1
|
Niu X, Zhang Y, Lai Z, Huang X, Guo L, Lu F, Yuan Y, Gao J, Chang Q. Lipolysis inhibition improves the survival of fat grafts through ameliorating lipotoxicity and inflammation. FASEB J 2024; 38:e23520. [PMID: 38430369 DOI: 10.1096/fj.202302090r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Fat grafting is a promising technique for correcting soft tissue abnormalities, but oil cyst formation and graft fibrosis frequently impede the therapeutic benefit of fat grafting. The lipolysis of released oil droplets after grafting may make the inflammation and fibrosis in the grafts worse; therefore, by regulating adipose triglyceride lipase (ATGL) via Atglistatin (ATG) and Forskolin (FSK), we investigated the impact of lipolysis on fat grafts in this study. After being removed from the mice and chopped into small pieces, the subcutaneous fat from wild-type C57BL/6J mice was placed in three different solutions for two hours: serum-free cell culture medium, culture medium+FSK (50 μM), and culture medium+ATG (100 μM). Following centrifugation to remove water and free oil droplets, 0.3 mL of the fat particles per mouse was subcutaneously injected into the back of mice. Additionally, the subcutaneous fat grafting area was immediately injected with PBS (control group), ATG (30 mg/kg), and FSK (15 mg/kg) following fat transplantation. Detailed cellular events after grafting were investigated by histological staining, real-time polymerase chain reaction, immunohistochemistry/immunofluorescent staining, and quantification. Two weeks after grafting, grafts treated with ATG showed lower expression of ATGL and decreased mRNA levels of TNFα and IL-6. In contrast, grafts treated with ATG showed elevated expression levels of IL-4 and IL-13 compared to the control grafts. In addition, fewer apoptotic cells and oil cysts were observed in ATG grafts. Meanwhile, a higher CD206+/CD68+ ratio of macrophages and more CD31+ vascular endothelial cells existed in the 2-month ATG grafts. In comparison to the control, ATG treatment improved the volume retention of grafts, and decreased graft fibrosis and oil cyst formation. By preventing oil droplet lipolysis, pharmacological suppression of ATGL shielded adipocytes from lipotoxicity following grafting. Additionally, ATG ameliorated the apoptosis and inflammation brought on by adipocyte death and oil droplet lipolysis in grafted fat. These all indicate that lipolysis inhibition improved transplanted fat survival and decreased the development of oil cysts and graft fibrosis, offering a potential postoperative pharmacological intervention for bettering fat grafting.
Collapse
Affiliation(s)
- Xingtang Niu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuhao Lai
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Xiaoqi Huang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lingling Guo
- Department of Plastic and Cosmetic Surgery, The Central Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
He Y, Zhang Z, Li Z, Lin M, Ding S, Wu H, Yang F, Cai Z, Li T, Wang J, Ke C, Pan S, Li L. Three-dimensional spheroid formation of adipose-derived stem cells improves the survival of fat transplantation by enhance their therapeutic effect. Biotechnol J 2023; 18:e2300021. [PMID: 37332233 DOI: 10.1002/biot.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Adipose-derived stem cells (ADSCs) have important applications in basic research, especially in fat transplantation. Some studies have found that three-dimensional (3D) spheroids formed by mesenchymal stem cells have enhanced therapeutic potential. However, the fundamental basics of this effect are still being discussed. ADSCs were harvested from subcutaneous adipose tissues and 3D spheroids were formed by the automatic aggregation of ADSCs in a non-adhesive 6-well plate. Oxygen glucose deprivation (OGD) was used to simulate the transplantation microenvironment. We found that 3D culture of ADSCs triggered cell autophagy. After inhibiting autophagy by Chloroquine, the rates of apoptosis were increased. When the 3D ADSC-spheroids were re-planked, the number of senescent ADSCs decreased, and the proliferation ability was promoted. In addition, there were more cytokines secreted by 3D ADSC-spheroids including VEGF, IGF-1, and TGF-β. After adding the conditioned medium with human umbilical vein endothelial cells (HUVECs), 3D ADSC-spheroids were more likely to promote migration, and tube formation, stimulating the formation of new blood vessels. Fat grafting experiments in nude mice also showed that 3D ADSC-spheroids enhanced survival and neovascularization of fat grafts. These results suggested that 3D spheroids culturing of ADSCs can increase the therapeutic potential in fat transplantation.
Collapse
Affiliation(s)
- Yucang He
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zikai Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihao Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Lin
- Department of Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Ding
- Department of Neurology, Yiwu Central Hospital, Yiwu, China
| | - Hanwen Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangfang Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongming Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingping Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengsheng Pan
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Role of Autologous Fat Grafting in the Conservative Treatment of Fecal Incontinence in Children. J Clin Med 2023; 12:jcm12041258. [PMID: 36835794 PMCID: PMC9964968 DOI: 10.3390/jcm12041258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Treatment of organic fecal incontinence in children, typical of anorectal malformations, is most often conservative; however, when necessary, it can be surgical. Autologous fat grafting, or lipofilling, can be used to improve fecal incontinence. We present our experience with the echo-assisted anal-lipofilling and its effects on fecal incontinence in children and on the quality of life of the entire family. Under general anesthesia, fat tissue was harvested according to the traditional technique, and processed in a closed system Lipogems® set. Injection of the processed adipose tissue was guided by trans-anal ultrasound assistance. Ultrasound and manometry were also used for follow-up. From November 2018, we performed 12 anal-lipofilling procedures in six male patients (mean age 10.7 years). Five children had a stable improvement in bowel function with Krickenbeck's scale scores going from soiling grade 3 pre-treatment in 100% of children to grade 1 post-treatment in 75% of them. No major post-operative complications developed. An increase in thickness of the sphincteric apparatus was shown at ultrasound during follow-up. The quality of life of the entire family, evaluated with a questionnaire, improved after the surgical treatment of the children. Anal-lipofilling is a safe and effective procedure to reduce organic fecal incontinence thereby benefiting both the patients and their families.
Collapse
|
4
|
Mastrolia I, Giorgini A, Murgia A, Loschi P, Petrachi T, Rasini V, Pinelli M, Pinto V, Lolli F, Chiavelli C, Grisendi G, Baschieri MC, Santis GD, Catani F, Dominici M, Veronesi E. Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis. Pharmaceutics 2022; 14:pharmaceutics14102127. [PMID: 36297562 PMCID: PMC9610232 DOI: 10.3390/pharmaceutics14102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence:
| | - Andrea Giorgini
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | | | | | - Valeria Rasini
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Lolli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Fabio Catani
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | - Elena Veronesi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| |
Collapse
|
5
|
Human Adipose Mesenchymal Stromal/Stem Cells Improve Fat Transplantation Performance. Cells 2022; 11:cells11182799. [PMID: 36139372 PMCID: PMC9496721 DOI: 10.3390/cells11182799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
The resorption rate of autologous fat transfer (AFT) is 40–60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption.
Collapse
|
6
|
Niu X, Zhang Y, Lai Z, Huang X, Gao J, Lu F, Chang Q, Yuan Y. Preoperative Short-Term High Carbohydrate Diet Provides More High-Quality Transplantable Fat and Improves the Outcome of Fat Grafts in Mice. Aesthet Surg J 2022; 42:NP531-NP545. [PMID: 35460566 DOI: 10.1093/asj/sjac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Patients with a low body mass index may have inadequate high-quality adipose tissue for transplantation. The influence of high-energy diets on adipose tissue and graft retention remains unknown. OBJECTIVES We explored inguinal fat pad alternation in mice fed on a short-time high-fat diet (HFD) or a high-carbohydrate diet (HCD) preoperatively and the morphological and histological differences after transplantation. METHODS Mice were fed HFD (60% kilocalories from fat, 20% from carbohydrate), HCD (9.3% kilocalories from fat, 80.1% from carbohydrate), or normal (12% kilocalories from fat, 67% kilocalories from carbohydrate) diets for 2 or 4 weeks. Histological analyses were carried out following hematoxylin and eosin staining, and CD34 and proliferating cell nuclear antigen immunostaining. The uncoupling protein-1 (UCP-1) expression was determined by western blotting. Fat pads from each group were grafted into the dorsal region of the recipient mice and morphological and histological changes were determined 4, 8, and 12 weeks post-transplantation. Vascular endothelial growth factor α and platelet-derived growth factor α expression were determined using quantitative polymerase chain reaction. RESULTS The inguinal fat pad volume increased in the HFD and HCD groups. The presence of multilocular adipocytes in inguinal fat of HCD-fed mice, combined with the increased UCP-1 content, suggested adipocyte browning. HCD grafts showed higher volume retention and reduced oil cyst formation, possibly attributed to better angiogenesis and adipogenesis. CONCLUSIONS HCD enlarged adipose tissue and improved grafts survival rates, which may be due to the browning of fat before grafting and enhanced angiogenesis after grafting.
Collapse
Affiliation(s)
- Xingtang Niu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yuchen Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Zhuhao Lai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Xiaoqi Huang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yi Yuan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| |
Collapse
|
7
|
Warren RJ. Commentary on: Regen Fat Code: A Standardized Protocol for Facial Volumetry and Rejuvenation. Aesthet Surg J 2021; 41:NP1405-NP1407. [PMID: 33825812 DOI: 10.1093/asj/sjab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Casari G, Resca E, Giorgini A, Candini O, Petrachi T, Piccinno MS, Foppiani EM, Pacchioni L, Starnoni M, Pinelli M, De Santis G, Selleri F, Catani F, Dominici M, Veronesi E. Microfragmented adipose tissue is associated with improved ex vivo performance linked to HOXB7 and b-FGF expression. Stem Cell Res Ther 2021; 12:481. [PMID: 34454577 PMCID: PMC8399787 DOI: 10.1186/s13287-021-02540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Adipose tissue (AT) has become a source of mesenchymal stromal/stem cells (MSC) for regenerative medicine applications, in particular skeletal disorders. Several enzymatic or mechanical procedures have been proposed to process AT with the aim to isolate cells that can be locally implanted. How AT is processed may impact its properties. Thus, we compared AT processed by centrifugation (C-AT) to microfragmentation (MF-AT). Focusing on MF-AT, we subsequently assessed the impact of synovial fluid (SF) alone on both MF-AT and isolated AT-MSC to better understand their cartilage repair mechanisms. MATERIALS AND METHODS MF-AT and C-AT from the same donors were compared by histology and qRT-PCR immediately after isolation or as ex vivo cultures using a micro-tissue pellet system. The in vitro impact of SF on MF-AT and AT-MSC was assessed by histological staining and molecular analysis. RESULTS The main AT histological features (i.e., increased extracellular matrix and cellularity) of the freshly isolated or ex vivo-cultured MF-AT persisted compared to C-AT, which rapidly deteriorated during culture. Based on our previous studies of HOX genes in MSC, we investigated the involvement of Homeobox Protein HOX-B7 (HOXB7) and its target basic Fibroblast Growth Factor (bFGF) in the molecular mechanism underlying the improved performance of MF-AT. Indeed, both these biomarkers were more prominent in freshly isolated MF-AT compared to C-AT. SF alone preserved the AT histological features of MF-AT, together with HOXB7 and bFGF expression. Increased cell performance was also observed in isolated AT-MSC after SF treatment concomitant with enhanced HOXB7 expression, although there was no apparent association with bFGF. CONCLUSIONS Our findings show that MF has a positive effect on the maintenance of AT histology and may trigger the expression of trophic factors that improve tissue repair by processed AT.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Elisa Resca
- Technopole Mario Veronesi, Mirandola, Modena, Italy
| | - Andrea Giorgini
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | - Lucrezia Pacchioni
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marta Starnoni
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Selleri
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Catani
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Rigenerand srl, Medolla, Modena, Italy. .,Technopole Mario Veronesi, Mirandola, Modena, Italy.
| | - Elena Veronesi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Technopole Mario Veronesi, Mirandola, Modena, Italy.
| |
Collapse
|
9
|
Zheng Z, Lei X, Yang Y, Tan X, Cheng B, Huang W. Changes in Human Fat Injected Alongside Hyaluronic Acid in the Backs of Nude Mice. Aesthet Surg J 2021; 41:NP631-NP642. [PMID: 33326559 DOI: 10.1093/asj/sjaa351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cross-linked hyaluronic acid (HA) is an active anti-aging cosmetic filler. The combination of cross-linked HA and preadipocytes or adipose-derived stem cells has been previously investigated, but the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts remain unclear. OBJECTIVES The aim of this study was to explore the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts. METHODS The backs of nude mice were divided into 4 regions that received different treatments: nothing (control group), agglomerated Biohyalux (HA group), agglomerated fat (FAT group), and lumps formed by the sequential injection of Biohyalux and fat (HA/FAT group). Samples were collected after 1 month for weighing and hematoxylin and eosin staining, immunohistochemistry, image analysis, and Western blotting. RESULTS The weight of fat and the mean number of adipocytes in the HA/FAT group did not significantly differ from those in the FAT group. No living tissue was found in agglomerated HA. Some tiny HA particles were surrounded by tissue rich in blood vessels. The expression levels of CD31 and vascular endothelial growth factor (VEGF) in the HA/FAT group were higher than those in the FAT group, but the difference was only significant for VEGF expression. CONCLUSIONS Cross-linked HA had minimal effect on the early retention rate of surrounding fat grafts, but enhanced their vascularization. Fat grafts should be not injected into lumps of cross-linked HA. Therefore, agglomerated cross-linked HA should be dissolved before fat transplantation.
Collapse
Affiliation(s)
- Zhifang Zheng
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Lei
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yu Yang
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xi Tan
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Cannula Size Effect on Stromal Vascular Fraction Content of Fat Grafts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3471. [PMID: 33907655 PMCID: PMC8062151 DOI: 10.1097/gox.0000000000003471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Background Fat is an active and dynamic tissue composed of adipocytes supported by a structural framework known as the stromal vascular fraction (SVF). SVF is traditionally isolated by enzymatic processing, but new methods are being investigated to isolate it mechanically. Recent studies propose that fat harvested with larger cannulas has a higher survival rate, most likely due to a higher concentration of SVF. Methods Lipoaspirates were obtained from 10 patients who underwent elective liposuction using a 5-mm and a 1-mm cannula attached to a syringe using standard pressure. The fat was aspirated from the same area at adjacent sites. An estimated 5-mm fat particles were also cut down to 1-mm using a micronizer (Marina Medical). A 5-cm3 volume of each sample was compressed through a 0.5-mm opening strainer and rinsed with normal saline to extrude the oil. The resultant SVF left on the strainer was then measured in a 1-cm3 syringe. Results The volume extracted from a 5-mm cannula (mean, 0.23 cm3; SD, 0.10) versus a 1-mm cannula (mean, 0.11 cm3; SD, 0.06) was statistically significant (P = 0.009). An H&E-stained slide from the SVF was obtained for confirmation. Finally, 5-mm fat particles cut down to 1-mm particles using the micronizer resulted in an average volume of 0.20 cm3, which was higher than the average volume harvested with a 1-mm cannula. Conclusions Harvesting with a 5-mm cannula resulted in significantly more SVF than harvesting with a 1-mm cannula. Resizing fat particles harvested with a larger cannula down to 1-mm resulted in higher SVF than SVF obtained with a 1-mm cannula directly.
Collapse
|
11
|
Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther 2021; 12:8. [PMID: 33407902 PMCID: PMC7789635 DOI: 10.1186/s13287-020-01955-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in adipose-derived stromal/stem cell (ADSC) biology provide new hopes for tissue engineering and regeneration medicine. Due to their pluripotent activity, paracrine activity, and immunomodulatory function, ADSCs have been widely administrated and exhibited significant therapeutic effects in the treatment for autoimmune disorders, neurodegenerative diseases, and ischemic conditions both in animals and human clinical trials. Cell-assisted lipotransfer (CAL) based on ADSCs has emerged as a promising cell therapy technology and significantly improved the fat graft retention. Initially applied for cosmetic breast and facial enhancement, CAL has found a potential use for breast reconstruction in breast cancer patients. However, more challenges emerge related to CAL including lack of a standardized surgical procedure, the controversy in the effectiveness of CAL, and the potential oncogenic risk of ADSCs in cancer patients. In this review, we summarized the latest research and intended to give an outline involving the biological characteristics of ADSCs as well as the preclinical and clinical application of ADSCs.
Collapse
Affiliation(s)
- Jun Fang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Chen
- Department of Breast Tumor Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong Liu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiying Gu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuezhen Wang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China. .,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China. .,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
12
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
13
|
Hagaman AR, Zhang P, Koko KR, Nolan RS, Fromer MW, Gaughan J, Matthews M. Isolation and identification of adipose-derived stromal/stem cells from breast cancer patients after exposure neoadjuvant chemotherapy. World J Exp Med 2020; 10:26-40. [PMID: 32399395 PMCID: PMC7203539 DOI: 10.5493/wjem.v10.i3.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With recent research advances, adipose-derived stromal/stem cells (ASCs) have been demonstrated to facilitate the survival of fat grafts and thus are increasingly used for reconstructive procedures following surgery for breast cancer. Unfortunately, in patients, following radiation and chemotherapy for breast cancer suggest that these cancer treatment therapies may limit stem cell cellular functions important for soft tissue wound healing. For clinical translation to patients that have undergone cancer treatment, it is necessary to understand the effects of these therapies on the ASC's ability to improve fat graft survival in clinical practice. AIM To investigate whether the impact on ASCs function capacity and recovery in cancer patients may be due to the chemotherapy. METHODS ASCs were isolated from the cancerous side and noncancerous side of the breast from the same patients with receiving neoadjuvant chemotherapy (NAC) or not-receiving NAC. ASCs were in vitro treated with 5-fluorouracil (5-FU), doxorubicin (DXR), and cyclophosphamide (Cytoxan) at various concentrations. The stem cells yield, cell viability, and proliferation rates were measured by growth curves and MTT assays. Differentiation capacity for adipogenesis was determined by qPCR analysis of the specific gene markers and histological staining. RESULTS No significant differences were observed between the yield of ASCs in patients receiving NAC treatment and not-receiving NAC. ASCs yield from the cancerous side of the breast showed lower than the noncancerous side of the breast in both patients receiving NAC and not-receiving NAC. The proliferation rates of ASCs from patients didn't differ much before and after NAC upon in vitro culture, and these cells appeared to retain the capacity to acquire adipocyte traits simile to the ASCs from patients not-receiving NAC. After cessation and washout of the drugs for another a week of culturing, ASCs showed a slow recovery of cell growth capacity in 5-FU-treated groups but was not observed in ASCs treated with DXR groups. CONCLUSION Neoadjuvant therapies do not affect the functioning capacity of ASCs. ASCs may hold great potential to serve as a cell source for fat grafting and reconstruction in patients undergoing chemotherapy.
Collapse
Affiliation(s)
| | - Ping Zhang
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Kiavash R Koko
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - Ryan S Nolan
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - Marc W Fromer
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - John Gaughan
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Martha Matthews
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
14
|
Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 2020; 17:123-140. [PMID: 31953618 PMCID: PMC7105544 DOI: 10.1007/s13770-019-00230-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance. METHODS Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue. RESULTS Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives. CONCLUSION In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.
Collapse
Affiliation(s)
- Siva Sankari Sharath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Subramaniya Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
15
|
Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T. Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Front Pharmacol 2020; 11:158. [PMID: 32194404 PMCID: PMC7062679 DOI: 10.3389/fphar.2020.00158] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Fat grafting is a well-established surgical technique used in plastic surgery to restore deficient tissue, and more recently, for its putative regenerative properties. Despite more frequent use of fat grafting, however, a scientific understanding of the mechanisms underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring, contracture and pain) clinically; a phenomenon since validated in several animal studies. In the quest to explain and enhance these therapeutic effects, adipose-derived stem cells (ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in turn, followed. Stem cells - the body's rapid response 'road repair crew' - are on standby to combat tissue insults. ADSCs may exert influences either by releasing paracrine-signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively, ADSCs may augment vital immune/inflammatory processes; or themselves differentiate into mature adipose cells to provide the 'building-blocks' for engineered tissue. Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for therapeutic application, due to ease of harvest and processing; and a relative abundance of adipose tissue in most patients. Here, we review the clinical applications of fat grafting, ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.
Collapse
Affiliation(s)
- Lipi Shukla
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Yinan Yuan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| | - Ramin Shayan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia.,Plastic, Hand and Faciomaxillary Surgery Unit, Alfred Hospital, Prahran, VIC, Australia.,Department of Plastic and Reconstructive Surgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Tara Karnezis
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
16
|
Schröder A, Kriesen S, Hildebrandt G, Manda K. First Insights into the Effect of Low-Dose X-Ray Irradiation in Adipose-Derived Stem Cells. Int J Mol Sci 2019; 20:ijms20236075. [PMID: 31810198 PMCID: PMC6928975 DOI: 10.3390/ijms20236075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Emerging interest of physicians to use adipose-derived stem cells (ADSCs) for regenerative therapies and the fact that low-dose irradiation (LD-IR ≤ 0.1 Gy) has been reported to enhance the proliferation of several human normal and bone-marrow stem cells, but not that of tumor cells, lead to the idea of improving stem cell therapies via low-dose radiation. Therefore, the aim of this study was to investigate unwanted side effects, as well as proliferation-stimulating mechanisms of LD-IR on ADSCs. (2) Methods: To avoid donor specific effects, ADSCs isolated from mamma reductions of 10 donors were pooled and used for the radiobiological analysis. The clonogenic survival assay was used to classify the long-term effects of low-dose radiation in ADSCs. Afterwards, cytotoxicity and genotoxicity, as well as the effect of irradiation on proliferation of ADSCs were investigated. (3) Results: LD (≤ 0.1 Gy) of ionizing radiation promoted the proliferation and survival of ADSCs. Within this dose range neither geno- nor cytotoxic effects were detectable. In contrast, greater doses within the dose range of >0.1–2.0 Gy induced residual double-strand breaks and reduced the long-term survival, as well as the proliferation rate of ADSCs. (4) Conclusions: Our data suggest that ADSCs are resistant to LD-IR. Furthermore, LD-IR could be a possible mediator to improve approaches of stem cells in the field of regenerative medicine.
Collapse
|
17
|
Synergistic Effect of Adipose-Derived Stem Cells and Fat Graft on Wrinkles in Aged Mice. Plast Reconstr Surg 2019; 143:1637-1646. [PMID: 30907792 DOI: 10.1097/prs.0000000000005625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The authors investigated the synergistic effects of adipose-derived stem cells and fat graft on skin wrinkles in a nude mouse model of chronologic aging. METHODS After 50 weeks of chronologic aging, 44 female BALB/c nude mice were classified into four groups: (1) negative control, (2) mice injected subcutaneously with fat on the back skin (0.5 cm), (3) mice injected with adipose-derived stem cells (1 × 10 cells in 0.5 cm Hanks balanced salt solution), and (4) mice injected with both fat (0.5 cm) and adipose-derived stem cells (1 × 10 cells in 0.5 cm Hanks balanced salt solution). The degree of wrinkling was evaluated using replica analysis, and skin biopsies were performed after 4 weeks. The dermal thickness and density of collagen were determined. Type I procollagen and matrix metalloproteinase levels were determined using real-time polymerase chain reaction and Western blot analysis. Tropoelastin, fibrillin-1, and CD31 levels were evaluated using immunohistochemistry. RESULTS Based on the total wrinkle area, there was significant wrinkle reduction in the fat-treated and adipose-derived stem cell with fat-treated groups. Type I procollagen mRNA and collagen levels were significantly higher in the adipose-derived stem cell with fat-treated group than in the adipose-derived stem cell-treated and the fat-treated groups. In addition, the adipose-derived stem cells with fat graft group exhibited significantly higher CD31 expression level than the adipose-derived stem cell-treated and the fat-treated groups. CONCLUSION Both adipose-derived stem cells and fat graft have a wrinkle-reducing effect and synergistically affect collagen synthesis and neovascularization.
Collapse
|
18
|
Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells. Sci Rep 2019; 9:12076. [PMID: 31427631 PMCID: PMC6700204 DOI: 10.1038/s41598-019-48369-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo.
Collapse
|
19
|
Abstract
Fat grafting was first described in the early 20th century but for many years remained a relatively underused technique due to the unreliability of long-term volume expansion. Significant improvements in reliability have been made in the last 2 decades and there is a large body of literature pertaining to extraction, processing and injection methods to obtain more lasting effects. However, volume loss and graft resorption remain a major challenge in the long term and lead to unpredictability in results. Enriching adipose graft with stromal vascular fraction, ex vivo cultured adipose stem cells and platelet-derived growth factor among others is one method under active investigation which may assist graft survival through a range of mechanisms including increased angiogenesis. Breaking adipose graft into smaller fragments such that engrafted cells have greater access to donor-site oxygenation and nutrition is another method which in theory may promote survival. Presently, adipose grafting in the face is usually for the addition of volume to fill defects. However, the stem-cell containing fraction of adipose grafting (stromal vascular fraction) appears to exert a rejuvenating effect on overlying skin and soft tissue when administered alone. The application of these low-volume injections represents a significant shift in thinking away from mere volume expansion. These techniques have been tested in a range of animal models and some human studies. In this review, the authors provide a broad overview of present research and highlight both limitations in previous research and current areas of investigation.
Collapse
|
20
|
Making Sense of Stem Cells and Fat Grafting in Plastic Surgery: The Hype, Evidence, and Evolving U.S. Food and Drug Administration Regulations. Plast Reconstr Surg 2019; 143:417e-424e. [PMID: 30688913 DOI: 10.1097/prs.0000000000005207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autologous fat grafting and adipose-derived stem cells are two distinct entities with two different risk profiles, and should be regulated as such. Autologous fat grafting prepared with the additional step of stromal vascular fraction isolation is considered a form of "stem cell therapy" given the high concentration of stem cells found in stromal vascular fraction. Much ambiguity existed in the distinction between autologous fat grafting and stromal vascular fraction initially, in terms of both their biological properties and how they should be regulated. The market has capitalized on this in the past decade to sell unproven "stem cell" therapies to unknowing consumers while exploiting the regulatory liberties of traditional fat grafting. This led to a Draft Guidance from the U.S. Food and Drug Administration in 2014 proposing stricter regulations on fat grafting in general, which in turn elicited a response from plastic surgeons, who have safely used autologous fat grafting in the clinical setting for over a century. After a series of discussions, the U.S. Food and Drug Administration released its Final Guidance in November of 2017, which established clear distinctions between autologous fat grafting and stromal vascular fraction and their separate regulations. By educating ourselves on the U.S. Food and Drug Administration's final stance on fat grafting and stem cell therapy, we can learn how to navigate the regulatory waters for the two entities and implement their clinical use in a responsible and informed manner.
Collapse
|
21
|
Zollino I, Campioni D, Sibilla MG, Tessari M, Malagoni AM, Zamboni P. A phase II randomized clinical trial for the treatment of recalcitrant chronic leg ulcers using centrifuged adipose tissue containing progenitor cells. Cytotherapy 2018; 21:200-211. [PMID: 30583949 DOI: 10.1016/j.jcyt.2018.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Preclinical and observational reports indicate that adipose tissue (AT) is a safe and promising tool to treat non-healing venous leg ulcers (VLUs). METHODS From an initial cohort of 38 patients, 16 patients affected by non-healing VLUs were randomly allocated to the experimental arm (5 men and 3 women) and control arm (5 men and 3 women). In the experimental arm, wounds were treated by debridement, centrifuged adipose tissue (CAT), advanced dressings and compression. No experimental treatment (CAT) was administered to the control arm. We investigated the functional and the immunophenotypical features of the harvested CAT-derived stem cells. The primary outcome measures were healing time and safety of the cell treatment. Secondary outcomes were pain evaluated by numeric rating scale (NRS), complete wound healing at 24 weeks by Margolis Index and wound-healing process expressed in square centimeters per week. The various immunophenotypic and functional characteristics of CAT-derived stem cells were then correlated with the clinical outcomes. RESULTS No major adverse events were recorded. The healing time was significantly faster by applying CAT, 17.5 ± 7.0 weeks versus 24.5 ± 4.9 weeks recorded in the control arm (P < 0.036). NRS dropped after the first week to 2.7 ± 2.0 in the experimental arm versus 6.6 ± 3.0 in the control group (P < 0.01). The rate of healing at the 24th week was not significantly different between arms. Interestingly, we found a strong reverse correlation between the percent of CD34+/CD45- non-hematopoietic cells, respectively, with the healing time (r = -0.894, P < 0.041) and NRS (r = -0.934, P < 0.020). CONCLUSIONS CAT is safe and may accelerate healing time in VLUs as well as reduce wound pain. The percentage of CD34+/CD45- cells in stromal vascular fraction (SVF) seems to be a predictive biomarker of successful CAT treatment in these patients.
Collapse
Affiliation(s)
- Ilaria Zollino
- Department of Morphology, Surgery and Experimental Medicine, Section of Translational of Medicine and Surgery, University of Ferrara, Ferrara, Italy.
| | - Diana Campioni
- Center of Hemostasis & Thrombosis, Department of Biomedical and Surgical Science, Section of Medical Biochemistry, Molecular Biology & Genetics, University of Ferrara, Ferrara, Italy
| | - Maria Grazia Sibilla
- Sant'Anna University Hospital, Unit of Translational Surgery and Vascular Diseases Center, Ferrara, Italy
| | - Mirko Tessari
- Department of Morphology, Surgery and Experimental Medicine, Section of Translational of Medicine and Surgery, University of Ferrara, Ferrara, Italy; Sant'Anna University Hospital, Unit of Translational Surgery and Vascular Diseases Center, Ferrara, Italy
| | - Anna Maria Malagoni
- Sant'Anna University Hospital, Unit of Translational Surgery and Vascular Diseases Center, Ferrara, Italy
| | - Paolo Zamboni
- Department of Morphology, Surgery and Experimental Medicine, Section of Translational of Medicine and Surgery, University of Ferrara, Ferrara, Italy; Sant'Anna University Hospital, Unit of Translational Surgery and Vascular Diseases Center, Ferrara, Italy
| |
Collapse
|
22
|
Kim EK, Lee Y, Lee HJ, Hong JP. Local Subcutaneous Injection of Erythropoietin Might Improve Fat Graft Survival, Whereas Continuous Infusion Using an Osmotic Pump Device Was Harmful by Provoking an Overwhelming Foreign Body Reaction in a Nude Mouse Model. ARCHIVES OF AESTHETIC PLASTIC SURGERY 2018. [DOI: 10.14730/aaps.2018.24.3.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Yu Q, Cai Y, Huang H, Wang Z, Xu P, Wang X, Zhang L, Zhang W, Li W. Co-Transplantation of Nanofat Enhances Neovascularization and Fat Graft Survival in Nude Mice. Aesthet Surg J 2018; 38:667-675. [PMID: 29161346 DOI: 10.1093/asj/sjx211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Autologous fat grafting is commonly used for soft-tissue augmentation and reconstruction. However, this technique is limited by a high rate of graft absorption. Thus, approaches to improve fat graft survival that promote neovascularization are of great interest. Nanofat has several beneficial features that may render it more suitable for clinical applications than other stem-cell based approaches. OBJECTIVES We aimed to determine whether nanofat could enhance new vessel formation and improve the long-term retention of fat grafts. METHODS Nanofat was processed via mechanical emulsification and filtration. Fat grafts were transplanted subcutaneously under the scalps of nude mice with different nanofat volumes or without nanofat. The grafted fat was dissected 12 weeks after transplantation. Graft weight and volume were measured, and histological evaluations, including capillary density measurement, were performed. RESULTS The co-transplantation of fat with nanofat showed higher graft weight and volume retention, better histological structure, and higher capillary density compared to that in controls. However, there were no significant differences between the two nanofat volumes utilized. CONCLUSIONS Nanofat can enhance neovascularization and improve fat graft survival, providing a potential clinically viable approach to fat graft supplementation in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Qian Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - He Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Zhenxing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| |
Collapse
|
24
|
Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol 2018; 78-79:284-291. [PMID: 29458140 PMCID: PMC6534160 DOI: 10.1016/j.matbio.2018.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Hyaluronic acid (HA, also known as hyaluronan), is a non-sulfated linear glycosaminoglycan polymer consisting of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-glucosamine abundantly present in the extracellular matrix. The sizes of hyaluronic acid polymers range from 5000 to 20,000,000 Da in vivo, and the functions of HA are largely dictated by its size. Due to its high biocompatibility, HA has been commonly used as soft tissue filler as well as a major component of biomaterial scaffolds in tissue engineering. Several studies have implicated that HA may promote differentiation of adipose tissue derived stem cells in vitro or in vivo when used as a supporting scaffold. However, whether HA actually promotes adipogenesis in vivo and the subsequent metabolic effects of this process are unclear. This review summarizes some recent publications in the field and discusses the possible directions and approaches for future studies, focusing on the role of HA in the adipose tissue.
Collapse
Affiliation(s)
- Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Kuten O, Simon M, Hornyák I, De Luna-Preitschopf A, Nehrer S, Lacza Z. The Effects of Hyperacute Serum on Adipogenesis and Cell Proliferation of Mesenchymal Stromal Cells. Tissue Eng Part A 2018; 24:1011-1021. [PMID: 29265000 DOI: 10.1089/ten.tea.2017.0384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fat tissue, due to its high concentration of stem cells, has a role in aesthetic medicine and reconstructive surgery. However, poor survival of the transplanted cells still limits the usefulness of this material in regenerative medicine. Several studies indicated that platelet-rich plasma (PRP) may improve adipose tissue viability due to its growth factor content. This study aimed at investigating the effects of PRP and hyperacute serum (HAS) on the adipogenic lineage in vitro. PRP was prepared by using two centrifugation steps in the presence of anticoagulants, and HAS was isolated from activated platelet-rich fibrin within 10 min of blood drawing to prevent the propagation of inflammatory cascades. Metabolic activity and proliferation rate of human bone marrow-derived mesenchymal stem cells (hMSCs) cultivated in media supplemented with three types of serum additives (fetal calf serum [FCS], human PRP, or HAS) was determined by using a tetrazolium assay. Adipogenesis was evaluated in standard and pro-adipogenic media and tested by oil red staining, triglyceride content, and expression of specific genes. Adipogenic regulators in the sera were measured by multiplex ELISA assays. We observed that proliferation of hMSCs was supported by both FCS and HAS in a time-dependent manner, but surprisingly, PRP had a much weaker effect (change in proliferation rate after 5 days relative to metabolic activity on day 0-FCS: 5.4-fold change, HAS: 5.8-fold change, serum free 1.9-fold change, PRP: 3.0-fold change, p < 0.05). Lipogenesis was only observed in groups with adipogenic differentiation medium, with HAS showing a significantly stronger effect than PRP. This was confirmed by intensive accumulation of lysochrome dye in lipid droplets, higher triglyceride concentration, and elevated expression of specific adipogenic genes. Measurement of lipogenic proteins in the sera revealed that both PRP and HAS are abundant in them; however, PRP also contains anti-adipogenic factors, which explains its weaker and less reliable effect. The results of this study suggest that HAS provides more robust support than PRP in hMSCs proliferation as well as lipogenic differentiation, indicating that it may be a better adjuvant in fat grafting procedures.
Collapse
Affiliation(s)
- Olga Kuten
- 1 OrthoSera GmbH , Krems an der Donau, Austria
| | - Melinda Simon
- 2 Institute of Clinical Experimental Research, Semmelweis University , Budapest, Hungary
| | - István Hornyák
- 2 Institute of Clinical Experimental Research, Semmelweis University , Budapest, Hungary
| | | | - Stefan Nehrer
- 3 Centre for Regenerative Medicine and Orthopedics, Danube University Krems , Krems, Austria
| | | |
Collapse
|
26
|
Laloze J, Varin A, Bertheuil N, Grolleau J, Vaysse C, Chaput B. Cell-assisted lipotransfer: Current concepts. ANN CHIR PLAST ESTH 2017; 62:609-616. [DOI: 10.1016/j.anplas.2017.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/27/2017] [Indexed: 01/04/2023]
|
27
|
Application of adipose-derived stromal cells in fat grafting: Basic science and literature review. Exp Ther Med 2017; 14:2415-2423. [PMID: 28962175 PMCID: PMC5609216 DOI: 10.3892/etm.2017.4811] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Autologous fat is considered the ideal material for soft-tissue augmentation in plastic and reconstructive surgery. The primary drawback of autologous fat grafting is the high resorption rate. The isolation of mesenchymal stem cells from adipose tissue inevitably led to research focusing on the study of combined transplantation of autologous fat and adipose derived stem cells (ADSCs) and introduced the theory of ‘cell-assisted lipotransfer’. Transplantation of ADSCs is a promising strategy, due to the high proliferative capacity of stem cells, their potential to induce paracrine signalling and ability to differentiate into adipocytes and vascular cells. The current study examined the literature for clinical and experimental studies on cell-assisted lipotransfer to assess the efficacy of this novel technique when compared with traditional fat grafting. A total of 30 studies were included in the present review. The current study demonstrates that cell-assisted lipotransfer has improved efficacy compared with conventional fat grafting. Despite relatively positive outcomes, further investigation is required to establish a consensus in cell-assisted lipotransfer.
Collapse
|
28
|
Huang H, Feng S, Zhang W, Li W, Xu P, Wang X, Ai A. Bone marrow mesenchymal stem cell‑derived extracellular vesicles improve the survival of transplanted fat grafts. Mol Med Rep 2017; 16:3069-3078. [PMID: 28713978 PMCID: PMC5548010 DOI: 10.3892/mmr.2017.6972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 04/04/2017] [Indexed: 01/13/2023] Open
Abstract
Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are proangiogenic. The present study aimed to investigate whether BMSC-EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC-EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC-EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC-EVs improves the long-term retention and quality of transplanted fat.
Collapse
Affiliation(s)
- He Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ai Ai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
29
|
Rasmussen BS, Lykke Sørensen C, Vester-Glowinski PV, Herly M, Trojahn Kølle SF, Fischer-Nielsen A, Drzewiecki KT. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting: A Systematic Review. Aesthet Surg J 2017; 37:S46-S58. [PMID: 29025214 DOI: 10.1093/asj/sjx008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. LEVEL OF EVIDENCE 4.
Collapse
|
30
|
Caggiati A, Germani A, Di Carlo A, Borsellino G, Capogrossi MC, Picozza M. Naturally Adipose Stromal Cell-Enriched Fat Graft: Comparative Polychromatic Flow Cytometry Study of Fat Harvested by Barbed or Blunt Multihole Cannula. Aesthet Surg J 2017; 37:591-602. [PMID: 28052909 DOI: 10.1093/asj/sjw211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Fat grafts enriched with cells of the stromal vascular fraction (SVF), especially adipose-derived stromal cells (ASCs), exhibit significantly improved retention over non enriched, plain fat. Different types of liposuction cannulae may yield lipoaspirates with different subpopulations of cells. Moreover, preparation of adipose tissue for transplantation typically involves centrifugation, which creates a density gradient of fat. Objectives The authors sought to determine whether liposuction with a barbed or smooth cannula altered the enrichment of the SVF, and specifically ASCs, in low-density (LD) and high-density (HD) fractions of centrifuged adipose tissue. Methods Fat was harvested from 2 abdominal sites of 5 healthy women with a barbed or smooth multihole blunt-end cannula. After centrifugation, LD and HD fat fractions were digested with collagenase and analyzed by polychromatic flow cytometry to identify and enumerate distinct populations of cells. Results Overall cell yield and the number of immune cells were consistently higher in HD fractions than in LD fractions, regardless of the cannula employed. More living cells, and specifically more ASCs, populated the HD fractions of lipoaspirates obtained with a barbed cannula than with a smooth cannula. Conclusions In this study, lipoaspiration with a barbed cannula and isolation of the HD layer of centrifuged adipose tissue yielded maximal amounts of SVF cells, including ASCs.
Collapse
Affiliation(s)
- Alessio Caggiati
- Director of the Plastic Surgery Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - Antonia Germani
- Consultant, Istituto Dermopatico dell'Immacolata-IRCCS Scientific Board, Rome, Italy
| | - Anna Di Carlo
- Research Fellow, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Giovanna Borsellino
- Research Associate, Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Maurizio C Capogrossi
- Head, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Mario Picozza
- Research Fellow, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| |
Collapse
|
31
|
Positive Effects of Subdermal Lipotransfer on Pig’s Upper Eyelid Skin: Mature Adipocytes or Adipose-Derived Stem Cells Alone Contribute Little and Only Cotransplantation of Them Can Generate Benefits. Ophthalmic Plast Reconstr Surg 2017; 33:40-46. [DOI: 10.1097/iop.0000000000000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Harris WM, Zhang P, Plastini M, Ortiz T, Kappy N, Benites J, Alexeev E, Chang S, Brockunier R, Carpenter JP, Brown SA. Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel. Cytotherapy 2016; 19:211-221. [PMID: 27887867 DOI: 10.1016/j.jcyt.2016.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Adipose-derived stem cells (ASCs) are considered to play a positive role in wound healing as evidenced by their increasing use in breast reconstructive procedures. After chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. In the present study, the functional capabilities and recovery of ASCs after exposure to chemotherapeutic agent paclitaxel (PTX) using in vitro and ex vivo models were demonstrated. METHODS Human ASCs were isolated from periumbilical fat tissue and treated with PTX at various concentrations. Adult Sprague-Dawley rats were given intravenous injections with PTX. Two and four weeks after the initial PTX treatment, ASCs were isolated from rat adipose tissue. Proliferation, cell viability, apoptosis and cell migration rates were measured by growth curves, MTT assays, flow cytometry and scratch assays. ASCs were cultured in derivative-specific differentiation media with or without PTX for 3 weeks. Adipogenic, osteogenic and endothelial differentiation levels were measured by quantitative reverse transcriptase polymerase chain reaction and histological staining. RESULTS PTX induced apoptosis, decreased the proliferation and cell migration rates of ASCs and inhibited ASCs multipotent differentiation in both in vitro human ASC populations and ex vivo rat ASC populations with PTX treatment. Furthermore, after cessation of PTX, ASCs exhibited recovery potential of differentiation capacity in both in vitro and animal studies. CONCLUSIONS Our results provide insight into poor soft tissue wound healing and promote further understanding of the potential capability of ASCs to serve as a cell source for fat grafting and reconstruction in cancer patients undergoing chemotherapy treatment.
Collapse
Affiliation(s)
- William M Harris
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Ping Zhang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA.
| | - Michael Plastini
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Telisha Ortiz
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Nikolas Kappy
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Jefferson Benites
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Edward Alexeev
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Shaohua Chang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Ross Brockunier
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | | | - Spencer A Brown
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| |
Collapse
|
33
|
Huber B, Link A, Linke K, Gehrke SA, Winnefeld M, Kluger PJ. Integration of Mature Adipocytes to Build-Up a Functional Three-Layered Full-Skin Equivalent. Tissue Eng Part C Methods 2016; 22:756-64. [PMID: 27334067 PMCID: PMC4991605 DOI: 10.1089/ten.tec.2016.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large, deep full-thickness skin wounds from high-graded burns or trauma are not able to reepithelialize sufficiently, resulting in scar formation, mobility limitations, and cosmetic deformities. In this study, in vitro-constructed tissue replacements are needed. Furthermore, such full-skin equivalents would be helpful as in vivo-like test systems for toxicity, cosmetic, and pharmaceutical testing. Up to date, no skin equivalent is available containing the underlying subcutaneous fatty tissue. In this study, we composed a full-skin equivalent and evaluated three different media for the coculture of mature adipocytes, fibroblasts, and keratinocytes. Therefore, adipocyte medium was supplemented with ascorbyl-2-phosphate and calcium chloride, which are important for successful epidermal stratification (Air medium). This medium was further supplemented with two commercially available factor combinations often used for the in vitro culture of keratinocytes (Air-HKGS and Air-KGM medium). We showed that in all media, keratinocytes differentiated successfully to build a stratified epidermal layer and expressed cytokeratin 10 and 14. Perilipin A-positive adipocytes could be found in all tissue models for up to 14 days, whereas adipocytes in the Air-HKGS and Air-KGM medium seemed to be smaller. Adipocytes in all tissue models were able to release adipocyte-specific factors, whereas the supplementation of keratinocyte-specific factors had a slightly negative effect on adipocyte functionality. The permeability of the epidermis of all models was comparable since they were able to withstand a deep penetration of cytotoxic Triton X in the same manner. Taken together, we were able to compose functional three-layered full-skin equivalents by using the Air medium.
Collapse
Affiliation(s)
- Birgit Huber
- 1 Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart , Stuttgart, Germany
| | - Antonia Link
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Kirstin Linke
- 3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Sandra A Gehrke
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Marc Winnefeld
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Petra J Kluger
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| |
Collapse
|
34
|
Toyserkani NM, Quaade ML, Sørensen JA. Cell-Assisted Lipotransfer: A Systematic Review of Its Efficacy. Aesthetic Plast Surg 2016; 40:309-18. [PMID: 26893280 PMCID: PMC4819466 DOI: 10.1007/s00266-016-0613-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Autologous lipotransfer is seen as an ideal filler for soft tissue reconstruction. The main limitation of this procedure is the unpredictable resorption and volume loss of the fat graft. In the recent decade, an increasing amount of research has focused on the use of adipose tissue-derived stromal cells (ASCs) to enrich the fat graft, a procedure termed cell-assisted lipotransfer (CAL). The aim of this review was to systematically review the current preclinical and clinical evidence for the efficacy of CAL compared with conventional lipotransfer. MATERIALS AND METHODS A systematic search was performed on PubMed and other databases to identify all preclinical and clinical studies where CAL with ASCs was compared with conventional lipotransfer. A total of 20 preclinical studies and seven clinical studies were included in the review. RESULTS The preclinical studies consisted of 15 studies using immunodeficient animal models and five studies using immunocompetent studies. Seventeen studies examined weight/volume retention of which 15 studies favored CAL over conventional lipotransfer. One clinical study did not find any efficacy of CAL and the remaining six studies favored CAL. CONCLUSIONS The present evidence suggests that there is a big potential for CAL in reconstructive surgery; however, the present studies are so far still of low quality with inherent weaknesses. Several aspects regarding CAL still remain unknown such as the optimal degree of cell enrichment and also its safety. Further high-quality studies are needed to establish if CAL can live up to its potential. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
| | - Marlene Louise Quaade
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
35
|
The Current State of Fat Grafting: A Review of Harvesting, Processing, and Injection Techniques. Plast Reconstr Surg 2016; 136:897-912. [PMID: 26086386 DOI: 10.1097/prs.0000000000001590] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interest in and acceptance of autologous fat grafting for use in contour abnormalities, breast reconstruction, and cosmetic procedures have increased. However, there are many procedural variations that alter the effectiveness of the procedure and may account for the unpredictable resorption rates observed. METHODS The authors highlighted studies investigating the effects of harvesting procedures, processing techniques, and reinjection methods on the survival of fat grafts. This review focused on the impact different techniques have on outcomes observed in the following: in vitro analyses, in vivo animal experiments, and human studies. RESULTS This systemic review revealed the current state of the literature. There was no significant difference in the outcomes of grafted fat obtained from different donor sites, different donor-site preparations, harvest technique, fat harvesting cannula size, or centrifugation speed, when tumescent solution was used. Gauze rolling was found to enhance the volume of grafted fat, and no significant difference in retention was observed following centrifugation, filtration, or sedimentation in animal experiments. In contrast, clinical studies in patients found more favorable outcomes with fat processed by centrifugation compared with sedimentation. In addition, higher retention was observed with slower reinjection speed and when introduced into less mobile areas. CONCLUSIONS There has been a substantial increase in research interest to identify methodologies for optimizing fat graft survival. Despite some differences in harvest and implantation technique in the laboratory, these findings have not translated into a universal protocol for fat grafting. Therefore, additional human studies are necessary to aid in the development of a universal protocol for clinical practice.
Collapse
|
36
|
Zhang J, Bai X, Zhao B, Wang Y, Su L, Chang P, Wang X, Han S, Gao J, Hu X, Hu D, Liu X. Allogeneic adipose-derived stem cells promote survival of fat grafts in immunocompetent diabetic rats. Cell Tissue Res 2015; 364:357-67. [DOI: 10.1007/s00441-015-2334-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/15/2015] [Indexed: 12/20/2022]
|
37
|
Chen YS, Chen YY, Hsueh YS, Tai HC, Lin FH. Modifying alginate with early embryonic extracellular matrix, laminin, and hyaluronic acid for adipose tissue engineering. J Biomed Mater Res A 2015; 104:669-677. [PMID: 26514819 DOI: 10.1002/jbm.a.35606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/06/2022]
Abstract
Extracellular matrix provides both mechanistic and chemical cues that can influence cellular behaviors such as adhesion, migration, proliferation, and differentiation. In this study, a new material, HA-L-Alg, was synthesized by linking developmentally essential ECM constituents hyaluronic acid (HA) and laminin(L) to alginate (Alg). The fabrication of HA-L-Alg was confirmed by FTIR spectroscopy, and it was used to form 3D cell-carrying beads. HA-L-Alg beads had a steady rate of degradation and retained 63.25% of mass after 9 weeks. HA-L-Alg beads showed biocompatibility comparable to beads formed by Alg-only with no obvious cytotoxic effect on the embedded 3T3-L1 preadipocytes. HA-L-Alg encapsulated 3T3-L1 cells were found to have a higher proliferation rate over those in Alg-only beads. These cells also showed better differentiation capacity after 2 weeks of adipogenic induction within HA-L-Alg beads. These results support that HA-L-Alg facilitated cell survival and proliferation, as well as stimulated and maintained cell differentiation. Our results suggest that HA-L-Alg has a great clinical potential to be used as stem cell carrier for adipose tissue engineering. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 669-677, 2016.
Collapse
Affiliation(s)
- Yo-Shen Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan.,Department of Plastic Surgery, Far Eastern Memorial Hospital, New Taipei City, 22060, Taiwan
| | - Yen-Yu Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Sheng Hsueh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Hao-Chih Tai
- Department of Plastic Surgery, National Taiwan University Hospital, Taipei, 10051, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
38
|
Kruglikov IL, Wollina U. Soft tissue fillers as non-specific modulators of adipogenesis: change of the paradigm? Exp Dermatol 2015; 24:912-5. [PMID: 26309229 DOI: 10.1111/exd.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/15/2022]
Abstract
Dermal filler injection is a cornerstone of facial rejuvenation procedures. Based on available data in animal and human studies, we suppose that the activation and proliferation of adipose-derived stem cells and expansion of mature adipocytes play a crucial role in long-term effects of volumizing, tissue tightening and beautification.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|
39
|
|
40
|
Zhang J, Wang Y, Zhao B, Fan L, Bai X, Yang L, Chang P, Hu D, Liu X. Allogeneic Adipose-Derived Stem Cells Protect Fat Grafts at the Early Stage and Improve Long-Term Retention in Immunocompetent Rats. Aesthetic Plast Surg 2015; 39:625-34. [PMID: 26044393 DOI: 10.1007/s00266-015-0505-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Syngeneic adipose-derived stem cells (ASCs) promote the survival of fat grafts. But it is unclear whether allogeneic ASCs have a similar protective effect. In this study, we investigated the protective effect of allogeneic ASCs in a fat graft model of immunocompetent rats. METHODS Syngeneic and allogeneic ASCs were derived from Lewis (LEW) and Norway-Brown rats, respectively. Fifty-four LEW rats were divided into three groups. Each LEW rat was injected subcutaneously at two paravertebral spots with adipose granules premixed with DMEM (AFT group), syngeneic ASCs (SYNG group), or allogeneic ASCs (ALLG group). Fat grafts were harvested at 7 and 14 days to examine apoptosis rates and immunochemistry staining was performed for Perilipin A and CD34. At 3 months, fat graft volume retentions were measured. The proportion of regulatory T (Treg) cells and the ratio of CD4/CD8 cells in blood were analyzed at 7 days. RESULTS Expression of Perilipin A and CD34 was higher in the ALLG group than the AFT group at 14 days (P < 0.05). The apoptosis rate in the ALLG group decreased in comparison with the AFT group at 7 and 14 days (P < 0.05). At 3 months, allogeneic ASCs increased fat graft volume retentions (P < 0.05). No difference was found in the proportion of Treg cells and CD4/CD8 cells ratio between groups. There were no statistically significant difference between ALLG and SYNG groups at all time points (P > 0.05). CONCLUSIONS Allogeneic ASCs protected fat grafts at the early stage and improved long-term volume retention in the fat graft model of immunocompetent rats with no or little obvious immune rejection.
Collapse
|
41
|
Pike S, Zhang P, Wei Z, Wu N, Klinger A, Chang S, Jones R, Carpenter J, Brown SA, DiMuzio P, Tulenko T, Liu Y. In vitro effects of tamoxifen on adipose-derived stem cells. Wound Repair Regen 2015; 23:728-36. [PMID: 26043659 DOI: 10.1111/wrr.12322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023]
Abstract
In breast reconstructive procedures, adipose-derived stem cells (ASCs) that are present in clinical fat grafting isolates are considered to play the main role in improving wound healing. In patients following chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. However, it is unclear if tamoxifen (TAM) as the most widely used hormonal therapeutic agent for breast cancer treatment, affects the ASCs and ultimately wound healing. This study evaluated whether TAM exposure to in vitro human ASCs modulate cellular functions. Human ASCs were isolated and treated with TAM at various concentrations. The effects of TAM on cell cycle, cell viability and proliferation rates of ASCs were examined by growth curves, MTT assay and BrdU incorporation, respectively. Annexin V and JC-1 Mitochondrial Membrane Potential assays were used to analyze ASC apoptosis rates. ASCs were cultured in derivative-specific differentiation media with or without TAM (5 uM) for 3 weeks. Adipogenic and osteogenic differentiation levels were measured by quantitative RT-PCR and histological staining. TAM has cytotoxic effects on human ASCs through apoptosis and inhibition of proliferation in dose- and time-dependent manners. TAM treatment significantly down-regulates the capacity of ASCs for adipogenic and osteogenic differentiation (p<0.05 vs. control), and inhibit the ability of the ASCs to subsequently formed cords in Matrigel. This study is the first findings to our knowledge that demonstrated that TAM inhibited ASC proliferation and multi-lineage ASC differentiation rates. These results may provide insight into the role of TAM with associated poor soft tissue wound healing and decreased fat graft survival in cancer patients receiving TAM.
Collapse
Affiliation(s)
- Steven Pike
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Ping Zhang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Zhengyu Wei
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Nan Wu
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Aaron Klinger
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Shaohua Chang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Robert Jones
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Jeffrey Carpenter
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Spencer A Brown
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Paul DiMuzio
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Tulenko
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Yuan Liu
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| |
Collapse
|
42
|
Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, Maccario R, Dominici M, De Silvestri A, Andreatta E, Costanzo F, Mantelli M, Ingo D, Piccinno S, Calcaterra V. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 2015; 13:219. [PMID: 26152232 PMCID: PMC4495634 DOI: 10.1186/s12967-015-0580-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Mesenchymal stromal cells
(MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). Methods Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 106 and BM-MSCs 3 × 106, because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. Results Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. Conclusion The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonia Icaro Cornaglia
- Histology and Embryology Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy.
| | - Monica Osti
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Piero Romano
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Luigi Avolio
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Rita Maccario
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Annalisa De Silvestri
- Biometry and Clinical Epidemiology Unit, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Erika Andreatta
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Federico Costanzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Daniela Ingo
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Serena Piccinno
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Valeria Calcaterra
- Pediatric Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| |
Collapse
|
43
|
Zhang N, Dietrich MA, Lopez MJ. Therapeutic doses of multipotent stromal cells from minimal adipose tissue. Stem Cell Rev Rep 2015; 10:600-11. [PMID: 24850472 PMCID: PMC4127443 DOI: 10.1007/s12015-014-9508-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low yield of adult adipose-derived multipotent stromal cells (ASC) can limit autologous cell therapy in individuals with minimal adipose tissue. In this study, ASC isolation was optimized from approximately 0.2 g of feline epididymal adipose tissue for a treatment dose of 106–107 ASCs/kg. The ASC yield was determined for three digestions, 0.1 % collagenase in medium for 30 min (Classic), 0.3 % collagenase in buffer for 30 min (New) and 0.3 % collagenase in buffer for 1 h (Hour). After isolation by the new tissue digestion, continuously cultured ASCs (fresh) and cells recovered and expanded after cryostorage at P0 (revitalized) were characterized up to cell passage (P) 5. Outcomes included CD9, CD29, CD44, CD90 and CD105 expression, cell doublings and doubling times, fibroblastic, adipogenic and osteogenic colony forming unit (CFU) frequency percentages and lineage-specific target gene expression after induction. The New digestion had the highest CFU yield, and about 7x106 ASCs/kg were available within three cell passages (P2). Compared to earlier passages, target surface antigen expression was lowest in fresh P5 cells, and fresh and revitalized P3–5 cells had slower expansion. Fresh and revitalized P1 ASCs had higher CFU frequency percentages and lineage-specific gene expression than P3. The New method described in this study was most efficient for feline epididymal ASC isolation and did not alter in vitro cell behavior. Fresh and revitalized P0-P2 feline ASCs may be most effective for preclinical and clinical trials. This study offers a potential option for ASC isolation from limited adipose tissue resources across species.
Collapse
Affiliation(s)
- Nan Zhang
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | |
Collapse
|
44
|
Wollina U. Midfacial rejuvenation by hyaluronic acid fillers and subcutaneous adipose tissue – A new concept. Med Hypotheses 2015; 84:327-30. [DOI: 10.1016/j.mehy.2015.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
|
45
|
Grisendi G, Spano C, D'souza N, Rasini V, Veronesi E, Prapa M, Petrachi T, Piccinno S, Rossignoli F, Burns JS, Fiorcari S, Granchi D, Baldini N, Horwitz EM, Guarneri V, Conte P, Paolucci P, Dominici M. Mesenchymal Progenitors Expressing TRAIL Induce Apoptosis in Sarcomas. Stem Cells 2015; 33:859-69. [DOI: 10.1002/stem.1903] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Carlotta Spano
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Naomi D'souza
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Valeria Rasini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Elena Veronesi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Tiziana Petrachi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Serena Piccinno
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Filippo Rossignoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Jorge S. Burns
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Stefania Fiorcari
- Division of Hematology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Donatella Granchi
- Department of Biomedical and Neuromotor Sciences, Orthopaedic Pathophysiology and Regenerative Medicine Laboratory; Istituto Ortopedico Rizzoli; Bologna Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Orthopaedic Pathophysiology and Regenerative Medicine Laboratory; Istituto Ortopedico Rizzoli; Bologna Italy
| | - Edwin M. Horwitz
- The Research Institute and Division of Hematology/Oncology/BMT; Nationwide Children's Hospital; Columbus Ohio USA
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology; University of Padova, Istituto Oncologico Veneto IRCCS; Padova Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology; University of Padova, Istituto Oncologico Veneto IRCCS; Padova Italy
| | - Paolo Paolucci
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults; University-Hospital of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
46
|
Shukla L, Morrison WA, Shayan R. Adipose-derived stem cells in radiotherapy injury: a new frontier. Front Surg 2015; 2:1. [PMID: 25674565 PMCID: PMC4309196 DOI: 10.3389/fsurg.2015.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumor. While the early effects of radiotherapy (desquamation, erythema, and hair loss) typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture, and/or lymphedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of: (i) mechanisms of chronic radiation injury and its clinical manifestations; (ii) biological properties of fat grafts and their key constituent, adipose-derived stem cells (ADSCs); and (iii) the role of ADSCs in radiotherapy-induced soft-tissue injury.
Collapse
Affiliation(s)
- Lipi Shukla
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia
| | - Wayne A Morrison
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia ; Department of Surgery, University of Melbourne , Melbourne, VIC , Australia
| | - Ramin Shayan
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia ; Department of Surgery, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
47
|
Domenis R, Lazzaro L, Calabrese S, Mangoni D, Gallelli A, Bourkoula E, Manini I, Bergamin N, Toffoletto B, Beltrami CA, Beltrami AP, Cesselli D, Parodi PC. Adipose tissue derived stem cells: in vitro and in vivo analysis of a standard and three commercially available cell-assisted lipotransfer techniques. Stem Cell Res Ther 2015; 6:2. [PMID: 25559708 PMCID: PMC4417272 DOI: 10.1186/scrt536] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction Autologous fat grafting is commonly used to correct soft-tissue contour deformities. However, results are impaired by a variable and unpredictable resorption rate. Autologous adipose-derived stromal cells in combination with lipoinjection (cell-assisted lipotransfer) seem to favor a long-term persistence of fat grafts, thus fostering the development of devices to be used in the operating room at the point of care, to isolate the stromal vascular fraction (SVF) and produce SVF-enhanced fat grafts with safe and standardized protocols. Focusing on patients undergoing breast reconstruction by lipostructure, we analyzed a standard technique, a modification of the Coleman’s procedure, and three different commercially available devices (Lipokit, Cytori, Fastem), in terms of 1) ability to enrich fat grafts in stem cells and 2) clinical outcome at 6 and 12 months. Methods To evaluate the ability to enrich stem cells, we compared, for each patient (n = 20), the standard lipoaspirate with the respective stem cell-enriched one, analyzing yield, immunophenotype and colony-forming capacity of the SVF cells as well as immunophenotype, clonogenicity and multipotency of the obtained adipose stem cells (ASCs). Regarding the clinical outcome, we compared, by ultrasonography imaging, changes at 6 and 12 months in the subcutaneous thickness of patients treated with stem-cell enriched (n = 14) and standard lipoaspirates (n = 16). Results Both methods relying on the enzymatic isolation of primitive cells led to significant increase in the frequency, in the fat grafts, of SVF cells as well as of clonogenic and multipotent ASCs, while the enrichment was less prominent for the device based on the mechanical isolation of the SVF. From a clinical point of view, patients treated with SVF-enhanced fat grafts demonstrated, at six months, a significant superior gain of thickness of both the central and superior-medial quadrants with respect to patients treated with standard lipotransfer. In the median-median quadrant the effect was still persistent at 12 months, confirming an advantage of lipotransfer technique in enriching improving long-term fat grafts. Conclusions This comparative study, based on reproducible biological and clinical parameters and endpoints, showed an advantage of lipotransfer technique in enriching fat grafts in stem cells and in favoring, clinically, long-term fat grafts. Electronic supplementary material The online version of this article (doi:10.1186/scrt536) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossana Domenis
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Lara Lazzaro
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Sarah Calabrese
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Damiano Mangoni
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Annarita Gallelli
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Evgenia Bourkoula
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Ivana Manini
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Natascha Bergamin
- Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| | - Barbara Toffoletto
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Carlo A Beltrami
- Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| | - Antonio P Beltrami
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy. .,Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| |
Collapse
|
48
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
49
|
Nicoletti GF, De Francesco F, D'Andrea F, Ferraro GA. Methods and Procedures in Adipose Stem Cells: State of the Art and Perspective for Translation Medicine. J Cell Physiol 2014; 230:489-95. [DOI: 10.1002/jcp.24837] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Affiliation(s)
- G. F. Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties; Second University of Naples; Naples Italy
| | - F. De Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties; Second University of Naples; Naples Italy
| | - F. D'Andrea
- Multidisciplinary Department of Medical-Surgical and Dental Specialties; Second University of Naples; Naples Italy
| | - G. A. Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties; Second University of Naples; Naples Italy
| |
Collapse
|
50
|
Zhu M, Dong Z, Gao J, Liao Y, Xue J, Yuan Y, Liu L, Chang Q, Lu F. Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells. Cell Transplant 2013; 24:49-62. [PMID: 24172865 DOI: 10.3727/096368913x675133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our objective was to explore the mechanism of cell-assisted adipose transplantation by using freshly isolated human stromal vascular fraction (SVF) cells and to observe the dynamic changes of the graft after transplantation. The SVF was isolated from human liposuction aspirates, and 0.5 ml adipose tissue was mixed with 1 × 10(6) SVF cells or culture medium then injected to nude mice subcutaneously. At 1, 4, 7, 14, 30, 60, and 90 days after transplantation, samples were harvested for 1) general observation and retention rate; 2) whole-mount stain; 3) H&E stain; 4) immunohistochemical staining for S100, CD68, and CD34; 5) ELISA for VEGF and bFGF; 6) peroxisome proliferator-activated receptor-γ (PPARγ) fluorescence in situ hybridization. The retention rate in the experiment group was markedly higher than that in the control group. Whole-mount stain shows most of the cells in the center of the graft could not survive the ischemia until day 14. Histology showed new vessels on the surface of the graft at 3 days. However, in the control group, fewer newly formed vessels were detected until day 7. In the late stage of transplantation, gradual fibrosis was found in the graft, and the tissue was divided into a grid-like structure. A large number of round neonatal adipocytes with big nuclei in the center were found surrounding the new vessels, which were S100 and CD34 positive and CD68 negative. In the late stage of transplantation, most of the neonatal adipocytes were human PPARγ positive. Moreover, the SVF group showed a higher level of VEGF and bFGF. SVF assisting adipose transplantation could increase the retention rate of the graft through promoting adipose tissue regeneration via secretion of growth factors, promotion of angiogenesis, and increasing the density of mesenchymal stem cells.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|