1
|
Alzahrani HA, Corcione N, Alghamdi SM, Alhindi AO, Albishi OA, Mawlawi MM, Nofal WO, Ali SM, Albadrani SA, AlJuaid MA, Alshehri AM, Alzluaq MZ. Driving pressure in acute respiratory distress syndrome for developing a protective lung strategy: A systematic review. World J Crit Care Med 2025; 14:101377. [DOI: 10.5492/wjccm.v14.i2.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a critical condition characterized by acute hypoxemia, non-cardiogenic pulmonary edema, and decreased lung compliance. The Berlin definition, updated in 2012, classifies ARDS severity based on the partial pressure of arterial oxygen/fractional inspired oxygen fraction ratio. Despite various treatment strategies, ARDS remains a significant public health concern with high mortality rates.
AIM To evaluate the implications of driving pressure (DP) in ARDS management and its potential as a protective lung strategy.
METHODS We conducted a systematic review using databases including EbscoHost, MEDLINE, CINAHL, PubMed, and Google Scholar. The search was limited to articles published between January 2015 and September 2024. Twenty-three peer-reviewed articles were selected based on inclusion criteria focusing on adult ARDS patients undergoing mechanical ventilation and DP strategies. The literature review was conducted and reported according to PRISMA 2020 guidelines.
RESULTS DP, the difference between plateau pressure and positive end-expiratory pressure, is crucial in ARDS management. Studies indicate that lower DP levels are significantly associated with improved survival rates in ARDS patients. DP is a better predictor of mortality than tidal volume or positive end-expiratory pressure alone. Adjusting DP by optimizing lung compliance and minimizing overdistension and collapse can reduce ventilator-induced lung injury.
CONCLUSION DP is a valuable parameter in ARDS management, offering a more precise measure of lung stress and strain than traditional metrics. Implementing DP as a threshold for safety can enhance protective ventilation strategies, potentially reducing mortality in ARDS patients. Further research is needed to refine DP measurement techniques and validate its clinical application in diverse patient populations.
Collapse
Affiliation(s)
- Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, Riyadh 13321, Saudi Arabia
| | - Nadia Corcione
- Interventional Pulmonology, Antonio Cardarelli Hospital, Naples, Italy
| | - Saeed M Alghamdi
- Department of Clinical Technology, Respiratory Care Program, Umm-Al Qura University, Makkah al Mukarramah 21599, Saudi Arabia
| | - Abdulghani O Alhindi
- Respiratory Therapy Unit, Security Forced Hospital Program, Makkah al Mukarramah 26955, Saudi Arabia
| | - Ola A Albishi
- Department of Medical Affairs, Security Forced Hospital Program, Makkah al Mukarramah 25911, Saudi Arabia
| | - Murad M Mawlawi
- Department of Intensive Care Unit and Medical Affairs, Security Forced Hospital Program, Makkah al Mukarramah 23455, Saudi Arabia
| | - Wheb O Nofal
- Department of Pharmacy, Security Forced Hospital Program, Makkah al Mukarramah 23455, Saudi Arabia
| | - Samah M Ali
- Department of Internal Medicine, Security Forced Hospital Program, Makkah al Mukarramah 21955, Saudi Arabia
| | - Saad A Albadrani
- Department of Respiratory Therapy, King Faisal Medical Complex, Taif 29167, Saudi Arabia
| | - Meshari A AlJuaid
- Department of Respiratory Therapy, King Faisal Medical Complex, Taif 29167, Saudi Arabia
| | - Abdullah M Alshehri
- Department of Respiratory Therapy, King Fahad, General Hospital, Taif 29167, Saudi Arabia
| | - Mutlaq Z Alzluaq
- Department of Respiratory Therapy, East Jeddah Hospital, First Jeddah Cluster, Jeddah 23235, Saudi Arabia
| |
Collapse
|
2
|
Bittner E, Sheridan R. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am 2023; 103:439-451. [PMID: 37149380 PMCID: PMC10028407 DOI: 10.1016/j.suc.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respiratory failure occurs with some frequency in seriously burned patients, driven by a combination of inflammatory and infection factors. Inhalation injury contributes to respiratory failure in some burn patients via direct mucosal injury and indirect inflammation. In burn patients, respiratory failure leading to acute respiratory distress syndrome, with or without inhalation injury, is effectively managed using principles evolved for non-burn critically ill patients.
Collapse
Affiliation(s)
- Edward Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA; Department of Anesthesia, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert Sheridan
- Department of Surgery, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Zhan Z, Cai H, Cai H, Liang X, Lai S, Luo Y. Effects of 45° prone position ventilation in the treatment of acute respiratory distress syndrome: A protocol for a randomized controlled trial study. Medicine (Baltimore) 2021; 100:e25897. [PMID: 34106648 PMCID: PMC8133161 DOI: 10.1097/md.0000000000025897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an increasingly common acute respiratory failure that seriously threaten people's health. ARDS has a case fatality rate of up to 40%. ARDS is a serious threat to the life safety of patients and the quality of life, causing a huge economic burden to individuals, families and society. ARDS has become a large worldwide public health problem. Prone position ventilation (PPV) is an important auxiliary treatment for ARDS, which could improve oxygenation. However, PPV could cause Pressure injuries (PI) and other complications easily. We found that 45° PPV could reduce the incidence of PI, but lack of robust Evidence-based medicine evidence proving its efficacy. Therefore, we designed a randomized controlled trial to evaluate the efficacy of 45° PPV in the treatment of ARDS. METHODS A total of 268 patients will be randomly assigned to the control group and the test group (n = 134 each) in a ratio of 1:1. The treatment period is 7 days. The primary outcome measure will be the incidence of PI. The secondary outcomes will include APACHE II score, Braden Scale score, heart rate, systolic blood pressure, diastolic blood pressure, central venous pressure, mean arterial pressure, pH of arterial blood, oxygenation index, oxygen partial pressure, and carbon dioxide partial pressure. The evaluation will be performed at baseline, 1 hour, 12 hour, 48 hour, 5days, 7days after PPPV. RESULTS This study is helpful to evaluate the efficacy of 45° PPV in the treatment of ARDS. CONCLUSION 45° PPV may reduce the incidence of PI and improve oxygenation in patients with ARDS, which has important value in practical application. TRIAL REGISTRATION ChiCTR2000040436, registration time: November 28, 2020.
Collapse
Affiliation(s)
| | - Hairong Cai
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine
| | - Huiling Cai
- The Second Affiliated Hospital of Guangzhou University of traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | | | | | | |
Collapse
|
4
|
Sun Q, Zhou C, Chase JG. Parameter updating of a patient-specific lung mechanics model for optimising mechanical ventilation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Morton SE, Knopp JL, Chase JG, Docherty P, Howe SL, Möller K, Shaw GM, Tawhai M. Optimising mechanical ventilation through model-based methods and automation. ANNUAL REVIEWS IN CONTROL 2019; 48:369-382. [PMID: 36911536 PMCID: PMC9985488 DOI: 10.1016/j.arcontrol.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 06/11/2023]
Abstract
Mechanical ventilation (MV) is a core life-support therapy for patients suffering from respiratory failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a secondary outcome of a range of injuries and diseases, and results in almost half of all intensive care unit (ICU) patients receiving some form of MV. Funding the increasing demand for ICU is a major issue and MV, in particular, can double the cost per day due to significant patient variability, over-sedation, and the large amount of clinician time required for patient management. Reducing cost in this area requires both a decrease in the average duration of MV by improving care, and a reduction in clinical workload. Both could be achieved by safely automating all or part of MV care via model-based dynamic systems modelling and control methods are ideally suited to address these problems. This paper presents common lung models, and provides a vision for a more automated future and explores predictive capacity of some current models. This vision includes the use of model-based methods to gain real-time insight to patient condition, improve safety through the forward prediction of outcomes to changes in MV, and develop virtual patients for in-silico design and testing of clinical protocols. Finally, the use of dynamic systems models and system identification to guide therapy for improved personalised control of oxygenation and MV therapy in the ICU will be considered. Such methods are a major part of the future of medicine, which includes greater personalisation and predictive capacity to both optimise care and reduce costs. This review thus presents the state of the art in how dynamic systems and control methods can be applied to transform this core area of ICU medicine.
Collapse
Affiliation(s)
- Sophie E Morton
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Paul Docherty
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Sarah L Howe
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Das A, Camporota L, Hardman JG, Bates DG. What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study. Respir Res 2019; 20:29. [PMID: 30744629 PMCID: PMC6371576 DOI: 10.1186/s12931-019-0990-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background Recent analyses of patient data in acute respiratory distress syndrome (ARDS) showed that a lower ventilator driving pressure was associated with reduced relative risk of mortality. These findings await full validation in prospective clinical trials. Methods To investigate the association between driving pressures and ventilator induced lung injury (VILI), we calibrated a high fidelity computational simulator of cardiopulmonary pathophysiology against a clinical dataset, capturing the responses to changes in mechanical ventilation of 25 adult ARDS patients. Each of these in silico patients was subjected to the same range of values of driving pressure and positive end expiratory pressure (PEEP) used in the previous analyses of clinical trial data. The resulting effects on several physiological variables and proposed indices of VILI were computed and compared with data relating ventilator settings with relative risk of death. Results Three VILI indices: dynamic strain, mechanical power and tidal recruitment, showed a strong correlation with the reported relative risk of death across all ranges of driving pressures and PEEP. Other variables, such as alveolar pressure, oxygen delivery and lung compliance, correlated poorly with the data on relative risk of death. Conclusions Our results suggest a credible mechanistic explanation for the proposed association between driving pressure and relative risk of death. While dynamic strain and tidal recruitment are difficult to measure routinely in patients, the easily computed VILI indicator known as mechanical power also showed a strong correlation with mortality risk, highlighting its potential usefulness in designing more protective ventilation strategies for this patient group. Electronic supplementary material The online version of this article (10.1186/s12931-019-0990-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anup Das
- School of Engineering, University of Warwick, Coventry, UK
| | - Luigi Camporota
- Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust and Division of Asthma Allergy and Lung Biology, King's College London, London, UK
| | - Jonathan G Hardman
- Queen's Medical Centre, Nottingham University Hospitals NHS Trust and School of Medicine, University of Nottingham, Nottingham, UK
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry, UK.
| |
Collapse
|
7
|
Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL. Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series. World J Emerg Med 2018; 9:118-124. [PMID: 29576824 DOI: 10.5847/wjem.j.1920-8642.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Data on the mechanical ventilation (MV) characteristics and radiologic features for the cases with H7N9-induced ARDS were still lacking. METHODS We describe the MV characteristics and radiologic features of adult patients with ARDS due to microbiologically confirmed H7N9 admitted to our ICU over a 3-month period. RESULTS Eight patients (mean age 57.38±16.75; 5 male) were diagnosed with H7N9 in the first quarter of 2014. All developed respiratory failure complicated by acute respiratory distress syndrome (ARDS), which required MV in ICU. The baseline APACHE II and SOFA score was 11.77±6.32 and 7.71±3.12. The overall CT scores of the patients was 247.68±34.28 and the range of CT scores was 196.3-294.7. The average MV days was 14.63±6.14, and 4 patients required additional rescue therapies for refractory hypoxemia. Despite these measures, 3 patients died. CONCLUSION In H7N9-infected patients with ARDS, low tidal volume strategy was the conventional mode. RM as one of rescue therapies to refractory hypoxemia in these patients with serious architectural distortion and high CT scores, which could cause further lung damage, may induce bad outcomes and requires serious consideration. Prone ventilation may improve mortality, and should be performed at the early stage of the disease, not as a rescue therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhi-Gang Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Cheng-Bin Yuan
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiang Du
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Li JQ, Xu HY, Li MQ, Chen JY. Effect of setting high APRV guided by expiratory inflection point of pressure-volume curve on oxygen delivery in canine models of severe acute respiratory distress syndrome. Exp Ther Med 2016; 12:1445-1449. [PMID: 27588065 PMCID: PMC4998072 DOI: 10.3892/etm.2016.3456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/14/2016] [Indexed: 11/09/2022] Open
Abstract
In the present study, the effect of setting high airway pressure release ventilation (APRV) pressure guided by an expiratory inflection point of pressure-volume (PV) curve following lung recruitment maneuver (RM) on oxygen delivery (DO2) in canine models of severe acute respiratory distress syndrome (ARDS) was examined. Canine models of severe ARDS were established by intravenous injection of oleic acid. After injection of sedative muscle relaxants, a PV curve plotted using the super-syringe technique, and the pressure at lower inflection point (LIP) at the inhale branch and the pressure at the point of maximum curvature (PMC) at the exhale branch were measured. The ventilation mode was biphasic positive airway pressure (BiPAP), an inspiration to expiration ratio of 1:2, and Phigh 40 cm H2O, Plow 25 cm H2O. Phigh was decreased to 30 cm H2O after 90 sec. The dogs were randomized into 3 groups after RM, i.e., Blip group, BiPAP Plow = LIP+2 cm H2O; Bpmc group, BiPAP Plow = PMC; and Apmc group. In the APRV group, Phigh was set as PMC, with an inspiratory duration of 4 sec and expiratory duration of 0.4 sec. PMC was 18±1.4 cm H2O, and LIP was 11±1.3 cm H2O. Thirty seconds after RM was stabilized, it was set as 0 h. Hemodynamics, oxygenation and DO2 were measured at 0, 1, 2 and 4 h after RM in ARDS dogs. The results demonstrated: i) cardiac index (CI) in the 3 groups, where CI was significantly decreased in the Bpmc group at 0, 1, 2 and 4 h after RM compared to prior to RM (P<0.05) as well as in the Blip and Apmc groups (P<0.05). CI in the Blip and Apmc groups was not significantly altered prior to and after RM. ii) Oxygenation at 0, 1, 2 and 4 h in the 3 groups was improved after RM and the oxygenation indices for the 3 groups at 1 and 2 h were not significantly different (P>0.05). However, the oxygenation index in the Blip group at 4 h was significantly lower than those at 0 h for the Apmc and Bpmc groups (P<0.05). Oxygenation for the Apmc group at 4 h was higher than that for the Blip and Bpmc groups (P<0.05). Oxygenation for the Bpmc group was lower than that at 0 h, although the difference was not significant (P>0.05). iii) DO2 in at 0, 1, 2 and 4 h in the Bpmc group was significantly lower than that in the Blip and Apmc groups, and not significantly improved after RM. DO2 in the Blip and Apmc groups after RM was improved as compard to that before RM and that in the Bpmc group. However, DO2 at 4 h in the Blip group was significantly lower than that at 0 h and in the Apmc group (P<0.05). DO2 at 4 h in the Apmc group was higher than that at 0 h and that in the remaining 2 groups (P<0.05). In conclusion, high APRV pressure guided at PMC of PV curve after RM significantly improved DO2 in ARDS dogs.
Collapse
Affiliation(s)
- Jia-Qiong Li
- Department of Critical Care Medicine, Xuzhou Hospital Affiliated to Southeast University, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mao-Qin Li
- Department of Critical Care Medicine, Xuzhou Hospital Affiliated to Southeast University, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Jing-Yu Chen
- Department of Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
9
|
Chiew YS, Pretty CG, Shaw GM, Chiew YW, Lambermont B, Desaive T, Chase JG. Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasibility Stud 2015; 1:9. [PMID: 28435689 PMCID: PMC5395899 DOI: 10.1186/s40814-015-0006-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/26/2015] [Indexed: 01/11/2023] Open
Abstract
Background Selecting positive end-expiratory pressure (PEEP) during mechanical ventilation is important, as it can influence disease progression and outcome of acute respiratory distress syndrome (ARDS) patients. However, there are no well-established methods for optimizing PEEP selection due to the heterogeneity of ARDS. This research investigates the viability of titrating PEEP to minimum elastance for mechanically ventilated ARDS patients. Methods Ten mechanically ventilated ARDS patients from the Christchurch Hospital Intensive Care Unit were included in this study. Each patient underwent a stepwise PEEP recruitment manoeuvre. Airway pressure and flow data were recorded using a pneumotachometer. Patient-specific respiratory elastance (Ers) and dynamic functional residual capacity (dFRC) at each PEEP level were calculated and compared. Optimal PEEP for each patient was identified by finding the minima of the PEEP-Ers profile. Results Median Ers and dFRC over all patients and PEEP values were 32.2 cmH2O/l [interquartile range (IQR) 25.0–45.9] and 0.42 l [IQR 0.11–0.87]. These wide ranges reflect patient heterogeneity and variable response to PEEP. The level of PEEP associated with minimum Ers corresponds to a high change of functional residual capacity, representing the balance between recruitment and minimizing the risk of overdistension. Conclusions Monitoring patient-specific Ers can provide clinical insight to patient-specific condition and response to PEEP settings. The level of PEEP associated with minimum-Ers can be identified for each patient using a stepwise PEEP recruitment manoeuvre. This ‘minimum elastance PEEP’ may represent a patient-specific optimal setting during mechanical ventilation. Trial registration Australian New Zealand Clinical Trials Registry: ACTRN12611001179921. Electronic supplementary material The online version of this article (doi:10.1186/s40814-015-0006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeong Shiong Chiew
- Department of Mechanical Engineering, University of Canterbury, Private Bag, 8140, Christchurch, New Zealand
| | - Christopher G Pretty
- Department of Mechanical Engineering, University of Canterbury, Private Bag, 8140, Christchurch, New Zealand
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Yeong Woei Chiew
- Western Medicine Division, Hospital Lam Hua EE, Pulau Penang, Malaysia
| | | | - Thomas Desaive
- GIGA Cardiovascular Science, University of Liege, Liege, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag, 8140, Christchurch, New Zealand
| |
Collapse
|
10
|
Influence of Inspiration to Expiration Ratio on Cyclic Recruitment and Derecruitment of Atelectasis in a Saline Lavage Model of Acute Respiratory Distress Syndrome*. Crit Care Med 2015; 43:e65-74. [DOI: 10.1097/ccm.0000000000000788] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Das A, Cole O, Chikhani M, Wang W, Ali T, Haque M, Bates DG, Hardman JG. Evaluation of lung recruitment maneuvers in acute respiratory distress syndrome using computer simulation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:8. [PMID: 25578295 PMCID: PMC4329196 DOI: 10.1186/s13054-014-0723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/16/2014] [Indexed: 02/03/2023]
Abstract
Introduction Direct comparison of the relative efficacy of different recruitment maneuvers (RMs) for patients with acute respiratory distress syndrome (ARDS) via clinical trials is difficult, due to the heterogeneity of patient populations and disease states, as well as a variety of practical issues. There is also significant uncertainty regarding the minimum values of positive end-expiratory pressure (PEEP) required to ensure maintenance of effective lung recruitment using RMs. We used patient-specific computational simulation to analyze how three different RMs act to improve physiological responses, and investigate how different levels of PEEP contribute to maintaining effective lung recruitment. Methods We conducted experiments on five ‘virtual’ ARDS patients using a computational simulator that reproduces static and dynamic features of a multivariable clinical dataset on the responses of individual ARDS patients to a range of ventilator inputs. Three recruitment maneuvers (sustained inflation (SI), maximal recruitment strategy (MRS) followed by a titrated PEEP, and prolonged recruitment maneuver (PRM)) were implemented and evaluated for a range of different pressure settings. Results All maneuvers demonstrated improvements in gas exchange, but the extent and duration of improvement varied significantly, as did the observed mechanism of operation. Maintaining adequate post-RM levels of PEEP was seen to be crucial in avoiding cliff-edge type re-collapse of alveolar units for all maneuvers. For all five patients, the MRS exhibited the most prolonged improvement in oxygenation, and we found that a PEEP setting of 35 cm H2O with a fixed driving pressure of 15 cm H2O (above PEEP) was sufficient to achieve 95% recruitment. Subsequently, we found that PEEP titrated to a value of 16 cm H2O was able to maintain 95% recruitment in all five patients. Conclusions There appears to be significant scope for reducing the peak levels of PEEP originally specified in the MRS and hence to avoid exposing the lung to unnecessarily high pressures. More generally, our study highlights the huge potential of computer simulation to assist in evaluating the efficacy of different recruitment maneuvers, in understanding their modes of operation, in optimizing RMs for individual patients, and in supporting clinicians in the rational design of improved treatment strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0723-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anup Das
- School of Engineering, University of Warwick, Library Road, Coventry, CV4 7AL, UK.
| | - Oana Cole
- Anaesthesia & Critical Care Research Group, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| | - Marc Chikhani
- Anaesthesia & Critical Care Research Group, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| | - Wenfei Wang
- School of Engineering, University of Warwick, Library Road, Coventry, CV4 7AL, UK.
| | - Tayyba Ali
- Anaesthesia & Critical Care Research Group, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| | - Mainul Haque
- Anaesthesia & Critical Care Research Group, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| | - Declan G Bates
- School of Engineering, University of Warwick, Library Road, Coventry, CV4 7AL, UK.
| | - Jonathan G Hardman
- Anaesthesia & Critical Care Research Group, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| |
Collapse
|
12
|
Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology. Crit Care Med 2013; 41:e256-65. [PMID: 23887231 DOI: 10.1097/ccm.0b013e31828a3c13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effects of the rate of increase in airway pressure and duration of lung recruitment maneuvers in experimental pulmonary and extrapulmonary acute lung injury. DESIGN Prospective, randomized, controlled experimental study. SETTINGS University research laboratory. SUBJECTS Fifty adult male Wistar rats. INTERVENTIONS Acute lung injury was induced by Escherichia coli lipopolysaccharide either intratracheally (pulmonary acute lung injury) or intraperitoneally (extrapulmonary acute lung injury). After 24 hours, animals were assigned to one of three different recruitment maneuvers, targeted to maximal airway pressure of 30 cm H2O: 1) continuous positive airway pressure for 30 seconds (CPAP-30); 2) stepwise airway pressure increase (5 cm H2O/step, 8.5 s at each step) over 51 seconds (STEP-51) to achieve a pressure-time product similar to that of CPAP-30; and 3) stepwise airway pressure increase (5 cm H2O/step, 5 s at each step) over 30 seconds with maximum pressure sustained for a further 30 seconds (STEP-30/30). MEASUREMENTS AND MAIN RESULTS All recruitment maneuvers reduced static lung elastance independent of acute lung injury etiology. In pulmonary acute lung injury, CPAP-30 yielded lower surfactant protein-B and higher type III procollagen expressions compared with STEP-30/30. In extrapulmonary acute lung injury, CPAP-30 and STEP-30/30 increased vascular cell adhesion molecule-1 expression, but the type of recruitment maneuver did not influence messenger ribonucleic acid expression of receptor for advanced glycation end products, surfactant protein-B, type III procollagen, and pro-caspase 3. CONCLUSIONS CPAP-30 worsened markers of potential epithelial cell damage in pulmonary acute lung injury, whereas both CPAP-30 and STEP-30/30 yielded endothelial injury in extrapulmonary acute lung injury. In both acute lung injury groups, recruitment maneuvers improved respiratory mechanics, but stepwise recruitment maneuver without sustained airway pressure appeared to associate with less biological impact on lungs.
Collapse
|
13
|
Khan M, Frankel HL. Use and titration of positive end-expiratory pressure. Curr Probl Surg 2013; 50:446-51. [PMID: 24156842 DOI: 10.1067/j.cpsurg.2013.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Trepte CJC, Eichhorn V, Haas SA, Stahl K, Schmid F, Nitzschke R, Goetz AE, Reuter DA. Comparison of an automated respiratory systolic variation test with dynamic preload indicators to predict fluid responsiveness after major surgery. Br J Anaesth 2013; 111:736-42. [PMID: 23811425 DOI: 10.1093/bja/aet204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Predicting the response of cardiac output to volume administration remains an ongoing clinical challenge. The objective of our study was to compare the ability to predict volume responsiveness of various functional measures of cardiac preload. These included pulse pressure variation (PPV), stroke volume variation (SVV), and the recently launched automated respiratory systolic variation test (RSVT) in patients after major surgery. METHODS In this prospective study, 24 mechanically ventilated patients after major surgery were enrolled. Three consecutive volume loading steps consisting of 300 ml 6% hydroxyethylstarch 130/0.4 were performed and cardiac index (CI) was assessed by transpulmonary thermodilution. Volume responsiveness was considered as positive if CI increased by >10%. RESULTS In total 72 volume loading steps were analysed, of which 41 showed a positive volume response. Receiver operating characteristic (ROC) curve analysis revealed an area under the curve (AUC) of 0.70 for PPV, 0.72 for SVV and 0.77 for RSVT. Areas under the curves of all variables did not differ significantly from each other (P>0.05). Suggested cut-off values were 9.9% for SVV, 10.1% for PPV, and 19.7° for RSVT as calculated by the Youden Index. CONCLUSION In predicting fluid responsiveness the new automated RSVT appears to be as accurate as established dynamic indicators of preload PPV and SVV in patients after major surgery. The automated RSVT is clinically easy to use and may be useful in guiding fluid therapy in ventilated patients.
Collapse
Affiliation(s)
- C J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiew YS, Chase JG, Lambermont B, Janssen N, Schranz C, Moeller K, Shaw GM, Desaive T. Physiological relevance and performance of a minimal lung model: an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulm Med 2012; 12:59. [PMID: 22999004 PMCID: PMC3511291 DOI: 10.1186/1471-2466-12-59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background Mechanical ventilation (MV) is the primary form of support for acute respiratory distress syndrome (ARDS) patients. However, intra- and inter- patient-variability reduce the efficacy of general protocols. Model-based approaches to guide MV can be patient-specific. A physiological relevant minimal model and its patient-specific performance are tested to see if it meets this objective above. Methods Healthy anesthetized piglets weighing 24.0 kg [IQR: 21.0-29.6] underwent a step-wise PEEP increase manoeuvre from 5cmH2O to 20cmH2O. They were ventilated under volume control using Engström Care Station (Datex, General Electric, Finland), with pressure, flow and volume profiles recorded. ARDS was then induced using oleic acid. The data were analyzed with a Minimal Model that identifies patient-specific mean threshold opening and closing pressure (TOP and TCP), and standard deviation (SD) of these TOP and TCP distributions. The trial and use of data were approved by the Ethics Committee of the Medical Faculty of the University of Liege, Belgium. Results and discussions 3 of the 9 healthy piglets developed ARDS, and these data sets were included in this study. Model fitting error during inflation and deflation, in healthy or ARDS state is less than 5.0% across all subjects, indicating that the model captures the fundamental lung mechanics during PEEP increase. Mean TOP was 42.4cmH2O [IQR: 38.2-44.6] at PEEP = 5cmH2O and decreased with PEEP to 25.0cmH2O [IQR: 21.5-27.1] at PEEP = 20cmH2O. In contrast, TCP sees a reverse trend, increasing from 10.2cmH2O [IQR: 9.0-10.4] to 19.5cmH2O [IQR: 19.0-19.7]. Mean TOP increased from average 21.2-37.4cmH2O to 30.4-55.2cmH2O between healthy and ARDS subjects, reflecting the higher pressure required to recruit collapsed alveoli. Mean TCP was effectively unchanged. Conclusion The minimal model is capable of capturing physiologically relevant TOP, TCP and SD of both healthy and ARDS lungs. The model is able to track disease progression and the response to treatment.
Collapse
Affiliation(s)
- Yeong Shiong Chiew
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|