1
|
Hong G, Chang JE. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024; 16:1420. [PMID: 39598543 PMCID: PMC11597730 DOI: 10.3390/pharmaceutics16111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT's ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT's mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT's synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
2
|
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 potentiates immunogenic cell death induction and anti-cancer immunity following irradiation. JOURNAL OF RADIATION RESEARCH 2024; 65:205-214. [PMID: 38330507 PMCID: PMC10959436 DOI: 10.1093/jrr/rrad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Indexed: 02/10/2024]
Abstract
Recent in vitro experiments showed that combined treatment with MHY1485, a low-molecular-weight compound, and X-ray irradiation significantly increased apoptosis and senescence in tumor cells, which was associated with oxidative stress, endoplasmic reticulum (ER) stress and p21 stabilization, compared to radiation treatment alone. However, evidence for MHY1485 treatment-mediated suppression of tumor growth in animals is still lacking. Furthermore, it has been shown that ER stress enhances immunogenic cell death (ICD) in tumor cells, as it can exert a favorable influence on the anti-cancer immune system. In the present study, we examined whether co-treatment of MHY1485 and X-ray irradiation induces ICD and in vivo tumor growth suppression using the CT26 and Lewis lung carcinoma murine tumor cell lines. We found that MHY1485 + X-ray treatment promotes ICD more effectively than X-ray treatment alone. MHY1485 suppresses tumor growth in vivo under co-treatment with X-rays and increases INF-γ, tumor necrosis factor, interleukin-2 and interleukin-12 levels in the spleen as well as the presence of CD8+ cells in the tumor. The results suggest that MHY1485 treatment leads to the conversion of irradiated tumors into effective vaccines. Thus, MHY1485 is a promising lead compound for use in combination with radiotherapy.
Collapse
Affiliation(s)
- Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kumi Morikawa
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Sugiura
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa 761-0895, Japan
| |
Collapse
|
3
|
Faure F, Yshii L, Renno T, Coste I, Joubert B, Desestret V, Liblau R, Honnorat J. A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:181-196. [PMID: 36729270 DOI: 10.1007/s12311-023-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.
Collapse
Affiliation(s)
- Fabrice Faure
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
| | - Lidia Yshii
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
- Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
| | - Toufic Renno
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Isabelle Coste
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Bastien Joubert
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Virginie Desestret
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France.
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France.
| |
Collapse
|
4
|
Tamai Y, Fujiwara N, Tanaka T, Mizuno S, Nakagawa H. Combination Therapy of Immune Checkpoint Inhibitors with Locoregional Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5072. [PMID: 37894439 PMCID: PMC10605879 DOI: 10.3390/cancers15205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is estimated to be the fourth leading cause of cancer-related deaths globally, and its overall prognosis is dismal because most cases are diagnosed at a late stage and are unamenable to curative treatment. The emergence of immune checkpoint inhibitors (ICIs) has dramatically improved the therapeutic efficacy for advanced hepatocellular carcinoma; however, their response rates remain unsatisfactory, partly because >50% of HCC exhibit an ICI-nonresponsive tumor microenvironment characterized by a paucity of cytotoxic T cells (immune-cold), as well as difficulty in their infiltration into tumor sites (immune excluded). To overcome this limitation, combination therapies with locoregional therapies, including ablation, transarterial embolization, and radiotherapy, which are usually used for early stage HCCs, have been actively explored to enhance ICI efficacy by promoting the release of tumor-associated antigens and cytokines, and eventually accelerating the so-called cancer-immunity cycle. Various combination therapies have been investigated in early- to late-phase clinical trials, and some have shown promising results. This comprehensive article provides an overview of the immune landscape for HCC to understand ICI efficacy and its limitations and, subsequently, reviews the status of combinatorial therapies of ICIs with locoregional therapy for HCC.
Collapse
Affiliation(s)
- Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Takamitsu Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| |
Collapse
|
5
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
6
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
7
|
Zhou Y, Hu F, Cui Y, Wu H, Hu S, Wei W. Bibliometric analysis of research on immunogenic cell death in cancer. Front Pharmacol 2022; 13:1029020. [PMID: 36278159 PMCID: PMC9582244 DOI: 10.3389/fphar.2022.1029020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Immunotherapy is changing the way we treat cancer. Immunogenic cell death (ICD) has received considerable attention in the treatments of various cancer types, due to the long-lasting antitumor responses elicited in human body. However, to date, no relevant bibliometric research has been reported. Methods: Publications related to ICD in cancer research were collected from the Web of Science Core Collection. Using CiteSpace, VOSviewer and an online platform, the analyses of co-author, co-citation, and co-occurrence of terms retrieved from literatures were carried out. Results: A total of 1,577 publications were included in this study. The global research literatures on ICD in cancer research have been increasing from 2005 to 2021. China, the United States and France dominated in this area and had close collaborations with many countries. Six of the top 10 most contributive institutions were from France. When it comes to author analysis, Kroemer G, Zitvogel L, Kepp O, Garg AD and Galluzzi L were in both the top 10 most productive authors and top 10 most co-cited authors lists. The co-occurring author keywords could be grouped into three clusters: “biomarkers of ICD”, “nanoparticles” and “combination therapy”. In terms of promising hotspots, keywords (author keywords and KeyWords Plus) with recent citation bursts could be summarized into two aspects: “tumor microenvironment” and “nanoparticles”. Conclusion: Increased attention has been paid to ICD in cancer treatment. However, there are still many unresolved domains in the field of ICD, such as clinical application and molecular mechanisms of this cell death process. ICD-inducing modalities combined with nanotechnology could potentiate the current immunotherapies, and will be hotspots for future research.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fen Hu
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
| | - Yang Cui
- Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shunan Hu
- Department of Neurosurgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| | - Wei Wei
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| |
Collapse
|
8
|
Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines 2022; 10:biomedicines10050974. [PMID: 35625711 PMCID: PMC9138898 DOI: 10.3390/biomedicines10050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over several decades, cell biology research has characterized distinct forms of regulated cell death, identified master regulators such as nuclear factor kappa B (NFκB), and contributed to translating these findings in order to improve anti-cancer therapies. In the era of immunotherapy, however, the field warrants a new appraisal-the targeted induction of immunogenic cell death may offer personalized strategies to optimize anti-tumor immunity. Once again, the spotlight is on NFκB, which is not only a master regulator of cancer cell death, survival, and inflammation, but also of adaptive anti-tumor immune responses that are triggered by dying tumor cells.
Collapse
|
9
|
Seaver K, Kourko O, Gee K, Greer PA, Basta S. IL-27 Improves Prophylactic Protection Provided by a Dead Tumor Cell Vaccine in a Mouse Melanoma Model. Front Immunol 2022; 13:884827. [PMID: 35529885 PMCID: PMC9069009 DOI: 10.3389/fimmu.2022.884827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The protocol used to induce cell death for generating vaccines from whole tumor cells is a critical consideration that impacts vaccine efficacy. Here we compared how different protocols used to induce cell death impacted protection provided by a prophylactic whole tumor cell vaccine in a mouse melanoma model. We found that melanoma cells exposed to γ-irradiation or lysis combined with UV-irradiation (LyUV) provided better protection against tumor challenge than lysis only or cells exposed to UV-irradiation. Furthermore, we found that the immunoregulatory cytokine, IL-27 enhanced protection against tumor growth in a dose-dependent manner when combined with either LyUV or γ-irradiated whole tumor cell vaccine preparations. Taken together, this data supports the use of LyUV as a potential protocol for developing whole tumor cell prophylactic cancer vaccines. We also showed that IL-27 can be used at low doses as a potent adjuvant in combination with LyUV or γ-irradiation treated cancer cells to improve the protection provided by a prophylactic cancer vaccine in a mouse melanoma model.
Collapse
Affiliation(s)
- Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Sameh Basta,
| |
Collapse
|
10
|
Senders ZJ, Martin RCG. Intratumoral Immunotherapy and Tumor Ablation: A Local Approach with Broad Potential. Cancers (Basel) 2022; 14:cancers14071754. [PMID: 35406525 PMCID: PMC8996835 DOI: 10.3390/cancers14071754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Several intratumoral immunotherapeutic agents have shown efficacy in controlling local disease; however, their ability to induce a durable systemic immune response is limited. Likewise, tumor ablation is well-established due to its role in local disease control but generally produces only a modest immunogenic effect. It has recently been recognized, however, that there is potential synergy between these two modalities and their distinct mechanisms of immune modulation. The aim of this review is to evaluate the existing data regarding multimodality therapy with intratumoral immunotherapy and tumor ablation. We discuss the rationale for this therapeutic approach, highlight novel combinations, and address the challenges to their clinical utility. There is substantial evidence that combination therapy with intratumoral immunotherapy and tumor ablation can potentiate durable systemic immune responses and should be further evaluated in the clinical setting.
Collapse
|
11
|
Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022; 14:40-53. [PMID: 35441043 PMCID: PMC9013441 DOI: 10.32607/actanaturae.11523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Apoptosis plays a crucial role in chemotherapy-induced cell death. The conventional theory holding that apoptosis needs to be immunologically silent has recently been revised, and the concept of immunogenic cell death (ICD) has been proposed. This review describes the main features of ICD induction. These ICD markers are important for the effectiveness of anticancer therapy, as well as for basic research into cell death regulation. The mechanism of the "vaccination effect" of dying cancer cells undergoing ICD has been fully described, including the activation of specific antitumor response after re-challenge by the same living tumor cells. This review also discusses the whole set of molecular events attributing cell death to immunogenic type: the exposure of calreticulin and the heat shock protein HSP70 to the outer surface of the cell membrane and the release of the nuclear protein HMGB1 and ATP into the extracellular space. ICD inducers of various nature (chemotherapy drugs, cytotoxic proteins, and oncolytic viruses), as well as physical methods, are classified in the current review.
Collapse
Affiliation(s)
- O. S. Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. D. Novak
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| |
Collapse
|
12
|
Xie Q, Li Z, Liu Y, Zhang D, Su M, Niitsu H, Lu Y, Coffey RJ, Bai M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater 2021; 134:716-729. [PMID: 34329783 DOI: 10.1016/j.actbio.2021.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Abscopal effect is an attractive cancer therapeutic effect referring to tumor regression at a location distant from the primary treatment site. Immunogenic cell death (ICD) offers a mechanistic link between the primary and remote therapeutic effects by activating favorable anti-tumor immune responses. In this study, we induced ICD in colorectal cancer (CRC) cell lines in vitro and in vivo by targeting the 18 kDa translocator protein (TSPO), a mitochondrial receptor overexpressed in CRC. Photodynamic therapy (PDT) using a TSPO-targeted photosensitizer, IR700DX-6T, caused effective apoptotic cell death in fourteen CRC cell lines. In a syngeneic immunocompetent CRC mouse model, the growth of tumors subjected to TSPO-PDT was greatly suppressed. Remarkably, untreated tumors in the opposing flank also showed marked growth suppression. Dendritic and CD8+ T cells were activated after TSPO-PDT treatment, accompanied by decreased Treg cells in both treated and non-treated tumors. In addition, a cancer vaccine developed from TSPO-PDT produced a significant tumor inhibition effect. These results indicate that TSPO-PDT could not only directly suppress tumor growth but also dramatically provoke host anti-tumor immunity, highlighting the potential of TSPO-PDT as a successful therapeutic for CRC that exhibits systemic effects. STATEMENT OF SIGNIFICANCE: Abscopal effect is an attractive cancer therapeutic effect referring to tumor regression at a location distant from the primary treatment site. Immunogenic cell death (ICD) offers a mechanistic link between the primary and remote therapeutic effects by activating favorable anti-tumor immune responses. In this study, we report a new therapeutic approach that can reduce the growth of multiple CRC cell lines by inducing ICD. Notably, a direct and abscopal effect was observed in mouse tumor-derived MC38 cells when injected into syngeneic immunocompetent mice. If comparable effects could be achieved in humans, it would establish a novel paradigm for treating micro- and macro-metastasis.
Collapse
|
13
|
Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, Lefever S, Skirtach AG, Krysko O, Krysko DV. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 2021; 8:jitc-2020-001369. [PMID: 33188036 PMCID: PMC7668384 DOI: 10.1136/jitc-2020-001369] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy represents the future of clinical cancer treatment. The type of cancer cell death determines the antitumor immune response and thereby contributes to the efficacy of anticancer therapy and long-term survival of patients. Induction of immunogenic apoptosis or necroptosis in cancer cells does activate antitumor immunity, but resistance to these cell death modalities is common. Therefore, it is of great importance to find other ways to kill tumor cells. Recently, ferroptosis has been identified as a novel, iron-dependent form of regulated cell death but whether ferroptotic cancer cells are immunogenic is unknown. Methods Ferroptotic cell death in murine fibrosarcoma MCA205 or glioma GL261 cells was induced by RAS-selective lethal 3 and ferroptosis was analyzed by flow cytometry, atomic force and confocal microscopy. ATP and high-mobility group box 1 (HMGB1) release were detected by luminescence and ELISA assays, respectively. Immunogenicity in vitro was analyzed by coculturing of ferroptotic cancer cells with bone-marrow derived dendritic cells (BMDCs) and rate of phagocytosis and activation/maturation of BMDCs (CD11c+CD86+, CD11c+CD40+, CD11c+MHCII+, IL-6, RNAseq analysis). The tumor prophylactic vaccination model in immune-competent and immune compromised (Rag-2−/−) mice was used to analyze ferroptosis immunogenicity. Results Ferroptosis can be induced in cancer cells by inhibition of glutathione peroxidase 4, as evidenced by confocal and atomic force microscopy and inhibitors’ analysis. We demonstrate for the first time that ferroptosis is immunogenic in vitro and in vivo. Early, but not late, ferroptotic cells promote the phenotypic maturation of BMDCs and elicit a vaccination-like effect in immune-competent mice but not in Rag-2−/− mice, suggesting that the mechanism of immunogenicity is very tightly regulated by the adaptive immune system and is time dependent. Also, ATP and HMGB1, the best-characterized damage-associated molecular patterns involved in immunogenic cell death, have proven to be passively released along the timeline of ferroptosis and act as immunogenic signal associated with the immunogenicity of early ferroptotic cancer cells. Conclusions These results pave the way for the development of new therapeutic strategies for cancers based on induction of ferroptosis, and thus broadens the current concept of immunogenic cell death and opens the door for the development of new strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Louis Van der Meeren
- NanoBioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Victoria D Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Tatiana A Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andre G Skirtach
- Cancer Research Institute Ghent, Ghent, Belgium.,NanoBioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent, Belgium.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
Immune Responses Following Locoregional Treatment for Hepatocellular Carcinoma: Possible Roles of Adjuvant Immunotherapy. Pharmaceutics 2021; 13:pharmaceutics13091387. [PMID: 34575463 PMCID: PMC8471821 DOI: 10.3390/pharmaceutics13091387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related deaths worldwide. Unlike other types of cancer, HCC can be treated with locoregional treatments (LRTs) such as radiofrequency ablation (RFA) or transarterial chemoembolization (TACE). However, recurrences following LRTs are common, and strategies to improve long-term outcomes need to be developed. The exhaustion of anti-tumor immunity in HCC has been well established in many reports and the immunomodulatory effects of LRTs (enhancement of tumor antigen-specific T cell responses after RFA, reduction of effector regulatory T cells after TACE) have also been reported in several previous studies. However, a comprehensive review of previous studies and the possible roles of immunotherapy following LRTs in HCC are not known. In this review, we discuss the immunological evidence of current clinical trials using LRTs and combined immunotherapies, and the possible role of this strategy.
Collapse
|
15
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yakkala C, Dagher J, Sempoux C, Chiang CLL, Denys A, Kandalaft LE, Koppolu B, Duran R. Rate of Freeze Impacts the Survival and Immune Responses Post Cryoablation of Melanoma. Front Immunol 2021; 12:695150. [PMID: 34149738 PMCID: PMC8210778 DOI: 10.3389/fimmu.2021.695150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
The emergence of ablative therapies has revolutionized the treatment of inoperable solid tumors. Cryoablation stands out for its uniqueness of operation based on hypothermia, and for its ability to unleash the native tumor antigens, resulting in the generation of anti-tumor immune responses. It is not clearly understood how alterations in the rate of freeze impact the immune response outcomes. In this study, we tested fast freeze and slow freeze rates for their locoregional effectiveness and their ability to elicit immune responses in a B16F10 mouse model of melanoma. Tumor bearing mice treated with fast freeze protocol survived better than the ones treated with slow freeze protocol. Fast freeze resulted in a higher magnitude of CD4+ and CD8+ T-cell responses, and a significantly extended survival post re-challenge. Thus, fast freeze rate should be applied in any future studies employing cryoablation as an in vivo vaccination tool in conjunction with targeted immunotherapies.
Collapse
Affiliation(s)
- Chakradhar Yakkala
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Dagher
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl Lai-Lai Chiang
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Bhanu Koppolu
- Interventional Oncology and Immuno-oncology, BTG/Boston Scientific, Natick, MA, United States
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Ocker M, Mayr C, Kiesslich T, Stintzing S, Neureiter D. Immunmodulatory Treatment Strategies of Hepatocellular Carcinoma: From Checkpoint Inhibitors Now to an Integrated Approach in the Future. Cancers (Basel) 2021; 13:1558. [PMID: 33805268 PMCID: PMC8036419 DOI: 10.3390/cancers13071558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) still represents a human tumor entity with very limited therapeutic options, especially for advanced stages. Here, immune checkpoint modulating drugs alone or in combination with local ablative techniques could open a new and attractive therapeutic "door" to improve outcome and response rate for patients with HCC. METHODS Published data on HCC experimental to pre-(clinical) treatment strategies from standard of care to novel immunomodulatory concepts were summarized and discussed in detail. RESULTS Overall, our knowledge of the role of immune checkpoints in HCC is dramatically increased in the last years. Experimental and pre-clinical findings could be translated to phase 1 and 2 clinical trials and became standard of care. Local ablative techniques of HCC could improve the effectivity of immune checkpoint inhibitors in situ. CONCLUSIONS This review demonstrates the importance of immunomodulatory treatment strategies of HCC, whereby the "best treatment code" of immune checkpoint drugs, combination with ablative techniques and of timing must be evaluated in coming clinical trials.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Gastroenterology (Campus Benjamin Franklin), Charité University Medicine Berlin, 10117 Berlin, Germany;
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim, Germany
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (C.M.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (C.M.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
18
|
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ 2021; 28:843-860. [PMID: 33214663 PMCID: PMC7937679 DOI: 10.1038/s41418-020-00658-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.
Collapse
Affiliation(s)
- Tania Løve Aaes
- grid.11486.3a0000000104788040Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Vandenabeele
- grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.11486.3a0000000104788040Unit of Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
19
|
In Vivo Antitumor Effect against Murine Cells of CT26 Colon Cancer and EL4 Lymphoma by Autologous Whole Tumor Dead Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626851. [PMID: 33623783 PMCID: PMC7875630 DOI: 10.1155/2021/6626851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Active immunotherapy against cancer is based on immune system stimulation, triggering efficient and long-lasting antigen-specific immune responses. Immunization strategies using whole dead cells from tumor tissue, containing specific antigens inside, have become a promising approach, providing efficient lymphocyte activation through dendritic cells (DCs). In this work, we generate whole dead tumor cells from CT26, E.G7, and EL4 live tumor cells as antigen sources, which termed immunogenic cell bodies (ICBs), generated by a simple and cost-efficient starvation-protocol, in order to determine whether are capable of inducing a transversal anticancer response regardless of the tumor type, in a similar way to what we describe previously with B16 melanoma. We evaluated the anticancer effects of immunization with doses of ICBs in syngeneic murine tumor models. Our results showed that mice's immunization with ICBs-E.G7 and ICBs-CT26 generate 18% and 25% of tumor-free animals, respectively. On the other hand, all carrying tumor-animals and immunized with ICBs, including ICBs-EL4, showed a significant delay in their growth compared to not immunized animals. These effects relate to DCs maturation, cytokine production, increase in CD4+T-bet+ and CD4+ROR-γt+ population, and decrease of T regulatory lymphocytes in the spleen. Altogether, our data suggest that whole dead tumor cell-based cancer immunotherapy generated by a simple starvation protocol is a promising way to develop complementary, innovative, and affordable antitumor therapies in a broad spectrum of tumors.
Collapse
|
20
|
Woeste MR, Geller AE, Martin RCG, Polk HC. Optimizing the Combination of Immunotherapy and Trans-Arterial Locoregional Therapy for Stages B and C Hepatocellular Cancer. Ann Surg Oncol 2021; 28:1499-1510. [PMID: 33393028 DOI: 10.1245/s10434-020-09414-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary hepatic malignancy worldwide, is the second leading cause of cancer-related death. Underlying liver dysfunction and advanced stage of disease require treatments to be optimally timed and implemented to minimize hepatic parenchymal damage while maximizing disease response and quality of life. Locoregional therapies (LRTs) such as trans-arterial chemo- and radio-embolization remain effective for intermediate liver-only and advanced HCC disease (i.e., Barcelona-Clinic liver cancer stages B and C) not amendable to primary resection or ablation. Additionally, these minimally invasive interventions have been shown to augment the immune system. This and the recent success of immune-oncologic treatments for HCC have generated interest in applying these therapies in combination with such locoregional interventions to improve patient outcomes and response rates. This report reviews the use of trans-arterial LRTs with immunotherapy for stages B and C HCC, potential biomarkers, and imaging methods for assessing the response and safety of such combinations.
Collapse
Affiliation(s)
- Matthew R Woeste
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Anne E Geller
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Hiram C Polk
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
21
|
Mekonnen ZA, Masavuli MG, Yu W, Gummow J, Whelan DM, Al-Delfi Z, Torresi J, Gowans EJ, Grubor-Bauk B. Enhanced T Cell Responses Induced by a Necrotic Dendritic Cell Vaccine, Expressing HCV NS3. Front Microbiol 2020; 11:559105. [PMID: 33343515 PMCID: PMC7739890 DOI: 10.3389/fmicb.2020.559105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
A vaccine that induces potent, broad and sustained cell-mediated immunity, resulting in effective memory has the potential to restrict hepatitis C (HCV) virus infection. Early, multi-functional CD4+ and CD8+ T cell responses against non-structural protein 3 (NS3) have been associated with HCV clearance. Necrotic cells generate strong immune responses and represent a major antigenic source used by dendritic cells (DC) for processing and presentation, but there is conflicting evidence as to their immunogenicity in vaccination. Immunization with DC loaded with viral antigens has been done in the past, but to date the immunogenicity of live vs. necrotic DC vaccines has not been investigated. We developed a DC2.4 cell line stably expressing HCV NS3, and compared the NS3-specific responses of live vs. necrotic NS3 DC. Vaccination of mice with necrotic NS3 DC increased the breadth of T-cell responses and enhanced the production of IL-2, TNF-α, and IFN-γ by effector memory CD4+ and CD8+T cells, compared to mice vaccinated with live NS3 DC. A single dose of necrotic NS3 DC vaccine induced a greater influx and activation of cross-presenting CD11c+ CD8α+ DC and necrosis-sensing Clec9A+ DC in the draining lymph nodes. Furthermore, using a hydrodynamic challenge model necrotic NS3 DC vaccination resulted in enhanced clearance of NS3-positive hepatocytes from the livers of vaccinated mice. Taken together, the data demonstrate that necrotic DC represent a novel and exciting vaccination strategy capable of inducing broad and multifunctional T cell memory.
Collapse
Affiliation(s)
- Zelalem A Mekonnen
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Wenbo Yu
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Laboratory, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Dawn M Whelan
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Eric J Gowans
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Medina R, Wang H, Caisová V, Cui J, Indig IH, Uher O, Ye J, Nwankwo A, Sanchez V, Wu T, Nduom E, Heiss J, Gilbert MR, Terabe M, Ho W, Zenka J, Pacak K, Zhuang Z. Induction of Immune Response Against Metastatic Tumors via Vaccination of Mannan-BAM, TLR Ligands and Anti-CD40 Antibody (MBTA). ADVANCED THERAPEUTICS 2020; 3. [PMID: 33709018 DOI: 10.1002/adtp.202000044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging evidence is demonstrating the extent of T-cell infiltration within the tumor microenvironment has favorable prognostic and therapeutic implications. Hence, immunotherapeutic strategies that augment the T-cell signature of tumors hold promising therapeutic potential. Recently, immunotherapy based on intratumoral injection of mannan-BAM, toll-like receptor ligands and anti-CD40 antibody (MBTA) demonstrated promising potential to modulate the immune phenotype of injected tumors. The strategy promotes the phagocytosis of tumor cells to facilitate the recognition of tumor antigens and induce a tumor-specific adaptive immune response. Using a syngeneic colon carcinoma model, we demonstrate MBTA's potential to augment CD8+ T-cell tumor infiltrate when administered intratumorally or subcutaneously as part of a whole tumor cell vaccine. Both immunotherapeutic strategies proved effective at controlling tumor growth, prolonged survival and induced immunological memory against the parental cell line. Collectively, our investigation demonstrates MBTA's potential to trigger a potent anti-tumor immune response.
Collapse
Affiliation(s)
- Rogelio Medina
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States.,David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Veronika Caisová
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Jing Cui
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Iris H Indig
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ondrej Uher
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony Nwankwo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Victoria Sanchez
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Tianxia Wu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Edjah Nduom
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Winson Ho
- UT Health Austin Pediatric Neurosciences at Dell Children's, Austin, Texas, United States
| | - Jan Zenka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
23
|
Kim VM, Pan X, Soares KC, Azad NS, Ahuja N, Gamper CJ, Blair AB, Muth S, Ding D, Ladle BH, Zheng L. Neoantigen-based EpiGVAX vaccine initiates antitumor immunity in colorectal cancer. JCI Insight 2020; 5:136368. [PMID: 32376802 DOI: 10.1172/jci.insight.136368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Metastatic colorectal cancer (CRC) is poorly immunogenic, with limited neoantigens that can be targeted by cancer vaccine. Previous approaches to upregulate neoantigen have had limited success. In this study, we investigated the role of a DNA methyltransferase inhibitor (DNMTi), 5-aza-2'-deoxycytidine (DAC), in inducing cancer testis antigen (CTA) expression and evaluated the antitumor efficacy of a combinatorial approach with an epigenetically regulated cancer vaccine EpiGVAX and DAC. A murine model of metastatic CRC treated with combination therapy with an irradiated whole-cell CRC vaccine (GVAX) and DAC was used to assess the antitumor efficacy. DAC significantly induced expression of CTAs in CRC, including a new CTA Tra-P1A with a known neoepitope, P1A. Epigenetically modified EpiGVAX with DAC improved survival outcomes of GVAX. Using the epigenetically regulated antigen Tra-P1A as an example, our study suggests that the improved efficacy of EpiGVAX with DAC may due in part to the enhanced antigen-specific antitumor immune responses. This study shows that epigenetic therapy with DNMTi can not only induce new CTA expression but may also sensitize tumor cells for immunotherapy. Neoantigen-based EpiGVAX combined with DAC can improve the antitumor efficacy of GVAX by inducing antigen-specific antitumor T cell responses to epigenetically regulated proteins.
Collapse
Affiliation(s)
- Victoria M Kim
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xingyi Pan
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Kevin C Soares
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilofer S Azad
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Alex B Blair
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Ding Ding
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Brian H Ladle
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 2020; 96:550-559. [PMID: 32128821 DOI: 10.1111/php.13253] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.
Collapse
Affiliation(s)
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
25
|
Evaluation of cell surface reactive immuno-adjuvant in combination with immunogenic cell death inducing drug for in situ chemo-immunotherapy. J Control Release 2020; 322:519-529. [PMID: 32243973 PMCID: PMC7262586 DOI: 10.1016/j.jconrel.2020.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Apoptotic cells and cell fragments, especially those produced as a result of immunogenic cell death (ICD), are known to be a potential source of cancer vaccine immunogen. However, due to variation between tumours and between individuals, methods to generate such preparations may require extensive ex vivo personalisation. To address this, we have utilised the concept of in situ vaccination whereby an ICD inducing drug is injected locally to generate immunogenic apoptotic fragments/cells. These fragments are then adjuvanted by a co-administered cell reactive CpG adjuvant. We first evaluate means of labelling tumour cells with CpG adjuvant, we then go on to demonstrate in vitro that labelling is preserved following apoptosis and, furthermore, that the apoptotic body-adjuvant complexes are readily transferred to macrophages. In in vivo studies we observe synergistic tumour growth delays and elevated levels of CD4+ and CD8+ cells in tumours receiving adjuvant drug combination. CD4+/CD8+ cells are likewise elevated in the tumour draining lymph node and activated to a greater extent than individual treatments. This study represents the first steps toward the evaluation of rationally formulated drug-adjuvant combinations for in situ chemo-immunotherapy.
Collapse
|
26
|
Chekhonin IV, Kobyakov GL, Gurina OI. [Dendritic cell vaccines in neurological oncology]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:76-85. [PMID: 32207746 DOI: 10.17116/neiro20208401176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dendritic cell-based vaccines are an intensively studied active immunotherapy technology. Aim of this article is to review the results of the key clinical studies of such vaccines in the treatment of neuro-oncological diseases. Their effectiveness was studied most widely in the treatment of malignant glial tumors, the study went from experimental work to phase III clinical studies, preliminary results of which indicate some positive results of this immunotherapy method in adults. Currently, emphasis is also being placed on the identification of clinical and immunological correlates of the patient's response to therapy and on the search for new antigens for sensitization of dendritic cells Studies of dendritic cell vaccines also include a number of other neuro-oncological diseases. A separate part of this article is devoted to the treatment of intracerebral tumors in children, for example, medulloblastomas and gliomas of the pons. In addition, the potential use of dendritic cell vaccines for intracerebral metastases is considered.
Collapse
Affiliation(s)
- I V Chekhonin
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia; N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G L Kobyakov
- N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - O I Gurina
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
27
|
Bhuniya A, Guha I, Ganguly N, Saha A, Dasgupta S, Nandi P, Das A, Ghosh S, Ghosh T, Haque E, Banerjee S, Bose A, Baral R. NLGP Attenuates Murine Melanoma and Carcinoma Metastasis by Modulating Cytotoxic CD8 + T Cells. Front Oncol 2020; 10:201. [PMID: 32211313 PMCID: PMC7076076 DOI: 10.3389/fonc.2020.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neem leaf glycoprotein (NLGP), a natural immunomodulator, attenuates murine carcinoma and melanoma metastasis, independent of primary tumor growth and alterations in basic cellular properties (cell proliferation, cytokine secretion, etc.). Colonization event of invasion–metastasis cascade was primarily inhibited by NLGP, with no effect on metastasis-related invasion, migration, and extravasation. High infiltration of interferon γ (IFN-γ)–secreting cytotoxic CD8+ T cells [CD44+, CD69+, GranB+, IFN-γ+, and interleukin 2+] was documented in the metastatic site of NLGP-treated mice. Systemic CD8+ T cell depletion abolished NLGP-mediated metastasis inhibition and reappeared upon adoptive transfer of NLGP-activated CD8+ T cells. Interferon γ-secreting from CD8+ T cells inhibit the expression of angiogenesis regulatory vascular endothelial growth factor and transforming growth factor β and have an impact on the prevention of colonization. Neem leaf glycoprotein modulates dendritic cells (DCs) for proper antigen presentation by its DC surface binding and upregulation of MHC-I/II, CD86, and CCR7. Neem leaf glycoprotein–treated DCs specifically imprint CXCR3 and CCR4 homing receptors on activated CD8+ T cells, which helps to infiltrate into metastatic sites to restrain colonization. Such NLGP's effect on DCs is translation dependent and transcription independent. Studies using ovalbumin, OVA257−264, and crude B16F10 antigen indicate MHC-I upregulation depends on the quantity of proteasome degradable peptide and only stimulates CD8+ T cells in the presence of antigen. Overall data suggest NLGP inhibits metastasis, in conjunction with tumor growth restriction, and thus might appear as a promising next-generation cancer immunotherapeutic.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arnab Das
- RNA Biology and Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Enamul Haque
- Department of Zoology, Barasat Government College, Barasat, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
28
|
Premortem Tumor Stress in Radioimmunotherapy. Trends Cancer 2020; 6:173-174. [PMID: 32101719 DOI: 10.1016/j.trecan.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
Recent investigations (Rodriguez-Ruiz et al.) have established the counterintuitive idea that delaying apoptosis upon tumor irradiation by caspase 3 inhibition in tumor cells raises the immunogenicity of dying malignant cells.
Collapse
|
29
|
Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied by Immunogenic Cell Death in Murine Models of Lymphoma and Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11122034. [PMID: 31861079 PMCID: PMC6966635 DOI: 10.3390/cancers11122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of caspase-3/7 was increased fourteen-fold as compared with four-fold in EL-4 cells. Moreover, while nsPEF treatments induced the release of the ICD hallmark HMGB1 in both cell lines, extracellular ATP was detected only in CT-26. Finally, in vaccination assays, CT-26 cells treated with nsPEF or doxorubicin equally impaired the growth of tumors at challenge sites eliciting a protective anticancer immune response in 78% and 80% of the animals, respectively. As compared to CT-26, both nsPEF- and mitoxantrone-treated EL-4 cells had a less pronounced effect and protected 50% and 20% of the animals, respectively. These results support our conclusion that nsPEF induce ER stress, accompanied by bona fide ICD.
Collapse
|
30
|
Greten TF, Mauda-Havakuk M, Heinrich B, Korangy F, Wood BJ. Combined locoregional-immunotherapy for liver cancer. J Hepatol 2019; 70:999-1007. [PMID: 30738077 PMCID: PMC6462230 DOI: 10.1016/j.jhep.2019.01.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
Locoregional therapies are commonly used to treat patients with hepatocellular carcinoma. It has been noted for many years that locoregional therapies may have additional systemic effects other than simple tumour elimination. Immunological "side effects" have been described in response to locoregional therapies in animal studies and in patients. With the advent of immunotherapy for hepatocellular carcinoma, there is increasing interest in determining the best way to combine immunotherapy with locoregional therapies. Herein, we provide a compact summary of answered and unanswered questions in the field, including: What animal model is best suited to test combined immune-locoregional treatments? How does tumour cell death affect immune responses? What type of immune responses have been observed in patients treated with different types of locoregional therapies? What can be surmised from the results of the first study testing the combination of locoregional therapy with immune checkpoint blockade? Finally, we discuss the outlook for this rapidly growing area of research, focussing on the issues which must be overcome to bridge the gap between interventional radiology and cancer immunology.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States; NCI CCR Liver Cancer Program, United States.
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, United States; NIBIB & NIH Clinical Center Clinical Translational Research Fellowship Program, United States
| | - Bernd Heinrich
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, United States; NCI CCR Liver Cancer Program, United States
| |
Collapse
|
31
|
Mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Sci Rep 2019; 9:431. [PMID: 30674926 PMCID: PMC6344591 DOI: 10.1038/s41598-018-36527-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20–200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such as necroptosis and autophagy. Our results point at necrosis as the primary mechanism of cell death induced by nsPEF in B16F10 cells. We finally compared the antitumor immunity in animals treated with nsPEF (750, 200-ns, 25 kV/cm, 2 Hz) with animals were tumors were surgically removed. Compared to the naïve group where all animals developed tumors, nsPEF and surgery protected 33% (6/18) and 28.6% (4/14) of the animals, respectively. Our data suggest that, under our experimental conditions, the local ablation by nsPEF restored but did not boost the natural antitumor immunity which stays dormant in the tumor-bearing host.
Collapse
|
32
|
Krysko O, Aaes TL, Kagan VE, D'Herde K, Bachert C, Leybaert L, Vandenabeele P, Krysko DV. Necroptotic cell death in anti-cancer therapy. Immunol Rev 2018; 280:207-219. [PMID: 29027225 DOI: 10.1111/imr.12583] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Necroptosis is one the best-characterized forms of regulated necrosis. Necroptosis is mediated by the kinase activities of receptor interacting protein kinase-1 and receptor interacting protein kinase-3, which eventually lead to the activation of mixed lineage kinase domain-like. Necroptosis is characterized by rapid permeabilization of the plasma membrane, which is associated with the release of the cell content and subsequent exposure of damage-associated molecular patterns (DAMPs) and cytokines/chemokines. This release underlies the immunogenic nature of necroptotic cancer cells and their ability to induce efficient anti-tumor immunity. Triggering necroptosis has become especially important in experimental cancer treatments as an alternative to triggering apoptosis because one of the hallmarks of cancer is the blockade or evasion of apoptosis. In this review, we discuss recent advances in necroptosis research and the functional consequences of necroptotic cancer cell death, with focus on its immunogenicity and its role in the activation of anti-tumor immunity. Next, we discuss the molecular mechanisms of phosphatidylserine exposure during necroptosis and its role in the recognition of necroptotic cells. We also highlight the complex role of the necroptotic pathway in tumor promotion and suppression and in metastasis. Future studies will show whether necroptosis is truly a better strategy to overcome apoptosis resistance and provide the insights needed for development of novel treatment strategies for cancer.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium
| | - Tania Løve Aaes
- VIB-UGent Center for Inflammation Research (IRC), VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katharina D'Herde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research (IRC), VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
34
|
Kelly M, McNeel D, Fisch P, Malkovsky M. Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett 2017; 193:1-10. [PMID: 29129721 DOI: 10.1016/j.imlet.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The success of active immunotherapies in the prevention of many infectious diseases over the course of over 200 years has lead scientists to wonder if the same principles could be applied to cancer. Antigen-specific active immunotherapies for the treatment of cancer have been researched for over two decades, however, the overwhelming majority of these studies have failed to stimulate robust clinical responses. It is clear that current active immunotherapy research should incorporate methods to increase the immunostimulatory capacity of these therapies. To directly address this need, we propose the addition of the immunostimulatory heat shock proteins (HSPs) to active immunotherapeutic strategies to augment their efficacy. Heat shock proteins are a family of highly conserved intracellular chaperone proteins, and are the most abundant family proteins inside cells. This ubiquity, and their robust immunostimulatory capacity, points to their importance in regulation of intracellular processes and, therefore, indicators of loss of cellular integrity if found extracellularly. Thus, we emphasize the importance of taking into consideration the location of vaccine-derived HSP/tumor-antigen complexes when designing active immunotheraputic strategies.
Collapse
Affiliation(s)
- Matthew Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas McNeel
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul Fisch
- Universitätsklinikum Freiburg, Institut für Pathologie, Freiburg, Germany
| | - Miroslav Malkovsky
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Thaiz Rivera Vargas
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
| | - Lionel Apetoh
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
- Centre Georges François Leclerc; Dijon France
| |
Collapse
|
36
|
Morales J, Barrera-Avalos C, Castro C, Castillo S, Barrientos C, Robles-Planells C, López X, Torres E, Montoya M, Cortez-San Martín M, Riquelme D, Escobar A, Fernández R, Imarai M, Sauma D, Rojo LE, Leiva-Salcedo E, Acuña-Castillo C. Dead Tumor Cells Expressing Infectious Salmon Anemia Virus Fusogenic Protein Favor Antigen Cross-Priming In Vitro. Front Immunol 2017; 8:1170. [PMID: 29062313 PMCID: PMC5640808 DOI: 10.3389/fimmu.2017.01170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
Antigen cross-presentation is a crucial step in the assembly of an antitumor immune response leading to activation of naïve CD8 T cells. This process has been extensively used in clinical trials, in which dendritic cells generated in vitro are loaded with tumor antigens and then autotransplanted to the patients. Recently, the use of autologous transplant of dendritic cells fused with dying tumor cells has demonstrated good results in clinical studies. In this work, we generated a similar process in vivo by treating mice with dead tumor cells [cell bodies (CBs)] expressing the fusogenic protein of the infectious salmon anemia virus (ISAV). ISAV fusion protein retains its fusogenic capability when is expressed on mammalian cells in vitro and the CBs expressing it facilitates DCs maturation, antigen transfer by antigen-presenting cells, and increase cross-presentation by DCs in vitro. Additionally, we observed in the melanoma model that CBs with or without ISAV fusion protein reduce tumor growth in prophylactic treatment; however, only ISAV expressing CBs showed an increase CD4 and CD8 cells in spleen. Overall, our results suggest that CBs could be used as a complement with other type of strategies to amplify antitumor immune response.
Collapse
Affiliation(s)
- Jonathan Morales
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Carlos Castro
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Stephanie Castillo
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudio Barrientos
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudia Robles-Planells
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Ximena López
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Ernesto Torres
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Margarita Montoya
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Denise Riquelme
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Leonel E Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Elias Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| |
Collapse
|
37
|
Yang PM, Du JL, Wang GNK, Chia JS, Hsu WB, Pu PC, Sun A, Chiang CP, Wang WB. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell-Vaccinated Mice. Integr Cancer Ther 2017; 16:319-328. [PMID: 27252074 PMCID: PMC5759942 DOI: 10.1177/1534735416651492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. METHODS The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. RESULTS THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. CONCLUSION THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy.
Collapse
Affiliation(s)
- Pei-Ming Yang
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Ling Du
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Jean-San Chia
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Bin Hsu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Ching Pu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andy Sun
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Won-Bo Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Morisada M, Moore EC, Hodge R, Friedman J, Cash HA, Hodge JW, Mitchell JB, Allen CT. Dose-dependent enhancement of T-lymphocyte priming and CTL lysis following ionizing radiation in an engineered model of oral cancer. Oral Oncol 2017; 71:87-94. [PMID: 28688697 PMCID: PMC5528171 DOI: 10.1016/j.oraloncology.2017.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Determine if direct tumor cell cytotoxicity, antigen release, and susceptibility to T-lymphocyte killing following radiation treatment is dose-dependent. MATERIALS AND METHODS Mouse oral cancer cells were engineered to express full-length ovalbumin as a model antigen. Tumor antigen release with uptake and cross presentation of antigen by antigen presenting cells with subsequent priming and expansion of antigen-specific T-lymphocytes following radiation was modeled in vitro and in vivo. T-lymphocyte mediated killing was measured following radiation treatment using a novel impedance-based cytotoxicity assay. RESULTS Radiation treatment induced dose-dependent induction of executioner caspase activity and apoptosis in MOC1 cells. In vitro modeling of antigen release and T-lymphocyte priming demonstrated enhanced proliferation of OT-1 T-lymphocytes with 8Gy treatment of MOC1ova cells compared to 2Gy. This was validated in vivo following treatment of established MOC1ova tumors and adoptive transfer of antigen-specific T-lymphocytes. Using a novel impedance-based cytotoxicity assay, 8Gy enhanced tumor cell susceptibility to T-lymphocyte killing to a greater degree than 2Gy. CONCLUSION In the context of using clinically-relevant doses of radiation treatment as an adjuvant for immunotherapy, 8Gy is superior to 2Gy for induction of antigen-specific immune responses and enhancing tumor cell susceptibility to T-lymphocyte killing. These findings have significant implications for the design of trials combining radiation and immunotherapy.
Collapse
Affiliation(s)
- Megan Morisada
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Ellen C Moore
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Rachel Hodge
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Jay Friedman
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Harrison A Cash
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
39
|
Kumai T, Fan A, Harabuchi Y, Celis E. Cancer immunotherapy: moving forward with peptide T cell vaccines. Curr Opin Immunol 2017; 47:57-63. [PMID: 28734176 DOI: 10.1016/j.coi.2017.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022]
Abstract
Recent advances in cancer immunology, such as the discovery of immune checkpoint inhibitors, have validated immune cells as potential key players for effective cancer treatment. The efficacy of these therapies seems to be codependent on a tumor-reactive T lymphocyte response. For many years, numerous attempts and strategies in developing vaccines to generate tumor-reactive T cells have yielded poor results in the clinic due to suboptimal immunogenicity and the inability to overcome an immunosuppressive tumor microenvironment. In this review, we summarize past and current advances in T cell vaccines and describe our experience in developing optimized methods for antigen/adjuvant selection and vaccine administration in order to induce powerful anti-tumor responses.
Collapse
Affiliation(s)
- Takumi Kumai
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States; Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Japan; Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Japan
| | - Aaron Fan
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
40
|
Abstract
Dying cells have an important role in the initiation of CD8+ T cell-mediated immunity. The cross-presentation of antigens derived from dying cells enables dendritic cells to present exogenous tissue-restricted or tumour-restricted proteins on MHC class I molecules. Importantly, this pathway has been implicated in multiple autoimmune diseases and accounts for the priming of tumour antigen-specific T cells. Recent data have revealed that in addition to antigen, dying cells provide inflammatory and immunogenic signals that determine the efficiency of CD8+ T cell cross-priming. The complexity of these signals has been evidenced by the multiple molecular pathways that result in cell death and that have now been shown to differentially influence antigen transfer and immunity. In this Review, we provide a detailed summary of both the passive and active signals that are generated by dying cells during their initiation of CD8+ T cell-mediated immunity. We propose that molecules generated alongside cell death pathways - inducible damage-associated molecular patterns (iDAMPs) - are upstream immunological cues that actively regulate adaptive immunity.
Collapse
|
41
|
de Freitas LM, Serafim RB, de Sousa JF, Moreira TF, Dos Santos CT, Baviera AM, Valente V, Soares CP, Fontana CR. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer 2017; 17:123. [PMID: 28187758 PMCID: PMC5303234 DOI: 10.1186/s12885-017-3075-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) has proven to be a promising alternative to current cancer treatments, especially if combined with conventional approaches. The technique is based on the administration of a non-toxic photosensitizing agent to the patient with subsequent localized exposure to a light source of a specific wavelength, resulting in a cytotoxic response to oxidative damage. The present study intended to evaluate in vitro the type of induced death and the genotoxic and mutagenic effects of PDT alone and associated with cisplatin. METHODS We used the cell lines SiHa (ATCC® HTB35™), C-33 A (ATCC® HTB31™) and HaCaT cells, all available at Dr. Christiane Soares' Lab. Photosensitizers were Photogem (PGPDT) and methylene blue (MBPDT), alone or combined with cisplatin. Cell death was accessed through Hoechst and Propidium iodide staining and caspase-3 activity. Genotoxicity and mutagenicity were accessed via flow cytometry with anti-gama-H2AX and micronuclei assay, respectively. Data were analyzed by one-way ANOVA with Tukey's posthoc test. RESULTS Both MBPDT and PGPDT induced caspase-independent death, but MBPDT induced the morphology of typical necrosis, while PGPDT induced morphological alterations most similar to apoptosis. Cisplatin predominantly induced apoptosis, and the combined therapy induced variable rates of apoptosis- or necrosis-like phenotypes according to the cell line, but the percentage of dead cells was always higher than with monotherapies. MBPDT, either as monotherapy or in combination with cisplatin, was the unique therapy to induce significant damage to DNA (double strand breaks) in the three cell lines evaluated. However, there was no mutagenic potential observed for the damage induced by MBPDT, since the few cells that survived the treatment have lost their clonogenic capacity. CONCLUSIONS Our results elicit the potential of combined therapy in diminishing the toxicity of antineoplastic drugs. Ultimately, photodynamic therapy mediated by either methylene blue or Photogem as monotherapy or in combination with cisplatin has low mutagenic potential, which supports its safe use in clinical practice for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Laura Marise de Freitas
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil
| | - Rodolfo Bortolozo Serafim
- Faculdade de Medicina de Ribeirao Preto, USP Univ de Sao Paulo, Avenida dos Bandeirantes 3900, Ribeirao Preto, Sao Paulo, 14049-900, Brazil
| | - Juliana Ferreira de Sousa
- Faculdade de Medicina de Ribeirao Preto, USP Univ de Sao Paulo, Avenida dos Bandeirantes 3900, Ribeirao Preto, Sao Paulo, 14049-900, Brazil
| | - Thaís Fernanda Moreira
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil
| | - Cláudia Tavares Dos Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil
| | - Amanda Martins Baviera
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil.,Faculdade de Medicina de Ribeirao Preto, USP Univ de Sao Paulo, Avenida dos Bandeirantes 3900, Ribeirao Preto, Sao Paulo, 14049-900, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara- Rod Araraquara-Jau km 01 s/n, Araraquara, Sao Paulo, 14800-903, Brazil.
| |
Collapse
|
42
|
Heller R, Teissie J, Rols MP, Gehl J, Sersa G, Mir LM, Neal RE, Bhonsle S, Davalos R, Beebe S, Hargrave B, Nuccitelli R, Jiang C, Cemazar M, Tamzali Y, Tozon N. Medical Applications. BIOELECTRICS 2017:275-388. [DOI: 10.1007/978-4-431-56095-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Brown JS, Cunningham JJ, Gatenby RA. Aggregation Effects and Population-Based Dynamics as a Source of Therapy Resistance in Cancer. IEEE Trans Biomed Eng 2016; 64:512-518. [PMID: 28113286 DOI: 10.1109/tbme.2016.2623564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Evolution of resistance allows cancer cells to adapt and continue proliferating even when therapy is initially very effective. Most investigations of treatment resistance focus on the adaptive phenotypic properties of individual cells. We propose that the resistance of a single cell to therapy may extend beyond its own phenotypic and molecular properties and be influenced by the phenotypic properties of surrounding cells and variations in cell density. Similar variation exists in population densities of animals living in groups and can significantly affect the outcome of an external threat. METHODS We investigate aggregation effects in cancer therapy using Darwinian models that integrate phenotypic properties of individual cells and common population effects found in nature to simulate the dynamics of resistance and sensitivity in the diverse cellular environments within cancers. RESULTS We demonstrate that the density of cancer cell populations can profoundly influence response to chemotherapy independent of the properties of individual cells. Most commonly, these aggregation effects benefit the tumor allowing cells to survive even with phenotypic properties that would render them highly vulnerable to therapy in the absence of population effects. CONCLUSION We demonstrate aggregation effects likely play a significant role in conferring resistance to therapy on tumor cells that would otherwise be sensitive to treatment. SIGNIFICANCE The potential role of aggregation in outcomes from cancer therapy has not been previously investigated. Our results demonstrate these dynamics may play a key role in resistance to therapy and could be used to design evolutionarily-enlightened therapies that exploit aggregation effects to improve treatment outcomes.
Collapse
|
44
|
Boosting Tumor-Specific Immunity Using PDT. Cancers (Basel) 2016; 8:cancers8100091. [PMID: 27782066 PMCID: PMC5082381 DOI: 10.3390/cancers8100091] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity.
Collapse
|
45
|
Liu Y, Cao CS, Yu Y, Si YM. Thermal ablation in cancer. Oncol Lett 2016; 12:2293-2295. [PMID: 27703520 PMCID: PMC5038898 DOI: 10.3892/ol.2016.4997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022] Open
Abstract
Radiofrequency ablation (RFA) and cryoablation are alternative forms of therapy used widely in various pathological states, including treatment of carcinogenesis. The reason is that ablation techniques have ability of modulating the immune system. Furthermore, recent studies have applied this form of therapy on tumor microenvironment and in the systematic circulation. Moreover, RFA and cryoablation result in an inflammatory immune response along with tissue disruption. Evidence has demonstrated that these procedures affect carcinogenesis by causing a significant local inflammatory response leading to an immunogenic gene signature. The present review enlightens the current view of these techniques in cancer.
Collapse
Affiliation(s)
- Yong Liu
- Department of Internal Medicine-Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Cheng-Song Cao
- Department of Internal Medicine-Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yang Yu
- Department of Internal Medicine-Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Ya-Meng Si
- Department of Oral and Maxillofacial Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
46
|
D'Hooghe E, Buttiglieri S, Bisignano G, Brusa D, Camussi G, Matera L. Apoptic Renal Carcinoma Cells are Better Inducers of Cross-Presenting Activity than Their Primary Necrotic Counterpart. Int J Immunopathol Pharmacol 2016; 20:707-17. [DOI: 10.1177/039463200702000406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccination with tumor-loaded dendritic cells (DC) is a promising treatment strategy for patients with renal cell carcinoma (RCC). Cells undergoing cell death proved useful as a source of tumor antigen for DC loading. Both apoptotic and necrotic tumor cells have been shown to efficiently load RCC-tumor antigens on DC. However, no direct comparison of these two kinds of death has been attempted in the same RCC. We compared DC pulsed with apoptotic cells, whole cell lysates or their supernatants of the cell line K1, derived from a patient with clear cell RCC, to determine their ability to activate T cells. Monocyte-derived DCs were pulsed with the different sources of tumor antigen, matured and co-cultured with autologouos peripheral blood lymphocytes. After three weekly re-stimulations with DCs, generation of cytotoxic T lymphocytes CTL was assessed by IFN-γ release in an ELISpot assay in the presence of the sensitizing target. By comparison with lysate, apoptotic tumor cells induced a higher frequency of MHC class I-restricted IFN-γ releasing lymphocytes. A higher CTL response was induced by pulsing DCs with cell lysate supernatant compared with whole cell lysate. These results indicate that, although necrotic death has been regarded as highly permissive when compared to apoptotic death, the immunogenicity of the death treatment may vary from one tumor to another.
Collapse
Affiliation(s)
| | - S. Buttiglieri
- Centro per la Ricerca in Medicina Sperimentale (CeRMS), Turin
| | - G. Bisignano
- Laboratorio di Immunologia dei Tumori, Dipartimento di Medicina Interna, Turin University, Turin
| | - D. Brusa
- Laboratorio di Immunologia dei Tumori, Dipartimento di Medicina Interna, Turin University, Turin
| | - G. Camussi
- Dipartimento di Medicina Interna, Cattedra di Nefrologia, Turin University, Turin, Italy
| | - L. Matera
- Laboratorio di Immunologia dei Tumori, Dipartimento di Medicina Interna, Turin University, Turin
| |
Collapse
|
47
|
An interaction quantitative trait loci tool implicates epistatic functional variants in an apoptosis pathway in smallpox vaccine eQTL data. Genes Immun 2016; 17:244-50. [PMID: 27052692 DOI: 10.1038/gene.2016.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/06/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
Abstract
Expression quantitative trait loci (eQTL) studies have functionalized nucleic acid variants through the regulation of gene expression. Although most eQTL studies only examine the effects of single variants on transcription, a more complex process of variant-variant interaction (epistasis) may regulate transcription. Herein, we describe a tool called interaction QTL (iQTL) designed to efficiently detect epistatic interactions that regulate gene expression. To maximize biological relevance and minimize the computational and hypothesis testing burden, iQTL restricts interactions such that one variant is within a user-defined proximity of the transcript (cis-regulatory). We apply iQTL to a data set of 183 smallpox vaccine study participants with genome-wide association study and gene expression data from unstimulated samples and samples stimulated by inactivated vaccinia virus. While computing only 0.15% of possible interactions, we identify 11 probe sets whose expression is regulated through a variant-variant interaction. We highlight the functional epistatic interactions among apoptosis-related genes, DIABLO, TRAPPC4 and FADD, in the context of smallpox vaccination. We also use an integrative network approach to characterize these iQTL interactions in a posterior network of known prior functional interactions. iQTL is an efficient, open-source tool to analyze variant interactions in eQTL studies, providing better understanding of the function of epistasis in immune response and other complex phenotypes.
Collapse
|
48
|
Wu F. Heat-Based Tumor Ablation: Role of the Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:131-53. [DOI: 10.1007/978-3-319-22536-4_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Chernets N, Kurpad DS, Alexeev V, Rodrigues DB, Freeman TA. Reaction Chemistry Generated by Nanosecond Pulsed Dielectric Barrier Discharge Treatment is Responsible for the Tumor Eradication in the B16 Melanoma Mouse Model. PLASMA PROCESSES AND POLYMERS (PRINT) 2015; 12:1400-1409. [PMID: 29104522 PMCID: PMC5667549 DOI: 10.1002/ppap.201500140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melanoma is one of the most aggressive metastatic cancers with resistance to radiation and most chemotherapy agents. This study highlights an alternative treatment for melanoma based on nanosecond pulsed dielectric barrier discharge (nsP DBD). We show that a single nsP DBD treatment, directly applied to a 5 mm orthotopic mouse melanoma tumor, completely eradicates it 66% (n = 6; p ≤ 0.05) of the time. It was determined that reactive oxygen and nitrogen species produced by nsP DBD are the main cause of tumor eradication, while nsP electric field and heat generated by the discharge are not sufficient to kill the tumor. However, we do not discount that potential synergy between each plasma generated component (temperature, electric field and reactive species) can enhance the killing efficacy.
Collapse
Affiliation(s)
- Natalie Chernets
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107
| | - Deepa S. Kurpad
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Dario B. Rodrigues
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
50
|
Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A, Albert ML. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8⁺ T cells. Science 2015; 350:328-34. [PMID: 26405229 PMCID: PMC4651449 DOI: 10.1126/science.aad0395] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor κB (NF-κB)-induced transcription within dying cells. Decoupling NF-κB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.
Collapse
Affiliation(s)
- Nader Yatim
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- INSERM U818, 25 Rue du Docteur Roux, 75015 Paris, France
- Frontières du Vivant Doctoral School, ED474, Université Paris Diderot-Paris 7, Sorbonne Paris Cité, 8-10 Rue Charles V, 75004 Paris, France
| | - Hélène Jusforgues-Saklani
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- INSERM U818, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Susana Orozco
- Department of Immunology, University of Washington, Campus Box 358059, 750 Republican Street, Seattle, WA 98109, USA
| | - Oliver Schulz
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rosa Barreira da Silva
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- INSERM U818, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Campus Box 358059, 750 Republican Street, Seattle, WA 98109, USA
| | - Matthew L. Albert
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- INSERM U818, 25 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|