1
|
Khan MF, Alanazi RF, Baabbad AA, Almoutiri ND, Wadaan MA. Angiogenic protein profiling, phytochemical screening and in silico anti-cancer targets validation of stem, leaves, fruit, and seeds of Calotropis procera in human liver and breast cancer cell lines. ENVIRONMENTAL RESEARCH 2024; 256:119180. [PMID: 38795948 DOI: 10.1016/j.envres.2024.119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.
Collapse
Affiliation(s)
- Muhammad Farooq Khan
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Rawan Frhan Alanazi
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad A Baabbad
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nawaf D Almoutiri
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Ahmad Wadaan
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
2
|
Jiang H, Liao J, Wang L, Jin C, Mo J, Xiang S. The multikinase inhibitor axitinib in the treatment of advanced hepatocellular carcinoma: the current clinical applications and the molecular mechanisms. Front Immunol 2023; 14:1163967. [PMID: 37325670 PMCID: PMC10264605 DOI: 10.3389/fimmu.2023.1163967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a formidable public health problem with limited curable treatment options. Axitinib, an oral tyrosine kinase inhibitor, is a potent and selective second-generation inhibitor of vascular endothelial growth factor receptor (VEGFR) 1, 2, and 3. This anti-angiogenic drug was found to have promising activity in various solid tumors, including advanced HCC. At present, however, there is no relevant review article that summarizes the exact roles of axitinib in advanced HCC. In this review, 24 eligible studies (seven studies in the ClinicalTrials, eight experimental studies, and nine clinical trials) were included for further evaluation. The included randomized or single-arm phase II trials indicated that axitinib could not prolong the overall survival compared to the placebo for the treatment of advanced HCC, but improvements in progression free survival and time to tumor progression were observed. Experimental studies showed that the biochemical effects of axitinib in HCC might be regulated by its associated genes and affected signaling cascades (e.g. VEGFR2/PAK1, CYP1A2, CaMKII/ERK, Akt/mTor, and miR-509-3p/PDGFRA). FDA approved sorafenib combined with nivolumab (an inhibitor of PD-1/PD-L1) as the first line regimen for the treatment of advanced HCC. Since both axitinib and sorafenib are tyrosine kinase inhibitors as well as the VEGFR inhibitors, axitinib combined with anti-PDL-1/PD-1 antibodies may also exhibit tremendous potential in anti-tumoral effects for advanced HCC. The present review highlights the current clinical applications and the molecular mechanisms of axitinib in advanced HCC. To move toward clinical applications by combining axitinib and other treatments in advanced HCC, more studies are still warranted in the near future.
Collapse
Affiliation(s)
- Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sheng Xiang
- Department of General Surgery, Tiantai People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviors in the chick embryo. SCIENCE ADVANCES 2023; 9:eabn5429. [PMID: 36598979 PMCID: PMC9812380 DOI: 10.1126/sciadv.abn5429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/28/2022] [Indexed: 06/10/2023]
Abstract
The morphology of gastrulation driving the internalization of the mesoderm and endoderm differs markedly among vertebrate species. It ranges from involution of epithelial sheets of cells through a circular blastopore in amphibians to ingression of mesenchymal cells through a primitive streak in amniotes. By targeting signaling pathways controlling critical cell behaviors in the chick embryo, we generated crescent- and ring-shaped mesendoderm territories in which cells can or cannot ingress. These alterations subvert the formation of the chick primitive streak into the gastrulation modes seen in amphibians, reptiles, and teleost fish. Our experimental manipulations are supported by a theoretical framework linking cellular behaviors to self-organized multicellular flows outlined in detail in the accompanying paper. Together, this suggests that the evolution of gastrulation movements is largely determined by changes in a few critical cell behaviors in the mesendoderm territory across different species and controlled by a relatively small number of signaling pathways.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Serra
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lakshminarayanan Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
4
|
Köhler LF, Reich S, Yusenko M, Klempnauer KH, Shaikh AH, Ahmed K, Begemann G, Schobert R, Biersack B. A New Naphthopyran Derivative Combines c-Myb Inhibition, Microtubule-Targeting Effects, and Antiangiogenic Properties. ACS Med Chem Lett 2022; 13:1783-1790. [PMID: 36385941 PMCID: PMC9661705 DOI: 10.1021/acsmedchemlett.2c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 11/28/2022] Open
Abstract
Based on the promising c-Myb inhibitor 1b, a series of 2-amino-4-aryl-4H-naphtho[1,2-b]pyran-3-carbonitriles (1a, 2a-q, 3a-g) were repurposed or newly synthesized via a three-component reaction of 1-naphthol, and various aryl aldehydes and malononitrile and screened for their c-Myb inhibitory activities. 1b also served as a lead compound for seven new naphthopyran derivatives (3a-f), which were cytotoxic with nanomolar IC50 values, to inhibit the polymerization of tubulin, and to destabilize microtubules in living cells. Especially, the alkyne 3f, originally made for intracellular localization studies using click chemistry, showed an overall high activity in all assays performed. A strong G2/M cell cycle arrest was detected, which resulted in a distinct increase in sub-G1 cells through the induction of effector caspases 3 and 7. Inhibition of angiogenesis was confirmed in vitro and in vivo. In summary, 3f was found to be a pleiotropic compound with high selectivity for cancer cells, combining c-Myb inhibitory, microtubule destabilizing, and antiangiogenic effects.
Collapse
Affiliation(s)
- Leonhard
H. F. Köhler
- Organic
Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Sebastian Reich
- Organic
Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Maria Yusenko
- Institute
for Biochemistry, Westfälische-Wilhelms-Universität, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute
for Biochemistry, Westfälische-Wilhelms-Universität, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | - Amin H. Shaikh
- Department
of Chemistry & Post Graduate Research Center, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Khursheed Ahmed
- Department
of Chemistry & Post Graduate Research Center, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Gerrit Begemann
- Developmental
Biology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic
Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic
Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Stern S, Liang D, Li L, Kurian R, Lynch C, Sakamuru S, Heyward S, Zhang J, Kareem KA, Chun YW, Huang R, Xia M, Hong CC, Xue F, Wang H. Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight 2022; 7:e153868. [PMID: 35579950 PMCID: PMC9309041 DOI: 10.1172/jci.insight.153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC), although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular coculture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Furthermore, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as potentially novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy/toxicity ratio of CPA/DOX-containing chemotherapy.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Caitlin Lynch
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, Halethorpe, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio, USA
| | - Kafayat Ajoke Kareem
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young Wook Chun
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Charles C. Hong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, Chupradit S, AL-Ghamdi HS, Shomali N, Zamani A, Mohammadi A, Dadashpour M. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal 2022; 20:49. [PMID: 35392964 PMCID: PMC8991477 DOI: 10.1186/s12964-022-00838-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal vasculature is one of the most conspicuous traits of tumor tissue, largely contributing to tumor immune evasion. The deregulation mainly arises from the potentiated pro-angiogenic factors secretion and can also target immune cells' biological events, such as migration and activation. Owing to this fact, angiogenesis blockade therapy was established to fight cancer by eliminating the nutrient and oxygen supply to the malignant cells by impairing the vascular network. Given the dominant role of vascular-endothelium growth factor (VEGF) in the angiogenesis process, the well-known anti-angiogenic agents mainly depend on the targeting of its actions. However, cancer cells mainly show resistance to anti-angiogenic agents by several mechanisms, and also potentiated local invasiveness and also distant metastasis have been observed following their administration. Herein, we will focus on clinical developments of angiogenesis blockade therapy, more particular, in combination with other conventional treatments, such as immunotherapy, chemoradiotherapy, targeted therapy, and also cancer vaccines. Video abstract.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240 Russian Federation
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation
- Industrial University, Tyumen, Russian Federation
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Albaha University, Al Bahah, Kingdom of Saudi Arabia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Lai V, Neshat SY, Rakoski A, Pitingolo J, Doloff JC. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv Drug Deliv Rev 2021; 179:113920. [PMID: 34384826 DOI: 10.1016/j.addr.2021.113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.
Collapse
Affiliation(s)
- Victoria Lai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Pitingolo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Division of Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
8
|
Ferrari A, Gasparini P, Casanova M. A home run for rhabdomyosarcoma after 30 years: What now? TUMORI JOURNAL 2019; 106:5-11. [DOI: 10.1177/0300891619888021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| |
Collapse
|
9
|
Bisogno G, De Salvo GL, Bergeron C, Gallego Melcón S, Merks JH, Kelsey A, Martelli H, Minard-Colin V, Orbach D, Glosli H, Chisholm J, Casanova M, Zanetti I, Devalck C, Ben-Arush M, Mudry P, Ferman S, Jenney M, Ferrari A. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2019; 20:1566-1575. [PMID: 31562043 DOI: 10.1016/s1470-2045(19)30617-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND For more than three decades, standard treatment for rhabdomyosarcoma in Europe has included 6 months of chemotherapy. The European paediatric Soft tissue sarcoma Study Group (EpSSG) aimed to investigate whether prolonging treatment with maintenance chemotherapy would improve survival in patients with high-risk rhabdomyosarcoma. METHODS RMS 2005 was a multicentre, open-label, randomised, controlled, phase 3 trial done at 102 hospitals in 14 countries. We included patients aged 6 months to 21 years with rhabdomyosarcoma who were considered to be at high risk of relapse: those with non-metastatic incompletely resected embryonal rhabdomyosarcoma occurring at unfavourable sites with unfavourable age (≥10 years) or tumour size (>5 cm), or both; those with any non-metastatic rhabdomyosarcoma with nodal involvement; and those with non-metastatic alveolar rhabdomyosarcoma but without nodal involvement. Patients in remission after standard treatment (nine cycles of ifosfamide, vincristine, dactinomycin with or without doxorubicin, and surgery or radiotherapy, or both) were randomly assigned (1:1) to stop treatment or continue maintenance chemotherapy (six cycles of intravenous vinorelbine 25 mg/m2 on days 1, 8, and 15, and daily oral cyclophosphamide 25 mg/m2, on days 1-28). Randomisation was done by use of a web-based system and was stratified (block size of four) by enrolling country and risk subgroup. Neither investigators nor patients were masked to treatment allocation. The primary outcome was disease-free survival in the intention-to-treat population. Secondary outcomes were overall survival and toxicity. This trial is registered with EudraCT, number 2005-000217-35, and ClinicalTrials.gov, number NCT00339118, and follow-up is ongoing. FINDINGS Between April 20, 2006, and Dec 21, 2016, 371 patients were enrolled and randomly assigned to the two groups: 186 to stop treatment and 185 to receive maintenance chemotherapy. Median follow-up was 60·3 months (IQR 32·4-89·4). In the intention-to-treat population, 5-year disease-free survival was 77·6% (95% CI 70·6-83·2) with maintenance chemotherapy versus 69·8% (62·2-76·2) without maintenance chemotherapy (hazard ratio [HR] 0·68 [95% CI 0·45-1·02]; p=0·061), and 5-year overall survival was 86·5% (95% CI 80·2-90·9) with maintenance chemotherapy versus 73·7% (65·8-80·1) without (HR 0·52 [95% CI 0·32-0·86]; p=0·0097). Toxicity was manageable in patients who received maintenance chemotherapy: 136 (75%) of 181 patients had grade 3-4 leucopenia, 148 (82%) had grade 3-4 neutropenia, 19 (10%) had anaemia, two (1%) had thrombocytopenia, and 56 (31%) had an infection. One (1%) patient had a grade 4 non-haematological toxicity (neurotoxicity). Two treatment-related serious adverse events occurred: one case of inappropriate antidiuretic hormone secretion and one of a severe steppage gait with limb pain, both of which resolved. INTERPRETATION Adding maintenance chemotherapy seems to improve survival for patients with high-risk rhabdomyosarcoma. This approach will be the new standard of care for patients with high-risk rhabdomyosarcoma in future EpSSG trials. FUNDING Fondazione Città della Speranza, Association Léon Berard Enfant Cancéreux, Clinical Research Hospital Program (French Ministry of Health), and Cancer Research UK.
Collapse
Affiliation(s)
- Gianni Bisogno
- Haematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - Gian Luca De Salvo
- Clinical Research Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Christophe Bergeron
- Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Soledad Gallego Melcón
- Servicio de Oncología y Hematología Pediatrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Johannes H Merks
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands; Department of Paediatric Oncology, Emma Children's Hospital-Academic Medical Center Amsterdam, Netherlands
| | - Anna Kelsey
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Helene Martelli
- Department of Paediatric Surgery, Hôpital Bicêtre-Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, Paris, France
| | | | - Daniel Orbach
- SIREDO Oncology Center, Institut Curie, PSL University, Paris, France
| | - Heidi Glosli
- Department of Paediatric Research and Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Julia Chisholm
- Children and Young Peoples Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Michela Casanova
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Zanetti
- Haematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Christine Devalck
- Paediatric Haematology and Oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Myriam Ben-Arush
- Joan and Sanford Weill Pediatric Hematology Oncology and Bone Marrow Transplantation Division, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Peter Mudry
- University Children's Hospital Brno, Czech Republic
| | - Sima Ferman
- Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Meriel Jenney
- Department of Paediatric Oncology, Children's Hospital for Wales, Heath Park, Cardiff, UK
| | - Andrea Ferrari
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Differential Effects of Ang-2/VEGF-A Inhibiting Antibodies in Combination with Radio- or Chemotherapy in Glioma. Cancers (Basel) 2019; 11:cancers11030314. [PMID: 30845704 PMCID: PMC6468722 DOI: 10.3390/cancers11030314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Antiangiogenic strategies have not shown striking antitumor activities in the majority of glioma patients so far. It is unclear which antiangiogenic combination regimen with standard therapy is most effective. Therefore, we compared anti-VEGF-A, anti-Ang2, and bispecific anti-Ang-2/VEGF-A antibody treatments, alone and in combination with radio- or temozolomide (TMZ) chemotherapy, in a malignant glioma model using multiparameter two-photon in vivo microscopy in mice. We demonstrate that anti-Ang-2/VEGF-A lead to the strongest vascular changes, including vascular normalization, both as monotherapy and when combined with chemotherapy. The latter was accompanied by the most effective chemotherapy-induced death of cancer cells and diminished tumor growth. This was most probably due to a better tumor distribution of the drug, decreased tumor cell motility, and decreased formation of resistance-associated tumor microtubes. Remarkably, all these parameters where reverted when radiotherapy was chosen as combination partner for anti-Ang-2/VEGF-A. In contrast, the best combination partner for radiotherapy was anti-VEGF-A. In conclusion, while TMZ chemotherapy benefits most from combination with anti-Ang-2/VEGF-A, radiotherapy does from anti-VEGF-A. The findings imply that uninformed combination regimens of antiangiogenic and cytotoxic therapies should be avoided.
Collapse
|
11
|
Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Treviño-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, Reynolds J, Mejia P, Tao M, Sharma G, Wang R, Corpataux JM, Haefliger JA, Ahn KH, Lee CH, Manning BD, Sinclair DA, Chen CS, Ozaki CK, Mitchell JR. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H 2S Production. Cell 2019; 173:117-129.e14. [PMID: 29570992 DOI: 10.1016/j.cell.2018.03.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1α. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1α. We also identified a requirement for cystathionine-γ-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Teodelinda Mirabella
- Tissue Microfabrication Lab, Department of Biomedical Engineering, Boston University, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Alessandro Arduini
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael R MacArthur
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Abhirup Das
- Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | - Christopher Hine
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Issam Ben-Sahra
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nelson H Knudsen
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lear E Brace
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Justin Reynolds
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ming Tao
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gaurav Sharma
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON, Canada
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Laboratory of Experimental Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Vascular Surgery, Laboratory of Experimental Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Kyo Han Ahn
- Department of Chemistry, Postech, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David A Sinclair
- Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Christopher S Chen
- Tissue Microfabrication Lab, Department of Biomedical Engineering, Boston University, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
12
|
Du S, Xiong H, Xu C, Lu Y, Yao J. Attempts to strengthen and simplify the tumor vascular normalization strategy using tumor vessel normalization promoting nanomedicines. Biomater Sci 2019; 7:1147-1160. [DOI: 10.1039/c8bm01350k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor vascular normalization theory opened the door for the rational use of antiangiogenic agents and chemotherapeutics.
Collapse
Affiliation(s)
- Shi Du
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yun Lu
- Pharmaceutical R&D Institute
- Jiangsu Hengrui Medicine Co
- Ltd
- 222047
- China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
13
|
Schmidt D, Rodat T, Heintze L, Weber J, Horbert R, Girreser U, Raeker T, Bußmann L, Kriegs M, Hartke B, Peifer C. Axitinib: A Photoswitchable Approved Tyrosine Kinase Inhibitor. ChemMedChem 2018; 13:2415-2426. [PMID: 30199151 DOI: 10.1002/cmdc.201800531] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The goal of photopharmacology is to develop photoswitchable enzyme modulators as tunable (pro-)drugs that can be spatially and temporally controlled by light. In this context, the tyrosine kinase inhibitor axitinib, which contains a photosensitive stilbene-like moiety that allows for E/Z isomerization, is of interest. Axitinib is an approved drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2) and is licensed for second-line therapy of renal cell carcinoma. The photoinduced E/Z isomerization of axitinib has been investigated to explore if its inhibitory effect can be turned "on" and "off", as triggered by light. Under controlled light conditions, (Z)-axitinib is 43 times less active than that of the E isomer in an VEGFR2 assay. Furthermore, it was proven that kinase activity in human umbilical vein cells (HUVECs) was decreased by (E)-axitinib, but only weakly affected by (Z)-axitinib. By irradiating (Z)-axitinib in vitro with UV light (λ=385 nm), it is possible to switch it almost quantitatively into the E isomer and to completely restore the biological activity of (E)-axitinib. However, switching the biological activity off from (E)- to (Z)-axitinib was not possible in aqueous solution due to a competing irreversible [2+2]-photocycloaddition, which yielded a biologically inactive axitinib dimer.
Collapse
Affiliation(s)
- Dorian Schmidt
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Theo Rodat
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Linda Heintze
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Jantje Weber
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Rebecca Horbert
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Ulrich Girreser
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| | - Tim Raeker
- Institute for Physical Chemistry, Christian Albrechts University of Kiel, Max-Eyth-Strasse 1, 24118, Kiel, Germany
| | - Lara Bußmann
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Department of Otorhinolaryngology and Head and Neck Surgery, Martinistrasse 52, 20246, Hamburg, Germany.,Laboratory of Radiobiology & Experimental Radiooncology and UCCH Kinomics Core Facility, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiooncology and UCCH Kinomics Core Facility, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christian Albrechts University of Kiel, Max-Eyth-Strasse 1, 24118, Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian Albrechts University of Kiel, Gutenbergstraße 76, 24116, Kiel, Germany
| |
Collapse
|
14
|
Correal Suárez ML, Bortolotti Vièra R, Camplesi AC. Terapia metronómica en el manejo del paciente veterinario con cáncer. ACTA ACUST UNITED AC 2017. [DOI: 10.21615/cesmvz.12.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Gay C, Toulet D, Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol 2016; 35:259-280. [DOI: 10.1002/hon.2335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Caroline Gay
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Delphine Toulet
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Pascal Le Corre
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
- Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique; IRSET U1085, Faculté de Pharmacie, Université de Rennes 1; Rennes Cedex France
| |
Collapse
|
16
|
Pantziarka P, Hutchinson L, André N, Benzekry S, Bertolini F, Bhattacharjee A, Chiplunkar S, Duda DG, Gota V, Gupta S, Joshi A, Kannan S, Kerbel R, Kieran M, Palazzo A, Parikh A, Pasquier E, Patil V, Prabhash K, Shaked Y, Sholler GS, Sterba J, Waxman DJ, Banavali S. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai. Ecancermedicalscience 2016; 10:689. [PMID: 27994645 PMCID: PMC5130328 DOI: 10.3332/ecancer.2016.689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The 5th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6th – 8th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | - Nicolas André
- Service d'hématologie et Oncologie Pédiatrique, Centre Hospitalo-Universitaire Timone Enfants, AP-HM, Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | - Sébastien Benzekry
- Inria team MONC and Institut de Mathématiques de Bordeaux, Talence, France
| | | | | | | | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Gota
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Sudeep Gupta
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | - Sadhana Kannan
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Mark Kieran
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonella Palazzo
- Division of Medical Senology, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Eddy Pasquier
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | | | | | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital and RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shripad Banavali
- Tata Memorial Hospital, Mumbai, India; Metronomics Global Health Initiative, Marseille, France
| |
Collapse
|
17
|
Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 2016; 95:60-73. [PMID: 27130953 DOI: 10.1016/j.biomaterials.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies.
Collapse
Affiliation(s)
- Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China; Department of Pharmacy, Ruijin Hospital, SJTU-SM, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Lin Zheng
- Pathology Center, Shanghai First People's Hospital, SJTU-SM, 280 South Chongqing Road, Shanghai 200025, China
| | - Peng Sun
- Department of General Surgery, Shanghai Tongren Hospital, SJTU-SM, 1111 Xianxia Road, Shanghai 200336, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
18
|
Doloff JC, Waxman DJ. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts. BMC Cancer 2015; 15:375. [PMID: 25952672 PMCID: PMC4523019 DOI: 10.1186/s12885-015-1358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Methods Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Results Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Conclusions Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. These factors may include useful biomarkers that facilitate discovery of clinically effective immunogenic metronomic drugs and treatment schedules, and the selection of patients most likely to be responsive to immunogenic drug scheduling. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Doloff
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| |
Collapse
|
19
|
Angiostatic treatment prior to chemo- or photodynamic therapy improves anti-tumor efficacy. Sci Rep 2015; 5:8990. [PMID: 25758612 PMCID: PMC4355632 DOI: 10.1038/srep08990] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/10/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor vasculature is known to be poorly organized leading to increased leakage of molecules to the extravascular space. This process can potentially increase interstitial fluid pressure impairing intra-tumoral blood flow and oxygen supply, and can affect drug uptake. Anti-angiogenic therapies are believed to reduce vascular permeability, potentially reducing interstitial fluid pressure and improving the extravasation of small molecule-based chemotherapeutics. Here we show that pretreatment of human ovarian carcinoma tumors with sub-optimal doses of the VEGFR targeting tyrosine kinase inhibitor axitinib, but not the EGFR targeting kinase inhibitor erlotinib, induces a transient period of increased tumor oxygenation. Doxorubicin administered within this window was found to enter the extravascular tumor space more rapidly compared to doxorubicin when applied alone or outside this time window. Treatment with the chemotherapeutics, doxorubicin and RAPTA-C, as well as applying photodynamic therapy during this period of elevated oxygenation led to enhanced tumor growth inhibition. Improvement of therapy was not observed when applied outside the window of increased oxygenation. Taken together, these findings further confirm the hypothesis of angiostasis-induced vascular normalization and also help to understand the interactions between anti-angiogenesis and other anti-cancer strategies.
Collapse
|
20
|
Digklia A, Voutsadakis IA. Combinations of vascular endothelial growth factor pathway inhibitors with metronomic chemotherapy: Rational and current status. World J Exp Med 2014; 4:58-67. [PMID: 25414818 PMCID: PMC4237643 DOI: 10.5493/wjem.v4.i4.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/16/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy given in a metronomic manner can be administered with less adverse effects which are common with conventional schedules such as myelotoxicity and gastrointestinal toxicity and thus may be appropriate for older patients and patients with decreased performance status. Efficacy has been observed in several settings. An opportunity to improve the efficacy of metronomic schedules without significantly increasing toxicity presents with the addition of anti-angiogenic targeted treatments. These combinations rational stems from the understanding of the importance of angiogenesis in the mechanism of action of metronomic chemotherapy which may be augmented by specific targeting of the vascular endothelial growth factor (VEGF) pathway by antibodies or small tyrosine kinase inhibitors. Combinations of metronomic chemotherapy schedules with VEGF pathway targeting drugs will be discussed in this paper.
Collapse
|
21
|
Lu L, Saha D, Martuza RL, Rabkin SD, Wakimoto H. Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma. J Neurooncol 2014; 121:91-100. [PMID: 25213669 DOI: 10.1007/s11060-014-1612-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/30/2014] [Indexed: 11/29/2022]
Abstract
Anti-angiogenic therapy is a promising therapeutic strategy for the highly vascular and malignant brain tumor, glioblastoma (GBM), although current clinical trials have failed to demonstrate an extension in overall survival. The small molecule tyrosine kinase inhibitor axitinib that targets vascular endothelial growth factor receptor, potently inhibits angiogenesis and has single-agent clinical activity in non-small cell lung, thyroid, and advanced renal cell cancer. Here we show that axitinib exerts direct cytotoxic activity against a number of patient-derived GBM stem cell (GSCs) and an endothelial cell line, and inhibits endothelial tube formation in vitro. Axitinib treatment of mice bearing hypervascular intracranial tumors generated from human U87 glioma cells, MGG4 GSCs and mouse 005 GSCs significantly extended survival that was associated with decreases in tumor-associated vascularity. We thus show for the first time the anti-angiogenic effect and survival prolongation provided by systemic single agent treatment with axitinib in preclinical orthotopic GBM models including clinically relevant GSC models. These results support further investigation of axitinib as an anti-angiogenic agent for GBM.
Collapse
Affiliation(s)
- Lei Lu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | | | | | | | | |
Collapse
|
22
|
Intermittent metronomic drug schedule is essential for activating antitumor innate immunity and tumor xenograft regression. Neoplasia 2014; 16:84-96. [PMID: 24563621 DOI: 10.1593/neo.131910] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022] Open
Abstract
Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.
Collapse
|
23
|
Levine PM, Garabedian MJ, Kirshenbaum K. Targeting the androgen receptor with steroid conjugates. J Med Chem 2014; 57:8224-37. [PMID: 24936953 PMCID: PMC4207530 DOI: 10.1021/jm500101h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR.
Collapse
Affiliation(s)
- Paul M Levine
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | |
Collapse
|
24
|
Doloff JC, Chen CS, Waxman DJ. Anti-tumor innate immunity activated by intermittent metronomic cyclophosphamide treatment of 9L brain tumor xenografts is preserved by anti-angiogenic drugs that spare VEGF receptor 2. Mol Cancer 2014; 13:158. [PMID: 24965046 PMCID: PMC4083145 DOI: 10.1186/1476-4598-13-158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023] Open
Abstract
Background Metronomic cyclophosphamide given on an intermittent, 6-day repeating schedule, but not on an exposure dose-equivalent daily schedule, activates an anti-tumor innate immune response that leads to major regression of large implanted gliomas, without anti-angiogenesis. Methods and approach Mice bearing implanted 9L gliomas were used to investigate the effects of this 6-day repeating, immunogenic cyclophosphamide schedule on myeloid-derived suppressor cells, which are pro-angiogenic and can inhibit anti-tumor immunity, and to elucidate the mechanism whereby the innate immune cell-dependent tumor regression response to metronomic cyclophosphamide treatment is blocked by several anti-angiogenic receptor tyrosine kinase inhibitors. Results Intermittent metronomic cyclophosphamide scheduling strongly increased glioma-associated CD11b+ immune cells but not CD11b+Gr1+ myeloid-derived suppressor cells, while bone marrow and spleen reservoirs of the suppressor cells were decreased. The inhibition of immune cell recruitment and tumor regression by anti-angiogenic receptor tyrosine kinase inhibitors, previously observed in several brain tumor models, was recapitulated in the 9L tumor model with the VEGFR2-specific inhibitory monoclonal antibody DC101 (p < 0.01), implicating VEGFR2 signaling as an essential step in metronomic cyclophosphamide-stimulated immune cell recruitment. In contrast, sorafenib, a multi-receptor tyrosine kinase inhibitor with comparatively weak VEGF receptor phosphorylation inhibitory activity, was strongly anti-angiogenic but did not block metronomic cyclophosphamide-induced innate immunity or tumor regression (p > 0.05). Conclusions The interference by receptor tyrosine kinase inhibitors in the immunogenic actions of intermittent metronomic chemotherapy is not a consequence of anti-angiogenesis per se, as demonstrated in an implanted 9L tumor model. Furthermore, this undesirable interaction with tyrosine kinase inhibitors can be avoided by using anti-angiogenic drugs that spare the VEGFR2 pathway.
Collapse
Affiliation(s)
| | | | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Belani CP, Yamamoto N, Bondarenko IM, Poltoratskiy A, Novello S, Tang J, Bycott P, Niethammer AG, Ingrosso A, Kim S, Scagliotti GV. Randomized phase II study of pemetrexed/cisplatin with or without axitinib for non-squamous non-small-cell lung cancer. BMC Cancer 2014; 14:290. [PMID: 24766732 PMCID: PMC4017965 DOI: 10.1186/1471-2407-14-290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background The efficacy and safety of axitinib, a potent and selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2, and 3 in combination with pemetrexed and cisplatin was evaluated in patients with advanced non-squamous non–small-cell lung cancer (NSCLC). Methods Overall, 170 patients were randomly assigned to receive axitinib at a starting dose of 5-mg twice daily continuously plus pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 on day 1 of up to six 21-day cycles (arm I); axitinib on days 2 through 19 of each cycle plus pemetrexed/cisplatin (arm II); or pemetrexed/cisplatin alone (arm III). The primary endpoint was progression-free survival (PFS). Results Median PFS was 8.0, 7.9, and 7.1 months in arms I, II, and III, respectively (hazard ratio: arms I vs. III, 0.89 [P = 0.36] and arms II vs. III, 1.02 [P = 0.54]). Median overall survival was 17.0 months (arm I), 14.7 months (arm II), and 15.9 months (arm III). Objective response rates (ORRs) for axitinib-containing arms were 45.5% (arm I) and 39.7% (arm II) compared with 26.3% for pemetrexed/cisplatin alone (arm III). Gastrointestinal disorders and fatigue were frequently reported across all treatment arms. The most common all-causality grade ≥3 adverse events were hypertension in axitinib-containing arms (20% and 17%, arms I and II, respectively) and fatigue with pemetrexed/cisplatin alone (16%). Conclusion Axitinib in combination with pemetrexed/cisplatin was generally well tolerated. Axitinib combinations resulted in non-significant differences in PFS and numerically higher ORR compared with chemotherapy alone in advanced NSCLC. Trial registration ClinicalTrials.gov: NCT00768755 (October 7, 2008).
Collapse
Affiliation(s)
- Chandra P Belani
- Penn State Milton S, Hershey Medical Center, Penn State Hershey Cancer Institute, Hershey, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rico MJ, Perroud HA, Mainetti LE, Rozados VR, Scharovsky OG. Comparative effectiveness of two metronomic chemotherapy schedules-our experience in the preclinical field. Cancer Invest 2014; 32:92-8. [PMID: 24499110 DOI: 10.3109/07357907.2013.877480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metronomic chemotherapy refers to the chronic, equally spaced, delivery of low doses of chemotherapeutic drugs, without extended interruptions. Previously, we developed two combined metronomic schemes for the treatment of murine mammary tumors. The aim of this study was to compare their effects on tumor and metastasis growth, survival, and toxicity. Metronomic chemotherapy with Cyclophosphamide + Celecoxib (Cy + Cel) showed higher antimetastatic power than Cyclophosphamide + Doxorubicin (Cy + Dox), while being similar in other aspects. That difference, plus the advantage that represents its oral administration, suggests that the Cy + Cel combination is more suitable than Cy + Dox for metronomic chemotherapy of mammary tumors and could be proposed to the translation to the clinic.
Collapse
Affiliation(s)
- M J Rico
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario , Rosario , Argentina
| | | | | | | | | |
Collapse
|
27
|
Shao YY, Cheng AL, Hsu CH. Clinical Activity of Metronomic Chemotherapy in Liver Cancers. METRONOMIC CHEMOTHERAPY 2014:189-202. [DOI: 10.1007/978-3-662-43604-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Cesca M, Bizzaro F, Zucchetti M, Giavazzi R. Tumor delivery of chemotherapy combined with inhibitors of angiogenesis and vascular targeting agents. Front Oncol 2013; 3:259. [PMID: 24102047 PMCID: PMC3787308 DOI: 10.3389/fonc.2013.00259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/15/2013] [Indexed: 01/24/2023] Open
Abstract
Numerous angiogenesis-vascular targeting agents have been admitted to the ranks of cancer therapeutics; most are used in polytherapy regimens. This review looks at recent progress and our own preclinical experience in combining angiogenesis inhibitors, mainly acting on VEGF/VEGFR pathways, and vascular targeting agents with conventional chemotherapy, discussing the factors that determine the outcome of these treatments. Molecular and morphological modifications of the tumor microenvironment associated with drug distribution and activity are reviewed. Modalities to improve drug delivery and strategies for optimizing combination therapy are examined.
Collapse
Affiliation(s)
- Marta Cesca
- Laboratory of Biology and Treatment of Metastases, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , Milan , Italy
| | | | | | | |
Collapse
|
29
|
Perroud HA, Rico MJ, Alasino CM, Queralt F, Mainetti LE, Pezzotto SM, Rozados VR, Scharovsky OG. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol 2013; 9:451-62. [PMID: 23469980 DOI: 10.2217/fon.12.196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metronomic chemotherapy (MCT), the chronic administration, at regular intervals, of low doses of chemotherapeutic drugs without extended rest periods, allows chronic treatment with therapeutic efficacy and low toxicity. Our preclinical results suggested that combined MCT with cyclophosphamide and celecoxib could inhibit breast cancer growth. The aim of this study was to determine the toxicity, safety and efficacy of oral MCT with cyclophosphamide 50 mg per orem daily and celecoxib 400 mg (200 mg per orem two-times a day) in advanced breast cancer patients. During the first stage of the study, the therapeutic response consisted of prolonged stable disease for ≥24 weeks in six out of 15 (40%) patients with a median duration of 37.5 weeks and a partial response in one out of 15 (response rate: 6.7%) patients lasting 6 weeks. The overall clinical benefit rate was 46.7%. The median time to progression was 14 weeks. Progression-free survival at 24 weeks was 40% and the 1-year overall survival rate was 46.7%. The adverse events were mild (gastric, grade 1; and hematologic, grade 1 or 2). No grade 3 or 4 toxicities were associated with the treatment. Evaluation of patients' quality of life showed no changes during the response period. MCT with cyclophosphamide plus celecoxib is safe and shows a therapeutic effect in advanced breast cancer patients.
Collapse
Affiliation(s)
- Herman A Perroud
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang XH, Qiao EQ, Gao Z, Yuan HQ, Cai PF, Li XM, Gu YH. Efficacy of combined axitinib with dacarbazine in a B16F1 melanoma xenograft model. Oncol Lett 2013; 6:69-74. [PMID: 23946779 PMCID: PMC3742768 DOI: 10.3892/ol.2013.1345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/30/2013] [Indexed: 11/05/2022] Open
Abstract
In this study, we evaluated the efficacy and intestinal side effects of the selective inhibitor of vascular endothelial growth factor (VEGF) receptors, axitinib and/or dacarbazine (DTIC), in a B16F1 melanoma xenograft model. C57BL/6 mice were subcutaneously inoculated with B16F1 melanoma cells. The study was randomized into four groups receiving either 0.5% carboxyl methylcellulose, DTIC, axitinib or a combination of DTIC and axitinib. When the experimental period was complete, the tumor tissues from each mouse were excised, photographed and weighed. The tumor and intestinal tissues were harvested with 4% paraformaldehyde, and paraffin-embedded sections were prepared for hematoxylin and eosin staining, immunohistochemical staining (with antibody specific to proliferating cell nuclear antibody) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays. The expression of the VEGF and matrix metalloproteinase 9 genes was analyzed using real-time polymerase chain reaction. No significant benefit to treatment with a combination of axitinib and DTIC, as opposed to axitinib alone, was observed; however, the combined treatment did not enhance the level of enteritis compared with that observed in the axitinb group. In addition, axitinib, as a single agent, demonstrated an improved treatment efficacy compared with DTIC. Therefore, axitinib represents a potential novel, efficient and safe anticancer agent, suggesting a possible use for this schedule in treating melanomas that are less sensitive to DTIC.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang K, Waxman DJ. Impact of tumor vascularity on responsiveness to antiangiogenesis in a prostate cancer stem cell-derived tumor model. Mol Cancer Ther 2013; 12:787-98. [PMID: 23635653 DOI: 10.1158/1535-7163.mct-12-1240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drugs that target the tumor vasculature and inhibit angiogenesis are widely used for cancer treatment. Individual tumors show large differences in vascularity, but it is uncertain how these differences affect responsiveness to antiangiogenesis. We investigated this question using two closely related prostate cancer models that differ markedly in tumor vascularity: PC3, which has very low vascularity, and the PC3-derived cancer stem-like cell holoclone PC3/2G7, which forms tumors with high microvessel density, high tumor blood flow, and low hypoxia compared with parental PC3 tumors. Three angiogenesis inhibitors (axitinib, sorafenib, and DC101) all induced significantly greater decreases in tumor blood flow and microvessel density in PC3/2G7 tumors compared with PC3 tumors, as well as significantly greater decreases in tumor cell proliferation and cell viability and a greater increase in apoptosis. The increased sensitivity of PC3/2G7 tumors to antiangiogenesis indicates they are less tolerant of low vascularity and suggests they become addicted to their oxygen- and nutrient-rich environment. PC3/2G7 tumors showed strong upregulation of the proangiogenic factors chemokine ligand 2 (CCL2) and VEGFA compared with PC3 tumors, which may contribute to their increased vascularity, and they have significantly lower endothelial cell pericyte coverage, which may contribute to their greater sensitivity to antiangiogenesis. Interestingly, high levels of VEGF receptor-2 were expressed on PC3 but not PC3/2G7 tumor cells, which may contribute to the growth static response of PC3 tumors to VEGF-targeted antiangiogenesis. Finally, prolonged antiangiogenic treatment led to resumption of PC3/2G7 tumor growth and neovascularization, indicating these cancer stem-like cell-derived tumors can adapt and escape from antiangiogenesis.
Collapse
Affiliation(s)
- Kexiong Zhang
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
32
|
The use of nanoparticulate delivery systems in metronomic chemotherapy. Biomaterials 2013; 34:3925-3937. [DOI: 10.1016/j.biomaterials.2013.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
33
|
Siegal T. Which drug or drug delivery system can change clinical practice for brain tumor therapy? Neuro Oncol 2013; 15:656-69. [PMID: 23502426 DOI: 10.1093/neuonc/not016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prognosis and treatment outcome for primary brain tumors have remained unchanged despite advances in anticancer drug discovery and development. In clinical trials, the majority of promising experimental agents for brain tumors have had limited impact on survival or time to recurrence. These disappointing results are partially explained by the inadequacy of effective drug delivery to the CNS. The impediments posed by the various specialized physiological barriers and active efflux mechanisms lead to drug failure because of inability to reach the desired target at a sufficient concentration. This perspective reviews the leading strategies that aim to improve drug delivery to brain tumors and their likelihood to change clinical practice. The English literature was searched for defined search items. Strategies that use systemic delivery and those that use local delivery are critically reviewed. In addition, challenges posed for drug delivery by combined treatment with anti-angiogenic therapy are outlined. To impact clinical practice and to achieve more than just a limited local control, new drugs and delivery systems must adhere to basic clinical expectations. These include, in addition to an antitumor effect, a verified favorable adverse effects profile, easy introduction into clinical practice, feasibility of repeated or continuous administration, and compatibility of the drug or delivery system with any tumor size and brain location.
Collapse
Affiliation(s)
- Tali Siegal
- Gaffin Center for Neuro-Oncology, Hadassah Hebrew-University Medical Center, Ein Kerem, P.O. Box 12000, Jerusalem 91120, Israel.
| |
Collapse
|
34
|
Hahnfeldt P, Hlatky L, Klement GL. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics. Cancer Res 2013; 73:2949-54. [PMID: 23492368 DOI: 10.1158/0008-5472.can-12-3807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized.
Collapse
Affiliation(s)
- Philip Hahnfeldt
- Center of Cancer Systems Biology, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| | | | | |
Collapse
|
35
|
Manley E, Waxman DJ. Impact of tumor blood flow modulation on tumor sensitivity to the bioreductive drug banoxantrone. J Pharmacol Exp Ther 2013; 344:368-77. [PMID: 23192656 PMCID: PMC3558827 DOI: 10.1124/jpet.112.200089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022] Open
Abstract
We investigated the hypoxia-dependent cytotoxicity of AQ4N (banoxantrone) using a panel of 13 cancer cell lines and studied its relationship to the expression of the quinone reductase DT-diaphorase (NQO1), which is widely found in cancer cells. We also investigated pharmacologic treatments that increase tumor hypoxia in vivo and their impact on AQ4N chemosensitivity in a solid tumor xenograft model. AQ4N showed ≥ 8-fold higher cytotoxicity under hypoxia than normoxia in cultures of 9L rat gliosarcoma and H460 human non-small-cell lung carcinoma cells but not for 11 other human cancer cell lines. DT-diaphorase protein levels and AQ4N chemosensitivity were poorly correlated across the cancer cell line panel, and AQ4N chemosensitivity was not affected by DT-diaphorase inhibitors. The vasodilator hydralazine decreased tumor perfusion and increased tumor hypoxia in 9L tumor xenografts, and to a lesser extent in H460 tumor xenografts. However, hydralazine did not increase AQ4N-dependent antitumor activity. Combination of AQ4N with the angiogenesis inhibitor axitinib, which increases 9L tumor hypoxia, transiently increased antitumor activity but with an increase in host toxicity. These findings indicate that the capacity to bioactivate AQ4N is not dependent on DT-diaphorase and is not widespread in cultured cancer cell lines. Moreover, the activation of AQ4N cytotoxicity in vivo requires tumor hypoxia that is more extensive or prolonged than can readily be achieved by vasodilation or by antiangiogenic drug treatment.
Collapse
Affiliation(s)
- Eugene Manley
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Bello E, Taraboletti G, Colella G, Zucchetti M, Forestieri D, Licandro SA, Berndt A, Richter P, D'Incalci M, Cavalletti E, Giavazzi R, Camboni G, Damia G. The tyrosine kinase inhibitor E-3810 combined with paclitaxel inhibits the growth of advanced-stage triple-negative breast cancer xenografts. Mol Cancer Ther 2012; 12:131-40. [PMID: 23270924 DOI: 10.1158/1535-7163.mct-12-0275-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E-3810 is a novel small molecule that inhibits VEGF receptor-1, -2, and -3 and fibroblast growth factor receptor-1 tyrosine kinases at nmol/L concentrations currently in phase clinical II. In preclinical studies, it had a broad spectrum of antitumor activity when used as monotherapy in a variety of human xenografts. We here investigated the activity of E-3810 combined with different cytotoxic agents in a MDA-MB-231 triple-negative breast cancer xenograft model. The molecule could be safely administered with 5-fluorouracil, cisplatin, and paclitaxel. The E-3810-paclitaxel combination showed a striking activity with complete, lasting tumor regressions; the antitumor activity of the combination was also confirmed in another triple-negative breast xenograft, MX-1. The activity was superior to that of the combinations paclitaxel+brivanib and paclitaxel+sunitinib. Pharmacokinetics studies suggest that the extra antitumor activity of the combination is not due to higher paclitaxel tumor levels, which in fact were lower in mice pretreated with all three kinase inhibitors, and the paclitaxel plasma levels excluded reduced drug availability. Pharmacodynamic studies showed that E-3810, brivanib, and sunitinib given as single agents or in combination with paclitaxel reduced the number of vessels, but did not modify vessel maturation. Reduced tumor collagen IV and increased plasma collagen IV, associated with increased matrix metalloproteinases (MMP), particularly host MMP-9, indicate a proteolytic remodeling of the extracellular matrix caused by E-3810 that in conjunction with the cytotoxic effect of paclitaxel on the tumor cells (caspase-3/7 activity) may contribute to the striking activity of their combination. These data support the therapeutic potential of combining E-3810 with conventional chemotherapy.
Collapse
Affiliation(s)
- Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jia L, Waxman DJ. Thrombospondin-1 and pigment epithelium-derived factor enhance responsiveness of KM12 colon tumor to metronomic cyclophosphamide but have disparate effects on tumor metastasis. Cancer Lett 2012; 330:241-9. [PMID: 23228633 DOI: 10.1016/j.canlet.2012.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022]
Abstract
The anti-tumor activity, metronomic chemotherapy sensitization potential and metastatic effects of the endogenous angiogenesis inhibitors thrombospondin-1 and PEDF were investigated in KM12 colon adenocarcinoma xenografts. Thrombospondin-1 and PEDF decreased KM12 tumor microvessel density, increased macrophage infiltration, and improved responsiveness to metronomic cyclophosphamide (CPA) treatment, but did not activate the anti-tumor innate immunity that metronomic CPA induces in other tumor models. Moreover, thrombospondin-1, but not PEDF, significantly increased KM12 metastasis to the lung, while PEDF augmented the anti-metastatic activity of metronomic CPA. Thus, while thrombospondin-1 and PEDF both increase the KM12 tumor responsiveness to metronomic CPA, they have disparate effects on tumor metastasis.
Collapse
Affiliation(s)
- Li Jia
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, United States
| | | |
Collapse
|
38
|
Bar J, Shiran I, Urban D, Agbarya A, Onn A. Anti-angiogenic treatments in advanced NSCLC: back to the drawing board. J Thorac Dis 2012. [PMID: 23205293 PMCID: PMC3506806 DOI: 10.3978/j.issn.2072-1439.2012.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jair Bar
- Institute of Oncology Chaim Sheba Medical Center, Israel
| | - Iris Shiran
- Institute of Oncology Chaim Sheba Medical Center, Israel
| | - Damien Urban
- Department of Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Abed Agbarya
- Institute of Oncology, Rambam Health Care Campus, Rappaport faculty of Medicine, Technion, Israel
| | - Amir Onn
- Institute of Oncology Chaim Sheba Medical Center, Israel
| |
Collapse
|
39
|
|
40
|
Doloff JC, Waxman DJ. VEGF receptor inhibitors block the ability of metronomically dosed cyclophosphamide to activate innate immunity-induced tumor regression. Cancer Res 2012; 72:1103-15. [PMID: 22237627 DOI: 10.1158/0008-5472.can-11-3380] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In metronomic chemotherapy, frequent drug administration at lower than maximally tolerated doses can improve activity while reducing the dose-limiting toxicity of conventional dosing schedules. Although the antitumor activity produced by metronomic chemotherapy is attributed widely to antiangiogenesis, the significance of this mechanism remains somewhat unclear. In this study, we show that a 6-day repeating metronomic schedule of cyclophosphamide administration activates a potent antitumor immune response associated with brain tumor recruitment of natural killer (NK) cells, macrophages, and dendritic cells that leads to marked tumor regression. Tumor regression was blocked in nonobese diabetic/severe combined immunodeficient (NOD/SCID-γ) mice, which are deficient or dysfunctional in all these immune cell types. Furthermore, regression was blunted by NK cell depletion in immunocompetent syngeneic mice or in perforin-deficient mice, which are compromised for NK, NKT, and T-cell cytolytic functions. Unexpectedly, we found that VEGF receptor inhibitors blocked both innate immune cell recruitment and the associated tumor regression response. Cyclophosphamide administered at a maximum tolerated dose activated a transient, weak innate immune response, arguing that persistent drug-induced cytotoxic damage or associated cytokine and chemokine responses are required for effective innate immunity-based tumor regression. Together, our results reveal an innate immunity-based mechanism of tumor regression that can be activated by a traditional cytotoxic chemotherapy administered on a metronomic schedule. These findings suggest the need to carefully evaluate the clinical effects of combination chemotherapies that incorporate antiangiogenesis drugs targeting VEGF receptor.
Collapse
Affiliation(s)
- Joshua C Doloff
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
41
|
Kumar S, Mokhtari RB, Sheikh R, Wu B, Zhang L, Xu P, Man S, Oliveira ID, Yeger H, Kerbel RS, Baruchel S. Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Cancer Res 2011; 17:5656-67. [PMID: 21788355 DOI: 10.1158/1078-0432.ccr-11-0078] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Low dose metronomic (LDM) chemotherapy, combined with VEGF signaling pathway inhibitors, is a highly effective strategy to coordinately inhibit angiogenesis and tumor growth in many adult preclinical cancer models. We have tested the efficacies of daily oral LDM topotecan alone and in combination with pazopanib, a VEGF receptor inhibitor, in three pediatric extracranial solid tumor mouse models. EXPERIMENTAL DESIGN In vitro dose-response study of topotecan and pazopanib was conducted on several neuroblastoma, osteosarcoma, and rhabdomyosarcoma cell lines. In vivo antitumor efficacies of the LDM topotecan and pazopanib as single agents and in combination were tested on 4 subcutaneous xenograft models and on 2 neuroblastoma metastatic models. Circulating angiogenic factors such as circulating endothelial cells (CEC), circulating endothelial pro genitor cells (CEP), and microvessel densities were used as surrogate biomarker markers of antiangiogenic activity. RESULTS In vitro, topotecan caused a dose-dependent decrease in viabilities of all cell lines, while pazopanib did not. In vivo, combination of topotecan + pazopanib (TP + PZ) showed significant antitumor activity and significant enhancement in survival compared with the respective single agents in all models. Reductions in viable CEP and/or CEC levels and tumor microvessel density were correlated with tumor response and therefore confirmed the antiangiogenic activity of the regimens. Pharmacokinetic studies of both drugs did not reveal any drug-drug interaction. CONCLUSION Metronomic administration of TP + PZ showed a statistically significant antitumor activity compared with respective single agents in pediatric tumor mouse models and represent a valid option as a maintenance therapy in aggressive pediatric solid tumors.
Collapse
Affiliation(s)
- Sushil Kumar
- Division of Hematology and Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Irinotecan synergistically enhances the antiproliferative and proapoptotic effects of axitinib in vitro and improves its anticancer activity in vivo. Neoplasia 2011; 13:217-29. [PMID: 21390185 DOI: 10.1593/neo.101334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 02/08/2023] Open
Abstract
AIMS To demonstrate the synergistic antiproliferative and proapoptotic activity of irinotecan and axitinib in vitro and the improvement of the in vivo effects on angiogenesis and pancreatic cancer. METHODS Proliferation and apoptotic assays were performed on human dermal microvascular endothelial cells and pancreas cancer (MIAPaCa-2, Capan-1) cell lines exposed to SN-38, the active metabolite of irinotecan, axitinib, or their simultaneous combination for 72 hours. ERK1/2 and Akt phosphorylation, the vascular endothelial growth factor (VEGF), VEGF receptor-2, and thrombospondin-1 (TSP-1) concentration were measured by ELISAs. ATP7A and ABCG2 gene expression was performed with real-time polymerase chain reaction and SN-38 intracellular concentrations were measured by high-performance liquid chromatography. Capan-1 xenografts in nude mice were treated with irinotecan and axitinib alone or in simultaneous combination. RESULTS A strong synergistic effect on antiproliferative and proapoptotic activity was found with the axitinib/SN-38 combination on endothelial and cancer cells. ERK1/2 and Akt phosphorylation were significantly inhibited by lower concentrations of the combined drugs in all the cell lines. Axitinib and SN-38 combined treatment greatly inhibited the expression of the ATP7A and ABCG2 genes in endothelial and cancer cells, increasing the SN-38 intracellular concentration. Moreover, TSP-1 secretion was increased in cells treated with both drugs, whereas VEGFR-2 levels significantly decreased. In vivo administration of the simultaneous combination determined an almost complete regression of tumors and tumor neovascularization. CONCLUSIONS In vitro results show the highly synergistic properties of simultaneous combination of irinotecan and axitinib on endothelial and pancreas cancer cells, suggesting a possible translation of this schedule into the clinics.
Collapse
|
43
|
Reardon DA, Desjardins A, Peters K, Gururangan S, Sampson J, Rich JN, McLendon R, Herndon JE, Marcello J, Threatt S, Friedman AH, Vredenburgh JJ, Friedman HS. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J Neurooncol 2011; 103:371-9. [PMID: 20853132 PMCID: PMC3102515 DOI: 10.1007/s11060-010-0403-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/06/2010] [Indexed: 02/08/2023]
Abstract
We evaluated the efficacy of metronomic etoposide or temozolomide administered with bevacizumab among recurrent glioblastoma (GBM) patients who progressed on prior bevacizumab therapy in a phase 2, open-label, two-arm trial. Twenty-three patients received bevacizumab (10 mg/kg) every 2 weeks with either oral etoposide (50 mg/m2) daily for 21 consecutive days each month or daily temozolomide (50 mg/m2). The primary endpoint was 6-month progression-free survival (PFS-6) and secondary endpoints included safety and overall survival. Both the etoposide and temozolomide arms of the study closed at the interim analysis due to lack of adequate anti-tumor activity. No radiographic responses were observed. Although 12 patients (52%) achieved stable disease, PFS-6 was 4.4% and the median PFS was 7.3 weeks. The only grade 4 adverse event was reversible neutropenia. Grade 3 toxicities included fatigue (n = 2) and infection (n = 1). Metronomic etoposide or temozolomide is ineffective when administered with bevacizumab among recurrent GBM patients who have progressed on prior bevacizumab therapy. Alternative treatment strategies remain critically needed for this indication.
Collapse
Affiliation(s)
- David A Reardon
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Box 3624, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sultan I, Ferrari A. Selecting multimodal therapy for rhabdomyosarcoma. Expert Rev Anticancer Ther 2011; 10:1285-301. [PMID: 20735314 DOI: 10.1586/era.10.96] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma is a typical tumor of childhood, characterized by a high grade of malignancy, local invasiveness and a marked propensity to metastasize, but also a generally good response to chemotherapy and radiotherapy. Multimodal therapy is essential to cure rhabdomyosarcoma patients, but different uses of surgery, radiotherapy and chemotherapy, and their intensity, need to be selected and modulated to different patient risk groups. This article attempts to give an account of the current treatment options, the open and debated issues and the potential novel strategies for the near future.
Collapse
Affiliation(s)
- Iyad Sultan
- Department of Pediatric Oncology, King Hussein Cancer Center, Irbid, Hashemite Kingdom of Jordan
| | | |
Collapse
|
45
|
Goldstein R, Pickering L, Larkin J. Does axitinib (AG-01376) have a future role in metastatic renal cell carcinoma and other malignancies? Expert Rev Anticancer Ther 2011; 10:1545-57. [PMID: 20942625 DOI: 10.1586/era.10.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Axitinib (Pfizer Inc., UK) is an oral small-molecule receptor tyrosine kinase inhibitor that targets angiogenesis. Axitinib has greater affinity and is a more selective inhibitor of VEGF receptor 1, -2 and -3, PDGFR and c-KIT than both sunitinib and sorafenib. It has encouraging efficacy and safety data in Phase II trials for metastatic renal cell carcinoma and advanced thyroid cancer patients. It is now being investigated in two Phase III trials in metastatic renal cell carcinoma and in Phase II trials in a range of tumor types. These trials will determine whether axitinib is an effective and safe antiangiogenic therapy.
Collapse
Affiliation(s)
- Robert Goldstein
- Department of Oncology, St George's Hospital, London, SW17 0QT, UK
| | | | | |
Collapse
|
46
|
Abstract
The tumor vasculature delivers nutrients, oxygen, and therapeutic agents to tumor cells. Unfortunately, the delivery of anticancer drugs through tumor blood vessels is often inefficient and can constitute an important barrier for cancer treatment. This barrier can sometimes be circumvented by antiangiogenesis-induced normalization of tumor vasculature. However, such normalizing effects are transient; moreover, they are not always achieved, as shown here, when 9L gliosarcoma xenografts were treated over a range of doses with the VEGF receptor-selective tyrosine kinase inhibitors axitinib and AG-028262. The suppression of tumor blood perfusion by antiangiogenesis agents can be turned to therapeutic advantage, however, through their effects on tumor drug retention. In 9L tumors expressing the cyclophosphamide-activating enzyme P450 2B11, neoadjuvant axitinib treatment combined with intratumoral cyclophosphamide administration significantly increased tumor retention of cyclophosphamide and its active metabolite, 4-hydroxycyclophosphamide. Similar increases were achieved using other angiogenesis inhibitors, indicating that increased drug retention is a general response to antiangiogenesis. This approach can be extended to include systemic delivery of an anticancer prodrug that is activated intratumorally, where antiangiogenesis-enhanced retention of the therapeutic metabolite counterbalances the decrease in drug uptake from systemic circulation, as exemplified for cyclophosphamide. Importantly, the increase in intratumoral drug retention induced by neoadjuvant antiangiogenic drug treatment is shown to increase tumor cell killing and substantially enhance therapeutic activity in vivo. Thus, antiangiogenic agents can be used to increase tumor drug exposure and improve therapeutic activity following intratumoral drug administration, or following systemic drug administration in the case of a therapeutic agent that is activated intratumorally.
Collapse
Affiliation(s)
- Jie Ma
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
47
|
Mainetti LE, Rozados VR, Rossa A, Bonfil RD, Scharovsky OG. Antitumoral and antimetastatic effects of metronomic chemotherapy with cyclophosphamide combined with celecoxib on murine mammary adenocarcinomas. J Cancer Res Clin Oncol 2011; 137:151-63. [PMID: 20349084 DOI: 10.1007/s00432-010-0869-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 03/12/2010] [Indexed: 12/16/2022]
Abstract
PURPOSE Metronomic chemotherapy (MCT) refers to the chronic and equally spaced administration of low doses of different chemotherapy drugs, without extended interruptions. Previously, we demonstrated the antitumor effect of MCT with cyclophosphamide (Cy) in a mouse mammary adenocarcinoma model. Herein, we investigated the therapeutic efficacy of metronomic Cy combined with celecoxib (Cel) in two murine mammary adenocarcinoma models. METHODS Mice were s.c. challenged with M-234 p or M-406 mammary tumors and from day 5 or 8 on, respectively, treated with: (I) no treatment (controls); (II) Cy in the drinking water (25-30 mg/kg body weight/day); (III) Cel (30 mg/kg p.o.), five times/week; (IV) treated as II + III. Mice challenged i.v. with M-234 p or M-406 tumor cells received, on day 3, the same treatments. RESULTS We found that MCT with Cy plus Cel inhibited tumor growth decreased lung metastases, and increased the median survival time, in both tumor models, having very low toxicity. MCT with Cy combined with Cel was more effective than each monotherapy. CONCLUSIONS The therapeutic benefits of combined MCT with cyclophosphamide plus celecoxib on mammary adenocarcinomas together with its very low toxicity profile warrant further study in an attempt to make the translation into the clinic.
Collapse
Affiliation(s)
- Leandro E Mainetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | | | | | | | | |
Collapse
|
48
|
Neyns B, Tosoni A, Hwu WJ, Reardon DA. Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects. Cancer 2010; 116:2868-77. [PMID: 20564393 DOI: 10.1002/cncr.25035] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Temozolomide is an oral alkylating agent with established antitumor activity in patients with primary brain tumors and melanoma. The originally approved temozolomide dosing regimen is 150 to 200 mg/m(2) per day (Days 1 to 5 every 28-day cycle [5 of 28 days]). However, extended dosing regimens (eg, 7 of 14 days, 21 of 28 days, 6 of 8 weeks, or continuously daily) allow for administration of a higher cumulative dose per cycle and have been shown to deplete O(6)-methylguanine-DNA methyltransferase, which may enhance cytotoxic activity. This article reviews efficacy and safety data from studies that investigated dose-dense temozolomide regimens in patients with recurrent glioma and advanced metastatic melanoma. The clinical benefits of these dose-dense regimens compared with the standard 5 of 28-day regimen have yet to be established. Although the toxicity profile of dose-dense temozolomide is generally similar to that of the standard 5 of 28-day regimen, it is associated with an increased incidence and severity of lymphocytopenia. The clinical management of temozolomide-associated lymphodepletion and the potential risks and benefits of extended dosing with temozolomide are discussed. Preclinical and clinical evidence suggests that temozolomide-associated lymphodepletion may enhance the host immune response to tumor-associated antigens and/or immunotherapy and may overcome tumor-mediated immunosuppression. Further studies exploring the clinical implications of lymphodepletion are warranted.
Collapse
Affiliation(s)
- Bart Neyns
- Department of Medical Oncology, Oncology Center, UZ Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
49
|
Ponta A, Bae Y. PEG-poly(amino acid) Block Copolymer Micelles for Tunable Drug Release. Pharm Res 2010; 27:2330-42. [DOI: 10.1007/s11095-010-0120-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/05/2010] [Indexed: 01/27/2023]
|
50
|
Swanson HI, Njar VCO, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, Huang Y, Kong ANT, Doloff JC, Ma J, Waxman DJ, Scott EE. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos 2010; 38:539-44. [PMID: 20233842 PMCID: PMC2845935 DOI: 10.1124/dmd.109.031351] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/20/2010] [Indexed: 11/22/2022] Open
Abstract
The primary focus of chemoprevention research is the prevention of cancer using pharmacological, biological, and nutritional interventions. Chemotherapeutic approaches that have been used successfully for both the prevention and treatment of a number of human malignancies have arisen from the identification of specific agents and appropriate molecular targets. Although drug-metabolizing enzymes have historically been targeted in attempts to block the initial, genotoxic events associated with the carcinogenic process, emerging evidence supports the idea that manipulating drug-metabolizing enzymes may also be an effective strategy to be used for treating tumor progression, invasion, and, perhaps, metastasis. This report summarizes a symposium that presents some recent progress in this area. One area of emphasis is the development of a CYP17 inhibitor for treatment of prostate cancer that may also have androgen-independent anticancer activity at higher concentrations. A second focus is the use of a mouse model to investigate the effects of aryl hydrocarbon receptor and Cyp1b1 status and chemopreventative agents on transplacental cancer. A third area of focus is the phytochemical manipulation of not only cytochrome P450 (P450) enzymes but also phase II inflammatory and antioxidant enzymes via the nuclear factor-erythroid 2-related factor 2 pathway to block tumor progression. A final highlight is the use of prodrugs activated by P450 enzymes to halt tumor growth and considerations of dosing schedule and targeted delivery of the P450 transgene to tumor tissue. In addition to highlighting recent successes in these areas, limitations and areas that should be targeted for further investigation are discussed.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|