Published online Jan 9, 2021. doi: 10.5492/wjccm.v10.i1.22
Peer-review started: June 2, 2020
First decision: July 4, 2020
Revised: September 3, 2020
Accepted: November 28, 2020
Article in press: November 28, 2020
Published online: January 9, 2021
Processing time: 217 Days and 16.8 Hours
Sepsis is one of the oldest and most elusive syndromes in medicine, and yet it remains the most significant unmet medical need. In India, more than one million estimated new cases of sepsis are treated in intensive care units (ICUs) each year. CytoSorb® is an International Science Organization 10993 biocompatible device that is approved in the United States under International Science Organization 13485 certification. It is also approved as an extracorporeal cytokine adsorber in the European Union and marketed in 29 countries. In this study, clinical outcomes of patients with septic shock were assessed in terms of reduced mortality as compared to predicted, improved hemodynamics as indicated by mean arterial pressure (MAP) and reduced use of vasopressors and their doses.
Sepsis and septic shock is the leading cause of death among hospitalized patients. CytoSorb® therapy showed promising results in hyperinflammatory condition of critically ill septic patients. This study was conducted to evaluate clinical outcomes in these patients. This study will help clinicians to evaluate the use of CytoSorb® therapy for the patients considering clinical outcomes like MAP and use of vasopressors drugs.
The objective of the study was to evaluate CytoSorb® use as an adjunctive therapy along with the standard of care. The study showed improvement in hemodynamic stability and organ function and reduction in interleukin-6 levels.
This was a prospective, real time, investigator initiated, observational multicenter study conducted in the patients admitted to the ICU with sepsis and septic shock. The improvement of MAP and reduction of vasopressor needs were evaluated as primary outcome. The change in laboratory parameters, sepsis scores [acute physiology and chronic health evaluation (APACHE II) and sequential organ failure assessment (SOFA)] and vital parameters were considered as secondary outcome. The outcomes were also evaluated in the survivor and non-survivor group. Descriptive statistics were used; a P value < 0.05 was considered to be statistically significant.
A total of 45 patients aged ≥ 18 and ≤ 80 years were included; a majority were men (n = 31; 69.0%) with mean age; 47.16 ± 14.11 years. Post CytoSorb® therapy, 26 patients survived and 3 patients were lost to follow-up. In the survivor group, the percentage dose reduction in vasopressor was NE (51.4%), E (69.4%) and V (13.9%). A reduction in interleukin-6 levels (52.3%) was observed in the survivor group. Platelet count improved to 30.1% (P = 0.2938), total lung capacity count significantly reduced by 33% (P < 0.0001). Serum creatinine and serum lactate were reduced by 33.3% (P = 0.0190) and 39.4% (P = 0.0120), respectively. The mean APACHE II score was 25.46 ± 2.91, and SOFA scores was 12.90 ± 4.02 before initiation of CytoSorb® therapy and reduced significantly post therapy (APACHE II 20.1 ± 2.47; P < 0.0001 and SOFA 9.04 ± 3.00; P = 0.0003) in the survivor group. The predicted mortality in our patient population before CytoSorb® therapy was 56.5%, and it reduced to 48.8% (actual mortality) after CytoSorb® therapy. We reported 75% survival rate in patients given treatment in < 24 h of ICU admission and 68% survival rates in patients given treatment within 24-48 h of ICU admission. In the survivor group, the average number of days spent by patients in ICU was 4.44 ± 1.66 d; while in the non-survivor group, the average number of days spent by patients in ICU was 8.5 ± 15.9 d. CytoSorb® therapy was safe and well tolerated with no adverse events reported.
Early initiation of CytoSorb® therapy significantly improves clinical outcomes.
In the future, adding a standard of control group and conducting a study that is powered to compare the time of initiation of CytoSorb® therapy will be necessary.