1
|
Azizi L, Hausman H, Meyer AK, Wong M, Pajonk F. The Mevalonate Pathway in the Radiation Response of Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00278-0. [PMID: 40194746 DOI: 10.1016/j.ijrobp.2025.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The mevalonate (MVA) pathway plays a critical role in cholesterol biosynthesis, protein prenylation, and metabolic reprogramming, all of which contribute to cancer progression and therapy resistance. Targeting the MVA pathway with statins and other inhibitors has shown promise in preclinical studies; however, clinical outcomes remain controversial, raising concerns about translating these findings into effective treatments. Additionally, the interaction between the MVA pathway and radiation therapy (RT) is not yet fully understood, as RT upregulates the pathway, which can enhance tumor cell survival. This review summarizes the current literature on MVA pathway inhibition in cancer therapy, focusing on its potential to enhance the efficacy of RT. A better understanding of the pathway's role in radiation responses will be essential to translate combination therapies that target this pathway.
Collapse
Affiliation(s)
- Linda Azizi
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA.
| | - Hannah Hausman
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Alexandra K Meyer
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Matthew Wong
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA; Department of Neurosurgery, David Geffen School of Medicine at UCLA; Jonsson Comprehensive Cancer Center at UCLA
| |
Collapse
|
2
|
Do LK, Lee HM, Ha YS, Lee CH, Kim J. Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches. Cell Rep 2025; 44:115529. [PMID: 40193251 DOI: 10.1016/j.celrep.2025.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of malignant transformation. While initial studies in the field of cancer metabolism focused on central carbon metabolism, the field has expanded to metabolism beyond glucose and glutamine and uncovered the important role of amino acids in tumorigenesis and tumor immunity as energy sources, signaling molecules, and precursors for (epi)genetic modification. As a result of the development and application of new technologies, a multifaceted picture has emerged, showing that context-dependent heterogeneity in amino acid metabolism exists between tumors and even within distinct regions of solid tumors. Understanding the complexity and flexibility of amino acid metabolism in cancer is critical because it can influence therapeutic responses and predict clinical outcomes. This overview discusses the current findings on the heterogeneity in amino acid metabolism in cancer and how understanding the metabolic diversity of amino acids can be translated into more clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Linda K Do
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Chan-Hyeong Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
3
|
Im SS, Seo J, You JE, Bang HW, Kim Y, Kweon J, Kim Y, Shin DM, Son J. BIX01294 suppresses PDAC growth through inhibition of glutaminase-mediated glutathione dynamics. Mol Metab 2025; 94:102113. [PMID: 39961401 PMCID: PMC11905835 DOI: 10.1016/j.molmet.2025.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVES Increased expression of glutaminase (GLS) has been found to correlate with more aggressive disease and poorer prognosis in patients with several types of cancer, including breast, lung, and pancreatic cancer. G9a histone methyltransferase inhibitors may have anticancer activity. The present study assessed whether BIX01294 (BIX), a G9a histone methyltransferase inhibitor, can inhibit glutaminase (GLS) in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS The effects of BIX on mitochondrial metabolism in PDAC cells were evaluated by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. To assess the impact of BIX on glutathione dynamics, real-time changes in glutathione levels were monitored by FreSHtracer-based GSH assays. RESULTS BIX significantly inhibited the growth of PDAC cells, both in vitro and in vivo, and robustly induced apoptotic cell death. BIX significantly increased the cellular NADP+/NADPH ratio and decreased the ratio of reduced-to-oxidized glutathione (GSH:GSSG). In addition, BIX decreased GSH levels and increased ROS levels. N-acetyl-l-cysteine (NAC) supplementation dramatically rescued PDAC cells from BIX-induced apoptosis. Furthermore, BIX inhibited the transcription of GLS by inhibiting Jumonji-domain histone demethylases but not G9a histone methyltransferase. One Jumonji-domain histone demethylase, KDM6B, epigenetically regulated GLS expression by binding to the GLS gene promoter. CONCLUSIONS Collectively, these findings suggest that BIX could be a potent therapeutic agent in patients with PDAC through its inhibition of GLS-mediated cellular redox balance.
Collapse
Affiliation(s)
- Se Seul Im
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Jihyeon Seo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ji Eun You
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hye Won Bang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - YongHwan Kim
- Department of Cell and Genetic Engineering, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Jiyeon Kweon
- Department of Cell and Genetic Engineering, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Cell and Genetic Engineering, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
4
|
Shangguan F, Ma N, Chen Y, Zheng Y, Ma T, An J, Lin J, Yang H. Fucoxanthin suppresses pancreatic cancer progression by inducing bioenergetics metabolism crisis and promoting SLC31A1‑mediated sensitivity to DDP. Int J Oncol 2025; 66:31. [PMID: 40052552 PMCID: PMC11900939 DOI: 10.3892/ijo.2025.5737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors, with a 5‑year survival rate <10%. Chemosynthetic drugs are widely used in the treatment of PC; however, their toxicity and side effects often reduce the quality of life for patients. MTT and colony formation assay were performed to detect cell growth and viability in PC cells. Levels of ROS in whole cell and mitochondria were analyzed through flow cytometry. ATP production was evaluated using an ATP Assay Kit. Cellular bioenergetics were analyzed with a Seahorse XFe96 Analyzer, and changes in target molecules were monitored by western blotting. The present study reports that fucoxanthin (FX), a carotenoid derived from aquatic brown seaweed, significantly inhibits PC by inhibiting cell proliferation and inducing cell death via the non‑classical pathway. FX switches mitochondrial respiration to aerobic glycolysis in PC cells. Furthermore, FX decreases whole‑cell ATP levels, which indicates that promotion of glycolysis does not compensate for FX‑induced ATP depletion in mitochondria. Moreover, FX decreased the reduced glutathione/oxidized glutathione ratio observed under glucose‑limited conditions. These alterations caused by FX may decrease metabolic flexibility, indicating higher sensitivity to glucose‑limited (GL) conditions. FX increased the cytotoxicity of cisplatin (DDP) and the expression of solute carrier family 31 member 1 (SLC31A1) in PC cells. Furthermore, the knockdown of SLC31A1 can attenuate cytotoxicity caused by the combination of FX and DDP. It was inferred that FX increased the sensitivity of PC cells to DDP), potentially by upregulating SLC31A1 expression. In conclusion, FX exhibited potent antitumor effects by reprogramming energy metabolism and inducing a distinct form of regulated cell death. Therefore, combining FX with GL treatment or DDP presents a promising therapeutic strategy for PC.
Collapse
Affiliation(s)
- Fugen Shangguan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nengfang Ma
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yang Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ting Ma
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jianhu Lin
- Department of Trauma Surgery and Emergency Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
5
|
Zhang Y, Huang X, Song X, Li X, Zhang J, Chen M, Shi Z, Song B, Wei W, Qi C, Zhang Y. Discovery of cadinane sesquiterpenoids as GOT1 inhibitors from Penicillium sp. HZ-5. Bioorg Chem 2025; 157:108303. [PMID: 40020478 DOI: 10.1016/j.bioorg.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Fifteen new cadinane sesquiterpenoids, amorphaenes A-O (1-15), along with one known compound, were isolated from an endophytic fungus Penicillium sp. HZ-5 collected from Hypericum wilsonii N. Robson. Notably, compound 7 was the first example of 11-nor cadinane sesquiterpenoid via the oxidative cleavage between C-11 and C-13. Their structures were elucidated by extensive spectroscopic analysis, singlecrystal X-ray diffraction and ECD calculation and comparison. Significantly, compounds 1, 5, 8, 13 and 16 exhibited glutamic oxaloacetate transaminase 1 (GOT1) inhibitory effects, with IC50 values ranging from 20.0 ± 2.1 to 26.2 ± 2.7 μM and also showed potential cytotoxicity on pancreatic ductal adenocarcinoma (PDAC) cells, with IC50 values ranging from 13.1 ± 1.5 to 28.6 ± 2.9 μM.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xinye Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xinming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education; Hainan Normal University, China
| | - Xuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinlong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Binbin Song
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wei Wei
- China National Center for Biotechnology Development, Beijing 100039, China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; China National Center for Biotechnology Development, Beijing 100039, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
6
|
Hao X, Qian X, Xie C, Wang Z, Wang X, Ji Y, Zhang X, Li Q, Wan B, Cui H, Wang L, Yang N, Qiao L, Yu H, Han F, Zhuang H, Zhou J. CircMFN2/miR-361-3p/ELK1 feedback loop promotes glutaminolysis and the progression of hepatocellular carcinoma. Cancer Lett 2025; 614:217473. [PMID: 39933635 DOI: 10.1016/j.canlet.2025.217473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Current evidence indicates that circRNAs are involved in the development of multiple malignancies including hepatocellular carcinoma (HCC). However, the specific functions of circRNAs in HCC metabolism and progression and their underlying regulatory mechanisms remain unclear. We have identified a novel circRNA circMFN2, by bioinformatics analysis of circRNA microarray data from the GEO database. The levels of circMFN2 were assessed in HCC cell lines and tissues, and its clinical relevance was assessed. The effect of circMFN2 on HCC cells was evaluated in vitro and in vivo. The effect of ELK1 on glutaminolysis and HCC progression was also explored. Patients with HCC and high circMFN2 expression exhibited worse survival outcomes. Functionally, downregulation of circMFN2 repressed the proliferation, invasion, and migration of HCC cells in vitro, whereas ectopic expression of circMFN2 had the opposite effects. The effects of tumor enhancement by circMFN2 on HCC were confirmed by in vivo experiments. Mechanistically, circMFN2 acted as a sponge for miR-361-3p, leading to the upregulation of its target ELK1, whereas ELK1 was enriched in the MFN2 promoter to enhance the transcription and expression of MFN2, indirectly leading to the upregulation of circMFN2. Additionally, we found that circMFN2 promotes glutaminolysis in HCC by increasing ELK1 phosphorylation. We concluded that circMFN2 facilitates HCC progression via a circMFN2/miR-361-3p/ELK1 feedback loop, which promotes glutaminolysis mediated by the upregulation of phosphorylated ELK1. Therefore, circMFN2 not only serves as a potential prognostic indicator, but it could also serve as a therapeutic target for HCC. Further studies are warranted.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- ets-Domain Protein Elk-1/genetics
- ets-Domain Protein Elk-1/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Animals
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Mice
- Cell Line, Tumor
- Cell Proliferation/genetics
- Feedback, Physiological
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Male
- Mice, Nude
- Glutamine/metabolism
- Cell Movement/genetics
- Female
Collapse
Affiliation(s)
- Xiaopei Hao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiangjun Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chenxi Xie
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengzheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaokai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingjun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Baishun Wan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Li Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Nanmu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Haibo Yu
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Feng Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Hao Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
7
|
Dai X, Feng S, Li T. Cold atmospheric plasma control metabolic syndromes via targeting fat mass and obesity-associated protein. Pharmacol Res 2025; 215:107720. [PMID: 40174815 DOI: 10.1016/j.phrs.2025.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Both obesity and metabolic disorders are global medical problems. Driven by prolonged inflammation, obesity increases the risk of developing metabolic syndromes such as fatty liver, diabetes, cardiovascular diseases and cancers. The fat mass and obesity-associated protein (FTO) is an m6A demethylase, elevated activity of which is known to promote the pathogenesis of many metabolic disorders, leading to the establishment of various FTO inhibitors. By combing through intrinsic connections among obesity and the four primary metabolic problems, we attribute their shared pathological cause to prolonged inflammation. By reviewing the roles of FTO in promoting these disorders and the current status of existing FTO inhibitors in treating these syndromes, we underpinned the paramount potential of resolving these clinical issues by targeting FTO and the urgent need of establishing novel FTO inhibitors with maximized efficacy and minimized side effect. Cold atmospheric plasma (CAP) is the fourth state of matter with demonstrated efficacy in treating various diseases associated with chronic inflammation. By introducing the medical characteristics of CAP, we proposed it as a possible solution to unresolved issues of current FTO inhibitors given its anti-inflammation feature and demonstrated clinical safety. We also emphasized the need of intensive investigations in exploring the feasibility of using CAP in treating obesity and associated metabolic syndromes that might function through targeting FTO.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Tian Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| |
Collapse
|
8
|
Pu X, Wu Y, Long W, Sun X, Yuan X, Wang D, Wang X, Xu M. The m6A reader IGF2BP2 promotes pancreatic cancer progression through the m6A-SLC1A5-mTORC1 axis. Cancer Cell Int 2025; 25:122. [PMID: 40158101 PMCID: PMC11954220 DOI: 10.1186/s12935-025-03736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly malignant digestive tumor. Glutamine metabolism is one of the important sources of tumors. N6-methyladenosine (m6A) modification plays a key role in regulating tumor metabolism and holds promise as a therapeutic target in various cancers, including pancreatic cancer. Disrupting m6A regulation of glutamine metabolism could impair tumor growth, offering potential new therapeutic strategies. However, the functional role of m6A modifications in pancreatic cancer, especially in glutamine metabolism, remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) dataset and GEPIA bioinformatics tool were used to identify the relationship between m6A related proteins and the glutamine metabolism-associated genes, respectively. The biological effects of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were investigated using in vitro and in vivo models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-PCR and RNA immunoprecipitation (RIP) were used to identify solute carrier family 1 member 5 (SLC1A5) as a direct target of IGF2BP2. RESULTS We found that IGF2BP2 expression and SLC1A5 were significantly correlated and both highly expressed in pancreatic cancer could predict poor prognosis in patients with pancreatic cancer. Functionally, silencing IGF2BP2 suppressed tumor growth and also inhibited glutamine uptake by tumor cells. Mechanistically, IGF2BP2 induced the m6A-SLC1A5-mTORC1 axis, facilitating the uptake of glutamine by pancreatic cancer cells and accelerate the progress of pancreatic cancer. Furthermore, silencing IGF2BP2 can enhance the sensitivity of pancreatic cancer to radiotherapy and chemotherapy. CONCLUSION Our findings suggest that IGF2BP2 promotes pancreatic cancer by activating the m6A-SLC1A5 -mTORC1 axis. Targeting the m6A machinery, particularly IGF2BP2, offers a novel therapeutic avenue for pancreatic cancer treatment. By disrupting the regulation of glutamine metabolism, we provide new insights into how m6A-based therapies could enhance the efficacy of current treatments and offer hope for improving patient outcomes in this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Yuting Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Weiguo Long
- Pathology Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao Yuan
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Deqiang Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Excellent Medical School, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- , No. 438 Jiefang Road, Jingkou District, Zhenjiang, Jiangsu Province, 212001, China.
| |
Collapse
|
9
|
Lan Q, Ouyang A, Chen Y, Li Y, Zhong B, Deng S. Pain, lactate, and anesthetics: intertwined regulators of tumor metabolism and immunity. Front Oncol 2025; 15:1534300. [PMID: 40165895 PMCID: PMC11955471 DOI: 10.3389/fonc.2025.1534300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Patients with advanced cancer frequently endure severe pain, which substantially diminishes their quality of life and can adversely impact survival. Analgesia, a critical modality for alleviating such pain, is now under scrutiny for its potential role in cancer progression, a relationship whose underlying mechanisms remain obscure. Emerging evidence suggests that lactate, once considered a metabolic byproduct, actively participates in the malignant progression of cancer by modulating both metabolic and immunological pathways within the tumor microenvironment. Furthermore, lactate is implicated in the modulation of cancer-related pain, exerting effects through direct and indirect mechanisms. This review synthesizes current understanding of lactate's production, transport, and functional roles in tumor cells, encompassing the regulation of tumor metabolism, immunity, and progression. Additionally, we dissect the complex, bidirectional relationship between lactate and pain, and assess the impact of anesthetics on pain relief, lactate homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Simin Deng
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Cabezón-Gutiérrez L, Palka-Kotlowska M, Custodio-Cabello S, Chacón-Ovejero B, Pacheco-Barcia V. Metabolic mechanisms of immunotherapy resistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002297. [PMID: 40092297 PMCID: PMC11907103 DOI: 10.37349/etat.2025.1002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yet its efficacy is frequently compromised by metabolic mechanisms that drive resistance. Understanding how tumor metabolism shapes the immune microenvironment is essential for developing effective therapeutic strategies. This review examines key metabolic pathways influencing immunotherapy resistance, including glucose, lipid, and amino acid metabolism. We discuss their impact on immune cell function and tumor progression, highlighting emerging therapeutic strategies to counteract these effects. Tumor cells undergo metabolic reprogramming to sustain proliferation, altering the availability of essential nutrients and generating toxic byproducts that impair cytotoxic T lymphocytes (CTLs) and natural killer (NK) cell activity. The accumulation of lactate, deregulated lipid metabolism, and amino acid depletion contribute to an immunosuppressive tumor microenvironment (TME). Targeting metabolic pathways, such as inhibiting glycolysis, modulating lipid metabolism, and restoring amino acid balance, has shown promise in enhancing immunotherapy response. Addressing metabolic barriers is crucial to overcoming immunotherapy resistance. Integrating metabolic-targeted therapies with immune checkpoint inhibitors may improve clinical outcomes. Future research should focus on personalized strategies to optimize metabolic interventions and enhance antitumor immunity.
Collapse
Affiliation(s)
- Luis Cabezón-Gutiérrez
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Magda Palka-Kotlowska
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Custodio-Cabello
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Chacón-Ovejero
- Department of Pharmacy and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Vilma Pacheco-Barcia
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
11
|
Chen F, Tang H, Li C, Kang R, Tang D, Liu J. CYP51A1 drives resistance to pH-dependent cell death in pancreatic cancer. Nat Commun 2025; 16:2278. [PMID: 40055353 PMCID: PMC11889236 DOI: 10.1038/s41467-025-57583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2025] [Indexed: 04/06/2025] Open
Abstract
Disrupted pH homeostasis can precipitate cell death and represents a viable therapeutic target in oncological interventions. Here, we utilize mass spectrometry-based drug analysis, transcriptomic screens, and lipid metabolomics to explore the metabolic mechanisms underlying pH-dependent cell death. We reveal CYP51A1, a gene involved in cholesterol synthesis, as a key suppressor of alkalization-induced cell death in pancreatic cancer cells. Inducing intracellular alkalization by the small molecule JTC801 leads to a decrease in endoplasmic reticulum cholesterol levels, subsequently activating SREBF2, a transcription factor responsible for controlling the expression of genes involved in cholesterol biosynthesis. Specifically, SREBF2-driven upregulation of CYP51A1 prevents cholesterol accumulation within lysosomes, leading to TMEM175-dependent lysosomal proton efflux, ultimately resulting in the inhibition of cell death. In animal models, including xenografts, syngeneic orthotopic, and patient-derived models, the genetic or pharmacological inhibition of CYP51A1 enhances the effectiveness of JTC801 in suppressing pancreatic tumors. These findings demonstrate a role of the CYP51A1-dependent lysosomal pathway in inhibiting alkalization-induced cell death and highlight its potential as a targetable vulnerability in pancreatic cancer.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Wang X, Zhao X, Zheng X, Peng X, Chen J, Wang Y, Wang Z, Meng M, Du J. Sirt6 loss activates Got1 and facilitates cleft palate through abnormal activating glycolysis. Cell Death Dis 2025; 16:159. [PMID: 40050262 PMCID: PMC11885815 DOI: 10.1038/s41419-025-07465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
Cleft palate (CP) is a common congenital craniofacial malformation, which is caused by a combination of genetic and environmental factors. However, its underlying mechanism has not been elucidated. Sirtuin6 (SIRT6) mutation has been associated with craniofacial anomalies in humans. This study further defined the role of Sirt6 in palatogenesis by investigating the specific inactivation of Sirt6 in Wnt1-expressing cell lineages. Here, we demonstrated that Sirt6 conditioned knockout (Sirt6 cKO) could inhibit the osteogenesis of the palate which facilitated the occurrence of CP. Specifically, Sirt6 deficiency promoted the expression of glutamine oxaloacetic transaminase 1 (Got1) and glycolysis through deacetylation inhibition, which increased the proliferation of mouse embryonic palatal mesenchyme (MEPM) cells through the GOT1-lactate dehydrogenase A (LDHA)-transforming growth factor beta receptor 1 (TGFBR1) pathway in the early stage and inhibited the osteogenic differentiation of MEPM cells through the GOT1-LDHA-bone morphogenetic protein 2 (BMP2) pathway in the late stage. Notably, if there was a disturbance of the environment, such as retinoic acid (RA), the occurrence of CP increased. Also, the enhanced acetylation of histone 3 lysine 9 (H3K9) in Got1 induced by Sirt6 deficiency was mediated by the acetylase tat-interacting protein 60 (TIP60) rather than acetyltransferase p300 (P300). Additionally, inhibition of Got1 partially saved the promoting effect of Sirt6 cKO on the CP. Our study reveals the role of Sirt6 in facilitating CP, with Got1 as the primary driver.
Collapse
Affiliation(s)
- Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Mingyue Meng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China.
- Department of geriatric dentistry, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China.
| |
Collapse
|
13
|
Wu J, Cheng Y, Qian K, Yang P, Zhou L, Xu M, Sheng D, Wang T, Li Y, Yang X, Wei Y, Zhang Q. siRNA-Encapsulated Biomimetic Liposomes Effectively Inhibit Tumor Cells' Hexosamine Biosynthesis Pathway for Attenuating Hyaluronan Barriers to Pancreatic Cancer Chemotherapy. ACS NANO 2025; 19:7928-7947. [PMID: 39978787 DOI: 10.1021/acsnano.4c14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant therapeutic challenges due to excessive hyaluronic acid (HA) accumulation, which impedes drug delivery. Here, we present a targeted approach to reduce HA production by specifically silencing glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1), a key enzyme of the hexosamine biosynthesis pathway (HBP) in pancreatic cancer cells. An engineered liposomal system for siGFAT1 delivery, PMLip@siGFAT1, characterized by macrophage membrane camouflage, LFC131 peptide-mediated targeting, and calcium phosphate (CaP) as the core, was designed to ensure prolonged circulation, enhanced inflamed vascular endothelial penetration, and subsequent effective tumor cell uptake and endosomal escape. Consequently, PMLip@siGFAT1 markedly downregulated the HA level in the PDAC microenvironment, decompressing the tumor vasculature and weakening the stromal barrier, which in turn improved the permeability of chemotherapeutics. In combination with Doxil, PMLip@siGFAT1 demonstrated potent antitumor efficacy with minimal systemic toxicity. Importantly, unlike PEGPH20 (hyaluronidase), PMLip@siGFAT1 reduced tumor invasiveness, while preserving skeletal muscle integrity. These findings highlight that PMLip@siGFAT1 holds great potential to revitalize HA downregulation strategies in pancreatic cancer for enhanced drug delivery and efficacy.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute of Traditional Chinese Medicine, & Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
14
|
Soleimani M, Duchow M, Goyal R, Somma A, Kaoud TS, Dalby KN, Kowalski J, Eckhardt SG, Van Den Berg C. Transcription factor EB (TFEB) activity increases resistance of TNBC stem cells to metabolic stress. Life Sci Alliance 2025; 8:e202302259. [PMID: 39814550 PMCID: PMC11735543 DOI: 10.26508/lsa.202302259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44high/CD24low cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.
Collapse
Affiliation(s)
- Milad Soleimani
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mark Duchow
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ria Goyal
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Alexander Somma
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jeanne Kowalski
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Gail Eckhardt
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Carla Van Den Berg
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Grenier SF, Commisso C. A hormetic response model for glutamine stress in cancer. Trends Cancer 2025; 11:196-203. [PMID: 39681506 PMCID: PMC11903170 DOI: 10.1016/j.trecan.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Glutamine metabolism supports the development and progression of many cancers and is considered a therapeutic target. Attempts to inhibit glutamine metabolism have resulted in limited success and have not translated into clinical benefit. The outcomes of these clinical studies, along with preclinical investigations, suggest that cellular stress responses to glutamine deprivation or targeting may be modeled as a biphasic hormetic response. By recognizing the multifaceted aspects of glutamine metabolism inhibition within a more comprehensive biological framework, the adoption of this model may guide future fundamental and translational studies. To achieve clinical efficacy, we posit that as a field we will need to anticipate the hormetic effects of glutamine stress and consider how best to co-target cancer cell adaptive mechanisms.
Collapse
Affiliation(s)
- Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Goswami MT, Weh E, Subramanya S, Weh KM, Durumutla HB, Hager H, Miller N, Chaudhury S, Andren A, Sajjakulnukit P, Zhang L, Besirli CG, Lyssiotis CA, Wubben TJ. Glutamine catabolism supports amino acid biosynthesis and suppresses the integrated stress response to promote photoreceptor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.26.582525. [PMID: 38586045 PMCID: PMC10996599 DOI: 10.1101/2024.03.26.582525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown. Here, we investigated the dependence of photoreceptors on glutamine (Gln) catabolism. Gln is converted to glutamate via glutaminase (GLS), so mice lacking GLS in rod photoreceptors were generated to inhibit Gln catabolism. Loss of GLS produced rapid rod photoreceptor degeneration. In vivo metabolomic methodologies and metabolic supplementation identified Gln catabolism as critical for glutamate and aspartate biosynthesis. Concordant with this amino acid deprivation, the integrated stress response (ISR) was activated with protein synthesis attenuation, and inhibiting the ISR delayed photoreceptor loss. Furthermore, supplementing asparagine, which is synthesized from aspartate, delayed photoreceptor degeneration. Hence, Gln catabolism is integral to photoreceptor health, and these data reveal a novel metabolic axis in these metabolically-demanding neurons.
Collapse
Affiliation(s)
- Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hima Bindu Durumutla
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Zhu J, Wang T, Liu X, Lu T, Zhuo J, Li X, Yu Z, Cui G, Shen H. Overexpression of LSR suppresses glioma proliferation and invasion via regulating FOXO3a. J Neurooncol 2025:10.1007/s11060-025-04976-4. [PMID: 39992572 DOI: 10.1007/s11060-025-04976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE Gliomas, the most prevalent type of central nervous system tumors, currently lack effective therapeutic options. Lipolysis-stimulated lipoprotein receptors (LSR) have been implicated in tumor development and progression. This study aims to investigate the influence of LSR on gliomas and elucidate the underlying mechanisms. METHODS We analyze LSR expression in gliomas and its association with patient prognosis using bioinformatics tools. Western blotting and immunohistochemistry revealed differential expression of LSR across different grades of glioma. The effects of LSR on glioma cell proliferation and invasion are evaluated through a series of cellular assays. Subcutaneous xenografts in nude mice are utilized to assess the impact of LSR on gliomas in vivo. Additionally, western blotting is employed to detect changes in protein levels related to the FOXO3a signaling pathway following LSR overexpression. RESULTS LSR expression is higher in tissues from low-grade gliomas compared to those from glioblastomas. Patients with low LSR expression exhibit poorer prognoses. Overexpression of LSR inhibit glioma cell proliferation and invasion. The protein levels of PCNA, Cyclin D1, MMP2, and MMP9 are significantly decreased in the OE-LSR group. Tumor volume is reduced in nude mice injected subcutaneously with LSR-overexpressing glioma cells. Overexpression of LSR increases nuclear FOXO3a level while reduces p-FOXO3a and p-14-3-3 levels. Knockdown of FOXO3a reverse the inhibitory effects of LSR overexpression on glioma cell proliferation and invasion. CONCLUSION Low LSR expression is associated with adverse prognosis in glioma patients. By modulating FOXO3a, LSR overexpression suppresses glioma cell proliferation and invasion.
Collapse
Affiliation(s)
- Jinlong Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, P.R. China
| | - Tong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xi Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Jianwei Zhuo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiangying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
18
|
Sobhani N, Pittacolo M, D’Angelo A, Marchegiani G. Recent Anti-KRAS G12D Therapies: A "Possible Impossibility" for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:704. [PMID: 40002297 PMCID: PMC11853620 DOI: 10.3390/cancers17040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| | - Alberto D’Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK;
| | - Giovanni Marchegiani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| |
Collapse
|
19
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Shen X, Chen Y, Tang Y, Lu P, Liu M, Mao T, Weng Y, Yu F, Liu Y, Tang Y, Wang L, Niu N, Xue J. Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis. Cell Rep Med 2025; 6:101928. [PMID: 39879992 DOI: 10.1016/j.xcrm.2025.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC. A CRISPR-Cas9 screen identifies an epigenetic regulator, Paxip1, which promotes H3K4me3 upregulation and Hmox1 transcription upon DON treatment. Additionally, ferroptosis-related repressors (e.g., Slc7a11 and Gpx4) are increased as an adaptive response, thereby predisposing PDAC cells to ferroptosis upon Gln deprivation. Moreover, DON sensitizes PDAC cells to GPX4 inhibitor-induced ferroptosis, both in vitro and in patient-derived xenografts (PDXs). Taken together, our findings reveal that targeting Gln dependency confers susceptibility to GPX4-dependent ferroptosis via epigenetic remodeling and provides a combination strategy for PDAC therapy.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Jie H, Wei J, Li Z, Yi M, Qian X, Li Y, Liu C, Li C, Wang L, Deng P, Liu L, Cen X, Zhao Y. Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH. Cancer Metab 2025; 13:10. [PMID: 39948566 PMCID: PMC11827256 DOI: 10.1186/s40170-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Hui Jie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhuoling Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yi
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinying Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Chen X, Fu H, Zhu S, Xiang Z, Fu H, Sun Z, Zhang S, Zheng X, Hu X, Chao M, Mao Z, Bi Y, Wang W, Ding Y. The Moonlighting Function of Glutamin Synthase 2 Promotes Immune Evasion of Pancreatic Ductal Adenocarcinoma by Tubulin Tyrosine Ligase-like 1-Mediated Yes1 Associated Transcriptional Regulator Glutamylation. Gastroenterology 2025:S0016-5085(25)00357-9. [PMID: 39924055 DOI: 10.1053/j.gastro.2025.01.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND AND AIMS Elevated PD-L1 expression in tumor cells facilitates immune evasion. However, the mechanism via which PD-L1 expression is regulated in pancreatic ductal adenocarcinoma (PDAC) cells remains inadequately elucidated. METHODS Immunoprecipitation, pull-down assays, and mass spectrometry were used to identify glutamine synthase 2 (GLS2) and yes1 associated transcriptional regulator (YAP1) binding proteins and modification sites. Immunoblotting, immunofluorescence, chromatin immunoprecipitation, and luciferase reporter assays were used to analyze YAP1 activation. Protein expression levels were assessed using immunoblotting, immunoprecipitation, immunofluorescence, and immunohistochemistry. RNA expression levels were analyzed using RT-qPCR. RESULTS Hypoxia-induced GCN5-mediated acetylation of GLS2 at K151, which enhanced GLS2 interaction with YAP1. Subsequently, tubulin tyrosine ligase-like 1 mediated YAP1 glutamylation at E100 and promoted its nuclear translocation and the activation-dependent transcriptional up-regulation of PD-L1 expression. The expression of GLS2-K151R or YAP1-E100A mutants in PDAC cells blocked hypoxia-induced PD-L1 expression and enhanced CD4+ and CD8+ T-cell activation and tumor infiltration, thereby suppressing PDAC tumor growth. Simultaneous administration of MB-3, a GCN5 inhibitor, and an anti-PD-1 antibody abolished tumor immune evasion, boosting the anti-tumor efficacy of immune checkpoint blockade. Furthermore, GLS2-K151 acetylation and YAP1 E100 glutamylation levels correlated positively with PD-L1 expression and poor prognosis in PDAC patients. CONCLUSIONS The present study revealed a novel mechanism by which hypoxia up-regulates PD-L1 expression and highlighted the involvement of GLS2 in noncanonical metabolic pathways involved in tumor immune evasion, with implications for PDAC treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Haotian Fu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Shimao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Zheng Xiang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hong Fu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Sitong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaofeng Zheng
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Department of Pathology & Pathophysiology, and Department of Breast Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, People's Republic of China
| | - Xun Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Chao
- Interventional Radiology, Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Zhejiang, People's Republic of China
| | - Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China.
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
24
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
25
|
Fujiwara-Tani R, Nakashima C, Ohmori H, Fujii K, Luo Y, Sasaki T, Ogata R, Kuniyasu H. Significance of Malic Enzyme 1 in Cancer: A Review. Curr Issues Mol Biol 2025; 47:83. [PMID: 39996805 PMCID: PMC11854147 DOI: 10.3390/cimb47020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Malic enzyme 1 (ME1) plays a key role in promoting malignant phenotypes in various types of cancer. ME1 promotes epithelial-mesenchymal transition (EMT) and enhances stemness via glutaminolysis, energy metabolism reprogramming from oxidative phosphorylation to glycolysis. As a result, ME1 promotes the malignant phenotypes of cancer cells and poor patient prognosis. In particular, ME1 expression is promoted in hypoxic environments associated with hypoxia-inducible factor (HIF1) α. ME1 is overexpressed in budding cells at the cancer invasive front, promoting cancer invasion and metastasis. ME1 also generates nicotinamide adenine dinucleotide (NADPH), which, together with glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydrogenase (IDH1), expands the NADPH pool, maintaining the redox balance in cancer cells, suppressing cell death by neutralizing mitochondrial reactive oxygen species (ROS), and promoting stemness. This review summarizes the latest research insights into the mechanisms by which ME1 contributes to cancer progression. Because ME1 is involved in various aspects of cancer and promotes many of its malignant phenotypes, it is expected that ME1 will become a novel drug target in the near future.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| |
Collapse
|
26
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
27
|
Xiang Y, Zhang C, Wang J, Cheng Y, Wang K, Wang L, Tong Y, Yan D. Identification of Metabolic Characteristic-Pancreatic Ductal Adenocarcinoma Associations Using Mendelian Randomization and Metabolomics. J Gastrointest Cancer 2025; 56:48. [PMID: 39833419 PMCID: PMC11753325 DOI: 10.1007/s12029-025-01173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Metabolic reprogramming is increasingly recognized as a crucial factor influencing the development, progression, and prognosis of pancreatic ductal adenocarcinoma (PDAC). Despite this, the potential association of specific metabolic characteristics and PDAC remains ambiguous due to the variability introduced by individual patient differences. In this study, we aimed to find out metabolic pathways that may be associated with the overall survival (OS) of PDAC patients. METHODS We utilized Mendelian randomization (MR) to assess the associations between 1400 metabolites and metabolite ratios and PDAC. We performed functional annotation and pathway enrichment analysis on both significant metabolites and the shared proteins corresponding to the significant metabolite ratios. Additionally, we analyzed peripheral blood metabolites from 32 PDAC patients to correlate metabolites with clinicopathological features and OS. Functional enrichment analysis was also conducted on the significant metabolites. RESULTS Our MR analysis revealed 55 metabolites/metabolite ratios associated with PDAC. Among the top 20 enriched metabolic pathways involving proteins related to significant metabolite ratios, seven were associated with amino acid metabolism, three with carbohydrate metabolism, and two with lipid metabolism. Serum metabolomics of PDAC patients highlighted significant upregulation in pathways related to primary bile acid biosynthesis, as well as taurine and hypotaurine metabolism, which correlated negatively with OS. Conversely, pathways involved in arginine biosynthesis, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis were notably downregulated and positively associated with OS. Both upregulated and downregulated differential metabolites were notably enriched in the pyrimidine metabolism pathway, which was linked to poorer OS. These associations were corroborated by MR analysis. CONCLUSION The study provides valuable insights into the metabolic characteristics associated with PDAC, offering a reference point for improving diagnosis and treatment for PDAC.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Li Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
28
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
29
|
Serrano JJ, Medina MÁ. Metabolic Reprogramming at the Edge of Redox: Connections Between Metabolic Reprogramming and Cancer Redox State. Int J Mol Sci 2025; 26:498. [PMID: 39859211 PMCID: PMC11765076 DOI: 10.3390/ijms26020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer. This shift has broadened cancer research beyond strictly genetic perspectives. The interaction between metabolism and redox systems in carcinogenesis involves the regulation of essential metabolic pathways, such as glycolysis and the Krebs cycle, as well as the involvement of redox-active components like specific amino acids and cofactors. The feedback mechanisms linking redox systems and metabolism in cancer highlight the development of redox patterns that enhance the flexibility and adaptability of tumor processes, influencing larger-scale biological phenomena such as circadian rhythms and epigenetics.
Collapse
Affiliation(s)
- José J. Serrano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER, Spanish Network of Research Center in Rare Diseases), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
30
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
31
|
Shimoni-Sebag A, Abramovich I, Agranovich B, Massri R, Stossel C, Atias D, Raites-Gurevich M, Yizhak K, Golan T, Gottlieb E, Lawrence YR. A metabolic switch to the pentose-phosphate pathway induces radiation resistance in pancreatic cancer. Radiother Oncol 2025; 202:110606. [PMID: 39521275 DOI: 10.1016/j.radonc.2024.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is remarkably resistant to standard modalities, including radiotherapy. We hypothesized that metabolic reprogramming may underlie PDAC radioresistance, and moreover, that it would be possible to exploit these metabolic changes for therapeutic intent. METHODS AND MATERIALS We established two matched models of radioresistant PDAC cells by exposing the AsPC-1 and MIAPaCa-2 human pancreatic cancer cells to incremental doses of radiation. The metabolic profile of parental and radioresistant cells was investigated using Nanostring technology, labeled-glucose tracing by liquid chromatography-mass spectrometry, Seahorse analysis and exposure to metabolic inhibitors. The synergistic effect of radiation combined with a pentose-phosphate pathway inhibitor, 6-aminonicotinamide (6-AN) was evaluated in a xenograft model established by subcutaneous injection of radioresistant-AsPC-1 cells into nude mice. RESULTS The radioresistant cells overexpressed pyruvate dehydrogenase kinase (PDK) and consistently, displayed increased glycolysis and downregulated the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Metabolic flux through the pentose-phosphate pathway (PPP) was increased, as were levels of reduced glutathione; pharmacological inhibition of the PPP dramatically potentiated radiation-induced cell death. Furthermore, the combined treatment of radiation with the PPP inhibitor 6-AN synergistically inhibited tumor growth in-vivo. CONCLUSIONS We provide a mechanistic understanding of the metabolic changes that underlie radioresistance in PDAC. Furthermore, we demonstrate that pancreatic cancer cells can be re-sensitized to radiation via metabolic manipulation, in particular, inhibition of the PPP. Exploitation of the metabolic vulnerabilities of radioresistant pancreatic cancer cells constitutes a new approach to pancreatic cancer, with a potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ariel Shimoni-Sebag
- The Benjamin Davidai Department of Radiation Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel.
| | - Ifat Abramovich
- Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel.
| | - Bella Agranovich
- Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel.
| | - Rami Massri
- Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel.
| | - Chani Stossel
- Institute of Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel; Tel-Aviv University, Chaim Levanon St. 55, Tel Aviv-Yafo 6997801, Israel.
| | - Dikla Atias
- Institute of Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel; Tel-Aviv University, Chaim Levanon St. 55, Tel Aviv-Yafo 6997801, Israel.
| | - Maria Raites-Gurevich
- Institute of Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel.
| | - Keren Yizhak
- Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel.
| | - Talia Golan
- Institute of Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel; Tel-Aviv University, Chaim Levanon St. 55, Tel Aviv-Yafo 6997801, Israel.
| | - Eyal Gottlieb
- Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel; The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Yaacov Richard Lawrence
- The Benjamin Davidai Department of Radiation Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel; Tel-Aviv University, Chaim Levanon St. 55, Tel Aviv-Yafo 6997801, Israel; Sidney Kimmel Medical College at Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA.
| |
Collapse
|
32
|
Nam H, Lee W, Lee YJ, Kim JM, Jung KH, Hong SS, Kim SC, Park S. Taurine Synthesis by 2-Aminoethanethiol Dioxygenase as a Vulnerable Metabolic Alteration in Pancreatic Cancer. Biomol Ther (Seoul) 2025; 33:143-154. [PMID: 39637922 PMCID: PMC11704412 DOI: 10.4062/biomolther.2024.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 12/07/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits an altered metabolic profile compared to normal pancreatic tissue. However, studies on actual pancreatic tissues are limited. Untargeted metabolomics analysis was conducted on 54 pairs of tumor and matched normal tissues. Taurine levels were validated via immunohistochemistry (IHC) on separate PDAC and normal tissues. Bioinformatics analysis of transcriptomics and proteomics data evaluated genes associated with taurine metabolism. Identified taurine-associated gene was validated through gene modulation. Clinical implications were evaluated using patient data. Metabolomics analysis showed a 2.51-fold increase in taurine in PDAC compared to normal tissues (n=54). IHC confirmed this in independent samples (n=99 PDAC, 19 normal). Bioinformatics identified 2-aminoethanethiol dioxygenase (ADO) as a key gene modulating taurine metabolism. IHC on a tissue microarray (39 PDAC, 10 normal) confirmed elevated ADO in PDAC. The ADO-Taurine axis correlated with PDAC recurrence and disease-free survival. ADO knockdown reduced cancer cell proliferation and tumor growth in a mouse xenograft model. The MEK-related signaling pathway is suggested to be modulated by ADO-Taurine metabolism. Our multi-omics investigation revealed elevated taurine synthesis mediated by ADO upregulation in PDAC. The ADO-Taurine axis may serve as a biomarker for PDAC prognosis and a therapeutic target.
Collapse
Affiliation(s)
- Hoonsik Nam
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woohyung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
33
|
Xiang Y, Zhou R, Yang Y, Bai H, Liang F, Wang H, Wang X. A Novel circ_0075829/miR-326/GOT1 ceRNA Crosstalk Regulates the Malignant Phenotypes and Drug Sensitivity of Gemcitabine-Resistant Pancreatic Cancer Cells. J Biochem Mol Toxicol 2025; 39:e70089. [PMID: 39692397 DOI: 10.1002/jbt.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown. To generate GEM-resistant PC cells (BxPC-3/GR and SW1990/GR), we exposed GEM-sensitive PC cells to GEM. Circ_0075829, microRNA (miR)-326, and glutamic-oxaloacetic transaminase 1 (GOT1) were quantified by a qRT-PCR or western blot method. Cell survival and viability were gauged by MTS assay. Cell proliferation, apoptosis, invasion, and migration were assessed by EdU, flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter assays were used to verify the relationship between miR-326 and circ_0075829 or GOT1. Mouse xenografts were performed to evaluate the role of circ_0075829 in vivo. Our data showed that circ_0075829 was upregulated in GEM-resistant PC tissues and cells. Knockdown of circ_0075829 impeded the proliferation, invasion, migration, and glutamine metabolism, and promoted cell apoptosis and GEM sensitivity of GEM-resistant PC cells. Moreover, circ_0075829 silencing suppressed the tumorigenicity of SW1990/GR cells and sensitized them to the cytotoxic effect of GME in vivo. Mechanistically, circ_0075829 bound miR-326 and exerted regulatory effects by affecting miR-326 expression. GOT1 was a direct miR-326 target and a key downstream effector of miR-326. Furthermore, circ_0075829 modulated GOT1 expression via miR-326. Our findings establish a novel regulatory network, the circ_0075829/miR-326/GOT1 competing endogenous RNA (ceRNA) crosstalk, in the regulation of GEM resistance in PC.
Collapse
MESH Headings
- Gemcitabine
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cell Line, Tumor
- Animals
- Mice
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/biosynthesis
- Female
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Yongjia Xiang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Rubing Zhou
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Yang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Fan Liang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongmei Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Xia Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
34
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310308. [PMID: 39482885 PMCID: PMC11714253 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haiqi Zhu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ka Man So
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Naresh Singh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jia Wang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Division of Hematology/Oncology, Department of MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Chi Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biomedical Engineering and Knight Cancer InstituteOregon Health & Science UniversityPortlandOR97239USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
35
|
Shan H, Tian G, Zhang Y, Qiu Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biol Ther 2024; 25:2392341. [PMID: 39164192 PMCID: PMC11340766 DOI: 10.1080/15384047.2024.2392341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-β (TGF-β) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-β signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hui Shan
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| |
Collapse
|
37
|
Peng H, Dou H, He S, Xie YA, Zhang Q, Zheng J. The role of GOT1 in cancer metabolism. Front Oncol 2024; 14:1519046. [PMID: 39777342 PMCID: PMC11703747 DOI: 10.3389/fonc.2024.1519046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
GOT1, a cytoplasmic glutamic oxaloacetic transaminase, plays a critical role in various metabolic pathways essential for cellular homeostasis and dysregulated metabolism. Recent studies have highlighted the significant plasticity and roles of GOT1 in metabolic reprogramming through participating in both classical and non-classical glutamine metabolism, glycolytic metabolism, and other metabolic pathways. This review summarizes emerging insights on the metabolic roles of GOT1 in cancer cells and emphasizes the response of cancer cells to altered metabolism when the expression of GOT1 is altered. We review how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT1 is inhibited and delineate the molecular mechanisms of GOT1's interaction with specific oncogenes and regulators at multiple levels, including transcriptional and epigenetic regulation, which govern cellular growth and metabolism. These insights may provide new directions for cancer metabolism research and novel targets for cancer treatment.
Collapse
Affiliation(s)
- Huan Peng
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huihong Dou
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng He
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu-an Xie
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianqiu Zheng
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
38
|
Li X, Peng L, Yang X, Luo J, Wang J, Mou K, Zhou H, Luo Y, Xiang L. N6-methyladenosine RNA methylation, a new hallmark of metabolic reprogramming in the immune microenvironment. Front Immunol 2024; 15:1464042. [PMID: 39759516 PMCID: PMC11695279 DOI: 10.3389/fimmu.2024.1464042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways. Meanwhile, m6A modifications and related regulators are key targets in the regulation of immune effects. We further summarize how m6A modifications contribute to tumor metabolism, and how these events affect the tumor immune microenvironment, with a specific focus on different cell types. Finally, we focus on the specific applications of this field to tumor immunotherapy. We review the potential role of m6A in metabolic reprogramming of tumor immune microenvironment and its regulatory mechanism, with the aim of providing new targets for tumor metabolic regulation and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuelian Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
40
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
41
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
42
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
43
|
Hu X, Wang C, Xiao Y, Jiang P, Huang D, Li LC, Qi Z. Time-series metabolomic analysis revealed altered metabolism of cynomolgus monkeys after injecting exosomes. J Nanobiotechnology 2024; 22:732. [PMID: 39587650 PMCID: PMC11590309 DOI: 10.1186/s12951-024-02976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Recent years, exosomes have been increasing used to treat diseases, but there is little research on how exosomes affect the metabolism of the body after entering. Therefore, in this study, we discussed the changes of metabolic spectrum and determined the differentially expressed metabolites in the serum of cynomolgus monkeys after injecting exosomes. Six cynomolgus monkeys were divided into control group and exosomes group. After intravenous injection of exosomes, the peripheral blood serum of cynomolgus monkeys was collected at baseline, day 1, day 7 and day 14 respectively. An ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based non-targeted metabolomics platform was used to detect the metabolites. The metabolic spectra of two groups of cynomolgus monkeys were identified and compared, and the time series changes of metabolites in exosomes were described. RESULTS The results showed that there was significant difference in metabolic spectrum between the two groups. 45, 114, 49, 39 differentially expressed metabolites were identified in baseline, day 1, day 7, and day 14, respectively. 6-hydroxydopamine, a metabolite related to the regulation of nerve function, was also found. Tryptophan metabolism, choline metabolism in cancer, porphyrin and chlorophyll metabolism were involved in day 1. Sphingolipid metabolism and histidine metabolism were involved in day 7. Three pathways, including choline metabolism, sphingolipid metabolism and biotin metabolism in cancer were involved in day 14. Through time series analysis, it was found that the level of propionylcarnitine and biliverdin increased on day 1 after inoculation with exosomes, while the level of hippuric acid decreased. These changes of immune-related metabolites suggested that exosomes might participate in the immunoregulation reaction after entering the body of cynomolgus monkeys. CONCLUSIONS In our current study, we found that exosomes injected intravenously affect the changes of metabolites and metabolic pathways in cynomolgus monkeys. Intravenous injection of exosomes may affect the metabolite 6-hydroxydopamine, sphingolipid metabolic pathway, and choline metabolic in cancer pathway, which is of some significance for the treatment of Parkinson's disease. In addition, exosomes may also affect the immune-related metabolites in vivo, such as propionylcarnitine, biliverdin, hippuric acid metabolites, as well as tryptophan metabolism pathway, sphingolipid metabolism pathway involved in immune regulation, which is of great significance for the future study of immune-regulatory mechanisms of exosomes.
Collapse
Affiliation(s)
- Xinmei Hu
- Medical College of Guangxi University, Nanning, 530004, China
| | - Cancan Wang
- Medical College of Guangxi University, Nanning, 530004, China
| | - Yu Xiao
- Medical College of Guangxi University, Nanning, 530004, China
| | - Peng Jiang
- Medical College of Guangxi University, Nanning, 530004, China
| | | | - Liang-Cheng Li
- School of pharmaceutical sciences, Xiamen University, NO.4221-115, Rm355, Xiang'an district, Xiang'an, Xiamen, 361102, Fujian, China.
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, 530004, China.
- Fujian Provincial Human Sperm Bank, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
44
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
45
|
Alhusban S, Nofal M, Kovacs-Kasa A, Kress TC, Koseoglu MM, Zaied AA, Belin de Chantemele EJ, Annex BH. Glucosamine-Mediated Hexosamine Biosynthesis Pathway Activation Uses ATF4 to Promote "Exercise-Like" Angiogenesis and Perfusion Recovery in PAD. Circulation 2024; 150:1702-1719. [PMID: 39253813 PMCID: PMC11955094 DOI: 10.1161/circulationaha.124.069580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Endothelial cells (ECs) use glycolysis to produce energy. In preclinical models of peripheral arterial disease, further activation of EC glycolysis was ineffective or deleterious in promoting hypoxia-dependent angiogenesis, whereas pentose phosphate pathway activation was effective. Hexosamine biosynthesis pathway, pentose phosphate pathway, and glycolysis are closely linked. Glucosamine directly activates hexosamine biosynthesis pathway. METHODS Hind-limb ischemia in endothelial nitric oxide synthase knockout (eNOS-/-) and BALB/c mice was used. Glucosamine (600 μg/g per day) was injected intraperitoneally. Blood flow recovery was assessed using laser Doppler perfusion imaging and angiogenesis was studied by CD31 immunostaining. In vitro, human umbilical vein ECs and mouse microvascular ECs with glucosamine, L-glucose, or vascular endothelial growth factor (VEGF165a) were tested under hypoxia and serum starvation. Cell Counting Kit-8, tube formation, intracellular reactive oxygen species, electric cell-substrate impedance sensing, and fluorescein isothiocyanate dextran permeability were assessed. Glycolysis and oxidative phosphorylation were assessed by seahorse assay. Gene expression was assessed using RNA sequencing, real-time quantitative polymerase chain reaction, and Western blot. Human muscle biopsies from patients with peripheral arterial disease were assessed for EC O-GlcNAcylation before and after supervised exercise versus standard medical care. RESULTS On day 3 after hind-limb ischemia, glucosamine-treated versus control eNOS-/- mice had less necrosis (n=4 or 5 per group). Beginning on day 7 after hind-limb ischemia, glucosamine-treated versus control BALB/c mice had higher blood flow, which persisted to day 21, when ischemic muscles showed greater CD31 staining per muscle fiber (n=8 per group). In vitro, glucosamine versus L-glucose ECs showed improved survival (n=6 per group) and tube formation (n=6 per group). RNA sequencing of glucosamine versus L-glucose ECs showed increased amino acid metabolism (n=3 per group). That resulted in increased oxidative phosphorylation (n=8-12 per group) and serine biosynthesis pathway without an increase in glycolysis or pentose phosphate pathway genes (n=6 per group). This was associated with better barrier function (n=6-8 per group) and less reactive oxygen species (n=7 or 8 per group) compared with activating glycolysis by VEGF165a. These effects were mediated by activating transcription factor 4, a driver of exercise-induced angiogenesis. In muscle biopsies from humans with peripheral arterial disease, EC/O-GlcNAcylation was increased by 12 weeks of supervised exercise versus standard medical care (n=6 per group). CONCLUSIONS In cells, mice, and humans, activation of hexosamine biosynthesis pathway by glucosamine in peripheral arterial disease induces an "exercise-like" angiogenesis and offers a promising novel therapeutic pathway to treat this challenging disorder.
Collapse
Affiliation(s)
- Suhib Alhusban
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Mohamed Nofal
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Anita Kovacs-Kasa
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Taylor C Kress
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - M Murat Koseoglu
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Abdelrahman A Zaied
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| | - Eric J Belin de Chantemele
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Brian H Annex
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| |
Collapse
|
46
|
Chen Y, Xu W, Jin H, Zhang M, Liu S, Liu Y, Zhang H. Nutritional Glutamine-Modified Iron-Delivery System with Enhanced Endocytosis for Ferroptosis Therapy of Pancreatic Tumors. ACS NANO 2024; 18:31846-31868. [PMID: 39512234 DOI: 10.1021/acsnano.4c08083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Heterogeneous reprogrammed nutrient metabolic networks formed by oncogenes exhibit the potential for exploring novel druggable targets and developing innovative anticancer therapeutics. Herein, based on the heterogeneous metabolic characteristics of glutamine (Gln) addiction in pancreatic cancer cells, an iron-delivery system (IDS) with enhanced endocytosis is designed for efficient ferroptosis therapy. The IDS is characterized by Gln modification and can be recognized as a source of Gln nutrients for efficient endocytic uptake by pancreatic tumor cells. Because the IDS is flexible to combine with amino acid-like components, the IDS with enhanced endocytosis is further produced by loading the Gln transporter inhibitor of V9302. V9302 is capable of suppressing molecular Gln uptake via transporter ASCT2, which generates Gln deprivation to direct metabolic reprogramming of cancer cells and enhances cellular uptake of Gln-modified IDS via RAS-stimulated macropinocytosis. The enhanced endocytosis and high iron content of IDS facilitate ferroptosis in mice pancreatic tumor models; thus, an amino acid-like ferroptosis inducer of l-buthionine sulfoximine (BSO) is further combined. The enhanced endocytosis resulting from the synergism of Gln and V9302 enables the efficient delivery of iron and BSO for ferroptosis tumor therapy. This work provides an alternative approach for enhancing intracellular drug delivery of the tumors with heterogeneous nutrient metabolism by virtue of combining nutrient-modified nanodrugs with the corresponding nutrient transporter inhibitors.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
47
|
Yang S, Lin M, Hao S, Ye H, Zhang X. Current hotspots and trends in cancer metabolic reprogramming: a scientometric analysis. Front Immunol 2024; 15:1497461. [PMID: 39588377 PMCID: PMC11586341 DOI: 10.3389/fimmu.2024.1497461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Background Metabolic reprogramming (MR) in cancer (CA) has been a focus of intense research in the recent two decades. This phenomenon has attracted great interest because it offers potential targets for cancer therapy. To capture the intellectual landscape of this field, we conducted a bibliometric analysis to assess the scientific output, major contributors, and trends in the MR/CA research. Methods We performed a systematic search using the Web of Science to retrieve articles published on MR of cancer from 2006 until 2023. The bibliometric tools such as Biblioshiny, VOSviewer, and Microsoft Excel were used to identify the most prolific authors, institutions, citation patterns, and keywords. We also used co-citation analysis to map the conceptual structure of the field and identify influential publications. Furthermore, we examined the literature by analyzing publication years, citations, and research impact factors. Results A total of 4,465 publications about MR/CA were retrieved. Publications on MR/CA increased rapidly from 2006 to 2023. Frontiers in Oncology published the most papers, while Cell Metabolism had the most citations. Highly cited papers were mainly published in Cancer Cell, Nature, Cell, Science and Cell Metabolism. China and the United States led the way in publications and contributed the most to MR/CA research. The University of Texas System, Chinese Academy of Sciences, and Fudan University were the most productive institutions. The profitable authors were Deberardinis Ralph J and Chiarugi Paola. The current topics included MR in tumorigenesis and progression of CA, MR of tumor cells and tumor microenvironment, the effect of MR on the CA treatment, the underlying mechanisms of MR (such as gene regulation, epigenetics, extracellular vesicles, and gut microbiota), and the modulation of MR. Some topics such as tumor microenvironment, lipid MR, circular RNA, long noncoding RNA, exosome, prognostic model, and immunotherapy may be the focus of MR/CA research in the next few years. Conclusion This study evaluated the global scientific output in the field of MR/CA research, analyzing its quantitative characteristics. It identified some significant and distinguished papers and compiled information regarding the current status and evolving trends of MR/CA research.
Collapse
Affiliation(s)
- Shanshan Yang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Miaomiao Lin
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen and Stomach Disease Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
48
|
Shah A, Ganguly K, Rauth S, Sheree SS, Khan I, Ganti AK, Ponnusamy MP, Kumar S, Jain M, Batra SK. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 77:101146. [PMID: 39243602 PMCID: PMC11770815 DOI: 10.1016/j.drup.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shamema S Sheree
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Division of Oncology-hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| |
Collapse
|
49
|
Duan R, Zhai Y, Wang Q, Zhao L, Wang Y, Yu N, Zhang J, Guo W. LINC01764 promotes colorectal cancer cells proliferation, metastasis, and 5-fluorouracil resistance by regulating glucose and glutamine metabolism via promoting c-MYC translation. MedComm (Beijing) 2024; 5:e70003. [PMID: 39534558 PMCID: PMC11555016 DOI: 10.1002/mco2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Few biomarkers are available for predicting chemotherapeutic response and prognosis in colorectal cancer (CRC). Long-noncoding RNAs (lncRNAs) are essential for CRC development and growth. Therefore, studying lncRNAs may reveal potential predictors of chemotherapy response and prognosis in CRC. LINC01764 was analyzed using datasets from Fudan University Shanghai Cancer Center's advanced CRC patients' RNA-seq and The Cancer Genome Atlas datasets. Gene set enrichment analysis was employed to detect related pathways. Cotransfection experiments, RNA pulldown assays, RNA-binding protein immunoprecipitation, protein synthesis activity, and dual-luciferase reporter assays were performed to determine interactions among LINC01764, hnRNPK, and c-MYC. High LINC01764 expression correlates with metastasis, a poor response to FOLFOX/XELOX chemotherapy, and a poor prognosis in CRC. LINC01764 enhance glycolysis and glutamine metabolism to promote CRC cells proliferation, metastasis, and 5-fluorouracil (5-FU) resistance. LINC01764 specifically binds to hnRNPK, facilitating its interaction with c-MYC mRNA and promoting internal ribosome entry site (IRES)-dependent translation of c-MYC, thereby exerting oncogenic effects. LINC01764 induced 5-FU chemoresistance by upregulating the c-MYC, glucose, and glutamine metabolism pathways, which downregulated UPP1, crucial for activating 5-FU. Conclusively, LINC01764 promotes CRC progression and 5-FU resistance through hnRNPK-mediated-c-MYC IRES-dependent translational regulation, which suggests its potential as a predictor of CRC chemotherapy response and prognosis.
Collapse
Affiliation(s)
- Ran Duan
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFujian Cancer Hospital and Fujian Medical University Cancer HospitalFujian Medical UniversityFuzhouChina
| | - Yujia Zhai
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiushuang Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Liqin Zhao
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Nuoya Yu
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jieyun Zhang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Bian Y, Shan G, Bi G, Liang J, Hu Z, Sui Q, Shi H, Zheng Z, Yao G, Wang Q, Fan H, Zhan C. Targeting ALDH1A1 to enhance the efficacy of KRAS-targeted therapy through ferroptosis. Redox Biol 2024; 77:103361. [PMID: 39317105 PMCID: PMC11465744 DOI: 10.1016/j.redox.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
KRAS is among the most commonly mutated oncogenes in human malignancies. Although the advent of sotorasib and adagrasib, has lifted the "undruggable" stigma of KRAS, the resistance to KRAS inhibitors quickly becomes a major issue. Here, we reported that aldehyde dehydrogenase 1 family member A1 (ALDH1A1), an enzyme in retinoic acid biosynthesis and redox balance, increases in response to KRAS inhibitors and confers resistance in a range of cancer types. KRAS inhibitors' efficacy is significantly improved in sensitive or drug-resistant cells, patient-derived organoids (PDO), and xenograft models by ALDH1A1 knockout, loss of enzyme function, or inhibitor. Furthermore, we discovered that ALDH1A1 suppresses the efficacy of KRAS inhibitors by counteracting ferroptosis. ALDH1A1 detoxicates deleterious aldehydes, boosts the synthesis of NADH and retinoic acid (RA), and improves RARA function. ALDH1A1 also activates the CREB1/GPX4 pathway, stimulates the production of lipid droplets in a pH-dependent manner, and subsequently prevents ferroptosis induced by KRAS inhibitors. Meanwhile, we established that GTF2I is dephosphorylated at S784 via ERK by KRAS inhibitors, which hinders its nuclear translocation and mediates ALDH1A1's upregulation in response to KRAS inhibitors. In summary, the results offer valuable insights into targeting ALDH1A1 to enhance the effectiveness of KRAS-targeted therapy through ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|