1
|
Battiola T, Viskochil D, Wolken K, Couldwell M. Glucocorticoid Resistance Syndrome in 2 Patients With Diverse Genotype. JCEM CASE REPORTS 2025; 3:luae243. [PMID: 39850725 PMCID: PMC11756296 DOI: 10.1210/jcemcr/luae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 01/25/2025]
Abstract
Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene NR3C1. Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex. Neuropsychiatric symptoms, such as anxiety, depression, anorexia, and insomnia, have also been reported and may be related to CRH excess. Due to the broad clinical spectrum and genetic heterogeneity of the disorder, it remains a diagnostic and treatment challenge. In this report, we describe 2 cases of GRS that highlight the genetic diversity of the condition. Both patients had prominent neuropsychiatric symptoms. While 1 patient had no identifiable variant in the glucocorticoid receptor gene, the other was found to have a novel NR3C1 variant. Low-dose dexamethasone treatment led to clinical improvement in the patient with negative genetic testing, and the second patient continues to be monitored.
Collapse
Affiliation(s)
- Tess Battiola
- University of Utah Health, Division of Endocrinology, Salt Lake City, UT 84108, USA
| | - David Viskochil
- University of Utah Health, Division of Medical Genetics, Salt Lake City, UT 84113 USA
| | - Kaci Wolken
- Haywood Regional Medical Center, Division of Internal Medicine, Clyde, NC 28721, USA
| | - Marie Couldwell
- University of Utah Health, Division of Endocrinology, Salt Lake City, UT 84108, USA
| |
Collapse
|
2
|
Schaefer JK, Engert V, Valk SL, Singer T, Puhlmann LM. Mapping pathways to neuronal atrophy in healthy, mid-aged adults: From chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 2024; 38:100781. [PMID: 38725445 PMCID: PMC11081785 DOI: 10.1016/j.bbih.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults. N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness. Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.
Collapse
Affiliation(s)
- Julia K. Schaefer
- Cognitive Neuropsychology, Department of Psychology, Ludwig-Maximilians-Universität München, Germany
| | - Veronika Engert
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Clinic, Friedrich-Schiller University, Jena, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Lara M.C. Puhlmann
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
3
|
Krishna S, Morton A. Hypercortisolaemia without clinical stigmata of Cushing syndrome. BMJ Case Rep 2024; 17:e258286. [PMID: 38286578 PMCID: PMC10826528 DOI: 10.1136/bcr-2023-258286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
A man in his 20s was referred by his general practitioner because of the finding of adrenocorticotropic hormone (ACTH)-dependent hypercortisolaemia, discovered as part of investigation of fatigue and alopecia. The man had no other clinical findings suggestive of Cushing syndrome. Further investigation revealed intact diurnal rhythm in cortisol production, normal bone density and excluded assay interference. Further investigation revealed the man's sibling had been labelled as having Cushing syndrome because of similar biochemical abnormalities. A diagnosis of familial primary generalised glucocorticoid resistance syndrome was made. Testing for mutations in the NR3C1 gene is awaited.
Collapse
Affiliation(s)
| | - Adam Morton
- Endocrine and Obstetric Medicine, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Role of glucocorticoid receptor mutations in hypertension and adrenal gland hyperplasia. Pflugers Arch 2022; 474:829-840. [PMID: 35732960 PMCID: PMC9217122 DOI: 10.1007/s00424-022-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is one of the leading causes of premature death in humans and exhibits a complex aetiology including environmental and genetic factors. Mutations within the glucocorticoid receptor (GR) can cause glucocorticoid resistance, which is characterized by several clinical features like hypercortisolism, hypokalaemia, adrenal hyperplasia and hypertension. Altered glucocorticoid receptor signalling further affects sodium and potassium homeostasis as well as blood pressure regulation and cell proliferation and differentiation that influence organ development and function. In salt-sensitive hypertension, excessive renal salt transport and sympathetic nervous system stimulation may occur simultaneously, and, thus, both the mineralocorticoid receptor (MR) and the GR-signalling may be implicated or even act interdependently. This review focuses on identified GR mutations in human primary generalized glucocorticoid resistance (PGGR) patients and their related clinical phenotype with specific emphasis on adrenal gland hyperplasia and hypertension. We compare these findings to mouse and rat mutants harbouring genetically engineered mutations to further dissect the cause and/or the consequence of clinical features which are common or different.
Collapse
|
5
|
Association of cancer caregiver stress and negative attribution style with depressive symptoms and cortisol: a cross-sectional study. Support Care Cancer 2022; 30:4945-4952. [PMID: 35179652 PMCID: PMC8854472 DOI: 10.1007/s00520-022-06866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE We examined the effect of informal cancer caregiver stress and negative attribution style (NAS) on depressive symptoms and salivary cortisol. METHOD The sample came from a hospital bone marrow unit and caregiver support organizations and included 60 informal cancer caregivers (51.7% partners) of individuals with cancer (provided care for a median of 27.5 h per week for 12 months) and 46 non-caregiver participants. In this cross-sectional study, participants completed questionnaires assessing NAS and depressive symptoms and provided saliva samples to measure cortisol. RESULTS Linear regressions demonstrated that cancer caregiver stress (p = 0.001) and the cancer caregiver stress by NAS interaction (p = 0.017), but not NAS alone (p = 0.152), predicted depressive symptoms. Caregivers independent of their NAS and non-caregivers high in NAS reported high depression while non-caregivers low in NAS reported low depression. Neither cancer caregiver stress (p = 0.920) nor NAS alone (p = 0.114), but their interaction, predicted cortisol (p = 0.036). Higher NAS was associated with a higher cortisol in both groups while non-caregivers had higher cortisol than caregivers. CONCLUSIONS If the findings can be replicated, consideration of NAS in existing interventions to support informal cancer caregivers in managing chronic stress appears warranted.
Collapse
|
6
|
Salt-Sensitive Hypertension in GR +/- Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. Int J Mol Sci 2021; 22:ijms222413218. [PMID: 34948014 PMCID: PMC8708190 DOI: 10.3390/ijms222413218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.
Collapse
|
7
|
Vassiliadi DA, Vassiliou AG, Ilias I, Tsagarakis S, Kotanidou A, Dimopoulou I. Pituitary-Adrenal Responses and Glucocorticoid Receptor Expression in Critically Ill Patients with COVID-19. Int J Mol Sci 2021; 22:11473. [PMID: 34768903 PMCID: PMC8584241 DOI: 10.3390/ijms222111473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis was described as the principal component of the stress response 85 years ago, along with the acute-phase reaction, and the defense response at the tissue level. The orchestration of these processes is essential since systemic inflammation is a double-edged sword; whereas inflammation that is timely and of appropriate magnitude is beneficial, exuberant systemic inflammation incites tissue damage with potentially devastating consequences. Apart from its beneficial cardiovascular and metabolic effects, cortisol exerts a significant immunoregulatory role, a major attribute being that it restrains the excessive inflammatory reaction, thereby preventing unwanted tissue damage. In this review, we will discuss the role of the HPA axis in the normal stress response and in critical illness, especially in critically ill patients with coronavirus disease 2019 (COVID-19). Finally, a chapter will be dedicated to the findings from clinical studies in critical illness and COVID-19 on the expression of the mediator of glucocorticoid actions, the glucocorticoid receptor (GCR).
Collapse
Affiliation(s)
- Dimitra A. Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, National Expertise Centre for Rare Endocrine Diseases, Evangelismos Hospital, 106 76 Athens, Greece; (D.A.V.); (S.T.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.)
| | - Ioannis Ilias
- Department of Endocrinology, Helena Venizelos Hospital, 115 21 Athens, Greece;
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, National Expertise Centre for Rare Endocrine Diseases, Evangelismos Hospital, 106 76 Athens, Greece; (D.A.V.); (S.T.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.)
| |
Collapse
|
8
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Cheuiche AV, da Silveira LG, de Paula LCP, Lucena IRS, Silveiro SP. Diagnosis and management of precocious sexual maturation: an updated review. Eur J Pediatr 2021; 180:3073-3087. [PMID: 33745030 DOI: 10.1007/s00431-021-04022-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
The classic definition of precocious sexual maturation is the development of secondary sexual characteristics before 8 years of age in girls and before 9 years of age in boys. It is classified as central precocious puberty when premature maturation of the hypothalamic-pituitary-gonadal axis occurs, and as peripheral precocious puberty when there is excessive secretion of sex hormones, independent of gonadotropin secretion. Precocious sexual maturation is more common in girls, generally central precocious puberty of idiopathic origin. In boys, it tends to be linked to central nervous system abnormalities. Clinical evaluation should include a detailed history and physical examination, including anthropometric measurements, calculation of growth velocity, and evaluation of secondary sexual characteristics. The main sign to suspect the onset of puberty is breast tissue development (thelarche) in girls and testicular enlargement (≥4 mL) in boys. Hormonal assessment and imaging are required for diagnosis and identification of the etiology. Genetic testing should be considered if there is a family history of precocious puberty or other clinical features suggestive of a genetic syndrome. Long-acting gonadotropin-releasing hormone analogs are the standard of care for central precocious puberty management, while peripheral precocious puberty management depends on the etiology.Conclusion: The aim of this review is to address the epidemiology, etiology, clinical assessment, and management of precocious sexual maturation. What is Known: • The main sign to suspect the onset of puberty is breast tissue development (thelarche) in girls and testicular enlargement (≥4 mL) in boys. The classic definition of precocious sexual maturation is the development of secondary sexual characteristics before 8 years of age in girls and before 9 years of age in boys. • Long-acting gonadotropin-releasing hormone agonist (GnRHa) is the standard of care for CPP management, and adequate hormone suppression results in the stabilization of pubertal progression, a decline in growth velocity, and a decrease in bone age advancement. What is New: • Most cases of precocious sexual maturation are gonadotropin-dependent and currently assumed to be idiopathic, but mutations in genes involved in pubertal development have been identified, such as MKRN3 and DLK1. • A different preparation of long-acting GnRHa is now available: 6-month subcutaneous injection.
Collapse
Affiliation(s)
- Amanda Veiga Cheuiche
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia Guimarães da Silveira
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leila Cristina Pedroso de Paula
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Sandra Pinho Silveiro
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Vassiliou AG, Athanasiou N, Vassiliadi DA, Jahaj E, Keskinidou C, Kotanidou A, Dimopoulou I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review. World J Crit Care Med 2021; 10:102-111. [PMID: 34316445 PMCID: PMC8291002 DOI: 10.5492/wjccm.v10.i4.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The glucocorticoid receptor (GCR) and the mineralocorticoid receptor (MR) are members of the steroid receptor superfamily of hormone-dependent transcription factors. The receptors are structurally and functionally related. They are localized in the cytosol and translocate into the nucleus after ligand binding. GCRs and MRs can be co-expressed within the same cell, and it is believed that the balance in GCR and MR expression is crucial for homeostasis and plays a key role in normal adaptation. In critical illness, the hypothalamic-pituitary-adrenal axis is activated, and as a consequence, serum cortisol concentrations are high. However, a number of patients exhibit relatively low cortisol levels for the degree of illness severity. Glucocorticoid (GC) actions are facilitated by GCR, whose dysfunction leads to GC tissue resistance. The MR is unique in this family in that it binds to both aldosterone and cortisol. Endogenous GCs play a critical role in controlling inflammatory responses in critical illness. Intracellular GC concentrations can differ greatly from blood levels due to the action of the two 11β-hydroxysteroid dehydrogenase isozymes, type 1 and type 2. 11β-hydroxysteroid dehydrogenases interconvert endogenous active cortisol and intrinsically inert cortisone. The degree of expression of the two isozymes has the potential to dramatically influence local GC availability within cells and tissues. In this review, we will explore the clinical studies that aimed to elucidate the role of MR and GCR expression in the inflammatory response seen in critical illness.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Dimitra A Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, “Evangelismos” Hospital, Athens 10676, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Chrysi Keskinidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| |
Collapse
|
11
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
12
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|
13
|
A Novel Pathogenic Variant in the N-Terminal Domain of the Glucocorticoid Receptor, Causing Glucocorticoid Resistance. Mol Diagn Ther 2020; 24:473-485. [DOI: 10.1007/s40291-020-00480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Vassiliou AG, Stamogiannos G, Jahaj E, Botoula E, Floros G, Vassiliadi DA, Ilias I, Tsagarakis S, Tzanela M, Orfanos SE, Kotanidou A, Dimopoulou I. Longitudinal evaluation of glucocorticoid receptor alpha/beta expression and signalling, adrenocortical function and cytokines in critically ill steroid-free patients. Mol Cell Endocrinol 2020; 501:110656. [PMID: 31756425 DOI: 10.1016/j.mce.2019.110656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/10/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Glucocorticoid actions are mediated by the glucocorticoid receptor (GCR) whose dysfunction leads to glucocorticoid tissue resistance. Our objective was to evaluate GCR-α and GCR-β expression and key steps in the GCR signalling cascade in critical illness. METHODS Expression of GCR and major GCR-target genes, cortisol, adrenocorticotropin (ACTH) and cytokines was measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age- and sex-matched subjects were used as controls. RESULTS Acutely, mRNA expression of GCR-α was 10-fold and of GCR-β 3-fold the expression of controls, while during the sub-acute phase expression of both isoforms was lower compared to controls. Expression of FKBP5 and GILZ decreased significantly. Cortisol levels remained elevated and ACTH increased during the 13-day period. CONCLUSIONS GCR expression and hypothalamic-pituitary-adrenal axis function undergo a biphasic response during critical illness. The dissociation between low GCR expression and high cortisol implies an abnormal stress response.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Stamogiannos
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efi Botoula
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Georgios Floros
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitra A Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Ioannis Ilias
- Endocrine Unit, Elena Venizelou Hospital, Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Marinella Tzanela
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece; 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece; 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
15
|
Lin L, Wu X, Hou Y, Zheng F, Xu R. A Novel Mutation in the Glucocorticoid Receptor Gene Causing Resistant Hypertension: A Case Report. Am J Hypertens 2019; 32:1126-1128. [PMID: 31414133 DOI: 10.1093/ajh/hpz137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin Lin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Weifang Medical University, Weifang, Shandong, China
| | - Xia Wu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yamin Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Fei Zheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets. Front Aging Neurosci 2019; 11:269. [PMID: 31611783 PMCID: PMC6776918 DOI: 10.3389/fnagi.2019.00269] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has important health and economic impacts in the elderly. Despite a better understanding of the molecular mechanisms leading to the appearance of major pathological hallmarks (senile plaques and neurofibrillary tangles), effective treatments are still lacking. Sporadic AD forms (98% of all cases) are multifactorial, and a panoply of risk factors have been identified. While the major risk factor is aging, growing evidence suggests that chronic stress or stress-related disorders increase the probability to develop AD. An early dysregulation of the hypothalamic-pituitary-adrenal axis (HPA axis or stress axis) has been observed in patients. The direct consequence of such perturbation is an oversecretion of glucocorticoids (GC) associated with an impairment of its receptors (glucocorticoid receptors, GR). These steroids hormones easily penetrate the brain and act in synergy with excitatory amino acids. An overexposure could be highly toxic in limbic structures (prefrontal cortex and hippocampus) and contribute in the cognitive decline occurring in AD. GC and GR dysregulations seem to be involved in lots of functions disturbed in AD and a vicious cycle appears, where AD induces HPA axis dysregulation, which in turn potentiates the pathology. This review article presents some preclinical and clinical studies focusing on the HPA axis hormones and their receptors to fight AD. Due to its primordial role in the maintenance of homeostasis, the HPA axis appears as a key-actor in the etiology of AD and a prime target to tackle AD by offering multiple angles of action.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| |
Collapse
|
17
|
Papadopoulou Z, Vlaikou AM, Theodoridou D, Markopoulos GS, Tsoni K, Agakidou E, Drosou-Agakidou V, Turck CW, Filiou MD, Syrrou M. Stressful Newborn Memories: Pre-Conceptual, In Utero, and Postnatal Events. Front Psychiatry 2019; 10:220. [PMID: 31057437 PMCID: PMC6482218 DOI: 10.3389/fpsyt.2019.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Early-life stressful experiences are critical for plasticity and development, shaping adult neuroendocrine response and future health. Stress response is mediated by the autonomous nervous system and the hypothalamic-pituitary-adrenal (HPA) axis while various environmental stimuli are encoded via epigenetic marks. The stress response system maintains homeostasis by regulating adaptation to the environmental changes. Pre-conceptual and in utero stressors form the fetal epigenetic profile together with the individual genetic profile, providing the background for individual stress response, vulnerability, or resilience. Postnatal and adult stressful experiences may act as the definitive switch. This review addresses the issue of how preconceptual in utero and postnatal events, together with individual differences, shape future stress responses. Putative markers of early-life adverse effects such as prematurity and low birth weight are emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of such events are discussed.
Collapse
Affiliation(s)
- Zoe Papadopoulou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantina Tsoni
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Eleni Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Vasiliki Drosou-Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Harvey MW, Farrell AK, Imami L, Carré JM, Slatcher RB. Maternal attachment avoidance is linked to youth diurnal cortisol slopes in children with asthma. Attach Hum Dev 2018; 21:23-37. [PMID: 30406724 DOI: 10.1080/14616734.2018.1541514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prior evidence suggests that an individual's attachment orientation is linked to the health and health-related biology of his/her romantic relationship partners. The current study examined whether this effect extends to parent-child relationships. Specifically, we investigated the association between maternal attachment anxiety and avoidance and diurnal cortisol of offspring. In a sample of 138 youth with asthma and their primary caregivers, caregivers reported their attachment orientations, and their children (aged 10-17) supplied four saliva samples per day over four days to assess diurnal cortisol patterns. Growth curve analyses revealed no links to caregiver attachment anxiety, but caregiver attachment avoidance was significantly associated with children's diurnal cortisol slopes, such that greater attachment avoidance predicted flatter diurnal cortisol slopes. Maternal warmth did not mediate this link. These results support the possibility that an individual's adult attachment orientation may "get under the skin" of family members to influence their health-related biology. Future research should seek to determine the causal direction of this association and mechanisms of this effect.
Collapse
Affiliation(s)
- Michael W Harvey
- a Department of Phsychology , Wayne State University , Detroit , USA
| | - Allison K Farrell
- a Department of Phsychology , Wayne State University , Detroit , USA
| | - Ledina Imami
- a Department of Phsychology , Wayne State University , Detroit , USA
| | - Justin M Carré
- b Departmnt of Psychology , Nipissing University , North Bay , Ontario , Canada
| | | |
Collapse
|
19
|
Dare JB, Arogundade B, Awoniyi OO, Adegoke AA, Adekomi DA. Dexamethasone as endocrine disruptor; type I and type II (anti) oestrogenic actions on the ovary and uterus of adult Wistar rats ( Rattus Novergicus). JBRA Assist Reprod 2018; 22:307-313. [PMID: 30175909 PMCID: PMC6210616 DOI: 10.5935/1518-0557.20180061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective Dexamethasone is a widely used glucocorticoid, which has been prescribed
increasingly in recent years. The effects of Dexamethasone on the ovary and
uterus was investigated in present study. Methods Twenty (20) adult female Wistar rats, weighing 130-170 g were assigned to
four (4) groups of five (5) animals each. The rats in the control group
received saline, while the rats in the experimental group was subjected to
oral treatment of dexamethasone of 12 mg/kg, 10 mg/kg, and 7 mg/kg doses
daily for a period of 10 days, respectively. The rats were slaughtered after
24 hours of the last administration, and the uterus and ovaries were
harvested following abdominal incision. Histological and biochemical
investigations were carried out and the results were analyzed using ANOVA
with the Graph-Pad prism software package 6. Results There was a significant decrease in the activities of the carbohydrate
metabolic enzymes of the uterus in the dexamethasone-treated groups compared
to the control group (p<0.05). Vacuolation, atrophy,
thick epithelium, enlarged cells, inactive interstitial glands and
follicular cyst, characterized the histological observation in the
dexamethasone-treated groups in a dose-dependent manner. Conclusion This present study revealed that high-dose dexamethasone causes multiple
changes in the histological features of the ovary and uterus, exerting type
I and type II anti-oestrogenic effects on the female reproductive
compartment.
Collapse
Affiliation(s)
- Joseph Babatunde Dare
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Babajide Arogundade
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olakunle Oladipupo Awoniyi
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Adebiyi Aderinola Adegoke
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Damilare Adedayo Adekomi
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
20
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
21
|
Sterling S, Chi F, Weisner C, Grant R, Pruzansky A, Bui S, Madvig P, Pearl R. Association of behavioral health factors and social determinants of health with high and persistently high healthcare costs. Prev Med Rep 2018; 11:154-159. [PMID: 30003015 PMCID: PMC6039851 DOI: 10.1016/j.pmedr.2018.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/27/2023] Open
Abstract
A high proportion of U.S. health care costs are attributable to a relatively small proportion of patients. Understanding behavioral and social factors that predict initial and persistent high costs for these "high utilizers" is critical for health policy-makers. This prospective observational study was conducted at Kaiser Permanente Northern California (KPNC), an integrated healthcare delivery system with 4.1 million members. A stratified random sample of high-cost vs. non-high-cost adult KPNC members matched by age, gender, race/ethnicity, type of health insurance, and medical severity (N = 378) was interviewed between 3/14/2013 and 3/20/2014. Data on health care costs and clinical diagnoses between 1/1/2008 and 12/31/2012 were derived from the electronic health record (EHR). Social-economic status, depression symptoms, adverse childhood experiences (ACEs), interpersonal violence, financial stressors, neighborhood environment, transportation access, and patient activation and engagement were obtained through telephone interviews. Initial and subsequent high-cost status were defined as being classified in top 20% cost levels over 1/1/2009-12/31/2011 and 1/1/2012-12/31/2012, respectively. Psychiatric diagnosis (OR 2.55, 95% CI 1.52-4.29, p < 0.001), financial stressors (OR 1.97, 95% CI 1.19-3.26, p = 0.009), and ACEs (OR 1.10, 95% CI 1.00-1.20, p = 0.051) predicted initial high-cost status. ACEs alone predicted persistent high-cost status in the subsequent year (OR 1.12, 95% CI 1.00-1.25, p = 0.050). Non-medical factors such as psychiatric problems, financial stressors and adverse childhood experiences contribute significantly to the likelihood of high medical utilization and cost. Efforts to predict and reduce high utilization must include measuring and potentially addressing these factors.
Collapse
Affiliation(s)
- Stacy Sterling
- Division of Research, Kaiser Permanente Northern California, United States
| | - Felicia Chi
- Division of Research, Kaiser Permanente Northern California, United States
| | - Constance Weisner
- Division of Research, Kaiser Permanente Northern California, United States
- University of California, San Francisco, United States
| | - Richard Grant
- Division of Research, Kaiser Permanente Northern California, United States
| | | | - Sandy Bui
- The Permanente Medical Group, United States
| | | | | |
Collapse
|
22
|
Vitellius G, Trabado S, Bouligand J, Delemer B, Lombès M. Pathophysiology of Glucocorticoid Signaling. ANNALES D'ENDOCRINOLOGIE 2018; 79:98-106. [PMID: 29685454 DOI: 10.1016/j.ando.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Séverine Trabado
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Jérôme Bouligand
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Brigitte Delemer
- Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Marc Lombès
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie et des maladies de la reproduction, hôpitaux universitaires Paris-Sud, CHU Bicêtre, AH-HP, 94275 Le Kremlin Bicêtre, France.
| |
Collapse
|
23
|
Molnár Á, Patócs A, Likó I, Nyírő G, Rácz K, Tóth M, Sármán B. An unexpected, mild phenotype of glucocorticoid resistance associated with glucocorticoid receptor gene mutation case report and review of the literature. BMC MEDICAL GENETICS 2018; 19:37. [PMID: 29510671 PMCID: PMC5840839 DOI: 10.1186/s12881-018-0552-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/23/2018] [Indexed: 12/03/2022]
Abstract
Background Glucocorticoid resistance is a rare, sporadic or familial condition caused by mutation of the gene encoding the glucocorticoid receptor (GR). Clinically it is characterized by symptoms developed due to local, tissue-specific, or generalized partial insensitivity to glucocorticoids. Case presentation A 31-year-old woman was evaluated because of infertility at the Endocrine Unit of the 2nd Department of Medicine, Semmelweis University. During her laboratory investigations, elevated serum and salivary cortisol were observed which failed to be suppressed after administration of 1 mg dexamethasone. 24 h urinary cortisol was increased, but a normal midnight serum cortisol was detected suggesting a maintained circadian rhythm. Plasma dehydroepiandrosterone-sulfate and androstendione levels were also elevated. Repeated plasma ACTH measurements indicated slightly elevated or normal values. Bone mineral density was normal. All laboratory results confirmed the diagnosis of glucocorticoid resistance. Genetic counseling followed by Sanger sequencing of the coding region of the gene encoding human glucocorticoid receptor was performed and a missense mutation (Arg714Gln, R714Q) in a heterozygous form was detected. Following family screening, the same mutation was found in her clinically-healthy 35-year-old sister who had no fertility problems.This variant was not detected in more than 60 patients and controls tested either for glucocorticoid resistance or Cushing’s syndrome in our Laboratory and it was absent in Exome Variant Server, HumanGene Mutation Database and ExAC databases. Conclusions Our case fulfils the diagnostic criteria of glucocorticoid resistance, also named Chrousos syndrome. The glucocorticoid receptor gene mutation detected in our patient has been already reported in a 2-year-old child with hypoglycaemia, hypokalaemia, hypertension and premature puberty. These distinct phenotypes may suggest that other factors may modify the functional consequences of the R714Q variant of GR.
Collapse
Affiliation(s)
- Ágnes Molnár
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, Budapest, H-1088, Hungary.,Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumours Research Group, Budapest, Hungary
| | - Attila Patócs
- Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumours Research Group, Budapest, Hungary. .,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - István Likó
- Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumours Research Group, Budapest, Hungary
| | - Gábor Nyírő
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, Budapest, H-1088, Hungary.,Hungarian Academy of Sciences and Semmelweis University Molecular Medicine Research Group, Semmelweis University - Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Rácz
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, Budapest, H-1088, Hungary.,Hungarian Academy of Sciences and Semmelweis University Molecular Medicine Research Group, Semmelweis University - Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Tóth
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, Budapest, H-1088, Hungary
| | - Beatrix Sármán
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, Budapest, H-1088, Hungary
| |
Collapse
|
24
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
25
|
Urbanska AM, Zhang X, Prakash S. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents. Cell Biochem Biophys 2017; 72:757-69. [PMID: 27352189 DOI: 10.1007/s12013-015-0528-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions between the intestinal microbiota, colonic epithelial barrier, and host immune system, are also discussed.
Collapse
Affiliation(s)
- Aleksandra Malgorzata Urbanska
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering, Physiology, and Artificial Cells and Organs Research Center, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada
| | - Xiaoying Zhang
- National Hepatobiliary and Enteric Surgery Research Center, Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering, Physiology, and Artificial Cells and Organs Research Center, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
26
|
Wippert PM, Rector M, Kuhn G, Wuertz-Kozak K. Stress and Alterations in Bones: An Interdisciplinary Perspective. Front Endocrinol (Lausanne) 2017; 8:96. [PMID: 28507534 PMCID: PMC5410657 DOI: 10.3389/fendo.2017.00096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 11/29/2022] Open
Abstract
Decades of research have demonstrated that physical stress (PS) stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS) also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic-pituitary-adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone) and proposing new research directions.
Collapse
Affiliation(s)
- Pia-Maria Wippert
- Department of Health Sciences, Institute of Sociology of Health and Physical Activity, University of Potsdam, Potsdam, Germany
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- *Correspondence: Pia-Maria Wippert,
| | - Michael Rector
- Department of Health Sciences, Institute of Sociology of Health and Physical Activity, University of Potsdam, Potsdam, Germany
| | - Gisela Kuhn
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Sciences, Institute of Sociology of Health and Physical Activity, University of Potsdam, Potsdam, Germany
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Schön Klinik München Harlaching, Munich, Germany
- Spine Center, Academic Teaching Hospital and Spine Research Institute, Paracelsus Private Medical University Salzburg, Salzburg, Austria
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
28
|
Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest 2015; 45:504-14. [PMID: 25715669 DOI: 10.1111/eci.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary Generalized Glucocorticoid Resistance or Chrousos syndrome is a rare genetic condition characterized by end-organ insensitivity to glucocorticoids owing to inactivating mutations of the NR3C1 gene. MATERIALS AND METHODS We conducted a systematic review of the published, peer-reviewed medical literature using MEDLINE (1975 through November 2014) to identify original articles and reviews on this topic. The search terms included 'primary generalized glucocorticoid resistance', 'Chrousos syndrome', 'glucocorticoid receptor gene' and 'glucocorticoid receptor mutations'. RESULTS Only a few cases of Chrousos syndrome have been described to date, ranging from asymptomatic to severe forms of mineralocorticoid and/or androgen excess. All reported cases have been associated with point mutations or deletions in the NR3C1 gene. The tremendous progress of molecular biology has enabled us to apply standard methods to investigate the molecular mechanisms of action of the mutant glucocorticoid receptors (GRs). We and others have identified and functionally characterized novel mutations causing Chrousos syndrome, while structural biology has enabled us to have a better understanding of how conformational changes of the receptor cause glucocorticoid resistance. In this review, we also present our results of the functional characterization of two recently described mutations, and we discuss the diagnostic approaches and therapeutic management of patients with Chrousos syndrome. CONCLUSIONS Although Chrousos syndrome is a rare condition, many clinical cases remain unrecognized for a long time. We recommend determination of the 24-h urinary free cortisol excretion and sequencing of the NR3C1 gene in patients with hyperandrogenism and/or hypertension of unknown origin.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | |
Collapse
|
29
|
A new technique for quantitative determination of dexamethasone in pharmaceutical and biological samples using kinetic spectrophotometric method. Int J Anal Chem 2015; 2015:439271. [PMID: 25737724 PMCID: PMC4337262 DOI: 10.1155/2015/439271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 11/24/2022] Open
Abstract
Dexamethasone is a type of steroidal medications that is prescribed in many cases. In this study, a new reaction system using kinetic spectrophotometric method for quantitative determination of dexamethasone is proposed. The method is based on the catalytic effect of dexamethasone on the oxidation of Orange G by bromate in acidic media. The change in absorbance as a criterion of the oxidation reaction progress was followed spectrophotometrically. To obtain the maximum sensitivity, the effective reaction variables were optimized. Under optimized experimental conditions, calibration graph was linear over the range 0.2–54.0 mg L−1. The calculated detection limit (3sb/m) was 0.14 mg L−1 for six replicate determinations of blank signal. The interfering effect of various species was also investigated. The present method was successfully applied for the determination of dexamethasone in pharmaceutical and biological samples satisfactorily.
Collapse
|
30
|
Recurrent gain-of-function USP8 mutations in Cushing's disease. Cell Res 2015; 25:306-17. [PMID: 25675982 PMCID: PMC4349249 DOI: 10.1038/cr.2015.20] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Cushing's disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing's syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing's disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing's disease and provides insights into the therapeutics of this disease.
Collapse
|
31
|
Raff H, Sharma ST, Nieman LK. Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing's syndrome, adrenal insufficiency, and congenital adrenal hyperplasia. Compr Physiol 2014; 4:739-69. [PMID: 24715566 DOI: 10.1002/cphy.c130035] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing's syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing's syndrome). Endogenous Cushing's syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing's syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control.
Collapse
Affiliation(s)
- Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute and Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | |
Collapse
|
32
|
Straub RH. Rheumatoid arthritis--a neuroendocrine immune disorder: glucocorticoid resistance, relative glucocorticoid deficiency, low-dose glucocorticoid therapy, and insulin resistance. Arthritis Res Ther 2014; 16 Suppl 2:I1. [PMID: 25611004 PMCID: PMC4249488 DOI: 10.1186/ar4684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
33
|
Do Handling and Transport Stress Influence Adrenocortical Response in the Tortoises (Testudo hermanni)? ISRN VETERINARY SCIENCE 2014; 2014:798273. [PMID: 24977048 PMCID: PMC4060555 DOI: 10.1155/2014/798273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 11/17/2022]
Abstract
The goal of this study was to analyze circulating cortisol levels from tortoises (Testudo hermanni) to establish reference intervals and to develop guidelines for the interpretation of the effect of handling and transport stress. Blood samples were obtained from the caudal venous from 23 healthy juvenile tortoises (9 males and 14 females), aged 8-20 years, in basal condition, four weeks prior to and four weeks following handling and short transportation. The study was carried out on the experimental group: 10 tortoises, 4 males and 6 females, and on a control group: 13 tortoises, 5 males and 8 females. Compared to basal values, circulating cortisol concentrations was higher after handling and transport (+286%; P < 0.001), with an increase of +246% (P < 0.001) in males, +236% (P < 0.005) in females, +370% (P < 0.005) in subjects aged 8-12 years, and +240% (P < 0.001) in subjects aged 13-20 years. These observations support the hypotheses that cortisol may act to mediate the effects of handling and transport stress in this species and that four weeks following handling and transport were insufficient to restore their homeostasis.
Collapse
|
34
|
Nicolaides NC, Roberts ML, Kino T, Braatvedt G, Hurt DE, Katsantoni E, Sertedaki A, Chrousos GP, Charmandari E. A novel point mutation of the human glucocorticoid receptor gene causes primary generalized glucocorticoid resistance through impaired interaction with the LXXLL motif of the p160 coactivators: dissociation of the transactivating and transreppressive activities. J Clin Endocrinol Metab 2014; 99:E902-7. [PMID: 24483153 PMCID: PMC4010692 DOI: 10.1210/jc.2013-3005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary generalized glucocorticoid resistance is a rare genetic disorder characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. The molecular basis of the condition has been ascribed to inactivating mutations in the human glucocorticoid receptor (hGR) gene. OBJECTIVE The objective of the study was to present three new cases caused by a novel mutation in the hGR gene and to delineate the molecular mechanisms through which the mutant receptor impairs glucocorticoid signal transduction. DESIGN AND RESULTS The index case (father) and his two daughters presented with increased urinary free cortisol excretion and resistance of the hypothalamic-pituitary-adrenal axis to dexamethasone suppression in the absence of clinical manifestations suggestive of Cushing syndrome. All subjects harbored a novel, heterozygous, point mutation (T→G) at nucleotide position 1724 of the hGR gene, which resulted in substitution of valine by glycine at amino acid 575 of the receptor. Compared with the wild-type receptor, the hGRαV575G demonstrated a significant (33%) reduction in its ability to transactivate the mouse mammary tumor virus promoter in response to dexamethasone, a 50% decrease in its affinity for the ligand, and a 2.5-fold delay in nuclear translocation. Although it did not exert a dominant negative effect on the wild-type receptor and preserved its ability to bind to DNA, hGRαV575G displayed significantly enhanced (∼80%) ability to transrepress the nuclear factor-κΒ signaling pathway. Finally, the mutant receptor hGRαV575G demonstrated impaired interaction with the LXXLL motif of the glucocorticoid receptor-interacting protein 1 coactivator in vitro and in computer-based structural simulation via its defective activation function-2 (AF-2) domain. CONCLUSIONS The natural mutant receptor hGRαV575G causes primary generalized glucocorticoid resistance by affecting multiple steps in the glucocorticoid signaling cascade, including the affinity for the ligand, the time required for nuclear translocation, and the interaction with the glucocorticoid-interacting protein-1 coactivator.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism, and Diabetes (N.C.N., M.L.R., A.S., G.P.C., E.C.), First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, and Divisions of Endocrinology and Metabolism (N.C.N., M.L.R., A.S., G.P.C., E.C.) and Hematology (E.K.), Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Unit on Molecular Hormone Action (T.K.), Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, and Bioinformatics and Computational Biosciences Branch (D.E.H.), Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Medicine (G.B.), University of Auckland, 1142 Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jeanneteau F, Chao MV. Are BDNF and glucocorticoid activities calibrated? Neuroscience 2013; 239:173-95. [PMID: 23022538 PMCID: PMC3581703 DOI: 10.1016/j.neuroscience.2012.09.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of 'BDNF therapies', however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitates stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles shared by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects.
Collapse
Affiliation(s)
- F Jeanneteau
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
36
|
Roberts ML, Kino T, Nicolaides NC, Hurt DE, Katsantoni E, Sertedaki A, Komianou F, Kassiou K, Chrousos GP, Charmandari E. A novel point mutation in the DNA-binding domain (DBD) of the human glucocorticoid receptor causes primary generalized glucocorticoid resistance by disrupting the hydrophobic structure of its DBD. J Clin Endocrinol Metab 2013; 98:E790-5. [PMID: 23426617 PMCID: PMC3615201 DOI: 10.1210/jc.2012-3549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary generalized glucocorticoid resistance is a rare genetic condition characterized by partial end-organ insensitivity to glucocorticoids. Most affected subjects present with clinical manifestations of mineralocorticoid and androgen excess. The condition has been associated with inactivating mutations in the human glucocorticoid receptor (hGR) gene, which impair the molecular mechanisms of hGRα action, thereby reducing tissue sensitivity to glucocorticoids. OBJECTIVE ΤHE aim of our study was to investigate the molecular mechanisms through which one previously described natural heterozygous V423A mutation, the second mutation detected in the DNA-binding domain (DBD) of the hGRα, affects glucocorticoid signal transduction. DESIGN AND RESULTS Compared with the wild-type receptor, hGRαV423A demonstrated a 72% reduction in its ability to transactivate the glucocorticoid-inducible mouse mammary tumor virus promoter in response to dexamethasone. The hGRαV423A receptor showed a significant reduction in its ability to bind to glucocorticoid-response elements of glucocorticoid-responsive genes, owing to structural alterations of the DBD confirmed by computer-based structural analysis. In addition, hGRαV423A demonstrated a 2.6-fold delay in nuclear translocation following exposure to the ligand, although it did not exert a dominant negative effect on the wild-type hGRα, had a similar affinity to the ligand with the wild-type receptor, and displayed a normal interaction with the GRIP1 coactivator in vitro. CONCLUSIONS The natural mutant receptor hGRαV423A causes primary generalized glucocorticoid resistance by affecting multiple steps in the cascade of glucocorticoid receptor action, which primarily involve decreased ability to bind to target glucocorticoid response elements and delayed translocation into the nucleus.
Collapse
Affiliation(s)
- Michael L Roberts
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Charmandari E, Kino T, Chrousos GP. Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. ENDOCRINE DEVELOPMENT 2013; 24:67-85. [PMID: 23392096 PMCID: PMC4133123 DOI: 10.1159/000342505] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Familial or sporadic primary generalized glucocorticoid resistance or Chrousos syndrome is a rare genetic condition characterized by generalized, partial, target-tissue insensitivity to glucocorticoids and a consequent hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis. Primary generalized glucocorticoid hypersensitivity (PGGH) represents the mirror image of the former, and is characterized by generalized, partial, target-tissue hypersensitivity to glucocorticoids, and compensatory hypoactivation of the HPA axis. The molecular basis of both conditions has been ascribed to mutations in the human glucocorticoid receptor (hGR) gene, which impair the molecular mechanisms of hGR action and alter tissue sensitivity to glucocorticoids. This review summarizes the pathophysiology, molecular mechanisms and clinical aspects of Chrousos syndrome and PGGH.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | |
Collapse
|
38
|
Harris BN, Saltzman W, de Jong TR, Milnes MR. Hypothalamic-pituitary-adrenal (HPA) axis function in the California mouse (Peromyscus californicus): Changes in baseline activity, reactivity, and fecal excretion of glucocorticoids across the diurnal cycle. Gen Comp Endocrinol 2012; 179:436-50. [PMID: 23026495 PMCID: PMC3513568 DOI: 10.1016/j.ygcen.2012.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/07/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
The California mouse, Peromyscus californicus, is an increasingly popular animal model in behavioral, neural, and endocrine studies, but little is known about its baseline hypothalamic-pituitary-adrenal (HPA) axis activity or HPA responses to stressors. We characterized plasma corticosterone (CORT) concentrations in P. californicus under baseline conditions across the diurnal cycle, in response to pharmacological manipulation of the HPA axis, and in response to a variety of stressors at different times of day. In addition, we explored the use of fecal samples to monitor adrenocortical activity non-invasively. California mice have very high baseline levels of circulating CORT that change markedly over 24h, but that do not differ between the sexes. This species may be somewhat glucocorticoid-resistant in comparison to other rodents as a relatively high dose of dexamethasone (5mg/kg, s.c.) was required to suppress plasma CORT for 8h post-injection. CORT responses to stressors and ACTH injection differed with time of day, as CORT concentrations were elevated more readily during the morning (inactive period) than in the evening (active period) when compared to time-matched control. Data from (3)H-CORT injection studies show that the time course for excretion of fecal CORT, or glucocorticoid metabolites, differs with time of injection. Mice injected in the evening excreted the majority of fecal radioactivity 2-4h post-injection whereas mice injected during the morning did so at 14-16h post-injection. Unfortunately, the antibody we used does not adequately bind the most prevalent fecal glucocorticoid metabolites and therefore we could not validate its use for fecal assays.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
39
|
Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity: The End-Organ Involvement in the Stress Response. Sci Signal 2012; 5:pt5. [DOI: 10.1126/scisignal.2003337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Heffner KL. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin North Am 2011; 31:95-108. [PMID: 21094926 DOI: 10.1016/j.iac.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Age-related changes in immune function leave older adults at risk for a host of inflammatory diseases. Immune-mediated inflammatory processes are regulated by neuroendocrine hormones, including glucocorticoids, dehydroepiandrosterone, and the catecholamines, epinephrine, and norepinephrine. This regulation, however, becomes impaired in older adults in light of age-related changes in endocrine function. Chronic stress shows similarly harmful effects on neuroendocrine and immune function and may, therefore, combine with age to further increase disease risk in older adults. This article highlights evidence for the impact of age and stress on neuroendocrine regulation of inflammatory processes that may substantially increase risk for inflammatory disease at older ages.
Collapse
Affiliation(s)
- Kathi L Heffner
- Department of Psychiatry, The Rochester Center for Mind-Body Research, University of Rochester Medical Center, 300 Crittenden Boulevard, Box PSYCH-BPSM, Rochester, NY 14642, USA.
| |
Collapse
|
41
|
Park SB, Choi HC, Joo NS. The relation of thyroid function to components of the metabolic syndrome in Korean men and women. J Korean Med Sci 2011; 26:540-5. [PMID: 21468262 PMCID: PMC3069574 DOI: 10.3346/jkms.2011.26.4.540] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/17/2011] [Indexed: 11/24/2022] Open
Abstract
This study was to assess the relation of thyroid dysfunction to metabolic syndrome (MetS) at an earlier stage in Korean population. Metabolic parameters such as body composition, blood pressure (BP), fasting glucose, total cholesterol, triglyceride (TG), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), thyroid-stimulating hormone (TSH) and free thyroxine 4 (fT(4)) were measured. During a mean follow-up of 3 yr, 5,998 Koreans ages over 18 yr were assessed. There were 694 cases of MetS at follow-up. The mean age of the subjects was 45.6 ± 9.5 yr. Mean level of TSH was 2.02 ± 1.50 mIU/L, mean level of fT(4) was 1.23 ± 0.20 ρM/L. At baseline, TSH levels and fT(4) levels were associated to waist circumference, BP, glucose and lipids in the subjects. Increase in systolic blood pressure, diastolic blood pressure (DBP), total cholesterol and TG were significantly associated with changes in TSH levels after adjustment. Changes in DBP, TG, HDL-C and fasting glucose were significantly associated with changes in fT(4) levels after adjustment. Increase in TSH levels even after further controlling for baseline TSH level predicted the MetS over the study period. In conclusion, there is a relationship between thyroid function and cardiovascular risk factors, such as BP, total cholesterol, TG, HDL-C and fasting glucose. Also, higher levels of TSH may predict the MetS in Korean.
Collapse
Affiliation(s)
- Sat Byul Park
- Department of Family Practice and Community Health, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Korea.
| | | | | |
Collapse
|
42
|
Charmandari E, Kino T. Chrousos syndrome: a seminal report, a phylogenetic enigma and the clinical implications of glucocorticoid signalling changes. Eur J Clin Invest 2010; 40:932-42. [PMID: 20649902 PMCID: PMC2948853 DOI: 10.1111/j.1365-2362.2010.02336.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glucocorticoids regulate a broad spectrum of physiologic functions and play important roles in resting and stress homeostasis. Their actions are mediated by the nuclear glucocorticoid receptor (GR). DESIGN Using a patient as a stimulus, we reviewed briefly the area of Primary Generalized Glucocorticoid Resistance in man and nonhuman primates. RESULTS In man, Primary Generalized Glucocorticoid Resistance is a rare sporadic or familial syndrome characterized by target-tissue insensitivity to glucocorticoids and compensatory elevations in adrenocorticotropic hormone (ACTH), leading to increased secretion of cortisol and adrenal steroids with mineralocorticoid and/or androgenic activity, and causing hypermineralocorticoidism and hyperandrogenism without Cushing stigmata. The presentation, diagnosis and therapy of this condition are summarized. Many or, most likely, all New World primates have markedly elevated cortisol and ACTH, and resistance to dexamethasone suppression, without any pathology. These primates in fact have 'pan-steroid/sterol' resistance, including all five steroid hormones and 1,25-dihydroxy-vitamin D. In humans, the molecular basis of Primary Generalized Glucocorticoid Resistance has been mainly ascribed to recent mutations in the GR gene, which impair glucocorticoid signal transduction. In contrast, in the primates, steroid/sterol signalling systems have adapted under yet unknown selective pressures or genetic drift over many million years. Of course, other molecules of the signaling pathways may also be involved in both states. There are now a host of human states associated with tissue-specific pathologic glucocorticoid target tissue changes. These include allergic, autoimmune, inflammatory and lymphoproliferative disorders. CONCLUSIONS In recognition of Professor George P. Chrousos' extensive ground-breaking research in this field, and for the sake of brevity, we propose that 'Chrousos syndrome' is used instead of 'Primary Generalized Familial or Sporadic Glucocorticoid Resistance'.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | | |
Collapse
|
43
|
Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 2010; 75:1-12. [PMID: 19818358 PMCID: PMC2813911 DOI: 10.1016/j.steroids.2009.09.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 12/21/2022]
Abstract
The characterization of the subfamily of steroid hormone receptors has enhanced our understanding of how a set of hormonally derived lipophilic ligands controls cellular and molecular functions to influence development and help achieve homeostasis. The glucocorticoid receptor (GR), the first member of this subfamily, is a ubiquitously expressed intracellular protein, which functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes. The effector domains of the GR mediate transcriptional activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation sites, and stabilize the RNA-polymerase II machinery for repeated rounds of transcription of target genes. This review summarizes the basic aspects of the structure and actions of the human (h) GR, and the molecular basis of its biologic functions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | | | | | | | | |
Collapse
|
44
|
Chrousos GP, Kino T. Glucocorticoid signaling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders. Ann N Y Acad Sci 2009; 1179:153-66. [PMID: 19906238 DOI: 10.1111/j.1749-6632.2009.04988.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucocorticoids contribute to the maintenance of basal and stress-related homeostasis in all higher organisms, and influence a large proportion of the expressed human genome, and their effects spare almost no organs or tissues. Glucocorticoids regulate many functions of the central nervous system, such as arousal, cognition, mood, sleep, the activity and direction of intermediary metabolism, the maintenance of a proper cardiovascular tone, the activity and quality of the immune and inflammatory reaction, including the manifestations of the sickness syndrome, and growth and reproduction. The numerous actions of glucocorticoids are mediated by a set of at least 16 glucocorticoid receptor (GR) isoforms forming homo- or hetero-dimers. The GRs consist of multifunctional domain proteins operating as ligand-dependent transcription factors that interact with many other cell signaling systems, including large and small G proteins. The presence of multiple GR monomers and homo- or hetero-dimers expressed in a cell-specific fashion at different quantities with quantitatively and qualitatively different transcriptional activities suggest that the glucocorticoid signaling system is highly stochastic. Glucocorticoids are heavily involved in human pathophysiology and influence life expectancy. Common behavioral and/or somatic complex disorders, such as anxiety, depression, insomnia, chronic pain and fatigue syndromes, obesity, the metabolic syndrome, essential hypertension, diabetes type 2, atherosclerosis with its cardiovascular sequelae, and osteoporosis, as well as autoimmune inflammatory and allergic disorders, all appear to have a glucocorticoid-regulated component.
Collapse
Affiliation(s)
- George P Chrousos
- First Department of Pediatrics, Athens University Medical School, Athens, Greece.
| | | |
Collapse
|
45
|
Abstract
The clinical course of patients with B-cell chronic lymphocytic leukemia (CLL) is often made complicated by autoimmune phenomena which mainly target the blood cells. Among them, the autoimmune hemolytic anemia (AIHA) is the most common form. On the other hand, it is believed that CLL is the most common of the known causes of AIHA. The source of any putative autoantibody (bystander nonmalignant cells or tumor cells) is not clear yet. Recently, it has been hypothesized that leukemic B-cells may also act as professional antigen presenting cells (APCs). With respect to the management of CLL-associated AIHA, steroids still represent the first-line treatment option. Intravenous immunoglobulin, immunosuppressive drugs, and splenectomy are also frequently used for steroid-refractory forms. Furthermore, although the case series is still too small, encouraging data is now supporting the use of monoclonal antibodies, in particular anti-CD20 rituximab, in managing this often life-threatening autoimmune complication of CLL.
Collapse
MESH Headings
- Anemia, Hemolytic, Autoimmune/chemically induced
- Anemia, Hemolytic, Autoimmune/etiology
- Anemia, Hemolytic, Autoimmune/therapy
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Vidarabine/adverse effects
- Vidarabine/analogs & derivatives
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- Giovanni D'Arena
- Hematology Oncology and Bone Marrow Transplantation Unit, National Cancer Institute, IRCCS Fondazione "G. Pascale", Naples, Italy.
| | | |
Collapse
|
46
|
Vere CC, Streba CT, Streba LM, Ionescu AG, Sima F. Psychosocial stress and liver disease status. World J Gastroenterol 2009; 15:2980-6. [PMID: 19554650 PMCID: PMC2702105 DOI: 10.3748/wjg.15.2980] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
"Psychosocial stress" is an increasingly common concept in the challenging and highly-demanding modern society of today. Organic response to stress implicates two major components of the stress system, namely the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Stress is anamnestically reported by patients during the course of disease, usually accompanied by a decline in their overall health status. As the mechanisms involving glucocorticoids and catecholamines have been deciphered, and their actions on immune cell function deeper understood, it has become clear that stress has an impact on hepatic inflammatory response. An increasing number of articles have approached the link between psychosocial stress and the negative evolution of hepatic diseases. This article reviews a number of studies on both human populations and animal models performed in recent years, all linking stress, mainly of psychosocial nature, and the evolution of three important liver-related pathological entities: viral hepatitis, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cristin Constantin Vere
- Department of Internal Medicine, Emergency County Hospital of Craiova, Craiova, Dolj, Romania
| | | | | | | | | |
Collapse
|
47
|
Abstract
Fibromyalgia (FM) is a form of nonarticular rheumatism characterized by long-term (> 3 months) and widespread musculoskeletal pain. However, the biophysiology of FM has remained elusive, and the treatment remains mainly empirical. There are numerous hypotheses about the pathophysiology of chronic widespread pain and FM; one includes a possible role of cytokines. Cytokines play a role in diverse clinical processes and phenomena such as fatigue, fever, sleep, pain, stress, and aching. Cytokines related to acute or repetitive tissue injuries may be responsible for long-term activation of spinal cord glia and dorsal horn neurons, thus resulting in central sensitization. Pain, stiffness, and depression in FM could be associated with some signs of inflammatory response system activation. Illumination of the pathophysiologic secrets of FM will result in more effective treatment regimens. We review the role of immune mediators in the pathophysiology of FM.
Collapse
Affiliation(s)
- Ali Gur
- Department of Physical Medicine and Rehabilitation, Medical Faculty, Dicle University, Diyarbakir, Turkey.
| | | |
Collapse
|
48
|
Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab 2008; 93:1563-72. [PMID: 18319312 PMCID: PMC2386273 DOI: 10.1210/jc.2008-0040] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Primary generalized glucocorticoid resistance is a rare genetic condition characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. We review the clinical aspects, molecular mechanisms, and implications of this disorder. EVIDENCE ACQUISITION We conducted a systematic review of the published, peer-reviewed medical literature using MEDLINE (1975 through February 2008) to identify original articles and reviews on this topic. EVIDENCE SYNTHESIS We have relied on the experience of a number of experts in the field, including our extensive personal experience. CONCLUSIONS The clinical spectrum of primary generalized glucocorticoid resistance is broad, ranging from asymptomatic to severe cases of hyperandrogenism, fatigue, and/or mineralocorticoid excess. The molecular basis of the condition has been ascribed to mutations in the human glucocorticoid receptor (hGR) gene, which impair glucocorticoid signal transduction and reduce tissue sensitivity to glucocorticoids. A consequent increase in the activity of the hypothalamic-pituitary-adrenal axis compensates for the reduced sensitivity of peripheral tissues to glucocorticoids at the expense of ACTH hypersecretion-related pathology. The study of functional defects of natural hGR mutants enhances our understanding of the molecular mechanisms of hGR action and highlights the importance of integrated cellular and molecular signaling mechanisms for maintaining homeostasis and preserving normal physiology.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou tou Efessiou Street, Athens, Greece.
| | | | | | | |
Collapse
|
49
|
A three-year-old with persistent hypokalemia. J Pediatr 2007; 151:696-9. [PMID: 18035156 DOI: 10.1016/j.jpeds.2007.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/14/2007] [Accepted: 05/01/2007] [Indexed: 11/18/2022]
|
50
|
Charmandari E, Kino T, Ichijo T, Jubiz W, Mejia L, Zachman K, Chrousos GP. A novel point mutation in helix 11 of the ligand-binding domain of the human glucocorticoid receptor gene causing generalized glucocorticoid resistance. J Clin Endocrinol Metab 2007; 92:3986-90. [PMID: 17635946 DOI: 10.1210/jc.2006-2830] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Generalized glucocorticoid resistance is a rare condition characterized by partial, end-organ insensitivity to glucocorticoids, compensatory elevations in adrenocorticotropic hormone and cortisol secretion, and increased production of adrenal steroids with androgenic and/or mineralocorticoid activity. We have identified a new case of glucocorticoid resistance caused by a novel mutation of the human glucocorticoid receptor (hGR) gene and studied the molecular mechanisms through which the mutant receptor impairs glucocorticoid signal transduction. METHODS AND RESULTS We identified a novel, single, heterozygous nucleotide (T --> C) substitution at position 2209 (exon 9alpha) of the hGR gene, which resulted in phenylalanine (F) to leucine (L) substitution at amino acid position 737 within helix 11 of the ligand-binding domain of the protein. Compared with the wild-type receptor, the mutant receptor hGRalphaF737L demonstrated a significant ligand-exposure time-dependent decrease in its ability to transactivate the glucocorticoid-inducible mouse mammary tumor virus promoter in response to dexamethasone and displayed a 2-fold reduction in the affinity for ligand, a 12-fold delay in nuclear translocation, and an abnormal interaction with the glucocorticoid receptor-interacting protein 1 coactivator. The mutant receptor preserved its ability to bind to DNA and exerted a dominant-negative effect on the wild-type hGRalpha only after a short duration of exposure to the ligand. CONCLUSIONS The mutant receptor hGRalphaF737L causes generalized glucocorticoid resistance because of decreased affinity for the ligand, marked delay in nuclear translocation, and/or abnormal interaction with the glucocorticoid receptor-interacting protein 1 coactivator. These findings confirm the importance of the C terminus of the ligand-binding domain of the receptor in conferring transactivational activity.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Section on Endocrinology, Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|