1
|
Ding K, Shang Z, Sun D, Yang W, Zhang Y, Wang L, Zhang T, Du X, Dai Y, Zhu Y, Chen W. The admission inflammatory biomarkers profile of elderly hip fractures and its association with one-year walking independence and mortality: a prospective study. INTERNATIONAL ORTHOPAEDICS 2025; 49:19-28. [PMID: 39466411 DOI: 10.1007/s00264-024-06353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Immune response plays an important role in the regulation of elderly hip fracture. This study aims to analyze the relationship between systemic inflammatory markers including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI) and mortality and walking independence, providing valuable references for the postoperative management of geriatric hip fracture. METHODS A retrospective analysis of prospective data on elderly patients who have undergone hip surgery and have been followed for at least one year. The receiver operating characteristic (ROC) curves and the optimum cutoff value were calculated. Univariate analysis and multivariate logistic regression analysis were used to identify the associations between admission four systemic inflammatory markers and one-year mortality and locomotion recovery. RESULTS During the study period, respiratory disease was the most common cause of death, followed by cardiovascular disease. Multivariate analysis identified NLR (OR, 1.13; 95%CI: 1.09-1.17), SIRI(OR, 1.18; 95%CI: 1.08-1.28) and advanced age (OR, 1.06; 95%CI: 1.01-1.11) as independent risk factors for one-year mortality. In addition, 89 (rate, 31.8%) survivors had poor walking independence within one year. NLR (OR, 1.37; 95%CI: 1.26-1.50), SII(OR, 1.00; 95%CI: 1.001-1.003), SIRI(OR, 1.36; 95%CI: 1.18-1.57) and advanced age (OR, 1.08; 95%CI: 1.02-1.13) were associated with postoperative locomotion recovery. CONCLUSIONS In summary, admission NLR and SIRI are correlated with a high risk of one-year walking independence and mortality, providing a basis for the clinical management of geriatric hip fractures.
Collapse
Affiliation(s)
- Kai Ding
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Zeyu Shang
- Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Dacheng Sun
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Weijie Yang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Yifan Zhang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Ling Wang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Tao Zhang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Xiaofeng Du
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China
| | - Yajiang Dai
- Grade 2023 Basic Medical Class, School of Basic Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China.
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China.
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China.
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China.
| | - Wei Chen
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, People's Republic of China.
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Hebei, People's Republic of China.
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Hebei, People's Republic of China.
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent Equipment, Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Huaguo Y, Kang S, Hu L, Zhou H. Advancing pain management for extremity trauma: the evolution of ultrasound-guided nerve blocks for patients in the supine position in trauma centers. Eur J Trauma Emerg Surg 2024; 50:1381-1390. [PMID: 38649528 PMCID: PMC11458727 DOI: 10.1007/s00068-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Trauma, particularly extremity trauma, poses a considerable challenge in healthcare, especially among young adults. Given the severity of patient pain and the risks associated with excessive opioid use, managing acute pain in trauma centers is inherently complex. This study aims to investigate the application and benefits of ultrasound-guided nerve blocks for early pain management in patients with extremity trauma positioned supine. METHODS A comprehensive literature review was conducted to assess the effectiveness and advantages of ultrasound-guided peripheral nerve blocks in the acute pain management of extremity trauma patients in the supine position. Special emphasis was placed on evaluating the selection criteria, indications, contraindications, adverse reactions, and potential complications associated with these nerve block techniques. RESULTS Ultrasound-guided nerve blocks represent a safer and more precise option for managing pain in extremity trauma patients placed in the supine position. These techniques offer significant advantages in terms of reducing healthcare expenses, diminishing reliance on opioid medications, and mitigating opioid-related complications. Nonetheless, challenges may arise due to the necessity for patient cooperation during specific nerve block procedures. CONCLUSION Ultrasound-guided nerve blocks present a promising avenue for early pain management in extremity trauma patients positioned supinely. Their implementation can lead to improved patient outcomes by alleviating pain severity, reducing opioid consumption, and cutting down healthcare costs. Further research and clinical integration of these techniques is imperative to enhance pain management protocols in trauma centers.
Collapse
Affiliation(s)
- Yuefeng Huaguo
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Huancheng Strasse 1518, Jiaxing City, 314000, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing City, China
| | - Shuai Kang
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Huancheng Strasse 1518, Jiaxing City, 314000, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing City, China
| | - Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Huancheng Strasse 1518, Jiaxing City, 314000, China.
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing City, China.
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Huancheng Strasse 1518, Jiaxing City, 314000, China.
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing City, China.
| |
Collapse
|
3
|
Chang ZY, Gao WX, Zhang Y, Chen P, Zhao W, Wu D, Chen ZD, Gao YH, Liang WQ, Chen L, Xi HQ. Development and validation of a nomogram to predict postsurgical intra-abdominal infection in blunt abdominal trauma patients: A multicenter retrospective study. Surgery 2024; 175:1424-1431. [PMID: 38402039 DOI: 10.1016/j.surg.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 01/13/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Intra-abdominal infection is a common complication of blunt abdominal trauma. Early detection and intervention can reduce the incidence of intra-abdominal infection and improve patients' prognoses. This study aims to construct a clinical model predicting postsurgical intra-abdominal infection after blunt abdominal trauma. METHODS This study is a retrospective analysis of 553 patients with blunt abdominal trauma from the Department of General Surgery of 7 medical centers (2011-2021). A 7:3 ratio was used to assign patients to the derivation and validation cohorts. Patients were divided into 2 groups based on whether intra-abdominal infection occurred after blunt abdominal trauma. Multivariate logistic regression and least absolute shrinkage and selection operator regression were used to select variables to establish a nomogram. The nomogram was evaluated, and the validity of the model was further evaluated by the validation cohort. RESULTS A total of 113 were diagnosed with intra-abdominal infection (20.4%). Age, prehospital time, C-reactive protein, injury severity score, operation duration, intestinal injury, neutrophils, and antibiotic use were independent risk factors for intra-abdominal infection in blunt abdominal trauma patients (P < .05). The area under the receiver operating curve (area under the curve) of derivation cohort and validation cohort was 0.852 (95% confidence interval, 0.784-0.912) and 0.814 (95% confidence interval, 0.751-0.902). The P value for the Hosmer-Lemeshow test was .135 and .891 in the 2 cohorts. The calibration curve demonstrated that the nomogram had a high consistency between prediction and practical observation. The decision curve analysis also showed that the nomogram had a better potential for clinical application. To facilitate clinical application, we have developed an online at https://nomogramcgz.shinyapps.io/IAIrisk/. CONCLUSION The nomogram is helpful in predicting the risk of postoperative intra-abdominal infection in patients with blunt abdominal trauma and provides guidance for clinical decision-making and treatment.
Collapse
Affiliation(s)
- Zheng Y Chang
- Medical School of Chinese PLA, Beijing, China; Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen X Gao
- Medical School of Chinese PLA, Beijing, China; Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing, China; Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China; Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Di Wu
- Medical School of Chinese PLA, Beijing, China; Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi D Chen
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yun H Gao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Q Liang
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Hong Q Xi
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Cavaillon JM. During Sepsis and COVID-19, the Pro-Inflammatory and Anti-Inflammatory Responses Are Concomitant. Clin Rev Allergy Immunol 2023; 65:183-187. [PMID: 37395985 DOI: 10.1007/s12016-023-08965-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The most severe forms of COVID-19 share many features with bacterial sepsis and have thus been considered to be a viral sepsis. Innate immunity and inflammation are closely linked. While the immune response aims to get rid of the infectious agent, the pro-inflammatory host response can result in organ injury including acute respiratory distress syndrome. On its side, a compensatory anti-inflammatory response, aimed to dampen the inflammatory reaction, can lead to immunosuppression. Whether these two key events of the host inflammatory response are consecutive or concomitant has been regularly depicted in schemes. Initially proposed from 2001 to 2013 to be two consecutive steps, the concomitant occurrence has been supported since 2013, although it was proposed for the first time in 2001. Despite a consensus was reached, the two consecutive steps were still recently proposed for COVID-19. We discuss why the concomitance view could have been initiated as early as 1995.
Collapse
|
5
|
Vali M, Paydar S, Seif M, Hosseini M, Basiri P, Sabetian G, Ghaem H. Association Between Neutrophil Density and Survival in Trauma Patients Admitted to the Intensive Care Unit; a Retrospective Cohort Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2023; 11:e29. [PMID: 37215242 PMCID: PMC10197906 DOI: 10.22037/aaem.v11i1.1990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Altered immune responses, in particular neutrophil changes, are perceived to play a key role in immune responses to trauma. This study aimed to evaluate the association of neutrophil changes with patients' survival in severe multiple trauma cases. Methods The current retrospective cohort study was conducted using data from patients admitted in the intensive care unit (ICU) of a trauma center in Shiraz, Iran, between 2016 and 2021. Patients were divided into three groups (i.e., normal, neutropenia, and neutrophilia) based on neutrophil count at the time of ICU admission, and the association of neutrophil count with in-hospital mortality was analyzed. Results 2176 patients with the mean age of 37.90 ± 18.57 years were evaluated (84.04% male). The median trauma severity based on injury severity score (ISS) in this series was 9 (4 -17). Patients were divided in to three groups of neutrophilia (n = 1805), normal (n = 357), and neutropenia (n = 14). There were not any significant differences between groups regarding age distribution (p = 0.634), gender (p = 0.544), and trauma severity (p = 0.197). The median survival times for the normal, neutropenia, and neutrophilia groups were 49 (IQR: 33 -47) days, 51 (IQR: 8- 51) days, and 38 (IQR: 26 - 52) days, respectively (p = 0.346). The log-rank test showed a statistically significant difference between the three groups adjustment for ISS (p ≤ 0.001). For each unit increase in ISS, the hazard ratio increased by 2%. In ISS 9-17, the hazard ratio increased by 11% compared to ISS<4. Also, in ISS>17, the hazard ratio increased by 76% compared to ISS<4 in ICU-hospitalized patients. Conclusions In general, the findings of the present study showed that the survival rate of patients in the normal group after ISS adjustment was higher than the other two groups. Also, the Cox model showed that the mortality risk ratio in the neutropenia group was 15 times higher than the normal group.
Collapse
Affiliation(s)
- Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Seif
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Basiri
- Department of Computer Science and Engineering and IT School of Electrical Engineering and Computer, Shiraz University, Shiraz, Iran
| | - Golnar Sabetian
- Anesthesiology and Critical Care Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Ghaem
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Shock-Driven Endotheliopathy in Trauma Patients Is Associated with Leucocyte Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232415990. [PMID: 36555630 PMCID: PMC9782606 DOI: 10.3390/ijms232415990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Endotheliopathy following trauma is associated with poor outcome, but the underlying mechanisms are unknown. This study hypothesized that an increased extracellular vesicle (EV) concentration is associated with endotheliopathy after trauma and that red blood cell (RBC) transfusion could further enhance endotheliopathy. In this post hoc sub study of a multicentre observational trial, 75 trauma patients were stratified into three groups based on injury severity score or shock. In patient plasma obtained at hospital admission and after transfusion of four RBC transfusions, markers for endotheliopathy were measured and EVs were labelled with anti CD41 (platelet EVs), anti CD235a (red blood cell EVs), anti CD45 (leucocyte EVs), anti CD144 (endothelial EVs) or anti CD62e (activated endothelial EVs) and EV concentrations were measured with flow cytometry. Statistical analysis was performed by a Kruskall Wallis test with Bonferroni correction or Wilcoxon rank test for paired data. In patients with shock, syndecan-1 and von Willebrand Factor (vWF) were increased compared to patients without shock. Additionally, patients with shock had increased red blood cell EV and leucocyte EV concentrations compared to patients without shock. Endotheliopathy markers correlated with leucocyte EVs (ρ = 0.263, p = 0.023), but not with EVs derived from other cells. Injury severity score had no relation with EV release. RBC transfusion increased circulating red blood cell EVs but did not impact endotheliopathy. In conclusion, shock is (weakly) associated with EVs from leucocytes, suggesting an immune driven pathway mediated (at least in part) by shock.
Collapse
|
7
|
Mizugaki A, Wada T, Tsuchida T, Oda Y, Kayano K, Yamakawa K, Tanaka S. Neutrophil phenotypes implicated in the pathophysiology of post-traumatic sepsis. Front Med (Lausanne) 2022; 9:982399. [PMID: 36530874 PMCID: PMC9757139 DOI: 10.3389/fmed.2022.982399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The disruption of immune homeostasis after trauma is a major cause of post-traumatic organ dysfunction and/or sepsis. Recently, a variety of neutrophil phenotypes with distinct functions have been identified and suggested as involved in various clinical conditions. The association between neutrophil phenotypes and post-traumatic immunodeficiency has also been reported, yet the specific neutrophil phenotypes and their functional significance in post-traumatic sepsis have not been fully clarified. Therefore, we sought to investigate neutrophil phenotypic changes in a murine model, as these may hold prognostic value in post-traumatic sepsis. MATERIALS AND METHODS Third-degree burns affecting 25% of the body surface area were used to establish trauma model, and sepsis was induced 24 h later through cecal ligation and puncture (CLP). The Burn/CLP post-traumatic sepsis model and the Sham/CLP control model were established to assess the immunological status after trauma. Histopathological evaluation was performed on the spleen, liver, kidneys, and lung tissues. Immunological evaluation included the assessment of neutrophil markers using mass cytometry as well as cytokine measurements in serum and ascitic fluid through multiplex analysis using LUMINEX®. RESULTS The Burn/CLP group had a lower survival rate than the Sham/CLP group. Histopathological examination revealed an impaired immune response and more advanced organ damage in the Burn/CLP group. Furthermore, the Burn/CLP group exhibited higher levels of transforming growth factor-beta 1 in the blood and generally lower levels of cytokines than the Sham/CLP group. CD11b, which is involved in neutrophil adhesion and migration, was highly expressed on neutrophils in the Burn/CLP group. The expression of CD172a, which is related to the inhibition of phagocytosis, was also upregulated on neutrophils in the Burn/CLP group. The expression of sialic acid-binding lg-like lectin F and CD68 also differed between the two groups. CONCLUSION Different neutrophil phenotypes were observed between Burn/CLP and Sham/CLP groups, suggesting that neutrophils are implicated in the immune imbalance following trauma. However, further studies are needed to prove the causal relationships between neutrophil phenotypes and outcomes, including survival rate and organ dysfunction.
Collapse
Affiliation(s)
- Asumi Mizugaki
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Tsuchida
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuhide Kayano
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
9
|
Mawhinney M, Kulle A, Thanabalasuriar A. From infection to repair: Understanding the workings of our innate immune cells. WIREs Mech Dis 2022; 14:e1567. [PMID: 35674186 DOI: 10.1002/wsbm.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
In a world filled with microbes, some posing a threat to our body, our immune system is key to living a healthy life. The innate immune system is made of various cell types that act to guard our bodies. Unlike the adaptive immune system that has a specific response, our innate immune system encompasses cells that elicit unspecific immune responses, triggered whenever the right signals are detected. Our understanding of immunity started with the concept of our immune system only responding to "nonself" like the pathogens that invade our body. However, over the past few decades, we have learned that the immune system is more than an on/off switch that recognizes nonself. The innate immune system regularly patrols our bodies for pathogens and tissue damage. Our innate immune system not only seeks to resolve infection but also repair tissue injury, through phagocytosing debris and initiating the release of growth factors. Recently, we are starting to see that it is not just recognizing danger, our innate immune system plays a crucial role in repair. Innate immune cells phenotypically change during repair. In the context of severe injury or trauma, our innate immune system is modified quite drastically to help repair, resulting in reduced infection control. Moreover, these changes in immune cell function can be modified by sex as a biological variable. From past to present, in this overview, we provide a summary of the innate immune cells and pathways in infection and tissue repair. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Martin Mawhinney
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Amelia Kulle
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ajitha Thanabalasuriar
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Baseline neutrophil-lymphocyte ratio can be associated with hematoma expansion in patients with intracerebral hemorrhage: a retrospective observational study. BMC Neurosci 2022; 23:18. [PMID: 35337267 PMCID: PMC8957183 DOI: 10.1186/s12868-022-00705-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 01/14/2023] Open
Abstract
Background Hematoma expansion can be related to increased mortality and poor clinical outcomes in patients with intracerebral hemorrhage (ICH). So, early identification and prevention of hematoma expansion can be considered as an important therapeutic aim. This study aimed to evaluate the hypothesis that the neutrophil to lymphocyte ratio (NLR) is associated with hematoma expansion in ICH patients. Methods We retrospectively evaluated the clinical data of a total of 221 patients with ICH who were treated in our department between April 2018 and April 2021. The demographic, clinical, radiological, and laboratory test data including the NLR upon admission were investigated. A binary logistic regression analysis was used to assess the independent associations between different variables and hematoma expansion. Results A total of 221 patients with ICH were included. There were 122 (55.2%) males and 99 (44.8%) females. The mean age (years) at admission was 66.43 ± 8.28. The hematoma expansion occurred in 57 (25.8%) cases. The results of the multivariate analysis showed that hematoma volume at baseline (OR, 3.12; 95% CI 1.78–5.02; P < 0.001), admission systolic blood pressure (OR, 2.87; 95% CI 1.79–4.34; P = 0.013), Glasgow Coma Scale (GCS) (OR, 1.94; 95% CI 1.45–2.93; P = 0.020), and NLR (OR, 1.74; 95% CI 1.16–2.60; P = 0.032) were correlated with hematoma expansion in these patients. Conclusions Our findings suggest that NLR can be a predictor of hematoma expansion in patients with ICH. This cost-effective and easily available biomarker could be used to early prediction of hematoma expansion in these patients.
Collapse
|
11
|
Alimohammadi E, Foroushani AZ, Moradi F, Ebrahimzadeh K, Nadersepahi MJ, Asadzadeh S, Amiri A, Hosseini S, Eden SV, Bagheri SR. Dynamics of neutrophil-to-lymphocyte ratio can be associated with clinical outcomes of children with moderate to severe traumatic brain injury: A retrospective observational study. Injury 2022; 53:999-1004. [PMID: 34625239 DOI: 10.1016/j.injury.2021.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The neutrophil to lymphocyte ratio (NLR) has been reported to be associated with clinical outcomes of patients with severe traumatic brain injury (TBI). This study aimed to evaluate the correlation between the dynamics of NLR and clinical outcomes of pediatric patients with moderate to severe TBI. METHODS We retrospectively evaluated the clinical data of a total of 374 pediatric patients with moder-ate to severe TBI who were treated in our department between May 2016 and May 2020. Clinical and laboratory data including the NLR upon admission and the NLR on hospital day four were collected. Poor clinical outcome was defined as Glasgow Outcome Scale (GOS) of 1-3. Multivariable logistic regression analyses were performed to investigate the correlation between the dynamics of NLR and clinical outcome. RESULTS Three hundred seventy-four pediatric patients (mean age 7.37 ± 3.11, 52.7% male) were evaluated. Based on the ROC curves, a value of 5 was determined as the NLR cut-off value. The corresponding cutoff value for delta NLR was 1. The Glasgow Coma Scale (GCS) (OR, 3.42; 95% CI: 1.88-5.28; P <0.001), the light reflex (OR, 1.79; 95% CI: 1.34- 2.84; P = 0.027), the Rotterdam CT score (OR, 2.71; 95% CI: 1.72-4.13; P = 0.021), and delta NLR (OR, 1.71; 95% CI: 1.13- 2.52; P = 0.034) were identified as independent predictors for unfavorable outcomes in multivariable logistic regression analysis. CONCLUSIONS The result of the present study suggest that delta NLR could be a predictor of poor clinical outcome of pediatrics with moderate to severe TBI. This cost-effective and easily available biomarker could be used to predict clinical outcomes in these patients.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Department of neurosurgery Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran.
| | | | - Farid Moradi
- Department of neurosurgery Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Kaveh Ebrahimzadeh
- Department of neurosurgery, Shahid Beheshti University of Medical Sciences, Loghman Hakim hospital
| | - Mohammad Javad Nadersepahi
- Department of anesthesiology, Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah,Iran
| | - Sahel Asadzadeh
- Clinical Research Development Center, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Amiri
- Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Sahar Hosseini
- Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Sonia V Eden
- Wayne State University School of Medicine, Detroit, MI, USA.
| | - Seyed Reza Bagheri
- Department of neurosurgery, Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| |
Collapse
|
12
|
Fouladseresht H, Ghamar Talepoor A, Eskandari N, Norouzian M, Ghezelbash B, Beyranvand MR, Nejadghaderi SA, Carson-Chahhoud K, Kolahi AA, Safiri S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front Immunol 2022; 12:785946. [PMID: 35126355 PMCID: PMC8815083 DOI: 10.3389/fimmu.2021.785946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although cellular and molecular mediators of the immune system have the potential to be prognostic indicators of disease outcomes, temporal interference between diseases might affect the immune mediators, and make them difficult to predict disease complications. Today one of the most important challenges is predicting the prognosis of COVID-19 in the context of other inflammatory diseases such as traumatic injuries. Many diseases with inflammatory properties are usually polyphasic and the kinetics of inflammatory mediators in various inflammatory diseases might be different. To find the most appropriate evaluation time of immune mediators to accurately predict COVID-19 prognosis in the trauma environment, researchers must investigate and compare cellular and molecular alterations based on their kinetics after the start of COVID-19 symptoms and traumatic injuries. The current review aimed to investigate the similarities and differences of common inflammatory mediators (C-reactive protein, procalcitonin, ferritin, and serum amyloid A), cytokine/chemokine levels (IFNs, IL-1, IL-6, TNF-α, IL-10, and IL-4), and immune cell subtypes (neutrophil, monocyte, Th1, Th2, Th17, Treg and CTL) based on the kinetics between patients with COVID-19 and trauma. The mediators may help us to accurately predict the severity of COVID-19 complications and follow up subsequent clinical interventions. These findings could potentially help in a better understanding of COVID-19 and trauma pathogenesis.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Norouzian
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Beyranvand
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The role of neutrophil extracellular traps in acute lung injury. Front Immunol 2022; 13:953195. [PMID: 35967320 PMCID: PMC9374003 DOI: 10.3389/fimmu.2022.953195] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI) is a heterogeneous inflammatory condition associated with high morbidity and mortality. Neutrophils play a key role in the development of different forms of ALI, and the release of neutrophil extracellular traps (NETs) is emerging as a common pathogenic mechanism. NETs are essential in controlling pathogens, and their defective release or increased degradation leads to a higher risk of infection. However, NETs also contain several pro-inflammatory and cytotoxic molecules than can exacerbate thromboinflammation and lung tissue injury. To reduce NET-mediated lung damage and inflammation, DNase is frequently used in preclinical models of ALI due to its capability of digesting NET DNA scaffold. Moreover, recent advances in neutrophil biology led to the development of selective NET inhibitors, which also appear to reduce ALI in experimental models. Here we provide an overview of the role of NETs in different forms of ALI discussing existing gaps in our knowledge and novel therapeutic approaches to modulate their impact on lung injury.
Collapse
Affiliation(s)
- Davide Scozzi
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Fuyi Liao
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | | | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Andrew E. Gelman,
| |
Collapse
|
14
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:jcm10245815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Correspondence: ; Tel.: +381-11-2665-125
| |
Collapse
|
15
|
Gärtner F, Gihring A, Roth A, Bischof J, Xu P, Elad L, Wabitsch M, Burster T, Knippschild U. Obesity Prolongs the Inflammatory Response in Mice After Severe Trauma and Attenuates the Splenic Response to the Inflammatory Reflex. Front Immunol 2021; 12:745132. [PMID: 34867969 PMCID: PMC8634681 DOI: 10.3389/fimmu.2021.745132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Thoracic traumas with extra-thoracic injuries result in an immediate, complex host response. The immune response requires tight regulation and can be influenced by additional risk factors such as obesity, which is considered a state of chronic inflammation. Utilizing high-dimensional mass and regular flow cytometry, we define key signatures of obesity-related alterations of the immune system during the response to the trauma. In this context, we report a modification in important components of the splenic response to the inflammatory reflex in obese mice. Furthermore, during the response to trauma, obese mice exhibit a prolonged increase of neutrophils and an early accumulation of inflammation associated CCR2+CD62L+Ly6Chi monocytes in the blood, contributing to a persistent inflammatory phase. Moreover, these mice exhibit differences in migration patterns of monocytes to the traumatized lung, resulting in decreased numbers of regenerative macrophages and an impaired M1/M2 switch in traumatized lungs. The findings presented in this study reveal an attenuation of the inflammatory reflex in obese mice, as well as a disturbance of the monocytic compartment contributing to a prolonged inflammation phase resulting in fewer phenotypically regenerative macrophages in the lung of obese mice.
Collapse
Affiliation(s)
- Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Leonard Elad
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Qiu Y, Fitzgerald M, Mitra B. Initial neutrophil and lymphocyte ratio as a predictor of mortality and ICU admission after major trauma. TRAUMA-ENGLAND 2021. [DOI: 10.1177/14604086211050191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction The neutrophil-to-lymphocyte ratio (NLR) has been proposed as a marker of systemic inflammation in major trauma patients that is associated with in-hospital mortality. We aimed to determine the discriminative ability of initial NLR as a predictor of outcomes following major trauma. Methods This was a registry-based cohort study involving all major trauma patients meeting criteria for inclusion into the Alfred Health Trauma Registry who presented directly from the scene of injury over a 24-month period (January 2018 to December 2019). The initial NLR was calculated for each patient and was compared against the Shock Index (SI), lactate and Revised Trauma Score (RTS). Outcomes observed were mortality at hospital discharge and intensive care unit (ICU) admission. We assessed the predictive capacity of each test using the receiver operating characteristic (ROC) curve and performed area under the ROC curve (AUROC) analysis to compare their performance. Results Data were extracted for 1687 major trauma patients, of which 72% were male, the median age was 49 years (IQR 31–68) and most (90%) of patients presented after a blunt mechanism of injury. In-hospital mortality occurred in 165 (9.77%) patients, and 725 (42.92%) patients required ICU admission. The median NLR was 6.84 (IQR 3.89–11.52). Initial NLR performed poorly with an AUROC of 0.46 (95% confidence interval (CI): 0.40–0.52) for prediction of mortality and AUROC of 0.53 (95% CI: 0.50–0.56) for prediction of ICU admission. The AUROCs of initial NLR for both mortality at hospital discharge and ICU admission were significantly lower than SI, lactate and RTS. Conclusion Initial NLR was not predictive of outcomes in major trauma. NLR at other time-points may provide better predictive capacity for outcomes.
Collapse
Affiliation(s)
- Yunfei Qiu
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Mark Fitzgerald
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Emergency & Trauma Centre, The Alfred Hospital, Melbourne, Victoria, Australia
- Trauma Service, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Biswadev Mitra
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Emergency & Trauma Centre, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Song P, Yi Z, Fu Y, Song D, Chen K, Zheng J, Sun Y, Diao Y. Reversing Postcardiopulmonary Bypass Associated Cognitive Dysfunction Using k-Opioid Receptor Agonists to Regulate Microglial Polarization via the NLRP3/Caspase-1 Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3048383. [PMID: 34630980 PMCID: PMC8500742 DOI: 10.1155/2021/3048383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Cardiopulmonary bypass (CPB) is mainly used during cardiac surgeries that treat ischemic, valvular, or congenital heart disease and aortic dissections. The disorders of central nervous system (CNS) that occur after cardiopulmonary bypass are attracting considerable interest. Postoperative neurocognitive disorders (PND) have been reported as the leading cause of patients' disability and death following CPB. The k-opioid receptor (KOR) agonists (U50488H) have been suggested to be vital in the treatment of surgically induced CNS neuroinflammatory responses. In this article, the transitions between the M1 and M2 microglial polarization state phenotypes were hypothesized to significantly affect the regulatory mechanisms of KOR agonists on postcardiopulmonary bypass (post-CPB) neuroinflammation. We investigated the effects of U50488H on neuroinflammation and microglia polarization in rats exposed to CPB and explored the method of the NLRP3/caspase-1 pathway. Thirty SD rats were randomly divided into three groups: sham operation group, cardiopulmonary bypass model group, and CPB+ k-opioid receptor agonist (U50488H) group, with ten rats in each group. The Morris water maze was used to evaluate the changes in the cognitive function of CPB rats. Hematoxylin and eosin (HE) staining and TUNEL were performed to assess the rats' hippocampal damage. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect changes in brain injury markers and inflammatory factors. Furthermore, immunofluorescence was used to observe the expression of microglia polarization and NLRP3 followed by Western blots to detect the expression of the NLRP3/caspase-1 pathway and microglia polarization-related proteins. Rat microglia were cultured in vitro, with LPS stimulation, and treated with U50488H and a caspase-1 antagonist to evaluate the effects and mechanism of action of U50488H. KORs alleviated hippocampal damage caused by CPB and improved PND. CPB activated the NLRP3 inflammasome and upregulated pro-caspase-1 expression which promoted the expression of pro-IL-lβ and pro-IL-18 and resulted in increased inflammation. However, KORs also inhibited NLRP3 and transformed microglia from the M1 to the M2 state. Caspase-1 inhibitor treatment reduced the microglial polarization induced by KORs. The κ-opioid receptor agonists inhibited the inflammation mediated by microglia and improved PND through the NLRP3/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Pei Song
- Department of Anesthesia, Postgraduate Training Base of Jinzhou Medical University in the General Hospital of Northern Theater Command, Shenyang 110016, China
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zhuo Yi
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yiji Fu
- Department of Anesthesiology, Anshan Central Hospital, Anshan 114002, Liaoning, China
| | - Dandan Song
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang 110000, Liaoning, China
| | - Jingjing Zheng
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yingjie Sun
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yugang Diao
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
18
|
Inose H, Kobayashi Y, Morishita S, Matsukura Y, Yuasa M, Hirai T, Yoshii T, Okawa A. Application of an index derived from the area under a neutrophil curve as a predictor of surgical site infection after spinal surgery. BMC Surg 2021; 21:354. [PMID: 34579693 PMCID: PMC8477575 DOI: 10.1186/s12893-021-01345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Patients with prolonged and intense neutrophilia after spinal surgery are at high risk of developing surgical site infection (SSI). To date, there is no standard method for the objective assessment of the intensity and duration of neutrophilia. Thus, this retrospective observational study aimed to test a new index (I-index), developed by combining the duration and intensity of neutrophilia, as a predictor of SSI. Methods I-index was calculated based on the postoperative neutrophil percentage. A total of 17 patients with SSI were enrolled as cases, and 51 patients without SSI were selected as controls. The groups were matched at a ratio of 1:3 by age, sex, and surgery type. The differences in the I-index were compared between the groups. Moreover, we checked the cumulative I-index (c-I-index), which we defined as the area under the neutrophil curve from postoperative day 1 until the first clinical manifestation of SSI in each case. Furthermore, a cutoff for SSI was defined using the receiver operating characteristic curve. Results The median I-index-7, I-index-14, and c-I-index were significantly higher in the SSI group than those in the control group. For a cutoff point of 42.1 of the I-index-7, the sensitivity and specificity were 0.706 and 0.882, respectively. For a cutoff point of 45.95 of the I-index-14, the sensitivity and specificity were 0.824 and 0.804, respectively. For a cutoff point of 45.95 of the c-I-index, the sensitivity and specificity were 0.824 and 0.804, respectively. Conclusion We devised a new indicator of infection, i.e., the I-Index and c-I-index, and confirmed its usefulness in predicting SSI.
Collapse
Affiliation(s)
- Hiroyuki Inose
- Department of Orthopaedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shingo Morishita
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yu Matsukura
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Yuasa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takashi Hirai
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
19
|
Severe Traumatic Injury Induces Phenotypic and Functional Changes of Neutrophils and Monocytes. J Clin Med 2021; 10:jcm10184139. [PMID: 34575249 PMCID: PMC8467869 DOI: 10.3390/jcm10184139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Severe traumatic injury has been associated with high susceptibility for the development of secondary complications caused by dysbalanced immune response. As the first line of the cellular immune response, neutrophils and monocytes recruited to the site of tissue damage and/or infection, are divided into three different subsets according to their CD16/CD62L and CD16/CD14 expression, respectively. Their differential functions have not yet been clearly understood. Thus, we evaluated the phenotypic changes of neutrophil and monocyte subsets among their functionality regarding oxidative burst and the phagocytic capacity in severely traumatized patients. Methods: Peripheral blood was withdrawn from severely injured trauma patients (TP; n = 15, ISS ≥ 16) within the first 12 h post-trauma and from healthy volunteers (HV; n = 15) and stimulated with fMLP and PMA. CD16dimCD62Lbright (immature), CD16brightCD62Lbright (mature) and CD16brightCD62Ldim (CD62Llow) neutrophil subsets and CD14brightCD16− (classical), CD14brightCD16+ (intermediate) and CD14dimCD16+ (non-classical) monocyte subsets of HV and TP were either directly analyzed by flow cytometry or the examined subsets of HV were sorted first by fluorescence-activated cell sorting and subsequently analyzed. Subset-specific generation of reactive oxygen species (ROS) and of E. coli bioparticle phagocytosis were evaluated. Results: In TP, the counts of immature neutrophils were significantly increased vs. HV. The numbers of mature and CD62Ldim neutrophils remained unchanged but the production of ROS was significantly enhanced in TP vs. HV and the stimulation with fMLP significantly increased the generation of ROS in the mature and CD62Ldim neutrophils of HV. The counts of phagocyting neutrophils did not change but the mean phagocytic capacity showed an increasing trend in TP. In TP, the monocytes shifted toward the intermediate phenotype, whereas the classical and non-classical monocytes became less abundant. ROS generation was significantly increased in all monocyte subsets in TP vs. HV and PMA stimulation significantly increased those level in both, HV and TP. However, the PMA-induced mean ROS generation was significantly lower in intermediate monocytes of TP vs. HV. Sorting of monocyte and neutrophil subsets revealed a significant increase of ROS and decrease of phagocytic capacity vs. whole blood analysis. Conclusions: Neutrophils and monocytes display a phenotypic shift following severe injury. The increased functional abnormalities of certain subsets may contribute to the dysbalanced immune response and attenuate the antimicrobial function and thus, may represent a potential therapeutic target. Further studies on isolated subsets are necessary for evaluation of their physiological role after severe traumatic injury.
Collapse
|
20
|
Finlay LDB, Conway Morris A, Deane AM, Wood AJT. Neutrophil kinetics and function after major trauma: A systematic review. World J Crit Care Med 2021; 10:260-277. [PMID: 34616661 PMCID: PMC8462018 DOI: 10.5492/wjccm.v10.i5.260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune dysfunction following major traumatic injury is complex and strongly associated with significant morbidity and mortality through the development of multiple organ dysfunction syndrome (MODS), persistent inflammation, immunosuppression, and catabolism syndrome and sepsis. Neutrophils are thought to be a pivotal mediator in the development of immune dysfunction.
AIM To provide a review with a systematic approach of the recent literature describing neutrophil kinetics and functional changes after major trauma in humans and discuss hypotheses as to the mechanisms of the observed neutrophil dysfunction in this setting.
METHODS Medline, Embase and PubMed were searched on January 15, 2021. Papers were screened by two reviewers and those included had their reference list hand searched for additional papers of interest. Inclusion criteria were adults > 18 years old, with an injury severity score > 12 requiring admission to an intensive care unit. Papers that analysed major trauma patients as a subgroup were included.
RESULTS Of 107 papers screened, 48 were included in the review. Data were heterogeneous and most studies had a moderate to significant risk of bias owing to their observational nature and small sample sizes. Key findings included a persistently elevated neutrophil count, stereotyped alterations in cell-surface markers of activation, and the elaboration of heterogeneous and immunosuppressive populations of cells in the circulation. Some of these changes correlate with clinical outcomes such as MODS and secondary infection. Neutrophil phenotype remains a promising avenue for the development of predictive markers for immune dysfunction.
CONCLUSION Understanding of neutrophil phenotypes after traumatic injury is expanding. A greater emphasis on incorporating functional and clinically significant markers, greater uniformity in study design and assessment of extravasated neutrophils may facilitate risk stratification in patients affected by major trauma.
Collapse
Affiliation(s)
- Liam DB Finlay
- Melbourne Medical School, University of Melbourne, Melbourne 3052, Victoria, Australia
| | - Andrew Conway Morris
- Department of Medicine, University of Cambridge, Cambridge 01223, United Kingdom
| | - Adam M Deane
- Centre for Integrated Critical Care, University of Melbourne, Parkville 3052, Victoria, Australia
- Intensive Care Unit, Royal Melbourne Hospital, Parkville 3052, Victoria, Australia
| | - Alexander JT Wood
- Centre for Integrated Critical Care, University of Melbourne, Parkville 3052, Victoria, Australia
- Intensive Care Unit, Royal Melbourne Hospital, Parkville 3052, Victoria, Australia
| |
Collapse
|
21
|
Lin R, Li L. Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handb Exp Pharmacol 2021; 276:43-64. [PMID: 34486096 DOI: 10.1007/164_2021_538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils, the most abundant leukocytes in circulation and the first responders to infection and inflammation, closely modulate both acute and chronic inflammatory processes. Resting neutrophils constantly patrol vasculature and migrate to tissues when challenges occur. When infection and/or inflammation recede, tissue neutrophils will be subsequently cleaned up by macrophages which collectively contribute to the resolution of inflammation. While most studies focus on the anti-microbial function of neutrophils including phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation, recent research highlighted additional contributions of neutrophils beyond simply controlling infectious agents. Neutrophils with resolving characteristics may alter the activities of neighboring cells and facilitate inflammation resolution, modulate long-term macrophage and adaptive immune responses, therefore having important impacts on host pathophysiology. The focus of this chapter is to provide an updated assessment of recent progress in the emerging field of neutrophil programming and memory in the context of both acute and chronic diseases.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
22
|
IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced organ injuries. Stem Cell Res Ther 2021; 12:438. [PMID: 34353366 PMCID: PMC8340459 DOI: 10.1186/s13287-021-02505-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Organ damages following hemorrhagic shock (HS) have been partly attributed to an immunological dysfunction. The current challenge in the management of HS patients is to prevent organ injury-induced morbidity and mortality which currently has not etiological treatment available. Mesenchymal stromal cells (MSC) are used in clinical cell therapy for immunomodulation and tissue repair. In vitro priming is often used to improve the immunomodulation efficiency of MSC before administration. Objective Assess the effect of naive MSC (MSCn) or interleukin (IL)-1β primed (MSCp) treatment in a context of HS-induced organ injury. Methods Rats underwent fixed pressure HS and were treated with allogenic MSCn or MSCp. Liver and kidney injuries were evaluated 6h later by histological and biochemical analysis. Whole blood was collected to measure leukocytes phenotypes. Then, in vitro characterization of MSCn or MSCp was carried out. Results Plasma creatinine, blood urea nitrogen, and cystatin C were decrease by MSCp infusion as well as kidney injury molecule (KIM)-1 on histological kidney sections. Transaminases, GGT, and liver histology were normalized by MSCp. Systemic cytokines (IL-1α, IL-6, and IL-10) as well as CD80, 86, and PD-1/PDL-1 axis were decreased by MSCp on monocytes and granulocytes. In vitro, MSCp showed higher level of secreted immunomodulatory molecules than MSCn. Conclusion An early administration of MSCp moderates HS-induced kidney and liver injury. IL-1β priming improves MSC efficiency by promoting their immunomodulatory activity. These data provide proof of concept that MSCp could be a therapeutic tool to prevent the appearance of organs injury following HS. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02505-4.
Collapse
|
23
|
du Preez K, Rautenbach Y, Hooijberg EH, Goddard A. Oxidative burst and phagocytic activity of phagocytes in canine parvoviral enteritis. J Vet Diagn Invest 2021; 33:884-893. [PMID: 34148453 DOI: 10.1177/10406387211025513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Canine parvoviral enteritis (CPE) is a severe disease characterized by systemic inflammation and immunosuppression. The function of circulating phagocytes (neutrophils and monocytes) in affected dogs has not been fully investigated. We characterized the functional capacity of canine phagocytes in CPE by determining their oxidative burst and phagocytic activities using flow cytometry. Blood was collected from 28 dogs with CPE and 11 healthy, age-matched, control dogs. Oxidative burst activity was assessed by stimulating phagocytes with opsonized Escherichia coli or phorbol 12-myristate 13-acetate (PMA) and measuring the percentage of phagocytes producing reactive oxygen species and the magnitude of this production. Phagocytosis was measured by incubating phagocytes with opsonized E. coli and measuring the percentage of phagocytes containing E. coli and the number of bacteria per cell. Complete blood counts and serum C-reactive protein (CRP) concentrations were also determined. Serum CRP concentration was negatively and positively correlated with segmented and band neutrophil concentrations, respectively. Overall, no differences in phagocyte function were found between dogs with CPE and healthy control dogs. However, infected dogs with neutropenia or circulating band neutrophils had decreased PMA-stimulated oxidative burst activity compared to healthy controls. Additionally, CPE dogs with neutropenia or circulating band neutrophils had decreased PMA- and E. coli-stimulated oxidative burst activity and decreased phagocytosis of E. coli compared to CPE dogs without neutropenia or band neutrophils. We conclude that phagocytes have decreased oxidative burst and phagocytic activity in neutropenic CPE dogs and in CPE dogs with circulating band neutrophils.
Collapse
Affiliation(s)
- Kelly du Preez
- Section of Clinical Pathology, Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Yolandi Rautenbach
- Section of Clinical Pathology, Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Emma H Hooijberg
- Section of Clinical Pathology, Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Amelia Goddard
- Section of Clinical Pathology, Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Mulder PPG, Vlig M, Boekema BKHL, Stoop MM, Pijpe A, van Zuijlen PPM, de Jong E, van Cranenbroek B, Joosten I, Koenen HJPM, Ulrich MMW. Persistent Systemic Inflammation in Patients With Severe Burn Injury Is Accompanied by Influx of Immature Neutrophils and Shifts in T Cell Subsets and Cytokine Profiles. Front Immunol 2021; 11:621222. [PMID: 33584717 PMCID: PMC7879574 DOI: 10.3389/fimmu.2020.621222] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Severe burn injury causes local and systemic immune responses that can persist up to months, and can lead to systemic inflammatory response syndrome, organ damage and long-term sequalae such as hypertrophic scarring. To prevent these pathological conditions, a better understanding of the underlying mechanisms is essential. In this longitudinal study, we analyzed the temporal peripheral blood immune profile of 20 burn wound patients admitted to the intensive care by flow cytometry and secretome profiling, and compared this to data from 20 healthy subjects. The patient cohort showed signs of systemic inflammation and persistently high levels of pro-inflammatory soluble mediators, such as IL-6, IL-8, MCP-1, MIP-1β, and MIP-3α, were measured. Using both unsupervised and supervised flow cytometry techniques, we observed a continuous release of neutrophils and monocytes into the blood for at least 39 days. Increased numbers of immature neutrophils were present in peripheral blood in the first three weeks after injury (0.1–2.8 × 106/ml after burn vs. 5 × 103/ml in healthy controls). Total lymphocyte numbers did not increase, but numbers of effector T cells as well as regulatory T cells were increased from the second week onward. Within the CD4+ T cell population, elevated numbers of CCR4+CCR6- and CCR4+CCR6+ cells were found. Altogether, these data reveal that severe burn injury induced a persistent innate inflammatory response, including a release of immature neutrophils, and shifts in the T cell composition toward an overall more pro-inflammatory phenotype, thereby continuing systemic inflammation and increasing the risk of secondary complications.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands.,Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | | | - Anouk Pijpe
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands
| | - Paul P M van Zuijlen
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands.,Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.,Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Evelien de Jong
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands.,Department of Intensive Care, Red Cross Hospital, Beverwijk, Netherlands
| | - Bram van Cranenbroek
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Magda M W Ulrich
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
25
|
Dong X, Wang C, Liu X, Bai X, Li Z. The Trajectory of Alterations in Immune-Cell Counts in Severe-Trauma Patients Is Related to the Later Occurrence of Sepsis and Mortality: Retrospective Study of 917 Cases. Front Immunol 2021; 11:603353. [PMID: 33488604 PMCID: PMC7820769 DOI: 10.3389/fimmu.2020.603353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Background Severe trauma is believed to disrupt the homeostasis of the immune system, and lead to dramatic changes in the circulating immune-cell count (ICC). The latter fluctuates widely over time. Knowledge about the relationship between these dramatic changes and dynamic fluctuations and the late prognosis of trauma patients is sparse. We investigated the relationship between the trajectory of alterations in the circulating ICC within 7 days in severe-trauma patients and subsequent sepsis and mortality. Methods A retrospective analysis of 917 patients with an Injury Severity Score ≥16 was undertaken. The absolute neutrophil, lymphocyte, and monocyte counts (ANC, ALC, and AMC, respectively) on days 1, 3, and 7 (D1, D3, and D7, respectively) after trauma, and whether sepsis or death occurred within 60 days, were recorded. As the disordered circulating ICCs fluctuated widely, their time-varying slopes (D3/D1 and D7/D3) were calculated. Patients were divided into “sepsis” and “non-sepsis” groups, as well as “alive” and “death” groups. Comparative studies were conducted between every two groups. Univariate and multivariate logistic regression analyses were used to identify variables related to the risk of sepsis and mortality. Receiver operating characteristic curves were plotted to assess the predictive value of various risk factors. Results More severe trauma caused more pronounced increases in the ANC and slower recovery of the ALC within 7 days. The ALC (D3), ANC (D7), ALC (D3/D1), and ANC (D7/D3) were independent risk factors for sepsis. The ALC (D3), ALC (D7), AMC (D7), and ALC (D3/D1) were independent risk factors for mortality. A combination of the ALC (D3) and ALC (D3/D1) exerted a good predictive value for sepsis and death. Conclusions The trajectory of alterations in the circulating ICC in the early stage after trauma is related to subsequent sepsis and mortality.
Collapse
Affiliation(s)
- Xijie Dong
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuntao Wang
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Liu
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Adhi M, Antares V, Saputra R. Anesthetic management and postoperative outcome of pediatric patients with Grade 3 pancreatic trauma injury and asymptomatic COVID-19. BALI JOURNAL OF ANESTHESIOLOGY 2021. [DOI: 10.4103/bjoa.bjoa_16_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Teuben MPJ, Hofman M, Greven J, Shehu A, Teuber H, Pfeifer R, Pape HC, Hildebrand F. Altered cell surface receptor dynamics and circulatory occurrence of neutrophils in a small animal fracture model. Pathol Res Pract 2020; 216:153108. [PMID: 32853946 DOI: 10.1016/j.prp.2020.153108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Excessive activation of the immune response after femoral fractures and fracture fixation is potentially associated with the development of systemic and local complications, particularly in multiple trauma patients. A dysregulated function of neutrophils, the most prevailing immune cells in circulation, has been discussed as a central pathophysiological background for these unfavourable post-traumatic courses. Our aim was to investigate alterations in activity and functionality as expressed by the cell surface receptor dynamics of circulatory neutrophils after femoral fracture and intramedullary stabilization. MATERIAL AND METHODS After intramedullary stabilization, an isolated femur fracture was induced in 18 Sprague-Dawley rats. Animals were terminated at different time points, i.e. after 3 (n = 5, group 3d), 7 (n = 5, group 7d) and 14 (n = 5, Group 14d) days and grouped accordingly. Additionally, baseline measurements were performed in one control animal per study group (n = 3) after anaesthesia induction and termination, without prior intramedullary nailing and fracture induction. The numbers and cell surface expression of CD11b, CD11a, CD62 L, and CD49d of circulating neutrophils were compared between groups. RESULTS Neutrophil numbers were significantly reduced at 3 days compared with baseline measurements (1.2 × 105 vs. 6.3 × 105 cells/mL, p < 0.01). By day 7, neutrophil counts significantly increased back to homeostatic levels (p < 0.05). At day 3, CD11b-expression was significantly reduced, whereas CD11a-expression was increased compared with the baseline measurements (p < 0.05). At day 7, the circulatory neutrophil pool exhibited a unique CD11bhigh/CD11ahigh-neutrophil subset showing a significantly increased co-expression of CD49d. The expression of CD62 L did not change significantly throughout the experiment compared with baseline measurements. CONCLUSIONS This descriptive small animal fracture study is the first to show that an intramedullary stabilized femur fracture is associated with a temporary reduction in circulatory neutrophil count and concurrent changes in circulatory neutrophil function. Moreover, we demonstrated that the restoration to homeostatic neutrophil activation status occurs concomitantly with the appearance of a novel neutrophil subtype (CD11bhigh/CD11ahigh) in circulation. Our fundamental new findings of the changes in circulatory neutrophil count and functionality after trauma form an excellent basis for future studies to further elucidate the role of neutrophils as activators and regulators of different post-traumatic processes, potentially resulting in local (e.g., fracture healing disturbances) or systemic (e.g., MODS) complications. This might result in the development of specific therapies to reduce adverse outcomes after trauma.
Collapse
Affiliation(s)
- Michel P J Teuben
- Department of Traumatology and Harald Tscherne Research Laboratory, University Hospital Zurich, Raemistraße 10, 8032, Zurich, Switzerland.
| | - Martijn Hofman
- Department of Orthopaedic Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Johannes Greven
- Department of Orthopaedic Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Alba Shehu
- Department of Orthopaedic Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Henrik Teuber
- Department of Traumatology and Harald Tscherne Research Laboratory, University Hospital Zurich, Raemistraße 10, 8032, Zurich, Switzerland.
| | - Roman Pfeifer
- Department of Traumatology and Harald Tscherne Research Laboratory, University Hospital Zurich, Raemistraße 10, 8032, Zurich, Switzerland.
| | - Hans-Christoph Pape
- Department of Traumatology and Harald Tscherne Research Laboratory, University Hospital Zurich, Raemistraße 10, 8032, Zurich, Switzerland.
| | - Frank Hildebrand
- Department of Orthopaedic Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Hesselink L, Spijkerman R, de Fraiture E, Bongers S, Van Wessem KJP, Vrisekoop N, Koenderman L, Leenen LPH, Hietbrink F. New automated analysis to monitor neutrophil function point-of-care in the intensive care unit after trauma. Intensive Care Med Exp 2020; 8:12. [PMID: 32172430 PMCID: PMC7072076 DOI: 10.1186/s40635-020-0299-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients often develop infectious complications after severe trauma. No biomarkers exist that enable early identification of patients who are at risk. Neutrophils are important immune cells that combat these infections by phagocytosis and killing of pathogens. Analysis of neutrophil function used to be laborious and was therefore not applicable in routine diagnostics. Hence, we developed a quick and point-of-care method to assess a critical part of neutrophil function, neutrophil phagosomal acidification. The aim of this study was to investigate whether this method was able to analyze neutrophil functionality in severely injured patients and whether a relation with the development of infectious complications was present. RESULTS Fifteen severely injured patients (median ISS of 33) were included, of whom 6 developed an infection between day 4 and day 9 after trauma. The injury severity score did not significantly differ between patients who developed an infection and patients who did not (p = 0.529). Patients who developed an infection showed increased acidification immediately after trauma (p = 0.006) and after 3 days (p = 0.026) and a decrease in the days thereafter to levels in the lower normal range. In contrast, patients who did not develop infectious complications showed high-normal acidification within the first days and increased tasset to identify patients at risk for infections after trauma and to monitor the inflammatory state of these trauma patients. CONCLUSION Neutrophil function can be measured in the ICU setting by rapid point-of-care analysis of phagosomal acidification. This analysis differed between trauma patients who developed infectious complications and trauma patients who did not. Therefore, this assay might prove a valuable asset to identify patients at risk for infections after trauma and to monitor the inflammatory state of these trauma patients. TRIAL REGISTRATION Central Committee on Research Involving Human Subjects, NL43279.041.13. Registered 14 February 2014. https://www.toetsingonline.nl/to/ccmo_search.nsf/Searchform?OpenForm.
Collapse
Affiliation(s)
- Lillian Hesselink
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands.
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Roy Spijkerman
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Emma de Fraiture
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Suzanne Bongers
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Karlijn J P Van Wessem
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Nienke Vrisekoop
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, Wilhelmina Children's Hospital, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Luke P H Leenen
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Falco Hietbrink
- Department of Trauma Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| |
Collapse
|