Elmati PR, Nagaradona T, Jagirdhar GSK, Surani S. Remimazolam in intensive care unit: Potential applications and considerations. World J Crit Care Med 2024; 13(3): 96877 [PMID: 39253308 DOI: 10.5492/wjccm.v13.i3.96877]
Corresponding Author of This Article
Salim Surani, FCCP, MD, MS, Professor, Department of Medicine & Pharmacology, Texas A&M University, 40 Bizzell Street, College Station, TX 77843, United States. srsurani@hotmail.com
Research Domain of This Article
Critical Care Medicine
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Praveen Reddy Elmati, Department of Anesthesiology, Saint Clair Hospital, Dover, NJ 07801, United States
Teja Nagaradona, School of Medicine, St George University, Granada SW17 0BD, West Indies
Gowthami Sai Kogilathota Jagirdhar, Department of Medicine, Saint Michaels Medical Center, Newark, NJ 07107, United States
Salim Surani, Department of Medicine & Pharmacology, Texas A&M University, College Station, TX 77843, United States
Author contributions: Elmati PR designed the overall concept and outline of the manuscript; Elmati PR, Kogilathota Jagirdhar GS, Nagaradona T performed the research and analyzed the data; Elmati PR, Kogilathota Jagirdhar GS, Nagaradona T, and Surani S contributed to the manuscript's writing and editing; All authors have read and approved the final manuscript.
Conflict-of-interest statement: None of the authors have any conflict of interest to disclose.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Salim Surani, FCCP, MD, MS, Professor, Department of Medicine & Pharmacology, Texas A&M University, 40 Bizzell Street, College Station, TX 77843, United States. srsurani@hotmail.com
Received: May 17, 2024 Revised: June 28, 2024 Accepted: July 17, 2024 Published online: September 9, 2024 Processing time: 105 Days and 3.7 Hours
Abstract
This manuscript explores the potential use of Remimazolam in the intensive care unit (ICU) and critical care units, considering its pharmacological characteristics, clinical applications, advantages, and comparative effectiveness over current sedatives and anesthetics. We reviewed existing PubMed and Google Scholar literature to find relevant studies on Remimazolam in ICU. We created search criteria using a combination of free text words, including Remimazolam, critical care, intensive care, sedation, anesthesia, pharmacokinetics, and pharmacodynamics. Relevant articles published in the English language were analyzed and incorporated. Remimazolam is an ultra-short-acting benzodiazepine derivative promising for sedation and anesthesia. It is a safer option for hemodynamically unstable, elderly, or liver or kidney issues. It also has comparable deep sedation properties to propofol in the ICU. Furthermore, it reduces post-procedural delirium and patient comfort and reduces the need for additional sedatives in pediatric patients. In conclusion, Remimazolam is an excellent alternative to current sedatives and anesthetics in the ICU. Its cost is comparable to that of current medications. Further research on its long-term safety in the ICU and its broader application and incorporation into routine use is necessary.
Core Tip: Remimazolam, an ultra-short-acting benzodiazepine, offers rapid onset, stable hemodynamics, and organ-independent metabolism, ideal for intensive care unit sedation and procedural anesthesia. Its advantages over traditional sedatives like midazolam and propofol include faster recovery, reduced hemodynamic instability, and a favorable safety profile. Remimazolam is effective for sedation in hemodynamically unstable patients and those with hepatic or renal impairment, highlighting its potential for broader clinical application. Further research is necessary to establish guidelines for its routine use.