1
|
Mehdipour P, Fathi N, Nosratabadi M. Personalized clinical managements through exploring circulating neural cells and electroencephalography. World J Exp Med 2023; 13:75-94. [PMID: 37767542 PMCID: PMC10520756 DOI: 10.5493/wjem.v13.i4.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/22/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Since an initial diagnosis of Alzheimer disease (AD) in 1907, early detection, was unavailable through 116 years. Up-regulation of V-Ets erythroblastosis virus E26 oncogene homolog 2 (Ets2) is capable to enhance neuronal susceptibility and degeneration. Protein expression (PE) of Ets2 has functional impact on AD and Down's syndrome, with diverse intensity. PE of Ets2 has an influential pathogenic impact on AD. Clinical aspects of neurological disorders directly interact with psychological maladies. However, deterioration requires an early management including programmed based protection. AIM To include cell biology in neuro-genetics; personalized, prognostics, predictive, preventive, predisposing (5xP) platform, accompanied by stratifying brain channels behavior pre- and post-intervention by light music in the AD-patients. METHODS Include exploration of PE assay and electroencephalography of brain channels. The processes are applied according to: (1) Triangle style, by application of cellular network; and (2) PE assay of Ets2 in the peripheral blood of the patients with AD, by Manual single cell based analysis, and Flow-cytometry. (1) Applying the Genetic counselling and pedigree analysis; (2) considering the psychological status of the referral cases; (3) considering the macro-and/or micro-environmental factors; (4) performing the required Genetics' analysis; and (5) applying the required complementary test(s). RESULTS PE of Ets2 has pathogenic role in AD. PE unmasked the nature of heterogeneity/diversity/course of evolution by exploring Ets2, D1853N polymorphism in Ataxia Telangiectasia mutated gene (ATM), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and course of evolution at the single cell level of the brain. Ets2 revealed different cellular behavior in the blood and suggested the strategy as 'Gene Product-Based Therapy' and the personalized managements for the patients. PE reflected weak expression of ATM, mosaic pattern of Ets2; remarkable expression of VEGF and EGF by highlighting an early detective platform, considering circulating neural cells (CNCs) and the required molecular investigation, for the target individual(s) predisposed to AD or other neural disease including brain neoplasia. Brain channels-cooperation with diverse/interactive-ratios lead to strategic balancing for improving the life-quality in AD. CONCLUSION We highlighted application of the single CNCs and correlated Ratio based between Brain channels by providing the 5xP personalized clinical management model for an early detection and therapy of the patients with AD and their targeted/predisposed relatives. Novel-evolutionary/hypothetic/heterogenic-results in brain-channels offer personalizd/constructive markers with unlimited cooperation in health and disease.
Collapse
Affiliation(s)
- Parvin Mehdipour
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran 14176-1315, Iran
| | - Nima Fathi
- Neuro-Science, Paarand Specialized Center for Human Enhancement, Tehran 157699304, Iran
| | - Masoud Nosratabadi
- Department of Research, Paarand Specialized Center for Human Enhancement, Tehran 157699304, Iran
| |
Collapse
|
2
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
3
|
Braoudaki M, Hatziagapiou K, Zaravinos A, Lambrou GI. MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:78. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
Affiliation(s)
- Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordshire, UK;
| | - Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center, European University Cyprus, Nicosia 1516, Cyprus
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| |
Collapse
|
4
|
Zhao X, Du W, Zhang M, Atiq ZO, Xia F. Sirt2-associated transcriptome modifications in cisplatin-induced neuronal injury. BMC Genomics 2020; 21:192. [PMID: 32122297 PMCID: PMC7053098 DOI: 10.1186/s12864-020-6584-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is not only one of the most common causes of dose reduction or discontinuation of cancer treatment, but it can also permanently decrease the quality of life of cancer patients and survivors. Notably, Sirt2 protects many organs from various injuries, including diabetic peripheral neuropathy. As demonstrated previously by our laboratory and others, the overexpression of Sirt2 can improve cisplatin-induced neuropathy, although the mechanism is still unclear. RESULTS In this study, the underlying mechanism by which Sirt2 protects neurons from cisplatin-induced injury was explored using the RNAseq technique in cultured rodent neurons. Sirt2 status was modified by genetic knockout (Sirt2/KO) and was then reconstituted in Sirt2/KO cells (Sirt2/Res). We observed 323 upregulated genes and 277 downregulated genes in Sirt2-expressing cells (Sirt2/Res) compared to Sirt2-deficient cells (Sirt2/KO). Pathway analysis suggested that Sirt2 may affect several pathways, such as MAPK, TNF, and cytokine-cytokine interaction. Furthermore, cisplatin-induced changes to the transcriptome are strongly associated with Sirt2 status. Cisplatin induced distinctive transcriptome changes for 227 genes in Sirt2-expressing cells and for 783 genes in Sirt2-deficient cells, while changes in only 138 of these genes were independent of Sirt2 status. Interestingly, changes in the p53 pathway, ECM-receptor interactions, and cytokine-cytokine receptor interactions were induced by cisplatin only in Sirt2-deficient cells. CONCLUSIONS This study demonstrated that Sirt2 regulates the transcriptome in cultured rodent neuronal cells. Furthermore, Sirt2-associated transcriptome regulation may be an important mechanism underlying the role of Sirt2 in organ protection, such as in cisplatin-induced neuronal injury. Sirt2 may be a potential target for the prevention and treatment of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Wuying Du
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Zainab O Atiq
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
6
|
Huang X, Zhao J, Zhu J, Chen S, Fu W, Tian X, Lou S, Ruan J, He J, Zhou H. MYCN gene polymorphisms and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal 2019; 33:e22988. [PMID: 31343784 PMCID: PMC7938399 DOI: 10.1002/jcla.22988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor, derived from embryonic cells, accounts for a large proportion of pediatric renal tumors. MYCN encoded by MYCN proto-oncogene, a member of the MYC family, is a BHLH transcription factor. It plays a critical role in tumorigenesis and predicts poor clinical outcomes in various types of cancer. However, the role of MYCN remained unclarified in Wilms tumor. In this study, we investigated the association between MYCN gene polymorphisms and Wilms tumor susceptibility. METHODS Four MYCN gene polymorphisms (rs57961569 G > A, rs9653226 T > C, rs13034994 A > G, and rs60226897 G > A) were genotyped in 183 cases and 603 controls. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated to evaluate the association between MYCN gene polymorphisms and Wilms tumor susceptibility. RESULTS Overall, no significant association was found for any of the four MYCN gene polymorphisms. Interestingly, in the stratification analysis, the rs57961569 was found to be associated with decreased Wilms tumor susceptibility in the children older than 18 months (AOR = 0.65, 95% CI = 0.42-1.00, P = .050). Moreover, older children carrying 2-4 risk genotypes were at increased risk of Wilms tumor (OR = 1.55, 95% CI = 1.001-2.40, P = .0497). Haplotype GCAA was shown to significantly increased Wilms tumor risk (AOR = 2.40, 95% CI = 1.12-5.14, P = .024). CONCLUSION Our study demonstrated that these MYCN gene polymorphisms might be low penetrant variants in Wilms tumor.
Collapse
Affiliation(s)
- Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Shanshan Chen
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqian Tian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Susu Lou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing He
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
7
|
Papaioannou MD, Djuric U, Kao J, Karimi S, Zadeh G, Aldape K, Diamandis P. Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro Oncol 2019; 21:1028-1038. [PMID: 31077268 PMCID: PMC6682208 DOI: 10.1093/neuonc/noz084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Meningiomas represent one of the most common brain tumors and exhibit a clinically heterogeneous behavior, sometimes difficult to predict with classic histopathologic features. While emerging molecular profiling efforts have linked specific genomic drivers to distinct clinical patterns, the proteomic landscape of meningiomas remains largely unexplored. METHODS We utilize liquid chromatography tandem mass spectrometry with an Orbitrap mass analyzer to quantify global protein abundances of a clinically well-annotated formalin-fixed paraffin embedded (FFPE) cohort (n = 61) of meningiomas spanning all World Health Organization (WHO) grades and various degrees of clinical aggressiveness. RESULTS In total, we quantify 3042 unique proteins comparing patterns across different clinical parameters. Unsupervised clustering analysis highlighted distinct proteomic (n = 106 proteins, Welch's t-test, P < 0.01) and pathway-level (eg, Notch and PI3K/AKT/mTOR) differences between convexity and skull base meningiomas. Supervised comparative analyses of different pathological grades revealed distinct patterns between benign (grade I) and atypical/malignant (grades II‒III) meningiomas with specific oncogenes enriched in higher grade lesions. Independent of WHO grade, clinically aggressive meningiomas that rapidly recurred (<3 y) had distinctive protein patterns converging on mRNA processing and impaired activation of the matrisome complex. Larger sized meningiomas (>3 cm maximum tumor diameter) and those with previous radiation exposure revealed perturbed pro-proliferative (eg, epidermal growth factor receptor) and metabolic as well as inflammatory response pathways (mitochondrial activity, interferon), respectively. CONCLUSIONS Our proteomic study demonstrates that meningiomas of different grades and clinical parameters present distinct proteomic profiles. These proteomic variations offer potential future utility in helping better predict patient outcome and in nominating novel therapeutic targets for personalized care.
Collapse
Affiliation(s)
- Michail-Dimitrios Papaioannou
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Ugljesa Djuric
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Kao
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shirin Karimi
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
| | - Phedias Diamandis
- Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Zhang CG, Yang F, Li YH, Sun Y, Liu XJ, Wu X. miR‑501‑3p sensitizes glioma cells to cisplatin by targeting MYCN. Mol Med Rep 2018; 18:4747-4752. [PMID: 30221699 DOI: 10.3892/mmr.2018.9458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cisplatin, a commonly used chemotherapeutic agent for glioma patients, treatment often leads to chemoresistance. Accumulating evidence has demosntrated that microRNA (miRNA/miR) is involved in drug resistance of glioma cells. Nevertheless, the role of miR‑501‑3p in glioma cell resistance to cisplatin is unclear. In the present study, it was revealed that miR‑501‑3p expression was decreased in glioma tissues and further underexpressed in cisplatin‑resistant glioma cells compared with wild‑type (WT) glioma cells. Furthermore, cisplatin treatment inhibited the level of miR‑501‑3p in a time‑dependent way. Ectopic expression of miR‑501‑3p suppressed glioma cell growth and invasion, but increased cisplatin‑resistant glioma cell apoptosis. Furthermore, miR‑501‑3p sensitized glioma cells to cisplatin‑induced proliferation arrest and death. Mechanistically, it was demonstrated that miR‑501‑3p targeted MYCN in glioma cells. In addition, it was revealed that miR‑501‑3p inhibited MYCN expression by a luciferase reporter assay and reverse transcription‑quantitative polymerase chain reaction. Notably, restoration of MYCN reversed the effects of miR‑501‑3p in cisplatin‑resistant glioma cells. In conclusion, these results suggested that miR‑501‑3p may serve a promising marker for cisplatin resistance.
Collapse
Affiliation(s)
- Chuan-Gang Zhang
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Fan Yang
- Department of Neurosurgery, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yan-Hua Li
- Department of Teaching and Reach of Obstetrics and Gynecology, Shandong Medical College, Linyi, Shandong 276000, P.R. China
| | - Yan Sun
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xue-Jian Liu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|