1
|
Hogg M, Wolfschmitt EM, Wachter U, Zink F, Radermacher P, Vogt JA. Ex Vivo 13C-Metabolic Flux Analysis of Porcine Circulating Immune Cells Reveals Cell Type-Specific Metabolic Patterns and Sex Differences in the Pentose Phosphate Pathway. Biomolecules 2024; 14:98. [PMID: 38254698 PMCID: PMC10813356 DOI: 10.3390/biom14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian 13C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O2•-) production and mitochondrial O2 consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O2•- production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O2•- production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3+CD4+) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.
Collapse
Affiliation(s)
- Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (E.-M.W.); (U.W.); (F.Z.); (P.R.); (J.A.V.)
| | | | | | | | | | | |
Collapse
|
2
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Tsuboi J, Nagaharu K, Nishimura K, Shiotani T, Ohishi K, Tawara I, Katayama N. Irbesartan, an angiotensin II type 1 receptor blocker, inhibits colitis-associated tumourigenesis by blocking the MCP-1/CCR2 pathway. Sci Rep 2021; 11:19943. [PMID: 34620946 PMCID: PMC8497524 DOI: 10.1038/s41598-021-99412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
The introduction of anti-inflammatory therapies has enabled substantial improvement of disease activity in patients with inflammatory bowel diseases (IBD). However, IBD can lead to serious complications such as intestinal fibrosis and colorectal cancer. Therefore, novel therapies reducing the development of these complications are needed. Angiotensin II (Ang II) promotes tissue inflammation by stimulating the production of monocyte chemoattractant protein-1 (MCP-1) or proinflammatory cytokines. It plays a pivotal role in IBD progression. Although blockade of Ang II has been reported to ameliorate experimental colitis and reduce colorectal cancer risk, the cellular and molecular mechanisms remain poorly understood. Our previous work showed that irbesartan, an Ang II type 1 receptor blocker, reduced the number of C-C chemokine receptor 2-positive (CCR2+) monocytic cells in the inflamed pancreas. This study aimed to investigate the possible antifibrotic and antitumour effects of irbesartan using the azoxymethane/dextran sodium sulphate mouse model. Irbesartan suppressed MCP-1 production and the accumulation of Ly6C+CCR2+ monocytes and fibrocytes in the inflamed colon, downregulated the expression of type 1 collagen and matrix metalloproteinase 9 and inhibited the development of intestinal fibrosis and tumours. Our observations suggest that blocking the MCP-1/CCR2 pathway using irbesartan might be beneficial in preventing colitis-associated colon tumours.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Masahiro Masuya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, Mie, 515-8557, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Komei Nishimura
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takuya Shiotani
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Katayama
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
3
|
Vassiliou AG, Athanasiou N, Vassiliadi DA, Jahaj E, Keskinidou C, Kotanidou A, Dimopoulou I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review. World J Crit Care Med 2021; 10:102-111. [PMID: 34316445 PMCID: PMC8291002 DOI: 10.5492/wjccm.v10.i4.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The glucocorticoid receptor (GCR) and the mineralocorticoid receptor (MR) are members of the steroid receptor superfamily of hormone-dependent transcription factors. The receptors are structurally and functionally related. They are localized in the cytosol and translocate into the nucleus after ligand binding. GCRs and MRs can be co-expressed within the same cell, and it is believed that the balance in GCR and MR expression is crucial for homeostasis and plays a key role in normal adaptation. In critical illness, the hypothalamic-pituitary-adrenal axis is activated, and as a consequence, serum cortisol concentrations are high. However, a number of patients exhibit relatively low cortisol levels for the degree of illness severity. Glucocorticoid (GC) actions are facilitated by GCR, whose dysfunction leads to GC tissue resistance. The MR is unique in this family in that it binds to both aldosterone and cortisol. Endogenous GCs play a critical role in controlling inflammatory responses in critical illness. Intracellular GC concentrations can differ greatly from blood levels due to the action of the two 11β-hydroxysteroid dehydrogenase isozymes, type 1 and type 2. 11β-hydroxysteroid dehydrogenases interconvert endogenous active cortisol and intrinsically inert cortisone. The degree of expression of the two isozymes has the potential to dramatically influence local GC availability within cells and tissues. In this review, we will explore the clinical studies that aimed to elucidate the role of MR and GCR expression in the inflammatory response seen in critical illness.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Dimitra A Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, “Evangelismos” Hospital, Athens 10676, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Chrysi Keskinidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, Athens 10676, Greece
| |
Collapse
|
4
|
Pollard CM, Desimine VL, Wertz SL, Perez A, Parker BM, Maning J, McCrink KA, Shehadeh LA, Lymperopoulos A. Deletion of Osteopontin Enhances β₂-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes. Int J Mol Sci 2019; 20:ijms20061396. [PMID: 30897705 PMCID: PMC6470638 DOI: 10.3390/ijms20061396] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac β2-adrenergic receptors (ARs) are known to inhibit collagen production and fibrosis in cardiac fibroblasts and myocytes. The β2AR is a Gs protein-coupled receptor (GPCR) and, upon its activation, stimulates the generation of cyclic 3′,5′-adenosine monophosphate (cAMP). cAMP has two effectors: protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac). Epac1 has been shown to inhibit cardiac fibroblast activation and fibrosis. Osteopontin (OPN) is a ubiquitous pro-inflammatory cytokine, which also mediates fibrosis in several tissues, including the heart. OPN underlies several cardiovascular pathologies, including atherosclerosis and cardiac adverse remodeling. We found that the cardiotoxic hormone aldosterone transcriptionally upregulates OPN in H9c2 rat cardiac myoblasts—an effect prevented by endogenous β2AR activation. Additionally, CRISPR-mediated OPN deletion enhanced cAMP generation in response to both β1AR and β2AR activation in H9c2 cardiomyocytes, leading to the upregulation of Epac1 protein levels. These effects rendered β2AR stimulation capable of completely abrogating transforming growth factor (TGF)-β-dependent fibrosis in OPN-lacking H9c2 cardiomyocytes. Finally, OPN interacted constitutively with Gαs subunits in H9c2 cardiac cells. Thus, we uncovered a direct inhibitory role of OPN in cardiac β2AR anti-fibrotic signaling via cAMP/Epac1. OPN blockade could be of value in the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Lina A Shehadeh
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
5
|
Lee JH, Jang SJ, Rhie S. Antinatriuretic phenomena seen in children with acute pyelonephritis may be related to the activation of intrarenal RAAS. Medicine (Baltimore) 2018; 97:e12152. [PMID: 30200111 PMCID: PMC6133464 DOI: 10.1097/md.0000000000012152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated whether antinatriuretic phenomena [decreases in urinary sodium (uNa) and fractional excretion of sodium (FENa)] seen in children with acute pyelonephritis (APN) are associated with the renin-angiotensin-aldosterone system (RAAS).We examined 114 children experiencing their first episode of febrile urinary tract infection (fUTI) consecutively admitted to our hospital from July 2012 to June 2014. Blood tests [C-reactive protein, white blood cell count, erythrocyte sedimentation rate, and aldosterone (Aldo)] and urine tests [uNa, urine potassium (uK) and FENa] were performed upon admission. All enrolled children underwent a 99m-dimercaptosuccinic acid renal scanning (DMSA) at admission. Areas with cortical defects (AreaCD) and uptake counts (UptakeCD) on their DMSA scans were calculated. Data were compared between children with positive DMSA results (APN), lower urinary tract infection (L-UTI), and controls; and between children with high and low Aldo levels.uNa, uNa/K, and FENa negatively correlated with AreaCD%, UptakeCD, and Aldo; were significantly lower in APN patients than in LUTIs and controls regardless of Aldo level; were lower in the high Aldo group than in the low Aldo group. However, there is no difference in AreaCD% and UptakeCD between APN children with the high and low Aldo level.Decreases in uNa, uNa/K, and FENa in children with APN may result from an antinatriuretic effect of RAAS and be related to the activation of the intrarenal RAAS.
Collapse
Affiliation(s)
| | - Su Jin Jang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | | |
Collapse
|
6
|
Wang H, Weng C, Chen H. Positive association between KCNJ5 rs2604204 (A/C) polymorphism and plasma aldosterone levels, but also plasma renin and angiotensin I and II levels, in newly diagnosed hypertensive Chinese: a case–control study. J Hum Hypertens 2017; 31:457-461. [DOI: 10.1038/jhh.2016.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/28/2022]
|
7
|
Tomasicchio M, Avenant C, Du Toit A, Ray RM, Hapgood JP. The progestin-only contraceptive medroxyprogesterone acetate, but not norethisterone acetate, enhances HIV-1 Vpr-mediated apoptosis in human CD4+ T cells through the glucocorticoid receptor. PLoS One 2013; 8:e62895. [PMID: 23658782 PMCID: PMC3643923 DOI: 10.1371/journal.pone.0062895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/26/2013] [Indexed: 12/25/2022] Open
Abstract
The glucocorticoid receptor (GR) regulates several physiological functions, including immune function and apoptosis. The HIV-1 virus accessory protein, viral protein R (Vpr), can modulate the transcriptional response of the GR. Glucocorticoids (GCs) and Vpr have been reported to induce apoptosis in various cells, including T-cells. We have previously shown that the injectable contraceptive, medroxyprogesterone acetate (MPA) is a partial to full agonist for the GR, unlike norethisterone acetate (NET-A). We investigated the functional cross talk between the GR and Vpr in inducing apoptosis in CD4(+) T-cells, in the absence and presence of GCs and these progestins, as well as progesterone. By using flow cytometry, we show that, in contrast to NET-A and progesterone, the synthetic GR ligand dexamethasone (Dex), cortisol and MPA induce apoptosis in primary CD4(+) T-cells. Furthermore, the C-terminal part of the Vpr peptide, or HIV-1 pseudovirus, together with Dex or MPA further increased the apoptotic phenotype, unlike NET-A and progesterone. By a combination of Western blotting, PCR and the use of receptor- selective agonists, we provide evidence that the GR and the estrogen receptor are the only steroid receptors expressed in peripheral blood mononuclear cells. These results, together with the findings that RU486, a GR antagonist, prevents Dex-, MPA- and Vpr-mediated apoptosis, provide evidence for the first time that GR agonists or partial agonists increase apoptosis in primary CD4(+) T-cells via the GR. We show that apoptotic induction involves differential expression of key apoptotic genes by both Vpr and GCs/MPA. This work suggests that contraceptive doses of MPA but not NET-A or physiological doses of progesterone could potentially accelerate depletion of CD4(+) T-cells in a GR-dependent fashion in HIV-1 positive women, thereby contributing to immunodeficiency. The results imply that choice of progestin used in contraception may be critical to susceptibility and progression of diseases such as HIV-1.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Province, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Province, South Africa
| | - Andrea Du Toit
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Province, South Africa
| | - Roslyn M. Ray
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Province, South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Province, South Africa
| |
Collapse
|
8
|
Abstract
Heart failure (HF) is a clinical syndrome manifested by signs and symptoms of low cardiac output, pulmonary, and/or systemic congestion. Immunologically, HF is defined as a state of immune activation and persistent inflammation, especially the circulatory levels of inflammatory cytokines have been found to increase. Traditional drugs used in HF have expressed immunomodulatory and/or anticytokine activities that may participate in their therapeutic efficacy in the disease. The angiotensin-converting enzyme inhibitors like captopril and enalapril as well as the angiotensin II receptor antagonist losartan indicated in HF exerted reducing effects on the inflammatory cytokines such as tumor necrosis factor-alpha and interleukin-6 at experimental and clinical levels. Aldosterone antagonists like spironolactone when administered concomitantly with losartan can attenuate angiotensin II-enhanced cytokine production in HF. Carvedilol beta-adrenergic blockers showed a wider spectrum of anti-inflammatory/anticytokine activity that proved to be associated with improvement of cardiac function and ejection fraction in patients with HF. The poor prognosis in HF despite the long experience with its treatment necessitated thinking about new drugs to be added to the traditional ones. Methotrexate and statins are examples of these drugs, especially because they exert immunologic effects. A low dose of methotrexate has been considered as a hopeful adjunct therapy in chronic HF, but large long-term clinical trials are required. Statins showed conflicting results, although they might be useful early after acute ischemic events associated with left ventricular dysfunction or failure, especially in younger patients with less advanced HF.
Collapse
|
9
|
Boesen EI, Williams DL, Pollock JS, Pollock DM. Immunosuppression with mycophenolate mofetil attenuates the development of hypertension and albuminuria in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol 2011; 37:1016-22. [PMID: 20626757 DOI: 10.1111/j.1440-1681.2010.05428.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The interplay between the immune and renin-angiotensin systems is emerging as a crucial factor in the development and progression of hypertension. The aim of the present study was to determine the involvement of immune cells in the hypertension and renal injury produced by a non-angiotensin II-dependent form of hypertension, namely deoxycorticosterone acetate (DOCA)-salt-induced hypertension, in rats. 2. Male Sprague-Dawley rats underwent uninephrectomy and received either a sustained-release pellet of DOCA s.c. and 0.9% NaCl (saline) to drink for 21 days or a placebo pellet and water to drink for 21 days. Additional groups of DOCA-salt- and placebo-treated rats were treated concurrently with the immune suppressant mycophenolate mofetil (MMF; 30 mg/kg per day). Rats were placed in metabolic cages for 24 h urine collection prior to and at weekly intervals during the 21 day experimental period. 3. Mycophenolate mofetil significantly attenuated the development of hypertension in DOCA-salt rats compared with untreated DOCA-salt hypertensive rats (mean arterial pressure by telemetry on Day 18,146 ± 7 vs 180 ± 3 mmHg, respectively; P < 0.001), as well as proteinuria (87 ± 27 vs 305 ± 63 mg/day, respectively, on Day 21) and albuminuria (51 ± 15 vs 247 ± 73 mg/day, respectively, on Day 21). Creatinine clearance was better preserved in MMF-treated DOCA-salt rats compared with untreated DOCA-salt rats (0.74 ± 0.07 vs 0.49 ± 0.09 mL/min, respectively; P < 0.05), but was still significantly reduced compared with that in the placebo group (1.15 ± 0.12 mL/min; P < 0.05). Finally, MMF treatment significantly attenuated the DOCA-salt-induced rise in renal cortical T-lymphocyte and macrophage infiltration (P < 0.05). 4. These data indicate that immune cells play a deleterious role in both the hypertension and renal injury associated with DOCA-salt hypertension.
Collapse
Affiliation(s)
- Erika I Boesen
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
10
|
Gelinas L, Falkenham A, Oxner A, Sopel M, Légaré JF. Highly purified human peripheral blood monocytes produce IL-6 but not TNFalpha in response to angiotensin II. J Renin Angiotensin Aldosterone Syst 2011; 12:295-303. [PMID: 21393356 DOI: 10.1177/1470320310391332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HYPOTHESIS Monocytes produce pro-inflammatory cytokines in response to Angiotensin II (AngII). INTRODUCTION AngII has been suggested by many to be pro-inflammatory and likely to contribute to the migration of leukocytes in patients with cardiovascular conditions. MATERIALS AND METHODS Monocytes were purified from peripheral blood mononuclear cells (PBMCs) by negative selection using antibodies conjugated to magnetic beads. Detection of CD14(+) and AT(1)R expression was achieved by double-labeling flow cytometry. Highly purified monocytes were then stimulated with AngII (6 and 24 h) to assess IL-6 and TNF-α transcript levels by qRT-PCR and protein secretion by ELISA. RESULTS Monocytes comprised 9.7 ± 2.0% of the PBMCs. Monocyte isolation by negative selection yielded a purity of up to 99.8%. We demonstrated AT(1)R expression on 9.5 ± 0.3% of highly purifed CD14(+)/CD16(-) monocytes. Stimulation of highly purified monocytes with AngII resulted in increased transcript levels of IL-6 at 6 h but not at 24 h, and increased secretion of IL-6 in a dose-dependent manner compared with controls (p <0.01). Conversely, there was no increase in TNF-α mRNA transcripts or protein secretion. CONCLUSIONS We provide evidence that a CD14(+)/CD16(-) subset of highly purified human monocytes express AT(1)R and respond to AngII exposure in vitro by producing IL-6 but not TNF-α.
Collapse
Affiliation(s)
- Laura Gelinas
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
11
|
Miura R, Nakamura K, Miura D, Miura A, Kajiya M, Hisamatsu K, Nagase S, Morita H, Kusano KF, Matsubara H, Ohe T, Ito H. Cytokine reducing effect of azelnidipine in human peripheral blood mononuclear cells. Biol Pharm Bull 2010; 33:1148-51. [PMID: 20606305 DOI: 10.1248/bpb.33.1148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous clinical trials have shown that calcium channel blocker (CCB) therapy improves the clinical outcome in patients with cardiovascular diseases. Since the progression of several types of cardiovascular diseases is closely associated with inflammation, alleviation of inflammation may be one potential mechanism of those beneficial effects of CCB therapy. We examined whether a new CCB (azelnidipine) could influence the inflammatory response of human peripheral blood mononuclear cells (PBMCs), which are recruited to inflammatory lesions and modulate inflammation. We investigated whether azelnidipine affected intracellular signaling and cytokine production by phytohemagglutinin (PHA)-stimulated human PBMCs in vitro. PBMCs were obtained from 10 healthy volunteers and stimulated with PHA. Then relative intracellular calcium ion concentration ([Ca(2+)](i)) was assessed by fluorescence microscopy, and the production of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-alpha) were measured by enzyme-linked immunosorbent assay. Stimulation with PHA significantly raised [Ca(2+)](i) and enhanced the production of MCP-1 and TNF-alpha by human PBMCs. Azelnidipine significantly diminished the PHA-induced rise of [Ca(2+)](i), and the production of MCP-1 and TNF-alpha. These findings indicate that azelnidipine might have an anti-inflammatory influence on human PBMCs, although the mechanisms and the difference from other CCBs still remain unclear and further exploration should be required.
Collapse
Affiliation(s)
- Ryuzea Miura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mohammed SF, Ohtani T, Korinek J, Lam CSP, Larsen K, Simari RD, Valencik ML, Burnett JC, Redfield MM. Mineralocorticoid accelerates transition to heart failure with preserved ejection fraction via "nongenomic effects". Circulation 2010; 122:370-8. [PMID: 20625113 DOI: 10.1161/circulationaha.109.915215] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mechanisms promoting the transition from hypertensive heart disease to heart failure with preserved ejection fraction are poorly understood. When inappropriate for salt status, mineralocorticoid (deoxycorticosterone acetate) excess causes hypertrophy, fibrosis, and diastolic dysfunction. Because cardiac mineralocorticoid receptors are protected from mineralocorticoid binding by the absence of 11-beta hydroxysteroid dehydrogenase, salt-mineralocorticoid-induced inflammation is postulated to cause oxidative stress and to mediate cardiac effects. Although previous studies have focused on salt/nephrectomy in accelerating mineralocorticoid-induced cardiac effects, we hypothesized that hypertensive heart disease is associated with oxidative stress and sensitizes the heart to mineralocorticoid, accelerating hypertrophy, fibrosis, and diastolic dysfunction. METHODS AND RESULTS Cardiac structure and function, oxidative stress, and mineralocorticoid receptor-dependent gene transcription were measured in sham-operated and transverse aortic constriction (studied 2 weeks later) mice without and with deoxycorticosterone acetate administration, all in the setting of normal-salt diet. Compared with sham mice, sham plus deoxycorticosterone acetate mice had mild hypertrophy without fibrosis or diastolic dysfunction. Transverse aortic constriction mice displayed compensated hypertensive heart disease with hypertrophy, increased oxidative stress (osteopontin and NOX4 gene expression), and normal systolic function, filling pressures, and diastolic stiffness. Compared with transverse aortic constriction mice, transverse aortic constriction plus deoxycorticosterone acetate mice had similar left ventricular systolic pressure and fractional shortening but more hypertrophy, fibrosis, and diastolic dysfunction with increased lung weights, consistent with heart failure with preserved ejection fraction. There was progressive activation of markers of oxidative stress across the groups but no evidence of classic mineralocorticoid receptor-dependent gene transcription. CONCLUSIONS Pressure-overload hypertrophy sensitizes the heart to mineralocorticoid excess, which promotes the transition to heart failure with preserved ejection fraction independently of classic mineralocorticoid receptor-dependent gene transcription.
Collapse
Affiliation(s)
- Selma F Mohammed
- Cardiovascular Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inhibitory effects of simvastatin on platelet-derived growth factor signaling in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. J Cardiovasc Pharmacol 2010; 55:39-48. [PMID: 19786891 DOI: 10.1097/fjc.0b013e3181c0419c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease characterized by inappropriate increase of pulmonary artery smooth muscle cells (PASMCs) leading to occlusion of pulmonary arterioles. Inhibition of platelet-derived growth factor (PDGF) signaling is starting to garner attention as a targeted therapy for IPAH. We assessed the inhibitory effects of simvastatin, a 3-hydroxy-3-methylglutanyl coenzyme A reductase inhibitor, on PDGF-induced proliferation and migration of PASMCs obtained from 6 patients with IPAH who underwent lung transplantation. PDGF stimulation caused a significantly higher growth rate of PASMCs from patients with IPAH than that of normal control PASMCs as assessed by (3)H-thymidine incorporation. Simvastatin (0.1 micromol/L) significantly inhibited PDGF-induced cell proliferation of PASMCs from patients with IPAH but did not inhibit proliferation of normal control cells at the same concentration. Western blot analysis revealed that simvastatin significantly increased the expression of cell cycle inhibitor p27. PDGF significantly increased the migration distance of IPAH-PASMCs compared with that of normal PASMCs, and simvastatin (1 micromol/L) significantly inhibited PDGF-induced migration. Immunofluorescence staining revealed that simvastatin (1 micromol/L) inhibited translocation of Rho A from the cytoplasm to membrane and disorganized actin fibers in PASMCs from patients with IPAH. In conclusion, simvastatin had inhibitory effects on inappropriate PDGF signaling in PASMCs from patients with IPAH.
Collapse
|
14
|
Abstract
OBJECTIVE Inhibition of angiotensin II receptor type 1 (AT1) reduces chronic inflammation associated with hypertension. We asked whether AT1 receptor inhibition would reduce the innate inflammatory response induced by bacterial lipopolysaccharide (LPS). METHODS We used unstimulated human circulating monocytes obtained from healthy donors by counterflow centrifugal elutriation. Monocytes were studied in vitro after incubation with LPS (50 ng/ml) with and without 1 mumol/l candesartan, an AT1 receptor blocker. Angiotensin II receptor mRNA expression was determined by reverse transcriptase-PCR and receptor binding by autoradiography; inflammatory factor mRNA expression was studied by reverse transcriptase-PCR and cytokine release by ELISA. RESULTS Human monocytes did not express detectable AT1 receptors, and angiotensin II did not induce inflammatory factor mRNA expression or cytokine release. However, candesartan substantially reduced the LPS-induced expression of the mRNAs for the LPS recognition protein cluster of differentiation 14, the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta and interleukin-6 and the lectin-like oxidized low-density lipoprotein receptor. In addition, candesartan reduced the activation of the nuclear factor kappa B pathway, the tumor necrosis factor alpha and interleukin-6 secretion, and the ROS formation induced by LPS, without affecting the secretion of interleukin-10. CONCLUSION We hypothesize that the anti-inflammatory effects of candesartan in these cells are likely mediated by mechanisms unrelated to AT1 receptor blockade. Our results demonstrate that candesartan significantly reduces the innate immune response to LPS in human circulating monocytes. The anti-inflammatory effects of candesartan may be of importance not only in hypertension but also in other inflammatory disorders.
Collapse
|
15
|
Bergmann A, Eulenberg C, Wellner M, Rolle S, Luft F, Kettritz R. Aldosterone abrogates nuclear factor kappaB-mediated tumor necrosis factor alpha production in human neutrophils via the mineralocorticoid receptor. Hypertension 2010; 55:370-9. [PMID: 20065153 DOI: 10.1161/hypertensionaha.109.141309] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mineralocorticoid receptor (MR) activation by aldosterone controls salt homeostasis and inflammation in several tissues and cell types. Whether or not a functional MR exists in polymorphonuclear neutrophils is unknown. We investigated the hypothesis that aldosterone modulates inflammatory neutrophil responses via the MR. By flow cytometry, Western blot analysis, and microscopy, we found that neutrophils possess MR. Preincubation with aldosterone (10(-11) to 10(-6) M) dose-dependently inhibited nuclear factor kappaB activation in interleukin (IL)-8- and granulocyte/macrophage colony-stimulating factor-treated neutrophils on fibronectin by IkappaBalpha Western blotting, electrophoretic mobility shift assay, and RT-PCR for IkappaBalpha mRNA. Aldosterone had no effect on tumor necrosis factor alpha- and lipopolysaccharide-mediated nuclear factor kappaB activation or on IL-8- and granulocyte/macrophage colony-stimulating factor-induced extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, or phosphatidylinositol 3-kinase/Akt activation. Spironolactone prevented nuclear factor kappaB inhibition, indicating an MR-specific aldosterone effect. By RT-PCR, we found that neutrophils have 11beta-hydroxysteroid dehydrogenase. Tumor necrosis factor alpha, which is controlled by nuclear factor kappaB, increased in the cell supernatant with IL-8 treatment. Aldosterone completely prevented this effect. RT-PCR showed a strong tumor necrosis factor alpha mRNA increase with IL-8 that was blocked by aldosterone, excluding the possibility that the tumor necrosis factor alpha increase was merely a consequence of secretion. Finally, conditioned medium from IL-8-treated neutrophils increased intercellular adhesion molecule-1 expression on endothelial cells and subsequently the adhesion of IL-8-treated neutrophils to endothelial cells. These effects were reduced when conditioned medium from aldosterone-pretreated neutrophils was used, and spironolactone blocked the aldosterone effect. Our data indicate that a functional MR exists in neutrophils mediating antiinflammatory effects that are at work when neutrophils interact with endothelial cells. These data could be relevant to MR-blockade treatment protocols.
Collapse
Affiliation(s)
- Astrid Bergmann
- Medical Faculty of the Charité, Department of Nephrology and Hypertension, Franz Volhard Clinic, HELIOS Klinikum-Berlin, Experimental and Clinical Research Center at the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Khan N, Bakshi KS, Jaggi AS, Singh N. Ameliorative potential of spironolactone in diabetes induced hyperalgesia in mice. YAKUGAKU ZASSHI 2009; 129:593-9. [PMID: 19420890 DOI: 10.1248/yakushi.129.593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the ameliorative potential of spironolactone against diabetic hyperalgesia in mice. Tail flick latency, an index of hyperalgesia, was assessed by analgesiometer. Serum nitrite levels, an index of nitric oxide, were analyzed by Griess reaction. Mice were rendered diabetic with streptozotocin (200 mg kg(-1) i.p) and kept for 30 days for development of diabetic pain. Thereafter, spleen homogenate supernatant (SHS) was prepared from the mouse spleen and administered in normal mice for 14 days. In both diabetic and SHS-treated mice a significant degree of hyperalgesia was developed, suggesting the key role of spleen-derived factor in induction of diabetic pain. Moreover, the levels of nitric oxide were also elevated in 30th day diabetic mice and SHS-treated mice. Administration of spironolactone (7 and 15 mg kg(-1) p.o.) significantly attenuated diabetes-induced decrease of nociceptive threshold and increase of serum nitrite oxide levels. Furthermore, SHS of spironolactone-treated diabetic mice failed to induce hyperalgesia and to increase serum nitrite levels. These results suggest that spironolactone has ameliorative potential in attenuating the hyperalgesia associated with diabetes, which may be possibly mediated through inhibition of release of certain critical factors from spleen.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Punjab, India
| | | | | | | |
Collapse
|
17
|
Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 2009; 150:1662-9. [PMID: 19095745 DOI: 10.1210/en.2008-1018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serum aldosterone level is clinically known to correlate with body weight and insulin resistance. Because the underlying molecular mechanism is largely unknown, we examined the effect of aldosterone on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. Aldosterone reduced the amounts of insulin receptor substrate (IRS) 1 and IRS2 in a time- and dose-dependent manner. As a result, insulin-induced phosphorylation of Akt-1 and -2, and subsequent uptake of 2-deoxyglucose were decreased. Degradation of IRSs was effectively prevented by a glucocorticoid receptor antagonist and antioxidant N-acetylcysteine, but not by a mineralocorticoid receptor antagonist. Because aldosterone induced phosphorylation of IRS1 at Ser(307), responsible kinases were investigated, and we revealed that rapamycin and BMS345541, but neither SP600125 nor calphostin C, conferred for degradation of IRSs. Although lactacystin prevented the degradation of IRSs, glucose uptake was not preserved. Importantly, sucrose-gradient-sediment intracellular fraction analysis revealed that lactacystin did not effectively restore the reduction of IRS1 in the low-density microsome fraction, important for the transduction of insulin's metabolic signaling. These results indicate that aldosterone deteriorates metabolic action of insulin by facilitating the degradation of IRS1 and IRS2 via glucocorticoid receptor-mediated production of reactive oxygen species, and activation of IkappaB Kinase beta and target of rapamycin complex 1. Thus, aldosterone appears to be a novel key factor in the development of insulin resistance in visceral obesity.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Hayashi K. [Kidney disease: potential of anti-inflammatory approaches for drug therapy]. Nihon Yakurigaku Zasshi 2008; 132:89-95. [PMID: 18689957 DOI: 10.1254/fpj.132.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
19
|
Siest G, Jeannesson E, Marteau JB, Samara A, Marie B, Pfister M, Visvikis-Siest S. Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metab Dispos 2008; 36:182-9. [PMID: 17940135 DOI: 10.1124/dmd.107.017228] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
We aimed to measure simultaneously the expression of drug-metabolizing enzymes (DME) and transcription factors (TF) with high importance in cardiovascular physiopathology in lymphocytes from healthy subjects. RNA was isolated from peripheral blood mononuclear cells (PBMC) of 20 subjects from the Stanislas Cohort. We used a microarray approach to measure 16 DME and 13 TF. Cytochromes P450 (P450s), including CYP2C19, CYP2C9, CYP2J2, CYP2D6, CYP1A1, CYP4F2, CYP4A11, CYP2E1, CYP11B2, CYP2C18, and CYP2A6, were expressed in all the subjects. CYP3A4 and CYP3A5 were not expressed. Glutathione S-transferases (GST) were expressed, but GSTM1 was seen only in some subjects. Pregnane X receptor (PXR), myocyte enhancer factor 2, vitamin D receptor, liver X receptor (LXR)-alpha, aryl hydrocarbon receptor (AHR), T-cell factor 7, constitutive androstane receptor, and aryl hydrocarbon receptor nuclear translocator (ARNT) were expressed in the majority of the subjects. Glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-gamma, and LXRbeta were expressed only in some individuals. PPARalpha mRNA was found in one subject only, and farnesoid X-activated receptor was not expressed. In addition, we found significant correlations between the expression of AHR, ARNT, and CYP1A1 and between PXR and P450 involved in leukotriene metabolism (CYP2C, CYP4F2, CYP4A11, CYP2J2, and CYP11B2). We describe here for the first time the presence of the majority of TF and DME in PBMC of healthy subjects without previous induction. The expression of these genes in lymphocytes could be a useful tool for further studying the physiological and pathological variations of DME and TF related to environment, to drug intake, and to cardiovascular metabolic cycles.
Collapse
Affiliation(s)
- Gérard Siest
- Equipe Institut National de la Santé et de la Recherche Médicale Génétique Cardiovasculaire CIC 9501, Faculté de Pharmacie, Université Henri Poincaré-Nancy I, Nancy, France.
| | | | | | | | | | | | | |
Collapse
|