. Due to the heterogeneity of the evaluated data no meta-analysis was performed.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt/ Main, Germany
| | - Kathrin Becker
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Frank Schwarz
- Department of Orthodontics, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Robert Sader
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt/ Main, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt/ Main, Germany.
| |
Collapse
|
21
|
Egle K, Salma I, Dubnika A. From Blood to Regenerative Tissue: How Autologous Platelet-Rich Fibrin Can Be Combined with Other Materials to Ensure Controlled Drug and Growth Factor Release. Int J Mol Sci 2021; 22:11553. [PMID: 34768984 PMCID: PMC8583771 DOI: 10.3390/ijms222111553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
The purpose of this review is to examine the latest literature on the use of autologous platelet-rich fibrin as a drug and growth factor carrier system in maxillofacial surgery. Autologous platelet-rich fibrin (PRF) is a unique system that combines properties such as biocompatibility and biodegradability, in addition to containing growth factors and peptides that provide tissue regeneration. This opens up new horizons for the use of all beneficial ingredients in the blood sample for biomedical purposes. By itself, PRF has an unstable effect on osteogenesis: therefore, advanced approaches, including the combination of PRF with materials or drugs, are of great interest in clinics. The main advantage of drug delivery systems is that by controlling drug release, high drug concentrations locally and fewer side effects within other tissue can be achieved. This is especially important in tissues with limited blood supply, such as bone tissue compared to soft tissue. The ability of PRF to degrade naturally is considered an advantage for its use as a "warehouse" of controlled drug release systems. We are focusing on this concentrate, as it is easy to use in manipulations and can be delivered directly to the surgical site. The target audience for this review are researchers and medical doctors who are involved in the development and research of PRFs further studies. Likewise, surgeons who use PRF in their work to treat patients and who advice patients to take the medicine orally.
Collapse
Affiliation(s)
- Karina Egle
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Riga Technical University, LV-1658 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
| | - Ilze Salma
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
- Institute of Stomatology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Riga Technical University, LV-1658 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia;
| |
Collapse
|
22
|
Saglam E, Ozsagir ZB, Unver T, Alinca SB, Toprak A, Tunali M. Efficacy of injectable platelet-rich fibrin in the erosive oral lichen planus: a split-mouth, randomized, controlled clinical trial. J Appl Oral Sci 2021; 29:e20210180. [PMID: 34614123 PMCID: PMC8523099 DOI: 10.1590/1678-7757-2021-0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Our study compared the effects of injectable platelet-rich fibrin (i-PRF) with those of corticosteroids in the treatment of erosive oral lichen planus (EOLP). Methodology This split-mouth study included 24 individuals diagnosed histopathologically with bilateral EOLP. One bilateral lesion was injected with i-PRF, whereas the other was injected with methylprednisolone acetate in four sessions at 15-day intervals. Visual analog scale (VAS) for pain and satisfaction, oral health impact profile scale-14, and the lesion size were used. Results The intragroup comparisons showed a significant decrease in VAS-pain and lesion size in both the i-PRF group (from 81.88±17.74 to 13.33±18.34, and from 4.79±0.41 to 1.88±1.08, respectively) and the corticosteroid group (from 80.21±17.35 to 23.33±26.81, and from 4.71±0.46 to 2.21±1.35, respectively) in the 6th month compared to baseline (p<0.001). Moreover, VAS-satisfaction increased significantly in both the i-PRF group (from 26.67±17.8 to 85.63±16.24) and the corticosteroid group (from 28.33±17.05 to 74.38±24.11) in the 6th month compared to baseline (p<0.001). However, no significant difference in any value occurred in the intergroup comparisons. Conclusion In patients with EOLP, both methods decreased pain and lesion size similarly, and both increased satisfaction. Therefore, the use of i-PRF may be considered an option in cases refractory to topical corticosteroid therapy. Biochemical and histopathological studies are required to reveal the mechanism of i-PRF action in EOLP treatment.
Collapse
Affiliation(s)
- Ebru Saglam
- Health Sciences University, Faculty of Dentistry, Department of Periodontology Istanbul, Turkey
| | - Zeliha Betul Ozsagir
- Health Sciences University, Faculty of Dentistry, Department of Periodontology Istanbul, Turkey
| | - Tugba Unver
- Bezmialem Vakif University, Faculty of Dentistry, Department of Maxillofacial Radiology, Istanbul, Turkey
| | - Suzan Bayer Alinca
- Kecioren Osmanli Public Oral Health Center, Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Ali Toprak
- Bezmialem Vakif University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Mustafa Tunali
- Canakkale Onsekiz Mart University, Faculty of Dentistry, Department of Periodontology, Canakkale, Turkey
| |
Collapse
|
23
|
Vallecillo C, Toledano-Osorio M, Vallecillo-Rivas M, Toledano M, Osorio R. In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation. Polymers (Basel) 2021; 13:polym13162633. [PMID: 34451173 PMCID: PMC8399555 DOI: 10.3390/polym13162633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Collagen matrices have become a great alternative to the use of connective tissue grafts for soft tissue augmentation procedures. One of the main problems with these matrices is their volume instability and rapid degradation. This study has been designed with the objective of examining the degradation of three matrices over time. For this purpose, pieces of 10 × 10 mm2 of Fibro-Gide, Mucograft and Mucoderm were submitted to three different degradation tests-(1) hydrolytic degradation in phosphate buffer solution (PBS); (2) enzyme resistance, using a 0.25% porcine trypsin solution; and (3) bacterial collagenase resistance (Clostridium histolyticum)-over different immersion periods of up to 50 days. Weight measurements were performed with an analytic microbalance. Thickness was measured with a digital caliper. A stereomicroscope was used to obtain the matrices' images. ANOVA and Student-Newman-Keuls tests were used for mean comparisons (p < 0.05), except when analyzing differences between time-points within the same matrix and solution, where pair-wise comparisons were applied (p < 0.001). Fibro-Gide attained the highest resistance to all degradation challenges. The bacterial collagenase solution was shown to constitute the most aggressive test as all matrices presented 100% degradation before 14 days of storage.
Collapse
Affiliation(s)
- Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (R.O.)
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (R.O.)
| |
Collapse
|
24
|
Multinucleated Giant Cells Induced by a Silk Fibroin Construct Express Proinflammatory Agents: An Immunohistological Study. MATERIALS 2021; 14:ma14144038. [PMID: 34300957 PMCID: PMC8307820 DOI: 10.3390/ma14144038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Multinucleated giant cells (MNGCs) are frequently observed in the implantation areas of different biomaterials. The main aim of the present study was to analyze the long-term polarization pattern of the pro- and anti-inflammatory phenotypes of macrophages and MNGCs for 180 days to better understand their role in the success or failure of biomaterials. For this purpose, silk fibroin (SF) was implanted in a subcutaneous implantation model of Wistar rats as a model for biomaterial-induced MNGCs. A sham operation was used as a control for physiological wound healing. The expression of different inflammatory markers (proinflammatory M1: CCR-7, iNos; anti-inflammatory M2: CD-206, CD-163) and tartrate-resistant acid phosphatase (TRAP) and CD-68 were identified using immunohistochemical staining. The results showed significantly higher numbers of macrophages and MNGCs within the implantation bed of SF-expressed M1 markers, compared to M2 markers. Interestingly, the expression of proinflammatory markers was sustained over the long observation period of 180 days. By contrast, the control group showed a peak of M1 macrophages only on day 3. Thereafter, the inflammatory pattern shifted to M2 macrophages. No MNGCs were observed in the control group. To the best of our knowledge, this is study is the first to outline the persistence of pro-inflammatory MNGCs within the implantation bed of SF and to describe their long-term kinetics over 180 days. Clinically, these results are highly relevant to understand the role of biomaterial-induced MNGCs in the long term. These findings suggest that tailored physicochemical properties may be a key to avoiding extensive inflammatory reactions and achieving clinical success. Therefore, further research is needed to elucidate the correlation between proinflammatory MNGCs and the physicochemical characteristics of the implanted biomaterial.
Collapse
|
25
|
Development of Vancomycin Delivery Systems Based on Autologous 3D Platelet-Rich Fibrin Matrices for Bone Tissue Engineering. Biomedicines 2021; 9:biomedicines9070814. [PMID: 34356878 PMCID: PMC8301455 DOI: 10.3390/biomedicines9070814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Autologous platelet-rich fibrin (PRF) is derived from the blood and its use in the bone tissue engineering has emerged as an effective strategy for novel drug and growth factor delivery systems. Studies have approved that combined therapy with PRF ensures higher biological outcomes, but patients still undergo additional treatment with antibiotic drugs before, during, and even after the implantation of biomaterials with PRF. These systematically used drugs spread throughout the blood and lead not only to positive effects but may also induce adverse side effects on healthy tissues. Vancomycin hydrochloride (VANKA) is used to treat severe Staphylococcal infections but its absorption in the target tissue after oral administration is low; therefore, in this study, we have developed and analyzed two kinds of VANKA carriers—liposomes and microparticles in 3D PRF matrices. The adjustment, characterization, and analysis of VANKA carriers in 3D PRF scaffolds is carried out in terms of encapsulation efficiency, drug release kinetics and antibacterial activity; furthermore, we have studied the micro- and macrostructure of the scaffolds with microtomography.
Collapse
|
26
|
Al-Maawi S, Dohle E, Lim J, Weigl P, Teoh SH, Sader R, Ghanaati S. Biologization of Pcl-Mesh Using Platelet Rich Fibrin (Prf) Enhances Its Regenerative Potential In Vitro. Int J Mol Sci 2021; 22:2159. [PMID: 33671550 PMCID: PMC7926906 DOI: 10.3390/ijms22042159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Resorbable synthetic scaffolds are promising for different indications, especially in the context of bone regeneration. However, they require additional biological components to enhance their osteogenic potential. In addition to different cell types, autologous blood-derived matrices offer many advantages to enhance the regenerative capacity of biomaterials. The present study aimed to analyze whether biologization of a PCL-mesh coated using differently centrifuged Platelet rich fibrin (PRF) matrices will have a positive influence on primary human osteoblasts activity in vitro. A polymeric resorbable scaffold (Osteomesh, OsteoporeTM (OP), Singapore) was combined with differently centrifuged PRF matrices to evaluate the additional influence of this biologization concept on bone regeneration in vitro. Peripheral blood of three healthy donors was used to gain PRF matrices centrifuged either at High (710× g, 8 min) or Low (44× g, 8 min) relative centrifugal force (RCF) according to the low speed centrifugation concept (LSCC). OP-PRF constructs were cultured with pOBs. POBs cultured on the uncoated OP served as a control. After three and seven days of cultivation, cell culture supernatants were collected to analyze the pOBs activity by determining the concentrations of VEGF, TGF-β1, PDGF, OPG, IL-8, and ALP- activity. Immunofluorescence staining was used to evaluate the Osteopontin expression of pOBs. After three days, the group of OP+PRFLow+pOBs showed significantly higher expression of IL-8, TGF-ß1, PDGF, and VEGF compared to the group of OP+PRFHigh+pOBs and OP+pOBs. Similar results were observed on day 7. Moreover, OP+PRFLow+pOBs exhibited significantly higher activity of ALP compared to OP+PRFHigh+pOBs and OP+pOBs. Immunofluorescence staining showed a higher number of pOBs adherent to OP+PRFLow+pOBs compared to the groups OP+PRFHigh+pOBs and OP+pOBs. To the best of our knowledge, this study is the first to investigate the osteoblasts activity when cultured on a PRF-coated PCL-mesh in vitro. The presented results suggest that PRFLow centrifuged according to LSCC exhibits autologous blood cells and growth factors, seem to have a significant effect on osteogenesis. Thereby, the combination of OP with PRFLow showed promising results to support bone regeneration. Further in vivo studies are required to verify the results and carry out potential results for clinical translation.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.A.-M.); (E.D.); (R.S.)
| | - Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.A.-M.); (E.D.); (R.S.)
| | - Jing Lim
- Osteopore International, Singapore 618305, Singapore;
| | - Paul Weigl
- Department of Prosthodontics and Head of Department of Postgraduate Education, Center for Dentistry and Oral Medicine (Carolinum), Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering/Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637459, Singapore;
| | - Robert Sader
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.A.-M.); (E.D.); (R.S.)
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.A.-M.); (E.D.); (R.S.)
| |
Collapse
|
27
|
Xin L, Yuan S, Mu Z, Li D, Song J, Chen T. Histological and Histomorphometric Evaluation of Applying a Bioactive Advanced Platelet-Rich Fibrin to a Perforated Schneiderian Membrane in a Maxillary Sinus Elevation Model. Front Bioeng Biotechnol 2020; 8:600032. [PMID: 33324626 PMCID: PMC7726256 DOI: 10.3389/fbioe.2020.600032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Background Schneiderian membrane (SM) perforation is a major complication of maxillary sinus elevation with simultaneous bone grafting, yet under this scenario there is no standard biomaterial that maximizes favorable tissue healing and osteogenic effects. Purpose To compare the effect of advanced platelet-rich fibrin (A-PRF) and collagen membrane (CM) on a perforated SM with simultaneous bone grafting in a maxillary sinus elevation model. Materials and Methods After perforation of the SM was established, 24 animals were randomly divided into two groups: (i) group CM: CM and deproteinized bovine bone mineral (DBBM) (n = 12), (ii) group A-PRF: A-PRF and DBBM (n = 12). Radiographic and histological evaluations were performed at 1 and 4 weeks post-operation. Results At 1 week, an intact SM was found in group A-PRF. At each time point, the number of inflammatory cells at the perforated site was higher in group CM, and the area of new osteoid formation was significantly greater in group A-PRF (p < 0.0001). At 4 weeks, the osteogenic pattern was shown as from the periphery to the center of the sinus cavity in group A-PRF. Conclusion The higher elasticity, matching degradability, and plentiful growth factors of A-PRF resulted in a fully repaired SM, which later ensured the two osteogenic sources from the SM to generate significant new bone formation. Thus, A-PRF can be considered to be a useful bioactive tissue-healing biomaterial for SM perforation with simultaneous bone grafting.
Collapse
Affiliation(s)
- Liangjing Xin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Yuan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixiang Mu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Dize Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Lee JS, Mitulović G, Panahipour L, Gruber R. Proteomic Analysis of Porcine-Derived Collagen Membrane and Matrix. MATERIALS 2020; 13:ma13225187. [PMID: 33212864 PMCID: PMC7698422 DOI: 10.3390/ma13225187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Collagen membranes and matrices being widely used in guided bone regeneration and soft tissue augmentation have characteristic properties based on their composition. The respective proteomic signatures have not been identified. Here, we performed a high-resolution shotgun proteomic analysis on two porcine collagen-based biomaterials designed for guided bone regeneration and soft tissue augmentation. Three lots each of a porcine-derived collagen membrane and a matrix derived from peritoneum and/or skin were digested and separated by nano-reverse-phase high-performance liquid chromatography. The peptides were subjected to mass spectrometric detection and analysis. A total of 37 proteins identified by two peptides were present in all collagen membranes and matrices, with 11 and 16 proteins being exclusively present in the membrane and matrix, respectively. The common extracellular matrix proteins include fibrillar collagens (COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL5A3, COL11A2), non-fibrillar collagens (COL4A2, COL6A1, COL6A2, COL6A3, COL7A1, COL16A1, COL22A1), and leucine-rich repeat proteoglycans (DCN, LUM, BGN, PRELP, OGN). The structural proteins vimentin, actin-based microfilaments (ACTB), annexins (ANXA1, ANXA5), tubulins (TUBA1B, TUBB), and histones (H2A, H2B, H4) were also identified. Examples of membrane-only proteins are COL12A1 and COL14A1, and, of matrix only proteins, elastin (ELN). The proteomic signature thus revealed the similarities between but also some individual proteins of collagen membrane and matrix.
Collapse
Affiliation(s)
- Jung-Seok Lee
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (J.-S.L.); (L.P.)
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul 03722, Korea
| | - Goran Mitulović
- Proteomics Core Facility, Clinical Institute of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (J.-S.L.); (L.P.)
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (J.-S.L.); (L.P.)
- Proteomics Core Facility, Clinical Institute of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
29
|
Cheng G, Guo S, Wang N, Xiao S, Jiang B, Ding Y. A novel lamellar structural biomaterial and its effect on bone regeneration. RSC Adv 2020; 10:39072-39079. [PMID: 35518390 PMCID: PMC9057690 DOI: 10.1039/d0ra05760f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
To evaluate a novel lamellar structural biomaterial as a potential biomaterial for guided bone regeneration, we describe the preparation of a collagen membrane with high mechanical strength and anti-enzyme degradation ability by using the multi-level structure of Ctenopharyngodon idella scales. The physical and chemical properties, in vitro degradation, biocompatibility, and in vivo osteogenic activity were preliminarily evaluated. In conclusion, it was shown that the multi-layered collagen structure material had sufficient mechanical properties, biocompatibility, and osteogenic ability. Meanwhile, it is also shown that there is a gap in current clinical needs, between the guided tissue regeneration membrane and the one being used. Therefore, this study provides useful insights into the efforts being made to design and adjust the microstructure to balance its mechanical properties, degradation rate, and osteogenic activity. To evaluate a novel lamellar structural biomaterial for guided bone regeneration, we describe the preparation of a collagen membrane with high mechanical strength and anti-enzyme degradation ability using Ctenopharyngodon idella scales.![]()
Collapse
Affiliation(s)
- Guoping Cheng
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Shujuan Guo
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Ningxin Wang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610065 P. R. China +86-28-85412848 +86-28-85415977
| | - Shimeng Xiao
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610065 P. R. China +86-28-85412848 +86-28-85415977
| | - Yi Ding
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
30
|
Coradin T, Wang K, Law T, Trichet L. Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels 2020; 6:E36. [PMID: 33092154 PMCID: PMC7709698 DOI: 10.3390/gels6040036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type I collagen and fibrin are two essential proteins in tissue regeneration and have been widely used for the design of biomaterials. While they both form hydrogels via fibrillogenesis, they have distinct biochemical features, structural properties and biological functions which make their combination of high interest. A number of protocols to obtain such mixed gels have been described in the literature that differ in the sequence of mixing/addition of the various reagents. Experimental and modelling studies have suggested that such co-gels consist of an interpenetrated structure where the two proteins networks have local interactions only. Evidences have been accumulated that immobilized cells respond not only to the overall structure of the co-gels but can also exhibit responses specific to each of the proteins. Among the many biomedical applications of such type I collagen-fibrin mixed gels, those requiring the co-culture of two cell types with distinct affinity for these proteins, such as vascularization of tissue engineering constructs, appear particularly promising.
Collapse
Affiliation(s)
- Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France; (K.W.); (T.L.); (L.T.)
| | | | | | | |
Collapse
|
31
|
Miron RJ, Moraschini V, Del Fabbro M, Piattelli A, Fujioka-Kobayashi M, Zhang Y, Saulacic N, Schaller B, Kawase T, Cosgarea R, Jepsen S, Tuttle D, Bishara M, Canullo L, Eliezer M, Stavropoulos A, Shirakata Y, Stähli A, Gruber R, Lucaciu O, Aroca S, Deppe H, Wang HL, Sculean A. Use of platelet-rich fibrin for the treatment of gingival recessions: a systematic review and meta-analysis. Clin Oral Investig 2020; 24:2543-2557. [PMID: 32591868 DOI: 10.1007/s00784-020-03400-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis was to compare the use of platelet-rich fibrin (PRF) with other commonly utilized treatment modalities for root coverage procedures. MATERIALS AND METHODS The eligibility criteria comprised randomized controlled trials (RCTs) comparing the performance of PRF with that of other modalities in the treatment of Miller class I or II (Cairo RT I) gingival recessions. Studies were classified into 5 categories as follows: (1) coronally advanced flap (CAF) alone vs CAF/PRF, (2) CAF/connective tissue graft (CAF/CTG) vs CAF/PRF, (3) CAF/enamel matrix derivative (CAF/EMD) vs CAF/PRF, (4) CAF/amnion membrane (CAF/AM) vs CAF/PRF, and (5) CAF/CTG vs CAF/CTG/PRF. Studies were evaluated for percentage of relative root coverage (rRC; primary outcome), clinical attachment level (CAL), keratinized mucosa width (KMW), and probing depth (PD) (secondary outcomes). RESULTS From 976 articles identified, 17 RCTs were included. The use of PRF statistically significantly increased rRC and CAL compared with CAF alone. No change in KMW or reduction in PD was reported. Compared with PRF, CTG resulted in statistically significantly better KMW and RC. No statistically significant differences were reported between the CAF/PRF and CAF/EMD groups or between the CAF/PRF and CAF/AM groups for any of the investigated parameters. CONCLUSIONS The use of CAF/PRF improved rRC and CAL compared with the use of CAF alone. While similar outcomes were observed between CAF/PRF and CAF/CTG for CAL and PD change, the latter group led to statistically significantly better outcomes in terms of rRC and KTW. In summary, the use of PRF in conjunction with CAF may represent a valid treatment modality for gingival recessions exhibiting adequate baseline KMW. CLINICAL RELEVANCE The data indicate that the use of PRF in conjunction with CAF statistically significantly improves rRC when compared with CAF alone but did not improve KMW. Therefore, in cases with limited baseline KMW, the use of CTG may be preferred over PRF.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland.
| | - Vittorio Moraschini
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Catholic University of San Antonio de Murcia (UCAM), Murcia, Spain.,Villaserena Foundation for Research, Città Sant'Angelo, PE, Italy
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, University of Bern, Bern, Switzerland
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Raluca Cosgarea
- Department of Prosthetic Dentistry, University Iuliu Hatieganu, Cluj-Napoca, Romania.,Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Soren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Delia Tuttle
- Canyon Lake Dental Office, Lake Elsinore, CA, USA
| | - Mark Bishara
- West Bowmanville Family Dental, Bowmanville, Ontario, Canada
| | | | - Meizi Eliezer
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Alexandra Stähli
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, University of Vienna, Vienna, Austria
| | - Ondine Lucaciu
- Department of Prosthetic Dentistry, University Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Sofia Aroca
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Herbert Deppe
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der TUM, Munich, Germany
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Udeabor SE, Herrera-Vizcaíno C, Sader R, Kirkpatrick CJ, Al-Maawi S, Ghanaati S. Characterization of the Cellular Reaction to a Collagen-Based Matrix: An In Vivo Histological and Histomorphometrical Analysis. MATERIALS 2020; 13:ma13122730. [PMID: 32560130 PMCID: PMC7344884 DOI: 10.3390/ma13122730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Abstract
The permeability and inflammatory tissue reaction to Mucomaix® matrix (MM), a non- cross-linked collagen-based matrix was evaluated in both ex vivo and in vivo settings. Liquid platelet rich fibrin (PRF), a blood concentrate system, was used to assess its capacity to absorb human proteins and interact with blood cells ex vivo. In the in vivo aspect, 12 Wister rats had MM implanted subcutaneously, whereas another 12 rats (control) were sham-operated without biomaterial implantation. On days 3, 15 and 30, explantation was completed (four rats per time-point) to evaluate the tissue reactions to the matrix. Data collected were statistically analyzed using analysis of variance (ANOVA) and Tukey multiple comparisons tests (GraphPad Prism 8). The matrix absorbed the liquid PRF in the ex vivo study. Day 3 post-implantation revealed mild tissue inflammatory reaction with presence of mononuclear cells in the implantation site and on the biomaterial surface (mostly CD68-positive macrophages). The control group at this stage had more mononuclear cells than the test group. From day 15, multinucleated giant cells (MNGCs) were seen in the implantation site and the outer third of the matrix with marked increase on day 30 and spread to the matrix core. The presence of these CD68-positive MNGCs was associated with significant matrix vascularization. The matrix degraded significantly over the study period, but its core was still visible as of day 30 post-implantation. The high permeability and fast degradation properties of MM were highlighted.
Collapse
Affiliation(s)
- Samuel Ebele Udeabor
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia
| | - Carlos Herrera-Vizcaíno
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - C. James Kirkpatrick
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Sarah Al-Maawi
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
- Correspondence: ; Tel.: +49-69-6301-4492
| |
Collapse
|
33
|
Modification of collagen-based sponges can induce an upshift of the early inflammatory response and a chronic inflammatory reaction led by M1 macrophages: an in vivo study. Clin Oral Investig 2020; 24:3485-3500. [PMID: 32065310 DOI: 10.1007/s00784-020-03219-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The present study evaluated the cellular tissue reaction of two equine-derived collagen hemostatic sponges (E-CHS), which differed in thickness after pressing, over 30 days in vivo. The inflammatory response during physiological wound healing in sham-operated animals was used as control group. MATERIAL AND METHODS First, the E-CHS was pressed by applying constant pressure (6.47 ± 0.85 N) for 2 min using a sterile stainless-steel cylinder until the material was uniformly flattened. Consequently, the original (E-CHS), the pressed (P-E-CHS), as well as the control group (CG; sham operation) were studied independently. The 3 groups were evaluated in vivo after subcutaneous implantation in Wistar rats during 3, 15, and 30 days. Histochemical and immunohistochemical methods provided observations of biomaterial degradation rate, cellular inflammatory response, and vascularization pattern. A derivative of human blood known as platelet-rich fibrin (PRF) was used as an ex vivo model to simulate the initial biomaterial-cell interaction. Segments of E-CHS and P-E-CHS were cultivated for 3 and 6 days with PRF, and the release of pro-inflammatory proteins was measured using ELISA. PRF cultivated alone was used as a control group. RESULTS At day 3, the CG induced a statistically significant higher presence of monocytes/macrophages (CD68+), pro-inflammatory macrophages (M1; CCR7+), and pro-wound healing macrophages (M2; CD206+) compared to E-CHS and P-E-CHS. At the same time point, P-E-CHS induced a statistically significant higher presence of CD68+ cells compared to E-CHS. After 15 days, E-CHS was invaded by cells and vessels and showed a faster disintegration rate compared to P-E-CHS. On the contrary, cells and vessels were located only in the outer region of P-E-CHS and the biomaterial did not lose its structure and accordingly did not undergo disintegration. The experimental groups induced similar inflammatory reaction primarily with positive pro-inflammatory CD68+/CCR7+ macrophages and a low presence of multinucleated giant cells (MNGCs). At this time point, significantly lower CD68+/CCR7+ macrophages and no MNGCs were detected within the CG when compared to the experimental groups (P < 0.05). After 30 days, E-CHS and P-E-CHS were fully degraded. All groups showed similar inflammatory reaction shifted to a higher presence CD206+ macrophages. A low number of CCR7+ MNGCs were still observable in the implantation bed of both experimental groups. In the ex vivo model, the cells and fibrin from PRF penetrated E-CHS. However, in the case of P-E-CHS, the cells and fibrin stayed on the surface and did not penetrate towards materials central regions. The cultivation of P-E-CHS with PRF induced a statically significant higher release of pro-inflammatory proteins compared to the CG and E-CHS after 3 days. CONCLUSION Altering the original presentation of a hemostatic sponge biomaterial by pressing modified the initial biomaterial-cell interaction, delayed the early biomaterial's degradation rate, and altered the vascularization pattern. A pressed biomaterial seems to induce a higher inflammatory reaction at early time points. However, altering the biomaterial did not modify the polarization pattern of macrophages compared to physiologic wound healing. The ex vivo model using PRF was shown to be an effective model to simulate the initial biomaterial-cell interaction in vivo. CLINICAL RELEVANCE A pressed hemostatic sponge could be applied for guided tissue regeneration and guided bone regeneration. In that sense, within the limitations of this study, the results show that the same biomaterial may have two specific clinical indications.
Collapse
|