1
|
Bishayee A, Kavalakatt J, Sunkara C, Johnson O, Zinzuwadia SS, Collignon TE, Banerjee S, Barbalho SM. Litchi (Litchi chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem 2024; 457:140142. [PMID: 38936122 DOI: 10.1016/j.foodchem.2024.140142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical fruit with various health benefits. The objective of this study is to present a thorough analysis of the cancer preventive and anticancer therapeutic properties of litchi constituents and phytocompounds. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis criteria were followed in this work. Various litchi extracts and constituents were studied for their anticancer effects. In vitro studies showed that litchi-derived components reduced cell proliferation, induced cytotoxicity, and promoted autophagy via increased cell cycle arrest and apoptosis. Based on in vivo studies, litchi flavonoids and other extracted constituents significantly reduced tumor size, number, volume, and metastasis. Major signaling pathways impacted by litchi constituents were shown to stimulate proapoptotic, antiproliferative, and antimetastatic activities. Despite promising antineoplastic activities, additional research, especially in vivo and clinical studies, is necessary before litchi-derived products and phytochemicals can be used for human cancer prevention and intervention.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Joachim Kavalakatt
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Charvi Sunkara
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Olivia Johnson
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Taylor E Collignon
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Sandra Maria Barbalho
- School of Food and Technology of Marília (FATEC), Marília, 17500-000, São Paulo, Brazil; School of Medicine, University of Marília (UNIMAR), Marília, 17012-150, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17012-150, Sao Paulo, Brazil
| |
Collapse
|
2
|
Abdel-Bakky MS, Mohammed HA, Mahmoud NI, Amin E, Alsharidah M, Al Rugaie O, Ewees MG. Targeting the PI3K/pAKT/mTOR/NF-κB/FOXO3a signaling pathway for suppressing the development of hepatocellular carcinoma in rats: Role of the natural remedic Suaeda vermiculata forssk. ENVIRONMENTAL TOXICOLOGY 2024; 39:3666-3678. [PMID: 38506534 DOI: 10.1002/tox.24217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| |
Collapse
|
3
|
Narayanankutty A. Pharmacological potentials and Nutritional values of Tropical and Sub-tropical Fruits of India: Emphasis on their anticancer bioactive components. Recent Pat Anticancer Drug Discov 2021; 17:124-135. [PMID: 34847850 DOI: 10.2174/1574892816666211130165200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fruits are an important dietary component, which supply vitamins, minerals, as well as dietary fiber. In addition, they are rich sources of various biological and pharmacologically active compounds. Among these, temperate fruits are well studied for their pharmacological potentials, whereas tropical/subtropical fruits are less explored for their health impacts. In India, most of the consumed fruits are either tropical or subtropical. OBJECTIVES The present review aims to provide a health impact of major tropical and sub-tropical fruits of India, emphasizing their anticancer efficacy. In addition, the identified bioactive components from these fruits exhibiting anticancer efficacy are also discussed along with the patent literature published. METHODS The literature was collected from various repositories, including NCBI, ScienceDirect, Eurekaselect, and Web of Science; literature from predatory journals was omitted during the process. Patent literature was collected from google patents and similar patent databases. RESULTS Tropical fruits are rich sources of various nutrients and bioactive components including polyphenols, flavonoids, anthocyanin, etc. By virtue of these biomolecules, tropical fruits have been shown to interfere with various steps in carcinogenesis, metastasis, and drug resistance. Their mode of action is either by activation of apoptosis, regulation of cell cycle, inhibition of cell survival and proliferation pathways, increased lipid trafficking or inhibiting inflammatory pathways. Several molecules and combinations have been patented for their anticancer and chemoprotective properties. CONCLUSION Overall, the present concludes that Indian tropical/ subtropical fruits are nutritionally and pharmacologically active and may serve as a source of novel anticancer agents in the future.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph' College (Autonomous), Devagiri, Calicut, Kerala. India
| |
Collapse
|
4
|
Chukwuma CI, Izu GO, Chukwuma MS, Samson MS, Makhafola TJ, Erukainure OL. A review on the medicinal potential, toxicology, and phytochemistry of litchi fruit peel and seed. J Food Biochem 2021; 45:e13997. [PMID: 34750843 DOI: 10.1111/jfbc.13997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
The perception that many fruit wastes, particularly the peel, contain more phytochemicals than the edible portions has been largely supported by scientific evidence, making them potential sources of bioactive and therapeutic phytochemicals. The peel and seed of Litchi (Litchi chinensis Sonn.) contain bioactive principles and have been shown to exhibit antioxidative, antidiabetic, cancer preventive, anti-obesogenic, and anti-inflammatory properties. This review presents a critical analysis of previous and current perspectives on the medicinal, toxicological, and phytochemical profiles of litchi fruit peel and seed, thus providing an evidence-based platform to explore their medicinal potential. A literature search was done on "PubMed," "Google Scholar," and "ScienceDirect." Peer-reviewed published data on the medicinal profiles of litchi fruit peel and seed were identified and critically analyzed. The fruit peel and seed improved glycemic control and insulin signaling and downregulated lipogenic and cholesterogenic processes. Their neuroprotective, hepatoprotective, and renal protective potentials were influenced by antioxidative and anti-inflammatory actions. The anticancer effect was mediated by upregulated proapoptotic, proinflammatory, antiproliferative, and anti-metastatic processes in cancer cells. Simple flavonols, sesquiterpenes, phenolic acids, jasmonates, and proathocyanidins are the possible bioactive principles influencing the medicinal effects. Appropriate toxicity studies are, however, still lacking. Litchi fruit wastes may be further studied as useful sources of therapeutic agents that may have medicinal relevance in oxidative, metabolic, vascular, and carcinogenic ailments. PRACTICAL APPLICATIONS: Underutilized fruit wastes contribute to environmental pollution. Interestingly, these wastes contain phytochemicals that could be of medicinal relevance if their medicinal potentials are maximized. Litchi fruit is a widely consumed fruit with commercial value. Its peel and seeds contribute to fruit wastes. The review exposes the medicinal potential and bioactive principles and/or nutrients of the fruit's peel and seed while elucidating the underlying therapeutic mechanisms or modes of actions through which litchi peel and seed potentiate medicinal effects. Thus, the review provides an evidence-based platform to explore the medicinal potential of underutilized wastes from litchi fruit. Additionally, the fruit peel and seed could be low-cost residues that could afford ecofriendly opportunity if their medicinal potentials are properly maximized.
Collapse
Affiliation(s)
- Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Gloria O Izu
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa.,Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Maria S Chukwuma
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Mashele S Samson
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa.,Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
5
|
Yao P, Gao Y, Simal-Gandara J, Farag MA, Chen W, Yao D, Delmas D, Chen Z, Liu K, Hu H, Xiao J, Rong X, Wang S, Hu Y, Wang Y. Litchi ( Litchi chinensis Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct 2021; 12:9527-9548. [PMID: 34664581 DOI: 10.1039/d1fo01148k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.
Collapse
Affiliation(s)
- Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dongning Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France
- NSERM Research Center U1231 - Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health Research Group, F-21000, France
- Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Zhejie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Kunmeng Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| |
Collapse
|
6
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
7
|
Sinkovič L, Jamnik P, Korošec M, Vidrih R, Meglič V. In-vitro and in-vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilisers. BMC PLANT BIOLOGY 2020; 20:36. [PMID: 31959114 PMCID: PMC6972005 DOI: 10.1186/s12870-020-2256-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Chicory (Cichorium intybus L.) is a traditional European crop that is highly appreciated for its contents of bioactive compounds, especially phenolics, which have high antioxidant activities. Among other factors, agricultural practice might affect the contents of these bioactive compounds, which are also important from a nutritional point of view, and affect the shelf-life. RESULTS The antioxidant potential (AOP) of chicory plants treated with different fertilisers was investigated in vitro using DPPH radical scavenging and in vivo using the yeast Saccharomyces cerevisiae. Additionally, total phenolics content (TPC) was evaluated using Folin-Ciocalteu reagent, and total flavonoids content (TFC) using the aluminium chloride method. Four different chicory cultivars were included: 'Treviso', 'Verona' and 'Anivip' as red cultivars; and 'Castelfranco' as a red-spotted cultivar. These were grown in pots under controlled glasshouse conditions using organic and/or mineral fertilisers. The combination of organic and mineral fertilisers during red chicory growth resulted in significantly higher in-vitro and in-vivo AOPs compared to the control. For the red-spotted cultivar 'Castelfranco', this combined organic and mineral fertilisation decreased AOPs in vitro and increased AOPs in vivo. Among the cultivars examined, 'Castelfranco' treated with combined organic plus mineral fertilisers showed the highest AOP in vivo, accompanied by the lowest TPC and TFC. CONCLUSIONS These data show that application of different fertilisers has different impacts on red and red-spotted chicory cultivars in terms of TFC and TPC, which for red-spotted chicory resulted in different AOPs in vitro and in vivo. The in-vitro AOP is well reflected in the in-vivo AOP for the red chicory cultivars, but less so for the red-spotted cultivar 'Castelfranco'. Based on the in-vivo AOPs for these chicory cultivars analysed, the combined organic plus mineral fertiliser treatment is recommended.
Collapse
Affiliation(s)
- Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Mojca Korošec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhu XR, Wang H, Sun J, Yang B, Duan XW, Jiang YM. Pericarp and seed of litchi and longan fruits: constituent, extraction, bioactive activity, and potential utilization. J Zhejiang Univ Sci B 2019; 20:503-512. [PMID: 31090276 PMCID: PMC6568221 DOI: 10.1631/jzus.b1900161] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/21/2019] [Indexed: 11/11/2022]
Abstract
Litchi (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.) fruits have a succulent and white aril with a brown seed and are becoming popular worldwide. The two fruits have been used in traditional Chinese medicine as popular herbs in the treatment of neural pain, swelling, and cardiovascular disease. The pericarp and seed portions as the by-products of litchi and longan fruits are estimated to be approximately 30% of the dry weight of the whole fruit and are rich in bioactive constituents. In the recent years, many biological activities, such as tyrosinase inhibitory, antioxidant, anti-inflammatory, immunomodulatory, anti-glycated, and anti-cancer activities, as well as memory-increasing effects, have been reported for the litchi and longan pericarp and seed extracts, indicating a potentially significant contribution to human health. With the increasing production of litchi and longan fruits, enhanced utilization of the two fruit by-products for their inherent bioactive constituents in relation to pharmacological effects is urgently needed. This paper reviews the current advances in the extraction, processing, identification, and biological and pharmacological activities of constituents from litchi and longan by-products. Potential utilization of litchi and longan pericarps and seeds in relation to further research is also discussed.
Collapse
Affiliation(s)
- Xiang-rong Zhu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui Wang
- Institute of Post-harvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue-wu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue-ming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Characterization by HPLC-ESI-MS 2 of native and oxidized procyanidins from litchi (Litchi chinensis) pericarp. Food Chem 2019; 291:126-131. [PMID: 31006450 DOI: 10.1016/j.foodchem.2019.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
Procyanidins (PCs) are polyphenols highly accumulated in litchi fruit (Litchi chinensis). Despite their bioactivity, the molecular composition of native and oxidized procyanidins is little understood. In this paper, polyphenols from litchi pericarp were extracted using two solvents (methanol and acetone). The mean degree of polymerization (mDP) of native and identification of oxidized PCs were carried out by phloroglucinolysis- and thioglycolysis-HPLC-ESI-MS/MS, respectively. About 60% of extracted polyphenols corresponded to procyanidins from litchi pericarp. Native PCs were mainly oligomeric procyanidins (mDP 4). Only (-)-epicatechin was detected as terminal and extension units in PCs. Thioglycolysis-HPLC-ESI-MS identified five oxidation markers of PCs with [M-H]-m/z 575, 593, 609, 679 and 863. Intra- and intermolecular modifications of A and B-type procyanidins were identified. The method used for the characterization of PCs from litchi pericarp allowed understanding of the structural composition of its native and oxidized tannins.
Collapse
|
10
|
Emanuele S, Lauricella M, Calvaruso G, D'Anneo A, Giuliano M. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients 2017; 9:nu9090992. [PMID: 28885570 PMCID: PMC5622752 DOI: 10.3390/nu9090992] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
11
|
Park EH, Bae WY, Kim JY, Kim KT, Paik HD. Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P *. J Zhejiang Univ Sci B 2017; 18:816-824. [PMCID: PMC5611553 DOI: 10.1631/jzus.b1600234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/23/2016] [Indexed: 07/30/2023]
Abstract
The inhibitory effects of Lactobacillus plantarum-fermented and non-fermented Inula britannica extracts on the tyrosinase activity were comparatively investigated to examine whether and how they improve the whitening activity, and the contents of total flavonoids and polyphenolics as bioactive compounds were determined. The skin whitening activity using in vitro or ex vivo tyrosinase and L-3,4-dihydroxyphenylalanine (L-DOPA) staining was examined. The total flavonoid content (TFC) was increased by 13.4% after 72 h-fermentation. The viabilities of the B16F10 cells treated with the fermented and non-fermented control extracts were 100.26% and 92.15% at 500 µg/ml, respectively. In addition, the inhibition of tyrosinase activity was increased by the fermented samples from 29.33% to 41.74% following fermentation for up to 72 h. The tyrosinase activity of the untreated control group was increased to 145.69% in B16F10 cells. The results showed that I. britannica fermented by L. plantarum dose-dependently inhibited tyrosinase activity, which was stimulated by α-melanocyte stimulating hormone. These results suggest that lactic fermented I. britannica extracts can be used as effective skin-whitening materials.
Collapse
Affiliation(s)
- Eun-hye Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Won-young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Jae-yeon Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Kee-tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Hyun-dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Park EH, Bae WY, Eom SJ, Kim KT, Paik HD. Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P. J Zhejiang Univ Sci B 2017; 18:152-160. [PMID: 28124843 PMCID: PMC5296231 DOI: 10.1631/jzus.b1600063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products.
Collapse
Affiliation(s)
- Eun-Hye Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Su-Jin Eom
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
13
|
Garg M, Lata K, Satija S. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells. Indian J Pharmacol 2017; 48:64-8. [PMID: 26997725 PMCID: PMC4778210 DOI: 10.4103/0253-7613.174552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. MATERIALS AND METHODS Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. RESULTS Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. CONCLUSION Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids.
Collapse
Affiliation(s)
- Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kusum Lata
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Satija
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
14
|
Koul B, Singh J. Lychee Biology and Biotechnology. THE LYCHEE BIOTECHNOLOGY 2017. [PMCID: PMC7121025 DOI: 10.1007/978-981-10-3644-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lychee (Litchi chinensis Sonn.) is one of the revered members of the soapberry family Sapindaceae which includes 150 genera and 2000 species. It is a tropical and subtropical fruit tree which is native to Fujian and Guangdong regions of China and is cultivated as an important commercial fruit crop in many parts of the world. It is famous for its fragrant and sugary flavour. After China, India is at the second position in the production of lychee in the world. The varieties with large pulp, small seeds and noteworthy flavour are of great interest among the consumers and farmers. Lychee fruit took tremendous attention of scientists as it contains ample amounts of anti-oxidants, vitamins and fibre. Moreover, the plant parts possess considerable anti-pyretic, anti-inflammatory, anti-cancer, anti-diabetic, anti-tumour and anti-oxidant properties. Propagation of lychee from seeds is difficult and not practicable because of longer juvenile period and non-viable, abortive and genetically diverse nature of the seedlings. However, the techniques such as cell, tissue and organ culture (micropropagation) can overcome the difficulties of lychee propagation. Very limited efforts have been made in its varietal improvement through hybridization and modern breeding techniques. In a nutshell, lychee is an important commercial fruit crop, and there is a need to develop technical research so as to sustain and enhance its yield, postharvest management, medicinal value and marketing. This chapter comprises of botanical description, cultivation, medicinal uses, micropropagation and trading of Litchi chinensis.
Collapse
|
15
|
AL Shabanah OA, Alotaibi MR, Al Rejaie SS, Alhoshani AR, Almutairi MM, Alshammari MA, Hafez MM. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53. Asian Pac J Cancer Prev 2016; 17:4965-4971. [PMID: 28032724 PMCID: PMC5454704 DOI: 10.22034/apjcp.2016.17.11.4965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Othman A AL Shabanah
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016; 8:156. [PMID: 26978396 PMCID: PMC4808884 DOI: 10.3390/nu8030156] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Park EH, Kim HS, Eom SJ, Kim KT, Paik HD. Antioxidative and Anticanceric Activities of Magnolia (Magnolia denudata) Flower Petal Extract Fermented by Pediococcus acidilactici KCCM 11614. Molecules 2015; 20:12154-65. [PMID: 26151113 PMCID: PMC6331971 DOI: 10.3390/molecules200712154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023] Open
Abstract
In this study, the effects of magnolia (Magnolia (M.) denudata) extract fermentation in increasing the extract's antioxidative and anticancer activities were investigated. Magnolia was fermented by Pediococcus acidilactici KCCM 11614. The total phenolic content was determined by the Folin-Ciocalteu's method and the antioxidative effects by 1,1-diphenyl-2-picrylhydrazy (DPPH) and ferric reducing ability of plasma (FRAP) assay. Anticancer activity against cancer and normal cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Total phenolic content during fermentation increased from 38.1 to 47.0 mg gallic acid equivalent (GAE)/g of solid matter. The radical scavenging activity was 91.4% after 72 h fermentation. Fermented magnolia's antioxidative effect was threefold higher than that of the (non-fermented) control. Fermentation (48 h) increased anticanceric activity against AGS, LoVo, and MCF-7 cancer cells 1.29- to 1.36-fold compared with that of the control, but did not affect MRC-5 (normal) cells, suggesting that fermented magnolia could be used as a natural antioxidative and anticancer agent.
Collapse
Affiliation(s)
- Eun-Hye Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea; E-Mails: (E.-H.P.); (H.-S.K.); (S.J.E.)
| | - Hyun-Suk Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea; E-Mails: (E.-H.P.); (H.-S.K.); (S.J.E.)
| | - Su Jin Eom
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea; E-Mails: (E.-H.P.); (H.-S.K.); (S.J.E.)
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea; E-Mail:
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea; E-Mails: (E.-H.P.); (H.-S.K.); (S.J.E.)
- Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-2-2049-6011; Fax: +82-2-455-3082
| |
Collapse
|
18
|
Lee KA, Kim KT, Chang PS, Paik HD. In vitro cytotoxic activity of ginseng leaf/stem extracts obtained by subcritical water extraction. J Ginseng Res 2014; 38:289-92. [PMID: 25379009 PMCID: PMC4213841 DOI: 10.1016/j.jgr.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
Ginseng leaf/stem extract produced by subcritical water extraction at high temperature (190°C) possess higher cytotoxic activity against human cancer cell lines than ethanol extract. Subcritical water extraction can be a great candidate for extraction of functional substance from ginseng leaves/stems.
Collapse
Affiliation(s)
- Kyoung Ah Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Pahn-Shik Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
- Corresponding author. Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neungdong-ro, Seoul 143-701, Korea.
| |
Collapse
|
19
|
Huang F, Zhang R, Yi Y, Tang X, Zhang M, Su D, Deng Y, Wei Z. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules 2014; 19:3909-25. [PMID: 24691064 PMCID: PMC6270829 DOI: 10.3390/molecules19043909] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/02/2022] Open
Abstract
Drying is commonly used for preservation and processing of litchi. However, its polysaccharide structure may be altered by the drying process, resulting in biological activity changes. Polysaccharides from fresh and dried litchi pulp (denoted as LPF and LPD, respectively) were isolated, investigated by GC-MS, GPC and UV/IR spectrum analysis and their antitumor and immunomodulatory activities were evaluated in vitro. LPD, the molecular weight of which was lower than that of LPF, contained more protein, uronic acid, arabinose, galactose and xylose. Compared with LPF, LPD exhibited a higher inhibitory effect on the proliferation of HepG2, Hela and A549 cells from 50-750 μg/mL. LPD was also a better stimulator of spleen lymphocyte proliferation, NK cells cytotoxicity and macrophage phagocytosis from 50-400 μg/mL. In summary, drying could change the physicochemical properties and enhance the bioactivity of polysaccharides from litchi pulp. This finding is supported by the fact that dried litchi pulps are used in Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Fei Huang
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifen Zhang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaojun Tang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Dongxiao Su
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Deng
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Zhencheng Wei
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| |
Collapse
|
20
|
Peng X, Xie G, Wang Z, Lin H, Zhou T, Xiang P, Jiang Y, Yang S, Wei Y, Yu L, Zhao Y. SKLB-163, a new benzothiazole-2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway. Cell Death Dis 2014; 5:e1143. [PMID: 24675461 PMCID: PMC3973246 DOI: 10.1038/cddis.2014.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 02/05/2023]
Abstract
Small-molecule inhibitors are an attractive therapeutic approach for most types of human cancers. SKLB-163, a novel benzothiazole-2-thiol derivative, was developed via computer-aided drug design and de novo synthesis. MTT assay showed it had potent anti-proliferative activity on various human cancer cells. Treatment of cancer cells with SKLB-163 induced obvious apoptosis and inhibited proliferation in vitro. SKLB-163 administered p.o. showed a marked antitumor activity in vivo. Proteomic techniques were employed to identify possible drug target proteins. The data showed molecular mechanism of action might be involved in downregulation of RhoGDI, which finally contributed to increased apoptosis and inhibited proliferation. These findings provided the potential value of SKLB-163 as a novel candidate antitumor drug.
Collapse
Affiliation(s)
- X Peng
- 1] State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China [2] Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - G Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Z Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - H Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - T Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - P Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - S Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - L Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Lv Q, Si M, Yan Y, Luo F, Hu G, Wu H, Sun C, Li X, Chen K. Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Lin CC, Chung YC, Hsu CP. Anti-cancer potential of litchi seed extract. World J Exp Med 2013; 3:56-61. [DOI: 10.5493/wjem.v3.i4.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023] Open
Abstract
Polyphenol-rich fruit are believed to be healthy food for humans. Traditional Chinese Medicines (TCMs) from fruit are rich sources of polyphenols and exhibit antioxidant and anti-inflammatory activities, and have been shown experimentally to overcome some chronic diseases, including cancer. The litchi seed is one of the TCMs traditionally used for relieving pain and sweating, and has been revealed in our recent report and other studies to possess rich amounts of polyphenolic species, including flavonoids and proanthocyanidines, and exhibits strong anti-oxidant activity, and could be applied for the treatment of diabetes and cancer. Herein, we review the recent findings regarding the benefits of this TCM in the treatment of human cancer and the possible cellular and molecular mechanisms of the litchi seed.
Collapse
|
23
|
ONTD induces apoptosis of human hepatoma Bel-7402 cells via a MAPK-dependent mitochondrial pathway and the depletion of intracellular glutathione. Int J Biochem Cell Biol 2013; 45:2632-42. [DOI: 10.1016/j.biocel.2013.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/27/2023]
|
24
|
Abstract
Total pigment and main monomeric anthocyanin contents in different cultivars of litchi (Litchi chinensis) were measured, HPLC fingerprints and similarity of litchi anthocyanins were analyzed, and a recovery process of litchi anthocyanins was developed. In 16 cultivars of litchi, the total anthocyanin content (absorbance at 510 nm) per gram pericarp was 0.490-3.045 in 2007 and 0.475-3.122 in 2008. The content of cyanidin-3-rutinoside (C3R), the most abundant monomeric anthocyanin in litchi pericarp, ranged from 724.6 (cv Yuhebao) to 7706.9 (cv Zhuangyuanhong) mg/kg, while the cyanidin-3-glucoside (C3G) content ranged from 1.3 (cv Guiwei) to 14.7 (cv Zhuangyuanhong) mg/kg. The anthocyanin profiles of the 16 cultivars were similar and the correlation coefficients were higher than 0.970, except for cv Gualv and cv Yuhebao. The recovery procedures for anthocyanins were as follows: 0.2-0.5% (v/v) of HCl as the extraction solvent, added to cover the surface of fresh pericarps, overnight extraction at ambient temperatures, and extracted twice, and purification by X-5 macroporous resin. The resulting litchi pigment contained 421.6 mg/g of C3R and 0.168 mg/g of C3G, which could be used as functional food ingredients.
Collapse
|
25
|
Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by Litchi seed extract. J Biomed Biotechnol 2012; 2012:341479. [PMID: 23093841 PMCID: PMC3470890 DOI: 10.1155/2012/341479] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/29/2012] [Indexed: 01/16/2023] Open
Abstract
The Litchi (Litchi chinensis) fruit products possess rich amounts of flavanoids and proanthocyanidins. Its pericarp has been shown to inhibit breast and liver cancer cell growth. However, the anticolorectal cancer effect of Litchi seed extract has not yet been reported. In this study, the effects of polyphenol-rich Litchi seed ethanol extract (LCSP) on the proliferation, cell cycle, and apoptosis of two colorectal cancer cell lines Colo320DM and SW480 were examined. The results demonstrated that LCSP significantly induced apoptotic cell death in a dose-dependent manner and arrested cell cycle in G2/M in colorectal carcinoma cells. LCSP also suppressed cyclins and elevated the Bax : Bcl-2 ratio and caspase 3 activity. This study provides in vitro evidence that LCSP serves as a potential chemopreventive agent for colorectal cancer.
Collapse
|
26
|
Li L, Lu N, Dai Q, Wei L, Zhao Q, Li Z, He Q, Dai Y, Guo Q. GL-V9, a newly synthetic flavonoid derivative, induces mitochondrial-mediated apoptosis and G2/M cell cycle arrest in human hepatocellular carcinoma HepG2 cells. Eur J Pharmacol 2011; 670:13-21. [PMID: 21944925 DOI: 10.1016/j.ejphar.2011.08.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/21/2011] [Accepted: 08/26/2011] [Indexed: 01/11/2023]
Abstract
We recently established that GL-V9, a newly synthetic flavonoid derivative, is an active cytotoxic component. In this study, we demonstrated that GL-V9 inhibited cells growth via inducing apoptosis and G2/M cell cycle arrest in human hepatocellular carcinoma HepG2 cells. Following the treatment of HepG2 cells with GL-V9, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3 and caspase-9, while caspase-8 remained unchanged. The expression ratio of Bcl-2/Bax was also decreased in GL-V9-treated cells. Meanwhile, the cell cycle-related proteins, such as cyclin B1, CDK1 and cdc25 were down-regulated in GL-V9-induced G2/M cell cycle arrest. Furthermore, we showed that GL-V9-induced apoptosis in HepG2 cells was achieved through mitochondrial pathway. It also regulated changes of mitochondrial membrane potential and increased the production of intracellular reactive oxygen species. Besides, the growth inhibitory effect of GL-V9 was examined in vivo using murine implanted tumor model. These studies indicate that GL-V9 shows promise as a therapeutic agent against human hepatoma.
Collapse
Affiliation(s)
- Liwen Li
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pan MH, Chiou YS, Wang YJ, Ho CT, Lin JK. Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct 2011; 2:101-10. [PMID: 21779554 DOI: 10.1039/c0fo00174k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The consumption of green tea has long been associated with a reduced risk of cancer development. (-)-Epicatechin-3-gallate (ECG) or (-)-epigallocatechin-3-gallate (EGCG) are the major antioxidative polyphenolic compounds of green tea. They have been shown to exert growth-inhibitory potential of various cancer cells in culture and antitumor activity in vivo models. ECG or EGCG could interact with various molecules like proteins, transcription factors, and enzymes, which block multiple stages of carcinogenesis via regulating intracellular signaling transduction pathways. Moreover, ECG and EGCG possess pharmacological and physiological properties including induction of phase II enzymes, mediation of anti-inflammation response, regulation of cell proliferation and apoptosis effects and prevention of tumor angiogenesis, invasion and metastasis. Numerous review articles have been focused on EGCG, however none have been focused on ECG despite many studies supporting the cancer preventive potential of ECG. To develop ECG as an anticarcinogenic agent, more clear understanding of the cell signaling pathways and the molecular targets responsible for chemopreventive and chemotherapeutic effects are needed. This review summarizes recent research on the ECG-induced cellular signal transduction events which implicate in cancer management.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung 81143, Taiwan.
| | | | | | | | | |
Collapse
|
28
|
Xu X, Xie H, Hao J, Jiang Y, Wei X. Eudesmane sesquiterpene glucosides from lychee seed and their cytotoxic activity. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Apoptosis of Human Burkitt’s lymphoma cells induced by 2-N,N-Diethylaminocarbonyloxymethyl-1-diphenylmethyl-4-(3,4,5-trimethoxybenzoyl) piperazine hydrochloride (PMS-1077). Arch Pharm Res 2010; 32:1727-36. [DOI: 10.1007/s12272-009-2210-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/30/2009] [Accepted: 08/05/2009] [Indexed: 10/19/2022]
|
30
|
Fadzelly Abu Bakar M, Mohamed M, Rahmat A, Burr SA, Fry JR. Cytotoxicity and polyphenol diversity in selected parts ofMangifera pajangandArtocarpus odoratissimusfruits. ACTA ACUST UNITED AC 2010. [DOI: 10.1108/00346651011015890] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Lee SJ, Park WH, Park SD, Moon HI. Aldose reductase inhibitors from Litchi chinensis Sonn. J Enzyme Inhib Med Chem 2009; 24:957-9. [DOI: 10.1080/14756360802560867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sung-Jae Lee
- Department of Integrative Medicine, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Sun-Dong Park
- Department of Prescriptionology and Cardiovascular Medical Research Center, College of Korean Medicine, Dongguk University, Gyeong-Ju 780-714, South Korea
| | - Hyung-In Moon
- Department of Diagnostics, College of Medicine, Korea University, Seoul 136-705, South Korea
- Inam Neuroscience Research Center, Wonkwang University Sanbon Medical Center, Kyunggi-Do 435-040, South Korea
| |
Collapse
|
32
|
Li J, Jiang Y. Litchi flavonoids: isolation, identification and biological activity. Molecules 2007; 12:745-58. [PMID: 17851427 PMCID: PMC6149383 DOI: 10.3390/12040745] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 01/05/2023] Open
Abstract
The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP) tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindin-3-rutinside, cyanidin-3-glucoside, quercetin-3-rutinosde and quercetin-3-glucoside are identified as the important anthocyanins. Litchi flavanols and anthocyanins exhibit good potential antioxidant activity. The hydroxyl radical and superoxide anion scavenging activities of procyanidin B2 are greater than those of procyanidin B4 and epicatechin, while epicatechin has the highest alpha,alpha-diphenyl-beta-picrylhydrazyl radical (DPPH*) scavenging activity. In addition to the antioxidant activity, LFP extract displays a dose- and time-dependent inhibitory effect on human breast cancer, which could be attributed, in part, to its inhibition of proliferation and induction of apoptosis in cancer cells through upregulation and down-regulation of multiple genes. Furthermore, various anticancer activities are observed for epicatechin, procyanidin B2, procyanidin B4 and the ethyl acetate fraction of LFP tissue extracts. Procyanidin B4 and the ethyl acetate fraction show a stronger inhibitory effect on HELF than MCF-7 proliferation, while epicatechin and procyanidin B2 have lower cytotoxicities towards MCF-7 and HELF than paclitaxel. It is therefore suggested that flavonoids from LFP might be potentially useful components for functional foods and/or anti-breast cancer drugs.
Collapse
Affiliation(s)
- Jiangrong Li
- College of Food Science, Biotechnology and Environmental Engineering, Zhejiang Gongshang University, Hangzhou, 310035, The People’s Republic of China; e-mail:
| | - Yueming Jiang
- College of Food Science, Biotechnology and Environmental Engineering, Zhejiang Gongshang University, Hangzhou, 310035, The People’s Republic of China; e-mail:
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, The People’s Republic of China
| |
Collapse
|
33
|
Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn) pericarp. Int Immunopharmacol 2006; 7:162-6. [PMID: 17178382 DOI: 10.1016/j.intimp.2006.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/21/2006] [Accepted: 09/08/2006] [Indexed: 11/22/2022]
Abstract
The litchi pericarp extract was subjected to partition by hexane, ethyl acetate and water. Epicatechin, proanthocyanidin B2 and proanthocyanidin B4 were isolated and purified from the ethyl acetate fraction by reverse-phase high performance liquid chromatography. The immunomodulatory activities of epicatechin, proanthocyanidin B2, proanthocyanidin B4 and the ethyl acetate fraction were examined using proliferation of mouse splenocytes. The results showed all these samples had much higher stimulatory effects on splenocyte proliferation than that of the reference, rutin. Epicatechin and the ethyl acetate fraction showed a significantly (P<0.05) stimulatory effect when the concentration was up to 12.5 micro g/ml. Proanthocyanidin B2 and proanthocyanidin B4 exhibited little lower stimulatory effects than epicatechin and the ethyl acetate fraction. The anti-breast cancer activities of epicatechin, proanthocyanidin B2, proanthocyanidin B4 and the ethyl acetate fraction were also evaluated. Epicatechin and proanthocyanidin B2 had lower cytotoxicities to human breast cancer cell MCF-7 and human embryolic lung fibroblast than paclitaxel.
Collapse
Affiliation(s)
- Mouming Zhao
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|