1
|
Kaplan N, Kabatas S, Civelek E, Savrunlu EC, Akkoc T, Boyalı O, Öztürk E, Can H, Genc A, Karaöz E. Multiroute administration of Wharton’s jelly mesenchymal stem cells in chronic complete spinal cord injury: A phase I safety and feasibility study. World J Stem Cells 2025; 17:101675. [DOI: 10.4252/wjsc.v17.i5.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a life-altering condition that results in long-term complications, including progressive neurodegeneration and cord atrophy. It presents a significant unmet medical need with extensive social and economic burdens.
AIM To evaluate the safety and preliminary efficacy of allogeneic mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) in patients with chronic complete SCI. The primary objective was to assess whether WJ-MSCs could facilitate neurological recovery and improve the quality of life in this patient population.
METHODS This open-label, multicenter phase I study investigated the effects of administering WJ-MSCs via three delivery routes: Intrathecal (for localized spinal targeting); intramuscular (for targeting end organ); and intravenous (for systemic immunomodulation). While all three routes were used concurrently to enhance therapeutic synergy, neurological, sensory, and functional scales were used to assess overall efficacy. Participants with chronic SCI (duration of at least 6 months) who had significant impairment and disability were eligible for inclusion. WJ-MSCs were administered twice monthly for 2 months, with each route receiving a dose of 1 × 106 cells/kg. Patients were closely monitored for 1 year following treatment.
RESULTS At baseline, participants displayed considerable functional deficits, as indicated by the following scores: Functional independence measure of 77.5 ± 2.26; Modified Ashworth Scale of 15.83 ± 4.83; American Spinal Injury Association (ASIA) Motor score of 1.67 ± 2.66; ASIA Light Touch and Pin-Prick scores of 62 ± 18.42 each; Wexner Incontinence Score of 20; and Qualiveen Short Form, a validated questionnaire specifically designed to assess the impact of urinary dysfunction on quality of life in individuals with SCI, score of 32. Following WJ-MSC therapy, significant improvements were observed in all neurological functions over the 1-year follow-up. Notably, the ASIA Motor score improved significantly (χ2 = 23.938, P < 0.001), and Qualiveen Short Form scores demonstrated a substantial enhancement in quality of life (z = -2.214, P < 0.05).
CONCLUSION This phase I study, conducted without a control group, suggests that the administration of WJ-MSCs through multiple routes is both safe and potentially effective in patients with chronic complete SCI. However, the observed neurological improvements cannot be solely attributed to WJ-MSC therapy, as concurrent pharmacological and rehabilitative interventions were not controlled. These findings indicated that WJ-MSC therapy may offer a promising approach for enhancing neurological function and quality of life in this challenging patient population. Further research with larger cohorts and extended follow-up is necessary to validate these preliminary results.
Collapse
Affiliation(s)
- Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Türkiye
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Türkiye, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Türkiye, İstanbul 34255, Türkiye
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Türkiye, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | | | - Tolga Akkoc
- Tubitak Marmara Research Center, Genetic Engineering and Biotechnology Institute, Kocaeli 41470, Türkiye
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Türkiye, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | - Erek Öztürk
- Department of Neurosurgery, Orthopaediezentrum Magdeburg, Magdeburg 39112, Saxony-Anhalt, Germany
| | - Halil Can
- Department of Neurosurgery, Atlas University, İstanbul 34408, Türkiye
| | - Ali Genc
- Department of Neurosurgery, Palmiye Hospital, Hatay 31200, Türkiye
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing, Liv Hospital, Istanbul 34340, Türkiye
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Zeytinburnu 34010, Istanbul, Türkiye
- Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, Beşiktaş 34340, Istanbul, Türkiye
| |
Collapse
|
2
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
Affiliation(s)
- Prashasti Sharma
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dharmendra Kumar Maurya
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
3
|
Chen S, Duan X, He Y, Chen W. METTL3 promotes osteogenic differentiation of human umbilical cord mesenchymal stem cells by up-regulating m6A modification of circCTTN. Biosci Rep 2024; 44:BSR20231186. [PMID: 38358895 PMCID: PMC10932744 DOI: 10.1042/bsr20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising seed cells in bone tissue engineering. circRNA and N6-methyladenosine (m6A) RNA methylation play important roles in osteogenic differentiation. Here, we investigated the potential relevance of a critical circRNA, hsa_circ_0003376 (circCTTN), and methyltransferase-like 3 (METTL3) in osteogenic differentiation of hUCMSCs. METHODS Expression of circCTTN after hUCMSC osteogenic induction was detected by qRT-PCR. Three databases (RMBase v2.0, BERMP, and SRAMP) were used to predict m6A sites of circCTTN. RNA was enriched by methylated RNA immunoprecipitation (MeRIP), followed by quantitative real-time polymerase chain reaction to detect m6A level of circCTTN after METTL3 overexpression and osteogenic induction. RNA pull-down, Western blotting, and protein mass spectrometry were performed to investigate the potential mechanisms by which METTL3 promoted m6A modification of circCTTN. Bioinformatic analyses based on database (STRING) search and co-immunoprecipitation were used to analyze the proteins that interacted with METTL3. RESULTS Overexpression of METTL3 promoted osteogenic differentiation of hUCMSCs and increased m6A level of circCTTN. Two potential m6A modification sites of circCTTN were predicted. No direct interaction between METTL3 and circCTTN was observed. Thirty-one proteins were pulled down by probes specific for circCTTN, including NOP2, and two m6A reading proteins, EIF3A and SND1. Bioinformatics analysis and co-immunoprecipitation showed that METTL3 interacted with EIF3A indirectly through NOP2. CONCLUSIONS METTL3 promotes the osteogenic differentiation of hUCMSCs by increasing the m6A level of circCTTN. However, METTL3 does not bind directly to circCTTN. METTL3 interacts with circCTTN indirectly through NOP2 and EIF3A.
Collapse
Affiliation(s)
- Shujiang Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yanjin He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
5
|
Stefańska K, Nemcova L, Blatkiewicz M, Pieńkowski W, Ruciński M, Zabel M, Mozdziak P, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays. Int J Mol Sci 2023; 24:10023. [PMID: 37373173 DOI: 10.3390/ijms241210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Cellivia 3 S.A., 61-623 Poznan, Poland
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Pieńkowski
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60177 Brno, Czech Republic
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Wang C, Ning H, Gao J, Xue T, Zhao M, Jiang X, Zhu X, Guo X, Li H, Wang X. Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells. Stem Cell Res Ther 2022; 13:27. [PMID: 35073981 PMCID: PMC8785551 DOI: 10.1186/s13287-022-02708-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background The homeostasis of mesenchymal stem cells (MSCs) is modulated by both their own intracellular molecules and extracellular milieu signals. Hematopoiesis in the bone marrow is maintained by niche cells, including MSCs, and it is indispensable for life. The role of MSCs in maintaining hematopoietic homeostasis has been fully elucidated. However, little is known about the mechanism by which hematopoietic cells reciprocally regulate niche cells. The present study aimed to explore the close relationship between MSCs and hematopoietic cells, which may be exploited for the development of new therapeutic strategies for related diseases. Methods In this study, we isolated cells from the offspring of Tie2Cre + and Ptenflox/flox mice. After cell isolation and culture, we investigated the effect of hematopoietic cells on MSCs using various methods, including flow cytometry, adipogenic and osteogenic differentiation analyses, quantitative PCR, western bloting, and microCT analysis. Results Our results showed that when the phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene was half-deleted in hematopoietic cells, hematopoiesis and osteogenesis were normal in young mice; the frequency of erythroid progenitor cells in the bone marrow gradually decreased and osteogenesis in the femoral epiphysis weakened as the mice grew. The heterozygous loss of Pten in hematopoietic cells leads to the attenuation of osteogenic differentiation and enhanced adipogenic differentiation of MSCs in vitro. Co-culture with normal hematopoietic cells rescued the abnormal differentiation of MSCs, and in contrast, MSCs co-cultured with heterozygous null Pten hematopoietic cells showed abnormal differentiation activity. Co-culture with erythroid progenitor cells also revealed them to play an important role in MSC differentiation. Conclusion Our data suggest that hematopoietic cells function as niche cells of MSCs to balance the differentiation activity of MSCs and may ultimately affect bone development.
Collapse
Affiliation(s)
- Changzhen Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. .,Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Hongmei Ning
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jiao Gao
- The Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Teng Xue
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Ming Zhao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoxia Jiang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ximin Guo
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoyan Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
7
|
Abouelnaga H, El-Khateeb D, Moemen Y, El-Fert A, Elgazzar M, Khalil A. Characterization of mesenchymal stem cells isolated from Wharton’s jelly of the human umbilical cord. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-021-00165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Isolation of post-partum umbilical cord Wharton’s jelly stem cells has gained attention as an alternative source of the bone marrow. Because easy isolation, lack of ethical concerns, and the presence of both embryonic and adult stem cells have made them a valuable source for use in therapeutic applications and regenerative medicine. The study utilized a modified protocol using in-house human pooled cord blood serum for isolation and expansion of the mesenchymal stem cells obtained from the human umbilical cord Wharton’s jelly. Cell proliferation and population doubling time and tri-lineage differentiation were assessed, and the expressions of mesenchymal cell surface markers CD44, CD90, CD105, and CD34 were assessed by flow cytometry and RT-PCR. The genetic stability of the isolated cells was assessed by chromosomal karyotype.
Results
The isolated cells displayed fibroblastic-like morphology and tri-lineage differentiation into adipocyte, chondrocyte, and osteocyte. The isolated cells maintained the proliferative competence with a doubling time ranged from 38 to 42h and corresponded well with the standard positive and negative molecular markers (CD44+, CD90+, CD 105+, and CD34−). Cell senescence occurred at the later passage of the cells (P15) affecting, about 25% of the population. Metaphases spread of the cells showed normal diploid karyotypes, with typical chromosomal plates indicating genetic stability of the isolated cells.
Conclusion
The primary cultures exhibited success in isolating the umbilical cord Wharton’s jelly mesenchymal stem cells, which maintained their tri-lineage differentiation potential, phenotypes and karyotype characteristics on further passage and expansion.
Collapse
|
8
|
Ding L, Han DM, Zheng XL, Yan HM, Xue M, Liu J, Zhu L, Guo ZK, Mao N, Ning HM, Wang HX, Heng Zhu. Infusion of haploidentical hematopoietic stem cells combined with mesenchymal stem cells for treatment of severe aplastic anemia in adult patients yields curative effects. Cytotherapy 2021; 24:205-212. [PMID: 34799271 DOI: 10.1016/j.jcyt.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS Despite the great advances in immunosuppressive therapy for severe aplastic anemia (SAA), most patients are not completely cured. Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) has been recommended as an alternative treatment in adult SAA patients. However, haplo-HSCT presents a higher incidence of graft failure and graft-versus-host disease (GVHD). The authors designed a combination of haplo-HSCT and umbilical cord-derived mesenchymal stem cells (UC-MSCs) for treatment of SAA in adult patients and evaluated its effects. METHODS Adult patients (≥18 years) with SAA (N = 25) were given HLA-haploidentical hematopoietic stem cells (HSCs) combined with UC-MSCs after a conditioning regimen consisting of busulfan, cyclophosphamide, fludarabine and anti-thymocyte globulin and intensive GVHD prophylaxis, including cyclosporine, basiliximab, mycophenolate mofetil and short-term methotrexate. Additionally, the effects of the protocol in adult SSA patients were compared with those observed in juvenile SAA patients (N = 75). RESULTS All patients achieved myeloid engraftment after haplo-HSCT at a median of 16.12 days (range, 11-26). The median time of platelet engraftment was 28.30 days (range, 13-143). The cumulative incidence of grade II acute GVHD (aGVHD) at day +100 was 32.00 ± 0.91%. No one had grade III-IV aGVHD at day +100. The cumulative incidence of total chronic GVHD was 28.00 ± 0.85%. The overall survival was 71.78 ± 9.05% at a median follow-up of 42.08 months (range, 2.67-104). Promisingly, the protocol yielded a similar curative effect in both young and adult SAA patients. CONCLUSIONS The authors' data suggest that co-transplantation of HLA-haploidentical HSCs and UC-MSCs may provide an effective and safe treatment for adult SAA.
Collapse
Affiliation(s)
- Li Ding
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Dong-Mei Han
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Xiao-Li Zheng
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Hong-Min Yan
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Mei Xue
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Jing Liu
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Ling Zhu
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Zi-Kuan Guo
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hong-Mei Ning
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China; The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Heng-Xiang Wang
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Heng Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China; Graduate School of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
9
|
Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11:187. [PMID: 34727974 PMCID: PMC8561357 DOI: 10.1186/s13578-021-00698-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapeutics is already available for treatment of a range of diseases or medical conditions. Autologous or allogeneic MSCs obtained from self or donors have their own advantages and disadvantages in their medical practice. Therapeutic benefits of using autologous vs. allogeneic MSCs are inconclusive. Transplanted MSCs within the body interact with their physical microenvironment or niche, physiologically or pathologically, and such cells in a newly established tissue microenvironment may be impacted by the pathological harmful environmental factors to alter their unique biological behaviors. Meanwhile, a temporary microenvironment/niche may be also altered by the resident or niche-surrounding MSCs. Therefore, the functional plasticity and heterogeneity of MSCs caused by different donors and subpopulations of MSCs may result in potential uncertainty in their safe and efficacious medical practice. Acknowledging a connection between MSCs' biology and their existing microenvironment, donor-controlled clinical practice for the long-term therapeutic benefit is suggested to further consider minimizing MSCs potential harm for MSC-based individual therapies. In this review, we summarize the advantages and disadvantages of autologous vs. allogeneic MSCs in their therapeutic applications. Among other issues, we highlight the importance of better understanding of the various microenvironments that may affect the properties of niche-surrounding MSCs and discuss the clinical applications of MSCs within different contexts for treatment of different diseases including cardiomyopathy, lupus and lupus nephritis, diabetes and diabetic complications, bone and cartilage repair, cancer and tissue fibrosis.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| | - Hua Zhao
- Institute of Reproductive Medicine, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Linna Cheng
- Institute of Hematology, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Bin Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
10
|
Proteomic Analysis of Estrogen-Mediated Enhancement of Mesenchymal Stem Cell-Induced Angiogenesis In Vivo. Cells 2021; 10:cells10092181. [PMID: 34571830 PMCID: PMC8468955 DOI: 10.3390/cells10092181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Therapeutic use of mesenchymal stem cells (MSCs) for tissue repair has great potential. MSCs from multiple sources, including those derived from human umbilical matrix, namely Wharton’s jelly, may serve as a resource for obtaining MSCs. However, low in vivo engraftment efficacy of MSCs remains a challenging limitation. To improve clinical outcomes using MSCs, an in-depth understanding of the mechanisms and factors involved in successful engraftment is required. We recently demonstrated that 17β-estradiol (E2) improves MSCs in vitro proliferation, directed migration and engraftment in murine heart slices. Here, using a proteomics approach, we investigated the angiogenic potential of MSCs in vivo and the modulatory actions of E2 on mechanisms involved in tissue repair. Specifically, using a Matrigel® plug assay, we evaluated the effects of E2 on MSCs-induced angiogenesis in ovariectomized (OVX) mice. Moreover, using proteomics we investigated the potential pro-repair processes, pathways, and co-mechanisms possibly modified by the treatment of MSCs with E2. Using RT-qPCR, we evaluated mRNA expression of pro-angiogenic molecules, including endoglin, Tie-2, ANG, and VEGF. Hemoglobin levels, a marker for blood vessel formation, were increased in plugs treated with E2 + MSCs, suggesting increased capillary formation. This conclusion was confirmed by the histological analysis of capillary numbers in the Matrigel® plugs treated with E2 + MSC. The LC-MS screening of proteins obtained from the excised Matrigel® plugs revealed 71 proteins that were significantly altered following E2 exposure, 57 up-regulated proteins and 14 down-regulated proteins. A major result was the association of over 100 microRNA molecules (miRNAs) involved in cellular communication, vesicle transport, and metabolic and energy processes, and the high percentage of approximately 25% of genes involved in unknown biological processes. Together, these data provide evidence for increased angiogenesis by MSCs treated with the sex hormone E2. In conclusion, E2 treatment may increase the engraftment and repair potential of MSCs into tissue, and may promote MSC-induced angiogenesis after tissue injury.
Collapse
|
11
|
Kabataş S, Civelek E, Kaplan N, Savrunlu EC, Sezen GB, Chasan M, Can H, Genç A, Akyuva Y, Boyalı O, Diren F, Karaoz E. Phase I study on the safety and preliminary efficacy of allogeneic mesenchymal stem cells in hypoxic-ischemic encephalopathy. World J Exp Med 2021; 11:17-29. [PMID: 33821203 PMCID: PMC8010270 DOI: 10.5493/wjem.v11.i2.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a leading cause of morbidity and mortality in the adult as well as in the neonate, with limited options for treatment and significant dysfunctionality.
AIM To investigate the safety and preliminary efficacy of allogeneic mesenchymal stem cells (MSCs) in HIE patients.
METHODS Patients who had HIE for at least 6 mo along with significant dysfunction and disability were included. All patients were given Wharton’s jelly-derived MSCs at 1 × 106/kg intrathecally, intravenously, and intramuscularly twice a month for two months. The therapeutic effects and prognostic implications of MSCs were evaluated by multiple follow-ups. Functional independence measure (FIM), modified Ashworth, and Karnofsky scales were used to assess any side effects, neurological and cognitive functions, and overall outcomes.
RESULTS The 8 subjects included in the study had a mean age of 33.25 ± 10.18 years. Mean HIE exposure and mean post-HIE durations were 45.63 ± 10.18 and 19.67 ± 29.04 mo, respectively. Mean FIM score was 18.38 ± 1.06, mean modified Ashworth score was 43.5 ± 4.63, and mean Karnofsky score was 20. For the first 24 h, 5 of the patients experienced a subfebrile state, accompanied by mild headaches due to intrathecally administration and muscle pain because of intramuscularly administration. Neurological and functional examinations, laboratory tests, electroencephalography, and magnetic resonance imaging were performed to assess safety of treatment. Mean FIM score increased by 20.88 ± 3.31 in the first month (P = 0.027) and by 31.38 ± 14.69 in 12 mo (P = 0.012). The rate of patients with an FIM score of 126 increased from 14.58% to 16.57% in the first month and 24.90% in 12 mo.
CONCLUSION Multiple triple-route Wharton’s jelly-derived MSC administrations were found to be safe for HIE patients, indicating neurological and functional improvement. Based on the findings obtained here, further randomized and placebo research could be performed.
Collapse
Affiliation(s)
- Serdar Kabataş
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, İstanbul 34854, Turkey
- Center for Stem Cell and Gene Therapy Research and Practice, University of Health Sciences, İstanbul 34255, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, İstanbul 34854, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Mourat Chasan
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Halil Can
- Department of Neurosurgery, İstanbul Biruni University, Faculty of Medicine, İstanbul 34010, Turkey
- Department of Neurosurgery, İstanbul Medicine Hospital, İstanbul 34203, Turkey
| | - Ali Genç
- Department of Neurosurgery, İstanbul Asya Hospital, İstanbul 34250, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Mustafa Kemal University, Faculty of Medicine, Hatay 31060, Turkey
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, İstanbul 34340, Turkey
- Department of Histology and Embryology, İstinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, İstinye University, İstanbul 34340, Turkey
| |
Collapse
|
12
|
Lin HD, Fong CY, Biswas A, Bongso A. Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 2020; 11:527. [PMID: 33298170 PMCID: PMC7724853 DOI: 10.1186/s13287-020-02048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The transplantation of human umbilical cord blood (UCB) CD34+ cells has been successfully used to treat hematological disorders but one major limitation has been the low cell numbers available. Mesenchymal stem cells (MSCs) lying within the bone marrow in vivo behave like a scaffold on which CD34+ cells interact and proliferate. We therefore evaluated the use of allogeneic MSCs from the human UC Wharton’s jelly (hWJSCs) as stromal support for the ex vivo expansion of CD34+ cells. Methods We performed an in-depth evaluation of the primitiveness, migration, adhesion, maturation, mitochondrial behavior, and pathway mechanisms of this platform using conventional assays followed by the evaluation of engraftment potential of the expanded CD34+ cells in an in vivo murine model. Results We demonstrate that hWJSCs and its conditioned medium (hWJSC-CM) support the production of significantly high fold changes of CD34+, CD34+CD133+, CD34+CD90+, CD34+ALDH+, CD34+CD45+, and CD34+CD49f+ cells after 7 days of interaction when compared to controls. In the presence of hWJSCs or hWJSC-CM, the CD34+ cells produced significantly more primitive CFU-GEMM colonies, HoxB4, and HoxA9 gene expression and lower percentages of CD34+CXCR4+ cells. There were also significantly higher N-cadherin+ cell numbers and increased cell migration in transwell migration assays. The CD34+ cells expanded with hWJSCs had significantly lower mitochondrial mass, mitochondrial membrane potential, and oxidative stress. Green Mitotracker-tagged mitochondria from CD34+ cells were observed lying within red CellTracker-tagged hWJSCs under confocal microscopy indicating mitochondrial transfer via tunneling nanotubes. CD34+ cells expanded with hWJSCs and hWJSC-CM showed significantly reduced oxidative phosphorylation (ATP6VIH and NDUFA10) and increased glycolytic (HIF-1a and HK-1) pathway-related gene expression. CD34+ cells expanded with hWJSCs for 7 days showed significant greater CD45+ cell chimerism in the bone marrow of primary and secondary irradiated mice when transplanted intravenously. Conclusions In this report, we confirmed that allogeneic hWJSCs provide an attractive platform for the ex vivo expansion of high fold numbers of UCB CD34+ cells while keeping them primitive. Allogeneic hWJSCs are readily available in abundance from discarded UCs, can be easily frozen in cord blood banks, thawed, and then used as a platform for UCB-HSC expansion if numbers are inadequate.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
13
|
Mesenchymal stem/stromal cells: Developmental origin, tumorigenesis and translational cancer therapeutics. Transl Oncol 2020; 14:100948. [PMID: 33190044 PMCID: PMC7672320 DOI: 10.1016/j.tranon.2020.100948] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
While a large and growing body of research has demonstrated that mesenchymal stem/stromal cells (MSCs) play a dual role in tumor growth and inhibition, studies exploring the capability of MSCs to contribute to tumorigenesis are rare. MSCs are key players during tumorigenesis and cancer development, evident in their faculty to increase cancer stem cells (CSCs) population, to generate the precursors of certain forms of cancer (e.g. sarcoma), and to induce epithelial-mesenchymal transition to create the CSC-like state. Indeed, the origin and localization of the native MSCs in their original tissues are not known. MSCs are identified in the primary tumor sites and the fetal and extraembryonic tissues. Acknowledging the developmental origin of MSCs and tissue-resident native MSCs is essential for better understanding of MSC contributions to the cellular origin of cancer. This review stresses that the plasticity of MSCs can therefore instigate further risk in select therapeutic strategies for some patients with certain forms of cancer. Towards this end, to explore the safe and effective MSC-based anti-cancer therapies requires a strong understanding of the cellular and molecular mechanisms of MSC action, ultimately guiding new strategies for delivering treatment. While clinical trial efforts using MSC products are currently underway, this review also provides new insights on the underlying mechanisms of MSCs to tumorigenesis and focuses on the approaches to develop MSC-based anti-cancer therapeutic applications.
Collapse
|
14
|
E LL, Cheng T, Li CJ, Zhang R, Zhang S, Liu HC, Zheng WJ. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). Stem Cells Dev 2020; 29:1215-1228. [PMID: 32674666 DOI: 10.1089/scd.2020.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising alternative source of mesenchymal stem cells (MSCs) that are enormously attractive for clinical use. This study was designed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) and/or osteogenic media (OMD) on bone regeneration of hUC-MSCs seeded on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA) in a rabbit model. The characteristics of stem cells were analyzed by plastic adherence, cell phenotype, and multilineage differentiation potential. Cell proliferation was examined using cell counting kit-8 assay. Osteogenic differentiation was evaluated by quantitative Ca2+ concentration, PO43- concentration, alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralized matrix formation. Bone regeneration was investigated in jaw bone defect repair in rabbit by microcomputed tomography, fluorescent labeling, and hematoxylin and eosin staining. Except for initial stress response, OMD and OMD + rhBMP-7 inhibited the proliferation of hUC-MSCs seeded on nHAC/PLA; rhBMP-7 inhibited cell proliferation in the nonlogarithmic phase and attenuated the inhibitory effect of OMD on cell proliferation. The inhibitory effects of OMD, rhBMP-7, and OMD + rhBMP-7 on cell proliferation were ranked as OMD > OMD + rhBMP-7 > rhBMP-7. OMD, rhBMP-7, and OMD + rhBMP-7 promoted Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation of hUC-MSCs seeded on nHAC/PLA. The promoting effects of OMD, rhBMP-7, and OMD+rhBMP-7 on Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation were ranked as rhBMP-7 > OMD > OMD + rhBMP-7, OMD > OMD + rhBMP-7 > rhBMP-7, OMD > rhBMP-7 > OMD + rhBMP-7, rhBMP-7 > OMD + rhBMP-7 > OMD, and OMD > rhBMP-7 > OMD + rhBMP-7, respectively. In rabbit jaw bone defect repair, OMD, rhBMP-7, and OMD + rhBMP-7 enhanced bone regeneration of hUC-MSCs seeded on nHAC/PLA, but the largest bone mineral apposition rate and bone formation were presented in cultures with rhBMP-7. These findings suggested that the combined use of rhBMP-7 and OMD may have no ideal synergistic effect on bone regeneration of hUC-MSCs seeded on nHAC/PLA in rabbit jaw bone defect.
Collapse
Affiliation(s)
- Ling-Ling E
- Department of Chemistry, Jinan University, Guangzhou, China.,Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tao Cheng
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Changes in Stemness Properties, Differentiation Potential, Oxidative Stress, Senescence and Mitochondrial Function in Wharton's Jelly Stem Cells of Umbilical Cords of Mothers with Gestational Diabetes Mellitus. Stem Cell Rev Rep 2020; 15:415-426. [PMID: 30645713 DOI: 10.1007/s12015-019-9872-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) has been associated with an increased risk of maternal and neonatal morbidity. The Wharton's jelly (WJ) of the umbilical cord (UC) is a useful indicator of the deleterious effects of hyperglycemia on fetal tissues as it represents the fetus embryologically, physiologically and genetically. We studied WJ mesenchymal stem cells (hWJSCs) from UC from mothers without GDM (Normal; n = 3); insulin-controlled GDM mothers (GDMi; n = 3) and diet-controlled GDM mothers (GDMd; n = 3)]. Cell proliferation, stemness markers, telomerase, osteogenic and chondrogenic differentiation, antioxidant enzymes and gene expression for mitochondrial function (ND2, TFAM, PGC1α, and NDUFB9) were significantly lower in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs (P < 0.05). On the other hand, cell cycle inhibitors (p16, p21, p27) and p53 were remarkably up-regulated in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs. The results from this study confirmed that maternal hyperglycemia even though managed with insulin or diet, induced changes in the properties of the WJ and its cells. These changes may also be observed in fetal tissues and if true, prevention of the onset of gestational diabetes should be a priority over management. Generation of tissues that simulate those of the fetus such as pancreatic and cardiovascular cells from GDM-hWJSCs by direct differentiation or via induced pluripotent stem cell reprogramming provide possible platforms to evaluate the effects of glucose on specific fetal organ.
Collapse
|
16
|
Baruah J, Chaudhuri S, Mastej V, Axen C, Hitzman R, Ribeiro IMB, Wary KK. Low-Level Nanog Expression in the Regulation of Quiescent Endothelium. Arterioscler Thromb Vasc Biol 2020; 40:2244-2264. [PMID: 32640900 PMCID: PMC7447188 DOI: 10.1161/atvbaha.120.314875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Nanog is expressed in adult endothelial cells (ECs) at a low-level, however, its functional significance is not known. The goal of our study was to elucidate the role of Nanog in adult ECs using a genetically engineered mouse model system.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- From the Department of Psychiatry, Harvard Medical School, Boston, MA (J.B.).,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA (J.B.)
| | - Suhnrita Chaudhuri
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Victoria Mastej
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Cassondra Axen
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Ryan Hitzman
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Isabella M B Ribeiro
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| |
Collapse
|
17
|
Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells Int 2020; 2020:4670948. [PMID: 32377203 PMCID: PMC7189315 DOI: 10.1155/2020/4670948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of the human umbilical cord (hWJSCs), and the conditioned medium (hWJSC-CM) prepared from them, were shown to be tumoricidal on many cancers. However, these tumoricidal effects were observed in hWJSCs grown under normoxic conditions of 21% oxygen in the laboratory. Since oxygen concentrations in the stem cell niche or physiological microenvironment are hypoxic and help to maintain stemness properties, the objective of this work was to evaluate whether there were differences in the tumoricidal properties of hWJSC-CM grown in 21% O2 (normoxic) or 5% O2 (hypoxic) environments. The results showed that hWJSCs grown under normoxic or hypoxic conditions showed no distinct morphological differences in culture and remained positive in trilineage differentiation into adipocytes, osteocytes, and chondrocytes. Hypoxic hWJSCs expressed the mesenchymal stem cell surface markers CD105, CD90, CD73, CD146, and CD108 similar to normoxic hWJSCs but were negative for the hematopoietic markers CD14, CD19, CD34, CD45, CD117, and HLA-DR. Hypoxic hWJSC-CM produced a significantly greater reduction in cell viability and a significantly greater increase in apoptosis, oxidative stress, and lipid peroxidation in human lymphoma cells compared to normoxic hWJSC-CM. Hypoxic hWJSC-CM also produced significantly greater expression of immunogenic cell death (ICD) hallmarks such as surface-bound calreticulin, HSP70, HSP90, and high mobility group binding 1 proteins and significantly decreased expression of the defense molecules CD47 and PD-L1. This study showed that the tumoricidal effect of hypoxic hWJSC-CM was superior to normoxic hWJSC-CM and should be the preferred choice of preparing hWJSC-CM for the induction of ICD on lymphoma cells.
Collapse
|
18
|
Velarde F, Castañeda V, Morales E, Ortega M, Ocaña E, Álvarez-Barreto J, Grunauer M, Eguiguren L, Caicedo A. Use of Human Umbilical Cord and Its Byproducts in Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:117. [PMID: 32211387 PMCID: PMC7075856 DOI: 10.3389/fbioe.2020.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The fresh or cryopreserved human umbilical cord (HUC) and its byproducts, such as cells and extracts, have different uses in tissue regeneration. Defining what HUC byproduct is more effective in a particular application is a challenge. Furthermore, the methods of isolation, culture and preservation, may affect cell viability and regenerative properties. In this article, we review the HUC and its byproducts' applications in research and clinical practice. We present our results of successful use of HUC as a patch to treat gastroschisis and its potential to be applied in other conditions. Our in vitro results show an increase in proliferation and migration of human fibroblasts by using an acellular HUC extract. Our goal is to promote standardization of procedures and point out that applications of HUC and its byproducts, as well as the resulting advances in regenerative medicine, will depend on rigorous quality control and on more research in this area.
Collapse
Affiliation(s)
- Francesca Velarde
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Castañeda
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Emilia Morales
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mayra Ortega
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edwin Ocaña
- Hospital Carlos Andrade Marín, Quito, Ecuador
| | - Jose Álvarez-Barreto
- Instituto para el Desarrollo de Energías y Materiales Alternativos (IDEMA), Colegio de Ciencias e Ingenierías (Politécnico), Universidad San Francisco de Quito, Quito, Ecuador
| | - Michelle Grunauer
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Unidad de Cuidados Intensivos Pediátricos, Hospital de los Valles, Quito, Ecuador
| | - Luis Eguiguren
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
19
|
Arjunan S, Gan SU, Choolani M, Raj V, Lim J, Biswas A, Bongso A, Fong CY. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium. Stem Cell Res Ther 2020; 11:78. [PMID: 32085797 PMCID: PMC7035736 DOI: 10.1186/s13287-020-01609-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Keloid formation occurs in Caucasian, African, and Asian populations and is a severe psychosocial burden on patients. There is no permanent treatment for this problem as its pathogenesis is not properly understood. Furthermore, differences in keloid behavior between ethnic groups are not known. It has been hypothesized that keloids behave like benign tumors because of their uncontrolled growth. The present study evaluated the tumoricidal properties of human Wharton’s jelly stem cell-conditioned medium (hWJSC-CM) on fresh Asian keloid cells (AKCs). Methods Human Wharton’s jelly stem cells (hWJSCs) and AKCs were isolated based on our previous methods. hWJSCs and human skin fibroblasts (HSF) (controls) were used to collect hWJSC-CM and HSF-conditioned medium (HSF-CM). AKCs were treated with hWJSC-CM and HSF-CM in vitro and in vivo in a human keloid xenograft SCID mouse model. The inhibitory effect of hWJSC-CM on AKCs was tested in vitro using various assays and in vivo for attenuation/abrogation of AKC tumors created in a xenograft mouse model. Results qRT-PCR analysis showed that the genes FN1, MMP1, and VCAN were significantly upregulated in AKCs and ANXA1, ASPN, IGFBP7, LGALS1, and PTN downregulated. AKCs exposed to hWJSC-CM in vitro showed significant decreases in cell viability and proliferation, increases in Annexin V-FITC+ cell numbers, interruptions of the cell cycle at Sub-G1 and G2/M phases, altered CD marker expression, downregulated anti-apoptotic-related genes, and upregulated pro-apoptotic and autophagy-related genes compared to controls. When AKCs were administered together with hWJSC-CM into immunodeficient mice there were no keloid tumors formed in 7 mice (n = 10) compared to the untreated control mice. When hWJSC-CM was injected directly into keloid tumors created in mice there were significant reductions in keloid tumor volumes and weights in 30 days. Conclusions hWJSC-CM inhibited the growth of AKCs in vitro and in xenograft mice, and it may be a potential novel treatment for keloids in the human. The specific molecule(s) in hWJSC-CM that induce the anti-keloid effect need to be identified, characterized, and tested separately in larger preclinical and clinical studies.
Collapse
Affiliation(s)
- Subramanian Arjunan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Shu Uin Gan
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Vaishnevi Raj
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Jane Lim
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
20
|
Ansari AS, Yazid MD, Sainik NQAV, Razali RA, Saim AB, Idrus RBH. Osteogenic Induction of Wharton's Jelly-Derived Mesenchymal Stem Cell for Bone Regeneration: A Systematic Review. Stem Cells Int 2018; 2018:2406462. [PMID: 30534156 PMCID: PMC6252214 DOI: 10.1155/2018/2406462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage. A comprehensive search was conducted in Medline via Ebscohost and Scopus, where relevant studies published between 1961 and 2018 were selected. The main inclusion criteria were that articles must be primary studies published in English evaluating osteogenic induction of WJ-MSCs. The literature search identified 92 related articles, but only 18 articles met the inclusion criteria. These include two animal studies, three articles containing both in vitro and in vivo assessments, and 13 articles on in vitro studies, all of which are discussed in this review. There were two types of osteogenic induction used in these studies, either chemical or physical. The studies demonstrate that WJ-MSCs are able to differentiate into osteogenic lineage and promote osteogenesis. In light of these observations, it is suggested that WJ-MSCs can be a potential source of stem cells for osteogenic induction, as an alternative to bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Ayu Suraya Ansari
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Al Madhoun A, Alkandari S, Ali H, Carrio N, Atari M, Bitar MS, Al-Mulla F. Chemically Defined Conditions Mediate an Efficient Induction of Mesodermal Lineage from Human Umbilical Cord- and Bone Marrow- Mesenchymal Stem Cells and Dental Pulp Pluripotent-Like Stem Cells. Cell Reprogram 2018; 20:9-16. [PMID: 29412734 DOI: 10.1089/cell.2017.0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human umbilical cord Wharton's Jelly- and the bone marrow- mesenchymal stem cells (WJ-MSCs and BM-MSCs, respectively) and the newly identified dental pulp pluripotent-like stem cells (DPPSCs) are new sources for stem cells with prospective use in cell regeneration and therapy. These cells are self-renewable, can be differentiated into several lineages, and can potentiate the immune responses. We hypothesized that three-dimensional (3D) culture conditions and directed differentiation using specific signaling regulators will enhance an efficient generation of mesoderm (MD) lineage independent from the origin or source of the stem cells. For a period of 3-days, cell aggregates were generated in a serum-free media containing ascorbic acid, retinoic acid, and keratinocyte growth factor; sonic hedgehog and bone morphogenic protein-4 signaling were inhibited using small molecules. In all cell types used, the biochemical and molecular analysis revealed a time course-dependent induction of the mesodermal, but not endodermal or ectodermal makers. In this study, we utilized a novel and efficient serum-free protocol to differentiate WJ-MSCs, BM-MSCs, and DPPSCs into MD-cells. Successful development of an efficient differentiation protocol can further be utilized and expanded on to obtain MD- derivative cell lineages.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Sarah Alkandari
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Hamad Ali
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
- 2 Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University , Kuwait
| | - Neus Carrio
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Maher Atari
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Milad S Bitar
- 4 Department of Pharmacology and Toxicology, Health Sciences Center, Kuwait University , Kuwait
| | - Fahd Al-Mulla
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| |
Collapse
|
22
|
Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, Lee SL, Park BW, Rho GJ. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2017; 372:51-65. [PMID: 29204746 PMCID: PMC5862947 DOI: 10.1007/s00441-017-2699-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
23
|
Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Rev Rep 2017; 13:801-816. [DOI: 10.1007/s12015-017-9767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Lauder SN, Tyrrell VJ, Allen-Redpath K, Aldrovandi M, Gray D, Collins P, Jones SA, Taylor PR, O'Donnell V. Myeloid 12/15-LOX regulates B cell numbers and innate immune antibody levels in vivo. Wellcome Open Res 2017; 2:1. [PMID: 28239665 PMCID: PMC5321417 DOI: 10.12688/wellcomeopenres.10308.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background. The myeloid enzyme 12/15-lipoxygenase (LOX), which generates bioactive oxidized lipids, has been implicated in numerous inflammatory diseases, with several studies demonstrating an improvement in pathology in mice lacking the enzyme. However, the ability of 12/15-LOX to directly regulate B cell function has not been studied. Methods. The influence of 12/15-LOX on B cell phenotype and function, and IgM generation, was compared using wildtype (WT) and 12/15-LOX (
Alox15-/-) deficient mice. The proliferative and functional capacity of splenic CD19
+ B cells was measured
in vitro in response to various toll-like receptor agonists. Results. WT and
Alox15-/- displayed comparable responses. However
in vivo, splenic B cell numbers were significantly elevated in
Alox15-/- mice with a corresponding elevation in titres of total IgM in lung, gut and serum, and lower serum IgM directed against the 12/15-LOX product, 12-hydroxyeicosatetraenoic acid-phosphatidylethanolamine (HETE-PE). Discussion. Myeloid 12/15-LOX can regulate B cell numbers and innate immune antibody levels
in vivo, potentially contributing to its ability to regulate inflammatory disease. Furthermore, the alterations seen in 12/15-LOX deficiency likely result from changes in the equilibrium of the immune system that develop from birth. Further studies in disease models are warranted to elucidate the contribution of 12/15-LOX mediated alterations in B cell numbers and innate immune antibody generation to driving inflammation
in vivo.
Collapse
Affiliation(s)
- Sarah N Lauder
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Keith Allen-Redpath
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - David Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Peter Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Simon A Jones
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Valerie O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Fetal Membranes-Derived Stem Cells Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:235-244. [PMID: 29204836 DOI: 10.1007/978-3-319-69194-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.
Collapse
|
26
|
Ferrin I, Beloqui I, Zabaleta L, Salcedo JM, Trigueros C, Martin AG. Isolation, Culture, and Expansion of Mesenchymal Stem Cells. Methods Mol Biol 2017; 1590:177-190. [PMID: 28353270 DOI: 10.1007/978-1-4939-6921-0_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs), together with hematopoietic stem cells (HSCs), are the most frequently used cell type for cell-based therapeutics. As for other cell types intended for research and translational use, it is important to establish correctly typed cell lines from human tissue donations. Here, we describe methods for isolating, culturing, and identifying MSCs from various tissues obtained through human tissue donation. The methods have been used in the context of a biobank, prepared as standard operating procedures (SOPs), ensuring traceability and reproducibility of cell production.
Collapse
Affiliation(s)
- Izaskun Ferrin
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain
| | - Izaskun Beloqui
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain
| | - Lorea Zabaleta
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain
| | - Juan M Salcedo
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain
| | - Cesar Trigueros
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain
| | - Angel G Martin
- StemTek Therapeutics, Kabi612, Parque Tecnologico de Bizkaia, Astondo Bidea s/n, Derio, 48160, Spain.
| |
Collapse
|
27
|
Radtke S, Görgens A, Liu B, Horn PA, Giebel B. Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells. Cell Cycle 2016; 15:540-5. [PMID: 26818432 DOI: 10.1080/15384101.2015.1128591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A major goal in haematopoietic stem cell (HSC) research is to define conditions for the expansion of HSCs or multipotent progenitor cells (MPPs). Since human HSCs/MPPs cannot be isolated, NOD/SCID repopulating cell (SRC) assays emerged as the standard for the quantification of very primitive haematopoietic cell. However, in addition to HSCs/MPPs, lympho-myeloid primed progenitors (LMPPs) were recently found to contain SRC activities, challenging this assay as clear HSC/MPP readout. Because our revised model of human haematopoiesis predicts that HSCs/MPPs can be identified as CD133(+)CD34(+) cells containing erythroid potentials, we investigated the potential of human mesenchymal and conventional murine stromal cells to support expansion of HSCs/MPPs. Even though all stromal cells supported expansion of CD133(+)CD34(+) progenitors with long-term myeloid and long-term lymphoid potentials, erythroid potentials were exclusively found within erythro-myeloid CD133(low)CD34(+) cell fractions. Thus, our data demonstrate that against the prevailing assumption co-cultures on human mesenchymal and murine stromal cells neither promote expansion nor maintenance of HSCs and MPPs.
Collapse
Affiliation(s)
- Stefan Radtke
- a Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen , Germany.,b Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - André Görgens
- a Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Bing Liu
- c 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences , Beijing , China
| | - Peter A Horn
- a Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Bernd Giebel
- a Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
28
|
Fong CY, Biswas A, Stunkel W, Chong YS, Bongso A. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. J Cell Biochem 2016; 118:437-441. [DOI: 10.1002/jcb.25733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Walter Stunkel
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| |
Collapse
|
29
|
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int 2016; 2016:6901286. [PMID: 27651799 PMCID: PMC5019943 DOI: 10.1155/2016/6901286] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| |
Collapse
|
30
|
|
31
|
Endothelial differentiation of canine yolk sac cells transduced with VEGF. Res Vet Sci 2015; 104:71-6. [PMID: 26850540 DOI: 10.1016/j.rvsc.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/17/2015] [Accepted: 11/29/2015] [Indexed: 01/27/2023]
Abstract
Yolk sac (YS) is the site of blood-cell production where primitive erythroid cells originate and complete their maturation. YS is a source of precursor cells, however its differentiation potential and suitability for cell therapies are not well described. YS can be a cell source when neovascularization is required. This study characterized YS canine cells, transduced with VEGF, to analyze then using Immunocytochemistry, flow cytometry and real time PCR. Immunocytochemistry: positive expression for CD105, PCNA, VEGF and vWF, flow cytometry for CD105, VEGF, PCNA, OCT-4 and RT-qPCR for VEGF, CD31, CD105, PCNA and FLT - 1, indicating that these cells have characteristics of endothelial progenitor and pluripotency. After transduction, the YS cells changed their morphology and showed endothelial-like cells. We suggest, because of their cell surface phenotype as well as their capacity to differentiate into endothelial-like cells, that canine YS represents a source of cells for neovascularization therapies.
Collapse
|
32
|
Shivakumar SB, Bharti D, Jang SJ, Hwang SC, Park JK, Shin JK, Byun JH, Park BW, Rho GJ. Cryopreservation of Human Wharton's Jelly-derived Mesenchymal Stem Cells Following Controlled Rate Freezing Protocol Using Different Cryoprotectants; A Comparative Study. Int J Stem Cells 2015; 8:155-69. [PMID: 26634064 PMCID: PMC4651280 DOI: 10.15283/ijsc.2015.8.2.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To compare the effect of three different cryoprotectants on basic stem cell characteristics for the possibility of using well defined, dimethyl sulfoxide (DMSO) and serum free freezing solutions to cryopreserve human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) following controlled rate freezing protocol. METHODS The mesenchymal stem cells isolated from human Wharton's jelly were cryopreserved using 10% DMSO, 10% polyvinylpyrrolidone (PVP) and a cocktail solution comprising of 0.05 M glucose, 0.05 M sucrose and 1.5 M ethylene glycol following controlled rate freezing protocol. We investigated the post-thaw cell viability, morphology, proliferation capacity, basic stem cell characteristics, in vitro differentiation potential and apoptosis-related gene expression profile before and after cryopreservation. RESULTS The cryoprotectant 10% DMSO has shown higher post-thaw cell viability of 81.2±0.58% whereas 10% PVP and cocktail solution have shown 62.87±0.35% and 72.2±0.23%, respectively at 0 h immediately thawing. The cell viability was further reduced in all the cryopreserved groups at 24 h later post-thaw culture. Further, the complete elimination of FBS in cryoprotectants has resulted in drastic reduction in cell viability. Cryopreservation did not alter the basic stem cell characteristics, plasticity and multipotency except proliferation rate. The expression of pro-apoptotic BAX and p53 genes were higher whilst p21 was lower in all the cryopreserved groups when compare to the control group of WJMSCs. CONCLUSION Although 10% DMSO has shown higher post-thaw cell viability compare to 10% PVP and cocktail solution, the present study indicates the feasibility of developing a well-defined DMSO free cryosolution which can improve storage and future broad range applications of WJMSCs in regenerative medicine without losing their basic stem cell characteristics.
Collapse
Affiliation(s)
- Sharath Belame Shivakumar
- Department of Vet OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Korea
| | - Dinesh Bharti
- Department of Vet OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Korea
| | - Si-Jung Jang
- Department of Vet OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynaecology, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jeong-Kyu Shin
- Department of Obstetrics and Gynaecology, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyu-Jin Rho
- Department of Vet OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Korea ; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
33
|
Mançanares C, Oliveira V, Oliveira L, Carvalho A, Sampaio R, Mançanares A, Souza A, Perecin F, Meirelles F, Miglino M, Ambrósio C. Isolation and characterization of mesenchymal stem cells from the yolk sacs of bovine embryos. Theriogenology 2015; 84:887-98. [DOI: 10.1016/j.theriogenology.2015.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023]
|
34
|
Arutyunyan IV, Makarov AV, Elchaninov AV, Fatkhudinov TK. Umbilical cord-derived multipotent mesenchymal stromal cells: biological properties and clinical applications. GENES & CELLS 2015; 10:30-38. [DOI: 10.23868/gc120474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The article presents the current literature evidence and own data on the origin and properties of human umbilical cord-derived multipotent mesenchymal stromal cells including proliferative potential, plasticity, stability of caryotype and phenotype, and immunomodulatory activity A review of clinical trials using this cell type is performed Prospects for the use of multipotent stromal cells, derived from umbilical cord, in cell transplantation associate with the need for specialized biobanking and transplant standardization criteria
Collapse
Affiliation(s)
- I. V Arutyunyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
| | - A. V Makarov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - A. V Elchaninov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - T. Kh Fatkhudinov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| |
Collapse
|
35
|
Subramanian A, Fong CY, Biswas A, Bongso A. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS One 2015; 10:e0127992. [PMID: 26061052 PMCID: PMC4464659 DOI: 10.1371/journal.pone.0127992] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs) with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. We compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and mixed cord (MC) of five UCs. The WJ occupied the largest area in the UC from which 4.61 ± 0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC that required culture. The WJ and PV had significantly lesser CD40+ non-stem cell contaminants (26-27%) compared to SA, AM and MC (51-70%). Cells from all compartments were proliferative, expressed the typical MSC-CD, HLA, and ESC markers, telomerase, had normal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The cells from WJ showed significantly greater CD24+ and CD108+ numbers and fluorescence intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were negative for the fibroblast-specific and activating-proteins (FSP, FAP) and showed greater osteogenic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells from the WJ offer the best clinical utility as (i) they have less non-stem cell contaminants (ii) can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii) their derivation is quick and easy to standardize, (iv) they are rich in stemness characteristics and (v) have high differentiation potential. Our results show that when isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized method of derivation must be used so as to make meaningful comparisons of data between research groups.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
- * E-mail:
| |
Collapse
|
36
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|
37
|
Wang C, Wang X, Zhou H, Dong G, Guan X, Wang L, Xu X, Wang S, Chen P, Peng R, Hu X. Effects of pulsed 2.856 GHz microwave exposure on BM-MSCs isolated from C57BL/6 mice. PLoS One 2015; 10:e0117550. [PMID: 25658708 PMCID: PMC4319787 DOI: 10.1371/journal.pone.0117550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022] Open
Abstract
The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level.
Collapse
Affiliation(s)
- Changzhen Wang
- Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (CW); (XH)
| | - Xiaoyan Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xue Guan
- NO. 281 Hospital of People’s Liberation Army, Qinhuangdao, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuiming Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (CW); (XH)
| |
Collapse
|
38
|
Kohler EE, Baruah J, Urao N, Ushio-Fukai M, Fukai T, Chatterjee I, Wary KK. Low-dose 6-bromoindirubin-3'-oxime induces partial dedifferentiation of endothelial cells to promote increased neovascularization. Stem Cells 2015; 32:1538-52. [PMID: 24496925 DOI: 10.1002/stem.1658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023]
Abstract
Endothelial cell (EC) dedifferentiation in relation to neovascularization is a poorly understood process. In this report, we addressed the role of Wnt signaling in the mechanisms of neovascularization in adult tissues. Here, we show that a low-dose of 6-bromoindirubin-3'-oxime (BIO), a competitive inhibitor of glycogen synthase kinase-3β, induced the stabilization of β-catenin and its subsequent direct interaction with the transcription factor NANOG in the nucleus of ECs. This event induced loss of VE-cadherin from the adherens junctions, increased EC proliferation accompanied by asymmetric cell division (ACD), and formed cellular aggregates in hanging drop assays indicating the acquisition of a dedifferentiated state. In a chromatin immunoprecipitation assay, nuclear NANOG protein bound to the NANOG- and VEGFR2-promoters in ECs, and the addition of BIO activated the NANOG-promoter-luciferase reporter system in a cell-based assay. Consequently, NANOG-knockdown decreased BIO-induced NOTCH-1 expression, thereby decreasing cell proliferation, ACD, and neovascularization. In a Matrigel plug assay, BIO induced increased neovascularization, secondary to the presence of vascular endothelial growth factor (VEGF). Moreover, in a mouse model of hind limb ischemia, BIO augmented neovascularization that was coupled with increased expression of NOTCH-1 in ECs and increased smooth muscle α-actin(+) cell recruitment around the neovessels. Thus, these results demonstrate the ability of a low-dose of BIO to augment neovascularization secondary to VEGF, a process that was accompanied by a partial dedifferentiation of ECs via β-catenin and the NANOG signaling pathway.
Collapse
Affiliation(s)
- Erin E Kohler
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Gao Y, Bai C, Wang K, Sun B, Guan W, Zheng D. All-trans retinoic acid promotes nerve cell differentiation of yolk sac-derived mesenchymal stem cells. Appl Biochem Biotechnol 2014; 174:682-92. [PMID: 25086923 DOI: 10.1007/s12010-014-1100-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Fetal membranes are abundant; the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in human and murine; whereas other cell types and species are dramatically unnoticed. Here, we studied the nature and differentiation potential of yolk sac-derived mesenchymal stem cells from a chicken embryo. In this study, we observed the gene expression of pluripotent markers in yolk sac mesenchymal stem cells (YS-MSCs) and the capacity of YS-MSCs to differentiate into neural-like cells using quantitative RT-PCR, immunocytochemistry, and western blotting. YS-MSCs have a spindle shape and revealed the expression of the MSC-related proteins β-integrin, CD44, CD71, and CD73, but not CD34. YS-MSCs express pluripotent markers such as octamer-binding transcription factor 4 (Oct4) and Nanog at the protein and mRNA levels. QRT-PCR analyses revealed that YS-MSCs expressed nestin. Immunocytochemical and western blotting data showed that the cells expressed Nestin and microtubule-associated protein 2 (Map-2) for neurons, respectively, after induction of neural differentiation. These findings demonstrate the plasticity of YS-MSCs and their potential for use in cellular replacement therapy for neural diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | | | |
Collapse
|
40
|
Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A, Jeyaseelan K, Choolani M, Biswas A, Bongso A. Human Wharton's jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 2014; 115:290-302. [PMID: 24038311 DOI: 10.1002/jcb.24661] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022]
Abstract
Wound healing is a major problem in diabetic patients and current treatments have met with limited success. We evaluated the treatment of excisional and diabetic wounds using a stem cell isolated from the human umbilical cord Wharton's jelly (hWJSC) that shares unique properties with embryonic and adult mesenchymal stem cells. hWJSCs are non-controversial, available in abundance, hypo-immunogenic, non-tumorigenic, differentiate into keratinocytes, and secrete important molecules for tissue repair. When human skin fibroblasts (CCD) in conventional scratch-wound assays were exposed to hWJSC-conditioned medium (hWJSC-CM) the fibroblasts at the wound edges migrated and completely covered the spaces by day 2 compared to controls. The number of invaded cells, cell viability, total collagen, elastin, and fibronectin levels were significantly greater in the hWJSC-CM treatment arm compared to controls (P < 0.05). When a single application of green fluorescent protein (GFP)-labeled hWJSCs (GFP-hWJSCs) or hWJSC-CM was administered to full-thickness murine excisional and diabetic wounds, healing rates were significantly greater compared to controls (P < 0.05). Wound biopsies collected at various time points showed the presence of green GFP-labeled hWJSCs, positive human keratinocyte markers (cytokeratin, involucrin, filaggrin) and expression of ICAM-1, TIMP-1, and VEGF-A. On histology, the GFP-hWJSCs and hWJSC-CM treated wounds showed reepithelialization, increased vascularity and cellular density and increased sebaceous gland and hair follicle numbers compared to controls. hWJSCs showed increased expression of several miRNAs associated with wound healing compared to CCDs. Our studies demonstrated that hWJSCs enhance healing of excisional and diabetic wounds via differentiation into keratinocytes and release of important molecules.
Collapse
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Favaron PO, Mess A, Will SE, Maiorka PC, de Oliveira MF, Miglino MA. Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus) with multipotent differential potential. PLoS One 2014; 9:e95575. [PMID: 24918429 PMCID: PMC4053469 DOI: 10.1371/journal.pone.0095575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/28/2014] [Indexed: 01/03/2023] Open
Abstract
Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine.
Collapse
Affiliation(s)
- Phelipe Oliveira Favaron
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| | - Andrea Mess
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Sônia Elisabete Will
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Paulo César Maiorka
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Moacir Franco de Oliveira
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Fong CY, Biswas A, Subramanian A, Srinivasan A, Choolani M, Bongso A. Human Keloid Cell Characterization and Inhibition of Growth with Human Wharton's Jelly Stem Cell Extracts. J Cell Biochem 2014; 115:826-38. [DOI: 10.1002/jcb.24724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Akshaya Srinivasan
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology; Yong Loo Lin School of Medicine; National University Health System; National University of Singapore; Kent Ridge Singapore 119228 Singapore
| |
Collapse
|
43
|
Zheng L, Chu J, Shi Y, Zhou X, Tan L, Li Q, Cui L, Han Z, Han Y, Fan D. Bone marrow-derived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17. Cell Biosci 2013; 3:46. [PMID: 24314294 PMCID: PMC3882099 DOI: 10.1186/2045-3701-3-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/28/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating evidences have identified the immunoregulatory features of stem cells. In this study, the immunoregulation of bone marrow-derived stem cells (BMSCs) transplanted into patients with HBV-related decompensated cirrhosis and mouse model of liver injury induced by carbon tetrachloride (CCl4) administration was observed. RESULTS Compared with healthy controls, patients with HBV-related decompensated cirrhosis showed significantly higher levels of TNF-alpha, IL-12, TGF-beta1, IL-17, and IL-8. However, only IL-17 was markedly decreased after autologous BMSCs transplantation during their follow-up. The same results were found in the CCl4-treated mice. Furthermore, we found that exogenous IL-17 partly abolished the therapeutic effect of BMSCs whereas IL-17-specific antibody promoted improvement of liver injury in CCl4-treated mice, resembling the therapeutic effect of BMSCs transplantation. CONCLUSIONS These data suggested that BMSCs transplantation induces a decrease of IL-17 level, which at least in part delineates the mechanisms of stem cells-mediated therapeutic benefit on liver disease.
Collapse
Affiliation(s)
- Linhua Zheng
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Jindong Chu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Ling Tan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Disease, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
44
|
Jaffredo T, Lempereur A, Richard C, Bollerot K, Gautier R, Canto PY, Drevon C, Souyri M, Durand C. Dorso-ventral contributions in the formation of the embryonic aorta and the control of aortic hematopoiesis. Blood Cells Mol Dis 2013; 51:232-8. [DOI: 10.1016/j.bcmd.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/29/2013] [Indexed: 01/08/2023]
|
45
|
Yang HT, Chao KC. Foetal defence against cancer: a hypothesis. J Cell Mol Med 2013; 17:1096-8. [PMID: 23815673 PMCID: PMC4118168 DOI: 10.1111/jcmm.12095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/19/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Affiliation(s)
- Hui-Tai Yang
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | | |
Collapse
|
46
|
Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 2013; 14:11692-712. [PMID: 23727936 PMCID: PMC3709752 DOI: 10.3390/ijms140611692] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022] Open
Abstract
Wharton's jelly (WJ) is a gelatinous tissue within the umbilical cord that contains myofibroblast-like stromal cells. A unique cell population of WJ that has been suggested as displaying the stemness phenotype is the mesenchymal stromal cells (MSCs). Because MSCs' stemness and immune properties appear to be more robustly expressed and functional which are more comparable with fetal than adult-derived MSCs, MSCs harvested from the "young" WJ are considered much more proliferative, immunosuppressive, and even therapeutically active stem cells than those isolated from older, adult tissue sources such as the bone marrow or adipose. The present review discusses the phenotypic characteristics, therapeutic applications, and optimization of experimental protocols for WJ-derived stem cells. MSCs derived from WJ display promising transplantable features, including ease of sourcing, in vitro expandability, differentiation abilities, immune-evasion and immune-regulation capacities. Accumulating evidence demonstrates that WJ-derived stem cells possess many potential advantages as transplantable cells for treatment of various diseases (e.g., cancer, chronic liver disease, cardiovascular diseases, nerve, cartilage and tendon injury). Additional studies are warranted to translate the use of WJ-derived stem cells for clinical applications.
Collapse
|
47
|
Li Q, Zhou X, Shi Y, Li J, Zheng L, Cui L, Zhang J, Wang L, Han Z, Han Y, Fan D. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One 2013; 8:e62363. [PMID: 23638052 PMCID: PMC3640058 DOI: 10.1371/journal.pone.0062363] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) have been studied for damaged liver repair; however, the conclusions drawn regarding their homing capacity to the injured liver are conflicting. Besides, the relative utility and synergistic effects of these two cell types on the injured liver remain unclear. Methodology/Principal Findings MSCs, HSCs and the combination of both cells were obtained from the bone marrow of male mice expressing enhanced green fluorescent protein(EGFP)and injected into the female mice with or without liver fibrosis. The distribution of the stem cells, survival rates, liver function, hepatocyte regeneration, growth factors and cytokines of the recipient mice were analyzed. We found that the liver content of the EGFP-donor cells was significantly higher in the MSCs group than in the HSCs or MSCs+HSCs group. The survival rate for the MSCs group was significantly higher than that of the HSCs or MSCs+HSCs group; all surpassed the control group. After MSC-transplantation, the injured livers were maximally restored, with less collagen than the controls. The fibrotic areas had decreased to a lesser extent in the mice transplanted with HSCs or MSCs+HSCs. Compared with mice in the HSCs group, the mice that received MSCs had better improved liver function. MSCs exhibited more remarkable paracrine effects and immunomodulatory properties on hepatic stellate cells and native hepatocytes in the treatment of the liver pathology. Synergistic actions of MSCs and HSCs were most likely not observed because the stem cells in liver were detected mostly as single cells, and single MSCs are insufficient to provide a beneficial niche for HSCs. Conclusions/Significance MSCs exhibited a greater homing capability for the injured liver and modulated fibrosis and inflammation more effectively than did HSCs. Synergistic effects of MSCs and HSCs were not observed in liver injury.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jinge Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Linhua Zheng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jun Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- * E-mail:
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
48
|
Lin HD, Bongso A, Gauthaman K, Biswas A, Choolani M, Fong CY. Human Wharton’s Jelly Stem Cell Conditioned Medium Enhances Freeze-Thaw Survival and Expansion of Cryopreserved CD34+ Cells. Stem Cell Rev Rep 2013; 9:172-83. [DOI: 10.1007/s12015-013-9426-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Gauthaman K, Fong CY, Arularasu S, Subramanian A, Biswas A, Choolani M, Bongso A. Human Wharton's Jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. J Cell Biochem 2012; 114:366-77. [DOI: 10.1002/jcb.24367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022]
|
50
|
The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord. Stem Cell Rev Rep 2012; 9:226-40. [DOI: 10.1007/s12015-012-9418-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|