1
|
Liu Z, Wang Q, Zhang J, Qi S, Duan Y, Li C. The Mechanotransduction Signaling Pathways in the Regulation of Osteogenesis. Int J Mol Sci 2023; 24:14326. [PMID: 37762629 PMCID: PMC10532275 DOI: 10.3390/ijms241814326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Bones are constantly exposed to mechanical forces from both muscles and Earth's gravity to maintain bone homeostasis by stimulating bone formation. Mechanotransduction transforms external mechanical signals such as force, fluid flow shear, and gravity into intracellular responses to achieve force adaptation. However, the underlying molecular mechanisms on the conversion from mechanical signals into bone formation has not been completely defined yet. In the present review, we provide a comprehensive and systematic description of the mechanotransduction signaling pathways induced by mechanical stimuli during osteogenesis and address the different layers of interconnections between different signaling pathways. Further exploration of mechanotransduction would benefit patients with osteoporosis, including the aging population and postmenopausal women.
Collapse
Affiliation(s)
- Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019; 16:20190259. [PMID: 31362615 PMCID: PMC6685012 DOI: 10.1098/rsif.2019.0259] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
In recent decades, cementless implants have been widely used in clinical practice to replace missing organs, to replace damaged or missing bone tissue or to restore joint functionality. However, there remain risks of failure which may have dramatic consequences. The success of an implant depends on its stability, which is determined by the biomechanical properties of the bone-implant interface (BII). The aim of this review article is to provide more insight on the current state of the art concerning the evolution of the biomechanical properties of the BII as a function of the implant's environment. The main characteristics of the BII and the determinants of implant stability are first introduced. Then, the different mechanical methods that have been employed to derive the macroscopic properties of the BII will be described. The experimental multi-modality approaches used to determine the microscopic biomechanical properties of periprosthetic newly formed bone tissue are also reviewed. Eventually, the influence of the implant's properties, in terms of both surface properties and biomaterials, is investigated. A better understanding of the phenomena occurring at the BII will lead to (i) medical devices that help surgeons to determine an implant's stability and (ii) an improvement in the quality of implants.
Collapse
Affiliation(s)
- Xing Gao
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Manon Fraulob
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| |
Collapse
|
3
|
Kim EC, Park J, Noh G, Park SJ, Noh K, Kwon IK, Ahn SJ. Effects of moderate intensity static magnetic fields on osteoclastic differentiation in mouse bone marrow cells. Bioelectromagnetics 2018; 39:394-404. [DOI: 10.1002/bem.22126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology; School of Dentistry; Kyung Hee University; Seoul South Korea
| | - Jaesuh Park
- Department of Oral and Maxillofacial Pathology; School of Dentistry; Kyung Hee University; Seoul South Korea
| | - Gunwoo Noh
- School of Mechanical Engineering; Kyungpook National University; Daegu South Korea
| | - Su-Jung Park
- Department of Prosthodontics; School of Dentistry; Kyung Hee University; Seoul South Korea
| | - Kwantae Noh
- Department of Prosthodontics; School of Dentistry; Kyung Hee University; Seoul South Korea
| | - Il-Keun Kwon
- Department of Dental Materials; School of Dentistry; Kyung Hee University; Seoul South Korea
| | - Su-Jin Ahn
- Department of Prosthodontics; School of Dentistry; Kyung Hee University; Seoul South Korea
| |
Collapse
|
4
|
Zhou H, Hou Y, Zhu Z, Xiao W, Xu Q, Li L, Li X, Chen W. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:747-754. [PMID: 26960802 DOI: 10.7863/ultra.15.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the effect of low-intensity pulsed ultrasound (US) on periimplant bone healing and osseointegration under osteoporotic conditions. METHODS Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm2, spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0–2, 280 minutes; group 2: weeks 0–4, 560 minutes; group 3: weeks 0–6, 840 minutes; group 4: weeks 0–8, 1120 minutes; group 5: weeks 0–10, 1400 minutes; group 6: weeks 0–12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro–computed tomography; the implantbone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. RESULTS Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and periimplant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. CONCLUSIONS Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action.
Collapse
|
5
|
Kim EC, Leesungbok R, Lee SW, Lee HW, Park SH, Mah SJ, Ahn SJ. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics 2015; 36:267-76. [DOI: 10.1002/bem.21903] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration; School of Dentistry and Institute of Oral Biology
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Hyeon-Woo Lee
- Department of Maxillofacial Tissue Regeneration; School of Dentistry and Institute of Oral Biology
| | - Sang Hyuk Park
- Department of Conservative Dentistry; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Su-Jung Mah
- Department of Orthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University; Seoul Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| |
Collapse
|
6
|
Spyropoulou A, Basdra EK. Mechanotransduction in bone: Intervening in health and disease. World J Exp Med 2013; 3:74-86. [DOI: 10.5493/wjem.v3.i4.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction has been proven to be one of the most significant variables in bone remodeling and its alterations have been shown to result in a variety of bone diseases. Osteoporosis, Paget’s disease, orthopedic disorders, osteopetrosis as well as hyperparathyroidism and hyperthyroidism all comprise conditions which have been linked with deregulated bone remodeling. Although the significance of mechanotransduction for bone health and disease is unquestionable, the mechanisms behind this important process have not been fully understood. This review will discuss the molecules that have been found to be implicated in mechanotransduction, as well as the mechanisms underlying bone health and disease, emphasizing on what is already known as well as new molecules potentially taking part in conveying mechanical signals from the cell surface towards the nucleus under physiological or pathologic conditions. It will also focus on the model systems currently used in mechanotransduction studies, like osteoblast-like cells as well as three-dimensional constructs and their applications among others. It will also examine the role of mechanostimulatory techniques in preventing and treating bone degenerative diseases and consider their applications in osteoporosis, craniofacial development, skeletal deregulations, fracture treatment, neurologic injuries following stroke or spinal cord injury, dentistry, hearing problems and bone implant integration in the near future.
Collapse
|
7
|
In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. BIOMED RESEARCH INTERNATIONAL 2013; 2013:269724. [PMID: 24195067 PMCID: PMC3806253 DOI: 10.1155/2013/269724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022]
Abstract
Ultrasound stimulation produces significant multifunctional effects that are directly relevant to alveolar bone formation, which is necessary for periodontal healing and regeneration. We focused to find out effects of specific duty cycles and the percentage of time that ultrasound is being generated over one on/off pulse period, under ultrasound stimulation. Low-intensity pulsed ultrasound ((LIPUS) 1 MHz) with duty cycles of 20% and 50% was used in this study, and human alveolar bone-derived mesenchymal stem cells (hABMSCs) were treated with an intensity of 50 mW/cm(2) and exposure time of 10 min/day. hABMSCs exposed at duty cycles of 20% and 50% had similar cell viability (O.D.), which was higher (*P < 0.05) than that of control cells. The alkaline phosphatase (ALP) was significantly enhanced at 1 week with LIPUS treatment in osteogenic cultures as compared to control. Gene expressions showed significantly higher expression levels of CD29, CD44, COL1, and OCN in the hABMSCs under LIPUS treatment when compared to control after two weeks of treatment. The effects were partially controlled by LIPUS treatment, indicating that modulation of osteogenesis in hABMSCs was related to the specific stimulation. Furthermore, mineralized nodule formation was markedly increased after LIPUS treatment than that seen in untreated cells. Through simple staining methods such as Alizarin red and von Kossa staining, calcium deposits generated their highest levels at about 3 weeks. These results suggest that LIPUS could enhance the cell viability and osteogenic differentiation of hABMSCs, and could be part of effective treatment methods for clinical applications.
Collapse
|
8
|
Effects of increased low-level diode laser irradiation time on extraction socket healing in rats. Lasers Med Sci 2013; 30:719-26. [DOI: 10.1007/s10103-013-1402-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
|
9
|
Leesungbok R, Ahn SJ, Lee SW, Park GH, Kang JS, Choi JJ. The Effects of a Static Magnetic Field on Bone Formation Around a Sandblasted, Large-Grit, Acid-Etched–Treated Titanium Implant. J ORAL IMPLANTOL 2013. [DOI: 10.1563/aaid-joi-d-11-00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to compare the bone formation around commercial sandblasted, large-grit, acid-etched (SLA)–treated titanium implants with or without a neodymium magnet in a rabbit tibia through histomorphometric analysis. Commercial SLA-treated implants with or without neodymium magnets were placed in 10 rabbits. After incising the flat part of the rabbit's tibia and installation of the specimens of titanium implants, the nonmagnet group was stitched without magnet insertion. On the other hand, the magnet group was inserted with neodymium magnet, fixed with pattern resin, and stitched. At 3 and 6 weeks after surgery, the animals were sacrificed, and the specimens were obtained. Undecalcified specimens were prepared for histomorphometric analysis of the bone-to-implant contact ratio (BIC) and bone volume (BV). The histomorphometric findings of the cortical bone showed that the mean BVs of the magnet group (3 weeks, 75.99%; 6 weeks, 82.94%) were higher than those of the nonmagnet group (3 weeks, 74.58%; 6 weeks, 78.75%), but there were no significant differences between the 2 groups (P > .05). In the marrow bone, the mean BICs of the magnet group (3 weeks, 10.36%; 6 weeks, 10.41%) were higher than those of the nonmagnet group (3 weeks, 6.41%; 6 weeks, 7.36%). After 3 weeks of installation, there was a significant difference between the 2 groups (P < .05). In rabbit tibia, the SLA-treated titanium implants with a neodymium magnet can trigger faster early peri-implant bone formation than those without a magnet.
Collapse
Affiliation(s)
- Richard Leesungbok
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Geon-Ho Park
- Department of Prosthodontics, School of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Joo-Sung Kang
- Department of Prosthodontics, School of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jung-Joo Choi
- Department of Prosthodontics, School of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Hwang YS, Jeon HJ, Shin SH, Chung IK, Kim GC, Kim CH, Kim UK. Effect of low intensity pulsed ultrasound (LIPUS) on bone healing around a titanium implant in the tibia of osteoporosis-induced rats. J Korean Assoc Oral Maxillofac Surg 2011. [DOI: 10.5125/jkaoms.2011.37.5.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Young-Seob Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyun-Jun Jeon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - In-Kyo Chung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Dong-A University Medical Center, Pusan, Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
11
|
Wang S, Li Y, Ji YC, Lin CM, Man C, Zheng XX. Stem-cell-activated organ following ultrasound exposure: better transplant option for organ transplantation. Med Hypotheses 2010; 74:147-9. [PMID: 19665313 DOI: 10.1016/j.mehy.2009.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/05/2009] [Indexed: 02/05/2023]
Abstract
Although doctors try their best to protect transplants during surgery, there remain great challenges for the higher survival rate and less rejection of transplants after organ transplantation. Growing evidence indicates that the stem cells could function after injury rather than aging, implying that suitable injury may activate the stem cells of damaged organs. Furthermore, it has been revealed that stem cells can be used to induce tolerance in transplantation and the ultrasound has great biological effects on organs. Basing on these facts, we hypothesize that the stem cells within the transplants can be activated by ultrasound with high-frequency and medium-intensity. Therefore, the stem-cell-activated organs (SCAO) can be derived, and the SCAO will be better transplant option for organ transplantation. We postulate the ultrasound can change the molecular activity and/or quantity of the stem cells, the membrane permeability, the cell-cell junctions, and their surrounding microenvironments. As a result, the stem cells are activated, and the SCAO will acquire more regenerative capacity and less rejection. In the paper, we also discuss the process, methods and models for verifying the theory, and the consequences. We believe the theory may provide a practical method for the clinical application of the ultrasound and stem cells in organ transplantation.
Collapse
Affiliation(s)
- Sen Wang
- Tissue Engineering Lab, The First Affiliated Hospital of Shantou University Medical College, No 57 Changping Road, Shantou 515041, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Li X, Chen M, Li L, Qing H, Zhu Z. Extracorporeal shock wave therapy: A potential adjuvant treatment for peri-implantitis. Med Hypotheses 2010; 74:120-2. [DOI: 10.1016/j.mehy.2009.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
|
13
|
Scheven B, Shelton R, Cooper P, Walmsley A, Smith A. Therapeutic ultrasound for dental tissue repair. Med Hypotheses 2009; 73:591-3. [DOI: 10.1016/j.mehy.2009.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 01/26/2023]
|
14
|
Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 2009; 15:208-16. [PMID: 19362057 DOI: 10.1016/j.molmed.2009.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 01/20/2023]
Abstract
Osteoblasts are key components of the bone multicellular unit and have a seminal role in bone remodeling, which is an essential function for the maintenance of the structural integrity and metabolic capacity of the skeleton. The coordinated function of skeletal cells is regulated by several hormones, growth factors and mechanical cues that act via interconnected signaling networks, resulting in the activation of specific transcription factors and, in turn, their target genes. Bone cells are responsive to mechanical stimuli and this is of pivotal importance in developing biomechanical strategies for the treatment of osteodegenerative diseases. Here, we review the molecular pathways and players activated by mechanical stimulation during osteoblastic growth, differentiation and activity in health, and consider the role of mechanostimulatory approaches in treating various bone pathophysiologies.
Collapse
Affiliation(s)
- Katerina K Papachroni
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|