1
|
Fasakin OW, Awosika A, Ogunsanya ST, Benson IO, Olopoda AI. Anti-hypertensive effect of enriched white melon seed protein concentrate biscuit on sodium fluoride exposed rats. World J Exp Med 2025; 15:105798. [DOI: 10.5493/wjem.v15.i2.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Sodium fluoride (NaF) is a daily necessity consumed as the major ingredient of fluorinated drinking water, milk, salts, mouthwashes, toothpaste, and dentistry medications. However, the use of NaF products has also been associated with increased fluoride anion distribution in the body, leading to hypertension.
AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate (WSP) biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.
METHODS Forty-two (42) male Wistar albino rats were assigned at random into 7 groups of 6 rats per group (control group and six experimental groups). The experimental groups received various treatments that lasted for two weeks. Twenty-four hours after the last administration, hemodynamic parameters were evaluated, rats were sacrificed, blood samples were collected, and the heart was harvested. Blood serum was assessed for cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH). At the same time, the heart homogenate was assayed for angiotensin-1 converting enzyme (ACE) activity, proinflammatory cytokines, nitric oxide concentrations, and antioxidant status. Cardiac tissues were stained with Hematoxylin and Eosin, Masson’s Trichrome, and cTnI. Also, the safety of the WSP biscuit diet was evaluated.
RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues, activities of ACE, and concentrations of cTnI, CK-MB, LDH, tumor necrosis factor-alpha, and interleukin 1 beta, while there was a reduction in the concentration of nitric oxide and antioxidants; however, their alterations were significantly prevented in WSP-biscuit-fed rats. The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10% and 20% inclusion.
CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.
Collapse
Affiliation(s)
- Olamide Wilson Fasakin
- Department of Biomedical Technology, Federal University of Technology, Akure 234034, Nigeria
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, Peoria, IL 61601, United States
| | | | | | - Akinyode Isaac Olopoda
- Department of Biochemistry, Federal University of Technology, Akure 234034, Ondo, Nigeria
| |
Collapse
|
2
|
Mukherjee S, Islam S, Sarkar O, Chattopadhyay A. Oxidative Stress in Kidney of Zebrafish due to Individual and Combined Exposure to Amoxicillin, Arsenic, and Fluoride: Involving Nrf2-Keap1-ARE Pathway. J Appl Toxicol 2025; 45:964-975. [PMID: 39910692 DOI: 10.1002/jat.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Toxic manifestations of different antibiotics and metal compounds have been studied comprehensively in the last decades; however, their co-toxicity on aquatic organisms is poorly investigated. This study aimed to evaluate the oxidative stress imposed on zebrafish kidney tissue when exposed to amoxicillin (AMX, 10 μg/L) alone or in combination with 50 μg/L of As2O3 (equivalent to 37.87 μg/L of As) and/or 15 mg/L of NaF (equivalent to 6.8 mg/L of F) for 15 days. We observed increased levels of cellular ROS, MDA, and GSH along with increased activity of CAT enzyme in all the treated groups. Disrupted histoarchitecture, including degeneration of tubular cells, vacuolation, and necrotic spots, was indicative of oxidative damage. mRNA expression of stress responsive genes like nrf2, gpx1, hsp70, keap1, nqo1, cat, and ho1 corroborated the data. Translocation of Nrf2 from cytoplasm to nucleus and its subsequent expression was higher for all the treated groups. Moreover, the mixture effects of AMX + As + F were more severe than the other combinations, while unique exposure with AMX had minimum effects. Highlighting the involvement of the Nrf2-Keap1-ARE pathway, these findings make us aware of the synergistic response of AMX, As, and F in the ecosystem, putting forward a great threat to humankind.
Collapse
Affiliation(s)
- Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Ansuman Chattopadhyay
- Toxicology and Cancer Biology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| |
Collapse
|
3
|
El-Houseiny W, Basher AW, Mahmoud YK, Bayoumi Y, Abdel-Warith AWA, Younis EM, Davies SJ, Arisha AH, Abd-Elhakim YM, Assayed MEM. Mitigation of sodium fluoride-induced growth inhibition, immunosuppression, hepatorenal damage, and dysregulation of oxidative stress, apoptosis, and inflammation-related genes by dietary artichoke (Cynara scolymus) leaf extract in Oreochromis niloticus. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111068. [PMID: 39736455 DOI: 10.1016/j.cbpb.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.1 mg/L waterborne FLR, and a group receiving both CSLE and FLR. Fish exposed to FLR exhibited slower growth rates and poorer feed conversion compared to the control group. They also displayed signs of anemia, leukopenia, and elevated serum levels of renal injury indicators and liver enzymes. Consistent with a decrease in both non-enzymatic and enzymatic antioxidants, higher levels of hepatic lipid peroxidation products were observed. Exposure to FLR resulted in decreased serum lysozyme activity, nitric oxide, complement 3, IgM, total protein, globulin, and albumin levels. FLR induced multiple pathological perturbations in the spleen, liver, and kidneys, and increased the mRNA expression of splenic tumor necrosis factor-alpha, heat shock protein 70, interleukin-1 beta, tumor protein p53, and cysteine-aspartic acid protease 3 while reducing superoxide dismutase and catalase gene expression. However, the majority of FLR adverse effects were significantly reduced by adding 300 mg CSLE/ kg diet. Adding CSLE to O. niloticus' diet may reduce FLR's negative effects, making it a beneficial aquafeed.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Asmaa W Basher
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasmin Bayoumi
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Ezzat M Assayed
- Department of Forensic Medicine & Toxicology, College of Veterinary Medicine, University of Sadat City, Sadat city, Egypt
| |
Collapse
|
4
|
Elahwl EA, Assar DH, Al-Hawary II, Salah AS, Ragab AE, Elsheshtawy A, Assas M, Abo-Al-Ela HG, Fouad AM, Elbialy ZI. Alleviation of glyphosate-induced toxicity by Horseradish tree (Moringa oleifera) Leaf extract and phytase in Nile Tilapia (Oreochromis niloticus) highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. Vet Res Commun 2025; 49:135. [PMID: 40063176 PMCID: PMC11893658 DOI: 10.1007/s11259-025-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
The danger posed by waterborne toxicity from herbicides endangers the aquatic ecosystem. Using dietary medicinal herbs is a useful approach to mitigate the effects of herbicide toxicity on aquatic animals. This study attempts to examine the consequences and potential mechanisms behind the dietary addition of horseradish tree (Moringa oleifera) leaf extract (MOLE) with the help of phytase addition to check the overall growth performance, biochemical changes, histological alteration, and gene expression in normal and after glyphosate challenge in Nile tilapia. A total number of 135 Nile tilapia fish (7.93 ± 0.03 g) were randomly assigned into three groups each in triplicate. The first group is the control group and fed basal diet; the second group supplied with MOLE (200 mg of extract/kg), and the third group was supplied with MOLE (200 mg /kg), and phytase (0.2g/ kg) for 8 weeks. After the feeding trial, each experimental group was divided into two subgroups to be unchallenged and challenged with glyphosate (30 mg/L of water). The results declared significant enhancements (P < 0.05) in Weight Gain Percent (WG%), Specific growth rate (SGR), and Protein efficiency ratio (PER) and reducing feed conversion ratio (FCR) with up-regulating hepatic gh, igf1,myogenine, intestinal ghrelin and NPY in fish groups fed MOLE and phytase compared with the control group. Moreover, improving the hepatic antioxidant capacity while down-regulating hepatic igf1bp, myostatin. Interstingly, MOLE and phytase lightened glyphosate-induced biochemical alterations, antioxidants, apoptosis, and inflammation-associated genes compared to the glyphosate-challenged group. Interestingly, UPLC-ESI-MS/MS analysis recognized 16 compounds encompasing two glucosinolates, three flavonoids, one phenolic and three alkaloids in addition to four fatty acids, a terpenoid, one phytate and an aromatic glycoside. These components might be accountable for the potential effects exerted by MOLE. Therefore, the current study suggests that dietary supplementation to MOLE and phytase can be used as substitute feed supplements in sustainable farming of Nile tilapia to defend against glyphosate challenges and enhance growth, antioxidant capacity, exerting anti-inflammatory and antiapoptotic effects under normal health conditions or post glyphosate challenge.
Collapse
Affiliation(s)
- Esraa A Elahwl
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ibrahim I Al-Hawary
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, 32527, Egypt
| | - Ahmed Elsheshtawy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Mona Assas
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Haitham G Abo-Al-Ela
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt
| | - Alamira Marzouk Fouad
- Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Zizy I Elbialy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
5
|
Panda PP, Kumar P, Mallick BC, Kumar N, Ghoshal TK. Effects of Moringa oleifera seed extract on growth and immunophysiology of whisker catfish (Mystus gulio) fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:44. [PMID: 39920479 DOI: 10.1007/s10695-025-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
In aquaculture, phytobiotics are used as growth promoters, immunomodulators, antioxidants, and stress mitigators in several fish species. Herein, we assess the impact of Moringa oleifera seeds petroleum ether extracts (MSE) on growth, hematological, and biochemical responses in whisker catfish (Mystus gulio). A total of 120 M. gulio fingerlings (mean weight 2.09 ± 0.16 g) were randomly distributed in four different experimental groups. Fish were fed to satiation with the experimental diets [T1 (control, 0% MSE), T2 (0.05% MSE), T3 (0.10% MSE), and T4 (0.15% MSE)] for 60 days. Results demonstrated that fingerlings fed with 0.05 and 0.10% MSE-supplemented diet significantly enhanced weight gain, specific growth rate, protein efficiency ratio, hemato-immunological indices (erythrocyte count, leucocyte count, hemoglobin, globulin, serum protein, and respiratory burst activity) and survival compared to other groups (P < 0.05). However, at the higher dose of MSE (0.15%), a significant reduction in the above parameters was observed (P < 0.05). Feeding MSE at 0.05 and 0.10% significantly minimizes the stress responses (blood glucose, cortisol, and catalase). Dose-dependent reduction in serum cholesterol and high-density lipid and an increase in triglyceride were recorded (P < 0.05). Histopathological observation of liver tissue showed congestion of hepatic vein at 0.15% MSE supplementation. Overall, the study suggests that the dietary supplementation of MSE up to 0.10% improves growth, biochemical, and innate immune response in M. gulio fingerlings.
Collapse
Affiliation(s)
- Prangya Parimita Panda
- Ravenshaw University, Odhisa, Cuttack, 753003, India
- ICAR-Central Institute of Brackishwater Aquaculture, Kakdwip Research Centre, South 24 Paraganas, Kakdwip, Kolkata, 743347, India
| | - Prem Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Kakdwip Research Centre, South 24 Paraganas, Kakdwip, Kolkata, 743347, India.
- ICAR-Central Institute of Fisheries Education, Off Yari Road, Versov, Andheri (W), PanchMarg, Mumbai-400061, India.
| | | | - Neeraj Kumar
- National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Tapas Kumar Ghoshal
- ICAR-Central Institute of Brackishwater Aquaculture, Kakdwip Research Centre, South 24 Paraganas, Kakdwip, Kolkata, 743347, India
| |
Collapse
|
6
|
Wurlina W, Mustofa I, Meles DK, Khairullah AR, Akintunde AO, Rachmawati K, Suwasanti N, Putra DMS, Mulyati S, Utama S, Khoiriyah U, Tyarraushananda Defvyanto BR, Heriana SF, Riwu KHP, Ahmad RZ, Riwu AG. Restoration of sperm quality in lead acetate-induced rats via treatment with Moringa oleifera leaf extract. Open Vet J 2025; 15:416-427. [PMID: 40092212 PMCID: PMC11910306 DOI: 10.5455/ovj.2024.v15.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Background Lead intoxication triggers testicular toxicity via oxidative stress. Aim This study aimed to explore the antioxidant potential of Moringa oleifera leaf extract (MOLE) in enhancing the semen quality of rats exposed to lead acetate. Methods Twenty-five healthy rats were randomly and equally divided into five groups. Group C served as the negative control, whereas group C+ was exposed to lead acetate at 50-mg/kg body weight (BW)/day without MOLE. The T1, T2, and T3 groups were exposed to lead acetate at 50-mg/kg BW and concurrently received MOLE at doses of 200-, 316-, and 500-mg/kg BW/day, respectively, for 20 days. On the 21st day, all rats were euthanized for blood collection and testicle harvesting. Results The result showed that exposure to lead acetate at 50-mg/kg BW/day in group C+ led to significant decreases (p < 0.05) in superoxide dismutase (SOD) levels, plasma membrane integrity, Leydig and Sertoli cell counts, spermatozoa numbers, sperm motility, and live spermatozoa, as well as significant increases (p < 0.05) in malondialdehyde levels and apoptotic and necrotic sperm, compared with control group C-. The administration of MOLE to rats exposed to lead acetate resulted in improvement in all of these variables. However, SOD and testosterone levels, as well as spermatozoa numbers, viability, apoptosis, and necrosis, did not recover in group T3 (p < 0.05) compared with control group C-. Conclusion MOLE effectively restores sperm quality in lead acetate-induced rats.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Kadek Rachmawati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ulul Khoiriyah
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sila Faredy Heriana
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Audrey Gracelia Riwu
- Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| |
Collapse
|
7
|
Wurlina W, Mustofa I, Meles DK, Khairullah AR, Akintunde AO, Rachmawati K, Suwasanti N, Putra DMS, Mulyati S, Utama S, Khoiriyah U, Tyarraushananda Defvyanto BR, Heriana SF, Riwu KHP, Ahmad RZ, Riwu AG. Restoration of sperm quality in lead acetate-induced rats via treatment with Moringa oleifera leaf extract. Open Vet J 2025; 15:416-427. [PMID: 40092212 PMCID: PMC11910306 DOI: 10.5455/ovj.2025.v15.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Background Lead intoxication triggers testicular toxicity via oxidative stress. Aim This study aimed to explore the antioxidant potential of Moringa oleifera leaf extract (MOLE) in enhancing the semen quality of rats exposed to lead acetate. Methods Twenty-five healthy rats were randomly and equally divided into five groups. Group C served as the negative control, whereas group C+ was exposed to lead acetate at 50-mg/kg body weight (BW)/day without MOLE. The T1, T2, and T3 groups were exposed to lead acetate at 50-mg/kg BW and concurrently received MOLE at doses of 200-, 316-, and 500-mg/kg BW/day, respectively, for 20 days. On the 21st day, all rats were euthanized for blood collection and testicle harvesting. Results The result showed that exposure to lead acetate at 50-mg/kg BW/day in group C+ led to significant decreases (p < 0.05) in superoxide dismutase (SOD) levels, plasma membrane integrity, Leydig and Sertoli cell counts, spermatozoa numbers, sperm motility, and live spermatozoa, as well as significant increases (p < 0.05) in malondialdehyde levels and apoptotic and necrotic sperm, compared with control group C-. The administration of MOLE to rats exposed to lead acetate resulted in improvement in all of these variables. However, SOD and testosterone levels, as well as spermatozoa numbers, viability, apoptosis, and necrosis, did not recover in group T3 (p < 0.05) compared with control group C-. Conclusion MOLE effectively restores sperm quality in lead acetate-induced rats.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Kadek Rachmawati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ulul Khoiriyah
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sila Faredy Heriana
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Audrey Gracelia Riwu
- Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| |
Collapse
|
8
|
Owumi SE, Oluwawibe BJ, Chimezie J, Babalola JJ, Ogunyemi OM, Gyebi GA, Otunla MT, Altayyar A, Arunsi UO, Irozuru CE, Owoeye OO. An in vivo and in silico probing of the protective potential of betaine against sodium fluoride-induced neurotoxicity. BMC Pharmacol Toxicol 2024; 25:87. [PMID: 39548593 PMCID: PMC11568634 DOI: 10.1186/s40360-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Excessive fluoride exposure beyond the tolerable limit may adversely impacts brain functionality. Betaine (BET), a trimethyl glycine, possesses antioxidant, anti-inflammatory and anti-apoptotic functions, although the underlying mechanisms of the role of BET on fluoride-induced neurotoxicity remain unelucidated. To assess the mechanism involved in the neuro-restorative role of BET on behavioural, neurochemical, and histological changes, we employed a rat model of sodium fluoride (NaF) exposure. Animals were treated with NaF (9 mg/kg) body weight (bw) only or co-treated with BET (50 and 100 mg/kg bw) orally uninterrupted for 28 days. We obtained behavioural phenotypes in an open field, performed negative geotaxis, and a forelimb grip test, followed by oxido-inflammatory, apoptotic, and histological assessment. Behavioural endpoints indicated lessened locomotive and motor and heightened anxiety-like performance and upregulated oxidative, inflammatory, and apoptotic biomarkers in NaF-exposed rats. Co-treatment with BET significantly enhanced locomotive, motor, and anxiolytic performance, increased the antioxidant signalling mechanisms and demurred oxidative, inflammatory, and apoptotic biomarkers and histoarchitectural damage in the cerebrum and cerebellum cortices mediated by NaF. The in-silico analysis suggests that multiple hydrogen bonds and hydrophobic interactions of BET with critical amino acid residues, including arginine (ARG380 and ARG415) in the Keap1 Kelch domain, which may disrupt Keap1-Nrf2 complex and activate Nrf2. This may account for the observed increased in the Nrf2 levels, elevated antioxidant response and enhanced anti-inflammatory response. The BET-Keap1 complex was also observed to exhibit structural stability and conformational flexibility in solvated biomolecular systems, as indicated by the thermodynamic parameters computed from the trajectories obtained from a 100 ns full atomistic molecular dynamics simulation. Therefore, BET mediates neuroprotection against NaF-induced cerebro-cerebellar damage through rats' antioxidant, anti-inflammatory, and anti-apoptotic activity, which molecular interactions with Keap1-Nrf2 may drive.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Joseph Chimezie
- Endocrine and Metabolic Research Laboratory, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Jesutosin J Babalola
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Nasarawa, Nigeria
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Ahmad Altayyar
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Uche O Arunsi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chioma E Irozuru
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Olatunde O Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Elmalawany AM, Osman GY, Mohamed AH, Khalaf FM, Yassien RI. Schistosomicidal Effects of Moringa oleifera Seed Oil Extract on Schistosoma mansoni-Infected Mice. Parasite Immunol 2024; 46:e13070. [PMID: 39494757 DOI: 10.1111/pim.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis causes severe hepatic fibrosis, making it a global health issue. Moringa oleifera seed oil extract, which had antiparasitic, anti-inflammatory and antioxidant effects, was investigated as an alternative treatment. The 50 mice were divided into control, infected, praziquantel-treated, M. oleifera seed oil extract-treated and combined treatment groups. These treatments were examined for their effects on egg granulomas, hepatic enzymes, total protein, albumin, antioxidant enzymes and pro-inflammatory cytokines. M. oleifera seed oil and/or PZQ significantly reduced egg numbers, granuloma size and liver histopathology. M. oleifera seed oil reduced hepatic enzyme activity, increased total protein and albumin, and increased antioxidant enzyme activity while decreasing malondialdehyde. M. oleifera seed oil reduced the levels of pro-inflammatory cytokines. M. oleifera seed oil may treat schistosomiasis instead of PZQ due to its antifibrotic, immunomodulatory and schistosomicidal properties.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Fatema M Khalaf
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Rania I Yassien
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
10
|
Basry DM, Mansour S, H Sayed AED. Dietary Moringa oleifera mitigates Fluconazole-Induced immunological and spleen-histological alterations in Catfish (Clarias gariepinus). BMC Vet Res 2024; 20:325. [PMID: 39026256 PMCID: PMC11256558 DOI: 10.1186/s12917-024-04173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Fluconazole (FCZ), an antifungal from the azole family, causes several detrimental effects in fish. In recent times, there has been a notable surge in interest regarding the utilization of Moringa oleifera (Mo) as a dietary antioxidant. This research aimed to evaluate the potential protective effects of dietary Moringa oleifera (MO) against the adverse impacts of fluconazole in the African catfish (Clarias gariepinus). The fish were allocated into four groups as follows: a control group fed a basal diet, an FCZ - exposed (200 ng/L) fed basal diet, 1% MO fed through basal diet, and an FCZ-exposed (200 ng/L) and 1% MO fed through basal diet fed group. The results showed that FCZ exposure decreased superoxide dismutase, total antioxidant capacity, and acetylcholine esterase levels. On the other hand, FCZ exposure increased malonaldehyde and cortisol levels as compared to control (P < 0.05). FCZ caused immunosuppressive effects in C. gariepinus as revealed by lower immunity indices (lysozyme and phagocytic activity and immunoglobulin level) and increased cytokine levels (IL-6 IL-1β). Histological examination of the spleen from fish exposed to FCZ showed several splenic changes. We conclude that dietary MO supplementation has the potential to alleviate the oxidative stress, restore immune response balance, and mitigate histological damage induced by FCZ exposure, thus positioning MO as an immunostimulant in C. gariepinus when administered alongside FCZ.
Collapse
Affiliation(s)
- Doaa M Basry
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Salwa Mansour
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
11
|
Alqahtani LS, Alosaimi ME, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Khamis T, Noreldin AE, El-Far AH, Alotaibi BS, Hakami MA, Dahran N, Babteen NA. Acrylamide-targeting renal miR-21a-5p/Fibrotic and miR122-5p/ inflammatory signaling pathways and the role of a green approach for nano-zinc detected via in silico and in vivo approaches. Front Pharmacol 2024; 15:1413844. [PMID: 39086388 PMCID: PMC11289894 DOI: 10.3389/fphar.2024.1413844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.
Collapse
Affiliation(s)
- Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Wang X, Zhu H, Chen B, Zhang Y, Kok A, van Knegsel A, Zhang S, Pang X, Jiang S, Kemp B, Lu J, Lv J. Effects of endogenous DHA milk and exogenous DHA milk on oxidative stress and cognition in SAMP8 mice. Biomed Pharmacother 2024; 174:116467. [PMID: 38531120 DOI: 10.1016/j.biopha.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, Senescence Accelerated Mice (SAMP8) were supplemented with exogenous DHA milk, endogenous DHA milk, normal milk, or 0.9 % saline solution. Enzyme-linked immunosorbent assay (ELISA), gas chromatography (GC), ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI MS/MS), and Morris water maze were used to characterize the effects of diet on oxidative stress and cognition in SAMP8 mice. Supplementation endogenous DHA milk or exogenous DHA milk can enhance the antioxidant capacity of mice organs. Endogenous DHA milk increased the superoxide dismutase (SOD) activity of mice brain and serum than normal milk and 0.9 % saline solution (P ≤ 0.05), as well as increased SOD activity of mice liver and glutathione peroxidase (GSH-Px) activity of mice brain than normal milk (P ≤ 0.05). Exogenous DHA milk increased SOD activity of mice brain than normal milk and 0.9 % saline solution, as well as increased SOD activity of mice serum than 0.9 % saline solution (P ≤ 0.05). Several polar lipid relative content, such as 18:0/18:2 PS, 17:0 Ceramide, and 20:4 LPC in mice brain was affected by dietary supplementation with DHA-containing milk. Lipid oxidation metabolites in mice brain were not affected by DHA-containing milk. Endogenous DHA milk increased the number of platform location crossing times of mice in the Morris water maze test, compared with Exogenous DHA milk, normal milk, and 0.9 % saline solution (P ≤ 0.05).
Collapse
Affiliation(s)
- Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baorong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yumeng Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Akke Kok
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Ariette van Knegsel
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Jing Lu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-Methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2024; 202:2314-2326. [PMID: 37682395 DOI: 10.1007/s12011-023-03837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine (Se-Met) for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
14
|
Khalid S, Arshad M, Raza K, Mahmood S, Siddique F, Aziz N, Khan S, Khalid W, AL‐Farga A, Aqlan F. Assessment of hepatoprotective, nephroprotective efficacy, and antioxidative potential of Moringa oleifera leaf powder and ethanolic extract against PCOS-induced female albino mice ( Mus Musculus). Food Sci Nutr 2023; 11:7206-7217. [PMID: 37970416 PMCID: PMC10630814 DOI: 10.1002/fsn3.3646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Moringa oleifera is a medicinal plant that has anti-inflammatory, antihypertensive, antidiabetic, tissue-protective, and antioxidant activities. Here, we evaluated the protective effect of M. oleifera leaf powder (MoLP) and 70% ethanol M. oleifera leaf extract (MoLE) on mitigating polycystic ovary syndrome (PCOS)-induced liver and kidney dysfunction via regulating oxidative stress in female albino mice (Mus musculus). The efficacy of M. oleifera was compared with metformin (standard medicine used to treat infertility in women). PCOS was induced by intramuscular injection of testosterone enanthate at 1.0 mg/100 g BW for 35 days. PCOS-induced mice were treated with MoLP (250 and 500 mg/Kg), MoLE (250 and 500 mg/kg), and metformin (250 mg/kg) orally for 14 days. Renal function test (RFT), liver function test (LFT), and oxidative stress biomarker malondialdehyde (MDA) were quantified in serum at 0, 7, and 14 days of intervention. Mice treated with M. oleifera and metformin showed a significant decrease (p < .001) in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), total bilirubin, urea, creatinine, and a significant increase (p < .001) in total protein, albumin, globulin, and albumin/globulin (A/G) ratio. Oxidative stress decreased significantly (p = .00) with respect to treatments, exposure days, and their interaction in metformin and all M. oleifera-treated groups. M. oleifera leaf powder and extract reduce oxidative stress and enhance nephron-hepatic activity in PCOS-induced female albino mice.
Collapse
Affiliation(s)
| | | | - Komal Raza
- Liver CenterDistrict Headquarter HospitalFaisalabadPakistan
| | - Shahid Mahmood
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Farzana Siddique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Nida Aziz
- Department of ZoologyUniversity of SargodhaSargodhaPakistan
| | - Sarfraz Khan
- Department of ChemistryAir Base CollegeSargodhaPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| |
Collapse
|
15
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2023:10.1007/s12011-023-03853-3. [PMID: 37728845 DOI: 10.1007/s12011-023-03853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
16
|
Reda RM, Helmy RMA, Osman A, Ahmed FAG, Kotb GAM, El-Fattah AHA. The potential effect of Moringa oleifera ethanolic leaf extract against oxidative stress, immune response disruption induced by abamectin exposure in Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58569-58587. [PMID: 36988803 PMCID: PMC10163106 DOI: 10.1007/s11356-023-26517-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 05/08/2023]
Abstract
Abamectin (ABM), a naturally fermented product of Streptomyces avermitilis, is applied to pest control in livestock and agriculture fields. The aim of the current study is to evaluate the protective effects of Moringa oleifera leaf ethanolic extract (MOE) on biochemical changes including oxidative stress indices, immune response marker, lipid profiles as well as mRNA expression of immune related genes, and abamectin (ABM, 5% EC) residue levels in Nile tilapia (Oreochromis niloticus) exposed to a sub-lethal concentration (0.5 µg/l) for 28 days. Disturbance in liver and kidney biomarkers was markedly increased in ABM-exposed fish compared to the control group. Malondialdehyde levels in the liver and brain tissues, as well as the activities of glutathione-s-transferase, superoxide dismutase, and glutathione peroxides, all increased significantly in ABM group. Additionally, ABM exposure increased the levels of interleukin 10 beta and growth factor gene expression. On the other hand, fish exposed to ABM had significantly lower serum alkaline phosphatase, creatinine, high-density lipoprotein, glutathione peroxides in brain, glutathione in liver and brain tissues, lysozyme activity, nitric oxide, immunoglobulin M, tumor necrosis factor, and interleukin 1 beta as compared to the control group. The recorded detrimental effects of ABM on tilapia have been overcome by the addition of MOE to the diet (1%) and ameliorating hepato-renal damage and enhancing antioxidant activity, innate immune responses, and upregulating the anti-inflammatory gene expression. Therefore, it could be concluded that MOE dietary supplementation at 1% could be used to counteract the oxidative stress, immune response disruption induced by abamectin exposure in Oreochromis niloticus, and reduce its accumulation in fish tissues.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt.
| | - Rania M A Helmy
- Pesticides Residue and Environmental Pollution Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| | - Farag A Gh Ahmed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| | - Gamila A M Kotb
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, P.O. Box 12618, Giza, Egypt
| | - Amir H Abd El-Fattah
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
17
|
Mahmoud HK, Farag MR, Reda FM, Alagawany M, Abdel-Latif HMR. Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci Rep 2022; 12:21748. [PMID: 36526884 PMCID: PMC9758223 DOI: 10.1038/s41598-022-25611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg-1 of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L-1 for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.
Collapse
Affiliation(s)
- Hemat K. Mahmoud
- grid.31451.320000 0001 2158 2757Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mayada R. Farag
- grid.31451.320000 0001 2158 2757Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511 Egypt
| | - Fayiz M. Reda
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mahmoud Alagawany
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Hany M. R. Abdel-Latif
- grid.7155.60000 0001 2260 6941Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Wu Y, Zhang X, Chen J, Cao J, Feng C, Luo Y, Lin Y. Self-recovery study of fluoride-induced ferroptosis in the liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106275. [PMID: 36007351 DOI: 10.1016/j.aquatox.2022.106275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.
Collapse
Affiliation(s)
- Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiuling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| |
Collapse
|
19
|
Radwan M, Abbas MMM, Afifi MAM, Mohammadein A, Al Malki JS. Fish Parasites and Heavy Metals Relationship in Wild and Cultivated Fish as Potential Health Risk Assessment in Egypt. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.890039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Despite wide studies of biomonitoring aquatic environment through dynamics of host–parasite interaction, bio-indicators to track the influence and accumulation of heavy metals on fish are still few. The present study sheds light on the relation between fish parasites and heavy metals as it threatens fish’s health and, as a consequence, that of humans after fish consumption. Samples of Nile tilapia (Oreochromis niloticus) were collected in Burullus Lake, a wild fish source, and from a private fish farm in Kafr El-Sheikh Governorate, in Egypt. They were exposed to various pollutants associated with anthropogenic activities to determine the levels of accumulation of Fe, Zn, and Cu, along with the top three most toxic metals (As, Cd, and Pb) in water and fish tissues of gills, intestine, liver, and muscles in both wild and farmedO. niloticus. The results showed the order of abundance: Fe < Zn < Pb < Cu < As < Cd. In waters of both farmed and wild fish, there was a significant negative relation between parasite prevalence and heavy metals, including Zn, Pb, and As. Also, there was a significant positive relation between parasite prevalence with Cu while no significant relation was found with Fe and Cd. Heavy metal content was significantly higher (p> 0.05) in non-infected than infected farmed and wildO. niloticus. In addition, a significantly decreased concentration (p> 0.05) of essential heavy metal was recorded in wild fish compared to farmed specimens, while non-essential heavy metal was significantly higher (p> 0.05) in wild compared to farmed fish. Bioaccumulation factors (BAF) of different organs ofO. niloticuswere ranked in ascending order: Liver > Gills > Intestine > Muscles. In general, the risk assessment showed safe human consumption of farmed and wild fish under the reported environmental conditions in this study. Moreover, the parasite's presence can be adopted as a surrogate indicator to estimate the potential impact of heavy metal pollution and accumulation.
Collapse
|
20
|
Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21998-22011. [PMID: 34775563 DOI: 10.1007/s11356-021-16359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lead has long been known as neurotoxic and immunotoxic heavy metal in human and animals including fish, whereas, 2, 3-dimethylsuccinic acid (DMSA) and fulvic acid (FA) are well-known biological chelators. The present investigation was carried out to assess the potential chelating and antioxidant effects of dietary supplementation with DMSA and FA against lead acetate (Pb)-induced oxidative stress in Nile tilapia, O. niloticus. One-hundred and eighty apparently healthy O. niloticus fish (30 ± 2.5 g) were allocated into six equal groups. The first group was fed on basal diet and served as control, while the second group was fed on DMSA-supplemented basal diets at levels of 30 mg/kg diet; the third group was fed on FA-supplemented basal diet at level of 0.3 mg/kg diet; the forth, fifths, and sixth groups were exposed to 14.4 mg Pb /L water (1/10 LC50) and feed on basal diet only, basal diet supplemented with DMSA (0.3 mg/kg diet), or basal diet supplemented with FA (0.3 mg/kg diet), respectively. Antioxidant and lipid peroxidative status, activity of glucose 6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the histopathologic findings were evaluated in brain tissues, while the Pb residues were evaluated in liver, muscles, and brain tissues. The results of the present study showed that DMSA and FA decreased malondialdehyde (MDA) and Pb residue in tissues of Pb-exposed fish and improved the histologic picture and brain contents of glutathione (GSH), glutathione-s-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), G6PD, LDH, and total antioxidant capacity (TAC). It could be concluded that DMSA and FA supplementation exhibited potential neuroprotective effect against Pb-induced oxidative brain damages in O. niloticus through improvement of antioxidant status of the brain tissue.
Collapse
Affiliation(s)
- Wesam A Neamatallah
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ebeed A Saleh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damahour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
21
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
Jiménez-Monreal AM, Guardiola FA, Esteban MÁ, Murcia Tomás MA, Martínez-Tomé M. Antioxidant Activity in Gilthead Seabream ( Sparus aurata L.) Fed with Diet Supplemented with Moringa. Antioxidants (Basel) 2021; 10:antiox10091423. [PMID: 34573055 PMCID: PMC8467088 DOI: 10.3390/antiox10091423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Gilthead seabream is bred mainly in fish farms in the Mediterranean Sea. One important factor responsible for the deterioration of fish quality is lipid oxidation. Moringa oleifera leaves have been described as having high antioxidant content. This work investigates the effect of dietary supplementation with Moringa leaves on the antioxidant activity of seabream. Gilthead seabream specimens were divided into four groups, the control group (fed a commercial diet) and three other groups fed diets enriched with Moringa (5%, 10% and 15%). The antioxidant capacity was measured by assays of free radical scavenging (OH·, H2O2, lipoperoxyl and ABTS), Rancimat test and linoleic acid system in muscle and skin of gilthead seabream, commercial diet, enriched diet and Moringa. Finally, the polyphenol content of Moringa and the fatty acid composition of seabream fed diets with and without Moringa were determined. Results showed an increase in antioxidant activity in gilthead seabream fed with diets enriched with a higher percentage of Moringa; therefore, Moringa could be considered a functional ingredient in diets for fish bred in fish farms and. The antioxidant potential of Moringa leaves could be mainly attributed to the presence of polyphenolic compounds.
Collapse
Affiliation(s)
- Antonia M. Jiménez-Monreal
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-868-887-985; Fax: +34-868-884-147
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (F.A.G.); (M.Á.E.)
| | - M. Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (F.A.G.); (M.Á.E.)
| | - M. Antonia Murcia Tomás
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Martínez-Tomé
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
23
|
Khafaga AF, El-Kazaz SE, Noreldin AE. Boswellia serrata suppress fipronil-induced neuronal necrosis and neurobehavioral alterations via promoted inhibition of oxidative/inflammatory/apoptotic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147384. [PMID: 33933775 DOI: 10.1016/j.scitotenv.2021.147384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 05/21/2023]
Abstract
Boswellic acid (BA) is a pentacyclic terpenoid derived from the gum-resin of Boswellia serrate. It is known for its strong antioxidant, anti-inflammatory, and anticancer properties. It has improved spatial learning and provides neuroprotection against trimethyltin-induced memory impairment. The aim of this study is to evaluate the possible neuroprotective activity of B. serrata extract (BSE) containing BA against fipronil (FPN)-induced neurobehavioral toxicity in Wister male albino rats. Sixty male rats were allocated equally into six groups. The first group served as control; the second and third groups received BSE at two different oral doses (250 or 500 mg/kg body weight [BW], respectively). The fourth group was orally intoxicated with FPN (20 mg/kg BW), whereas the fifth and sixth groups served as preventive groups and co-treated with FPN (20 mg/kg BW) and BSE (250 or 500 mg/kg BW, respectively). The experiment was conducted over 8 weeks period. Results revealed that co-treatment with BSE led to significant (p > 0.05) dose-dependent reduction in malondialdehyde (MDA), nitric oxide (NO), interleukin-6 (IL6), tumor necrosis factors-alpha (TNF-α), nuclear factor Kappa-B (NF-κB), Cyclooxegenase-2 (COX-2), prostaglandin E2 (PGE2), serotonin, and acetylcholine (ACh). Conversely, significant (p > 0.05) up regulation of catalase (CAT), glutathione peroxidase (GSH-Px), gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) has reported in BSE-co-treated groups. In addition, significant (p > 0.05) promotion in neurobehaviours, histopathologic imaging of the cerebral, cerebellar, and hippocampal regions, and immunohistochemical expression of caspase-3 and glial fibrillary acidic protein (GFAP) were also reported in the BSE-treated groups in a dose-dependent manner. In conclusion, BSE (500 mg/kg BW) is a natural, promising neuroprotective agent that can mitigate FPN-induced neurobehavioral toxicity via the suppression of oxidative, inflammatory, and apoptotic pathways and relieve neuronal necrosis and astrogliosis.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Sara E El-Kazaz
- Animals and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt.
| |
Collapse
|
24
|
Li L, Lin LM, Deng J, Lin XL, Li YM, Xia BH. The therapeutic effects of Prunella vulgaris against fluoride-induced oxidative damage by using the metabolomics method. ENVIRONMENTAL TOXICOLOGY 2021; 36:1802-1816. [PMID: 34089294 DOI: 10.1002/tox.23301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is considered as one of the most ubiquitous environmental pollutants. Numerous studies have linked reactive oxygen species (ROS)-dependent oxidative damage with fluoride intoxication, which could be prevented by antioxidants. However, the metabolomic changes induced by ROS disruptions in fluoride intoxication are yet unknown. The present study aimed to provide novel mechanistic insights into the fluoride-induced oxidative damage and to investigate the potential protective effects of ethanolic extract of Prunella vulgaris (natural antioxidant, PV) against fluoride-induced oxidative damage. The serum biochemical indicators related to fluoride-induced oxidative damage, such as lipid peroxidation parameter, inflammation and marker enzymes in the liver increased significantly in the fluoride-treated group, while antioxidant enzymes were decreased. However, PV treatment restored the level of these biochemical indicators, indicating satisfactory antioxidant, anti-inflammatory, and hepatoprotective potential of PV. The metabolomics analysis in the serum was performed by liquid chromatography-mass spectroscopy, whereas the fluoride treatment caused severe metabolic disorders in rats, which could be improved by PV. The differential metabolites screened by multivariate analysis after fluoride and PV treatment, were organic acids, fatty acids, and lipids. These differential metabolites represented disorders of glyoxylate and dicarboxylate metabolism and the citrate cycle (TCA) according to metabolic pathway analysis in fluoride treatment rats. Interestingly, the result of metabolic pathway analysis of post-treatment with PV was consistent with that of fluoride treatment, indicating that the energy metabolism plays a major role in the progress of fluoride-induced oxidative damage, as well as the therapeutic effect of PV. These findings provided a theoretical basis for understanding the mechanism underlying metabolic disorders of fluoride toxicity and the effect of PV.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Deng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Xiu-Lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
25
|
Fathy SM, Mahmoud MS. Moringa oleifera Lam. leaf extract mitigates carbon tetrachloride-mediated hepatic inflammation and apoptosis via targeting oxidative stress and toll-like receptor 4/nuclear factor kappa B pathway in mice. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Awed EM, Sadek KM, Soliman MK, Khalil RH, Younis EM, Abdel-Warith AWA, Van Doan H, Dawood MA, Abdel-Latif HM. Spirulina platensis Alleviated the Oxidative Damage in the Gills, Liver, and Kidney Organs of Nile Tilapia Intoxicated with Sodium Sulphate. Animals (Basel) 2020; 10:ani10122423. [PMID: 33348789 PMCID: PMC7767054 DOI: 10.3390/ani10122423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nile tilapia (Oreochromis niloticus) are expected to suffer from oxidative stress induced by sodium sulphate in the ecosystem. Herein, we proposed that dietary Spirulina platensis could relieve the impacts of sodium sulphate on tilapia. The hepatic antioxidative and related activities were decreased under sodium sulphate exposure. However, dietary S. platensis alleviated the tissue antioxidative overexpression compared to the sodium sulphate and control groups. This study implies that natural dietary antioxidants can be applied in aquatic organisms to alleviate the features induced by toxicants and xenobiotics. Abstract The current study aimed at assessing the recuperative roles of dietary Spirulina platensis on the antioxidation capacity of Nile tilapia (Oreochromis niloticus) exposed to sodium sulphate for eight weeks. In brief, fish were allocated into four groups with three triplicates per group, where a group fed on a commercial basal diet served as control, a group was intoxicated with sodium sulphate (SS) 5.8 mg/L, another group was fed a diet supplemented with 1% S. platensis (SP), and the last group was fed 1% SP and concomitantly intoxicated with 5.8 mg/L sodium sulphate (SP/SS). Tissue antioxidative indices of each fish were measured as follows: glutathione peroxidase (GSH-Px) activity in muscles, catalase (CAT) and superoxide dismutase (SOD) activities in gills, and total antioxidant capacity (T-AOC) in the liver and kidney. Moreover, the expression of hepatic SOD, GSH-Px, and glutathione-S-transferase (GST) genes was also determined. It was found that tissue CAT, SOD, and GSH-Px activities as well as the T-AOC levels were significantly decreased in the SS group (p < 0.05). Moreover, there was a significant downregulation of hepatic SOD, GSH-Px, and GST genes in SS-exposed fish (p < 0.05). Interestingly, simultaneous dietary supplementation with SP provided a marked attenuation of the tissue antioxidative parameters when compared with the SS and control groups. To conclude, the present study exemplifies that dietary SP supplementation could be a beneficial abrogation of SS-induced tissue oxidative stress in the exposed fish.
Collapse
Affiliation(s)
- Eman M. Awed
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (E.M.A.); (K.M.S.)
| | - Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (E.M.A.); (K.M.S.)
| | - Magdy K. Soliman
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Riad H. Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt;
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.M.Y.); (A.-W.A.A.-W.)
| | - Abdel-Wahab A. Abdel-Warith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.M.Y.); (A.-W.A.A.-W.)
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innoviative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (H.V.D.); (M.A.O.D.); (H.M.R.A.-L.)
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (H.V.D.); (M.A.O.D.); (H.M.R.A.-L.)
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt;
- Correspondence: (H.V.D.); (M.A.O.D.); (H.M.R.A.-L.)
| |
Collapse
|
27
|
Zeweil MM, Sadek KM, Elsadek MF, Mahmoud SF, Ahmed BM, Khafaga AF. Sidr honey abrogates the oxidative stress and downregulates the hyaluronic acid concentration and gene expression of TGF-β1 and COL1a1 in rat model of thioacetamide-induced hepatic fibrosis. Anim Sci J 2020; 91:e13434. [PMID: 32696560 DOI: 10.1111/asj.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
Abstract
Liver fibrosis is a major health concern, which might progress to cirrhosis. To date, treatment trials rely mainly on the removal of the causative factor. The current study investigated the potential ameliorative role of sidr honey on thioacetamide (TAA)-induced liver fibrosis in rats. Forty-eight Wistar albino rats were equally allocated into four groups: control; sidr honey (5g/kg body weight (BW), orally); TAA (200 mg/kg BW, IP three times weekly/15 weeks); and sidr honey plus TAA at the same dose and administration rout. Rats co-treated with sidr honey plus TAA revealed significant reduction in hepatic malondialdehyde, hyaluronic acid (HA), alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, direct bilirubin, and hepatic mRNA expression of transforming growth factor (TGF)-β1 and collagen type I alpha 1 chain (COL1a1) compared to TAA-exposed rats. In addition, the hepatoprotective potential of sidr honey was indicated via improvement of histopathologic picture of hepatocytes and upregulation of total antioxidant capacity, reduced glutathione, catalase, glutathione peroxidase, superoxide dismutase, total protein, and albumin compared to TAA-treated rats. In conclusion, daily administration of sidr honey (5 g/kg BW) is a promising natural antioxidant and fibrosuppressive agent that could ameliorate liver fibrosis via downregulation of fibrosis genes including TGF-β1 and COL1a1 and HA and via enhancement of antioxidant system.
Collapse
Affiliation(s)
- Mohamed M Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed F Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Nutrition and Food Science, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Sahar F Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badreldin M Ahmed
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| |
Collapse
|
28
|
Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview. Animals (Basel) 2020; 10:ani10050811. [PMID: 32392878 PMCID: PMC7278602 DOI: 10.3390/ani10050811] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
As a result of the global industrial revolution, contamination of the ecosystem by heavy metals has given rise to one of the most important ecological and organismic problems, particularly human, early developmental stages of fish and animal life. The bioaccumulation of heavy metals in fish tissues can be influenced by several factors, including metal concentration, exposure time, method of metal ingestion and environmental conditions, such as water temperature. Upon recognizing the danger of contamination from heavy metals and the effects on the ecosystem that support life on earth, new ways of monitoring and controlling this pollution, besides the practical ones, had to be found. Diverse living organisms, such as insects, fish, planktons, livestock and bacteria can be used as bioindicators for monitoring the health of the natural ecosystem of the environment. Parasites have attracted intense interest from parasitic ecologists, because of the variety of different ways in which they respond to human activity contamination as prospective indices of environmental quality. Previous studies showed that fish intestinal helminths might consider potential bioindicators for heavy metal contamination in aquatic creatures. In particular, cestodes and acanthocephalans have an increased capacity to accumulate heavy metals, where, for example, metal concentrations in acanthocephalans were several thousand times higher than in host tissues. On the other hand, parasitic infestation in fish could induce significant damage to the physiologic and biochemical processes inside the fish body. It may encourage serious impairment to the physiologic and general health status of fish. Thus, this review aimed to highlight the role of heavy metal accumulation, fish histopathological signs and parasitic infestation in monitoring the ecosystem pollutions and their relationship with each other.
Collapse
|
29
|
Effect of a Diet Supplemented with the Moringa oleifera Seed Powder on the Performance, Egg Quality, and Gene Expression in Japanese Laying Quail under Heat-Stress. Animals (Basel) 2020; 10:ani10050809. [PMID: 32392810 PMCID: PMC7278701 DOI: 10.3390/ani10050809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
Abstract
This study was conducted to evaluate the effect of three concentrations of the Moringa oleifera seed powder as a feed supplement on the productive performance and egg quality traits of laying Japanese quail (Coturnix japonica) exposed to heat stress. The expression patterns of the genes estrogen receptors (ESR2), follicle-stimulating hormone receptor (FSHR), prolactin receptor (PRLR), and steroidogenic acute regulatory protein (STAR) were estimated in ovaries, using a quantitative real-time polymerase chain reaction. A total of 200 laying quail aged seven weeks were randomly allocated to the following four experimental groups-the control (CNT), T1, T2, and T3 groups; each group comprised 50 quail females with 5 replicates (10 per group). The CNT group was fed a basal diet, whereas the T1, T2, and T3 groups were fed the basal diet supplemented with 0.1%, 0.2%, and 0.3% M. oleifera seed powder, respectively. The results revealed that the T3 group showed the highest hen-day egg production (%) as well as the highest egg yolk index. Feed intake and feed conversion ratio improved significantly (p < 0.05) with increased concentrations of the M. oleifera seed powder supplementation. Furthermore, the mRNA expressions of ESR2, FSHR, and STAR increased significantly in the T3 group, compared to those in the CNT group. Alterations in ovarian gene expressions corresponded to the reproductive patterns of the treated Japanese quail. Thus, it was concluded that the supplementation of the Japanese quail feed with 0.3% M. oleifera seed powder during the laying period might enhance resistance to heat stress and consequently improve egg productivity.
Collapse
|