1
|
Ntampakis G, Pramateftakis MG, Anestiadou E, Bitsianis S, Ioannidis O, Bekiari C, Koliakos G, Karakota M, Tsakona A, Cheva A, Angelopoulos S. Experimental models of high-risk bowel anastomosis in rats: A systematic review. World J Exp Med 2024; 14:94135. [PMID: 38948424 PMCID: PMC11212746 DOI: 10.5493/wjem.v14.i2.94135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Anastomotic leaks remain one of the most dreaded complications in gastrointestinal surgery causing significant morbidity, that negatively affect the patients' quality of life. Experimental studies play an important role in understanding the pathophysiological background of anastomotic healing and there are still many fields that require further investigation. Knowledge drawn from these studies can lead to interventions or techniques that can reduce the risk of anastomotic leak in patients with high-risk features. Despite the advances in experimental protocols and techniques, designing a high-quality study is still challenging for the investigators as there is a plethora of different models used. AIM To review current state of the art for experimental protocols in high-risk anastomosis in rats. METHODS This systematic review was performed according to The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To identify eligible studies, a comprehensive literature search was performed in the electronic databases PubMed (MEDLINE) and Scopus, covering the period from conception until 18 October 2023. RESULTS From our search strategy 102 studies were included and were categorized based on the mechanism used to create a high-risk anastomosis. Methods of assessing anastomotic healing were extracted and were individually appraised. CONCLUSION Anastomotic healing studies have evolved over the last decades, but the findings are yet to be translated into human studies. There is a need for high-quality, well-designed studies that will help to the better understanding of the pathophysiology of anastomotic healing and the effects of various interventions.
Collapse
Affiliation(s)
- Georgios Ntampakis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Elissavet Anestiadou
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Stefanos Bitsianis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Orestis Ioannidis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Experimental and Research Center, Papageorgiou General Hospital of Thessaloniki, Thessaloniki 56403, Greece
| | - George Koliakos
- Laboratory of Biochemistry, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maria Karakota
- Laboratory of Biochemistry, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastasia Tsakona
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Angeliki Cheva
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Stamatios Angelopoulos
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| |
Collapse
|
2
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
3
|
Endothelin-1 contributes to hemoglobin glutamer-200-mediated hepatocellular dysfunction after hemorrhagic shock. Shock 2009; 32:179-89. [PMID: 19106820 DOI: 10.1097/shk.0b013e318199352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hemoglobin glutamer-200 (HbG) might be an alternative to human blood. However, artificial oxygen carriers are initially successful to restore oxygen supply but may induce organ dysfunction and increase mortality several days after application in terms of delayed side effects. Impairment of microcirculation and an inflammatory cytokine response through induction of endothelin (ET) 1 may contribute. We investigated the role of HbG for the therapy of hemorrhagic shock and for delayed side effects in a model of hemorrhagic shock and reperfusion (H/R). To analyze early effects, Sprague-Dawley rats (n = 8/group) were resuscitated after hemorrhagic shock (1 h) with shed blood or HbG followed by reperfusion (2 h). Hemorrhagic shock and reperfusion decreased liver microcirculation and hepatic function in both shock groups to the same extent. Thus, HbG was not superior to shed blood regarding resuscitation end points after hemorrhagic shock. To determine delayed effects, rats (n = 8/group) were pretreated with Ringer's solution (vehicle) or HbG (1 g/kg) 24 h before H/R. Endothelin receptors were blocked with bosentan. Subsequently, ET-1 expression, inflammatory response, sinusoidal perfusion, hepatocellular function (plasma disappearance rate of indocyanine green [PDRICG]), and redox state [NAD(P)H] were analyzed. After vehicle pretreatment, H/R increased ET-1, hepatocellular injury, NAD(P)H, and cytokine levels. Sinusoidal perfusion and PDRICG decreased. After HbG pretreatment, a further increase of ET-1 and hepatocellular injury was observed, whereas PDRICG further decreased. Application of bosentan after HbG but not after vehicle pretreatment significantly improved PDRICG and liver perfusion, whereas NAD(P)H and hepatocellular injury decreased. Furthermore, cytokine release changed to an anti-inflammatory response. These data suggest an HbG-dependent increase of ET-1, which may contribute to delayed side effects under shock conditions.
Collapse
|