1
|
Rietveld TP, van der Ster BJP, Schoe A, Endeman H, Balakirev A, Kozlova D, Gommers DAMPJ, Jonkman AH. Let's get in sync: current standing and future of AI-based detection of patient-ventilator asynchrony. Intensive Care Med Exp 2025; 13:39. [PMID: 40119215 PMCID: PMC11928342 DOI: 10.1186/s40635-025-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Patient-ventilator asynchrony (PVA) is a mismatch between the patient's respiratory drive/effort and the ventilator breath delivery. It occurs frequently in mechanically ventilated patients and has been associated with adverse events and increased duration of ventilation. Identifying PVA through visual inspection of ventilator waveforms is highly challenging and time-consuming. Automated PVA detection using Artificial Intelligence (AI) has been increasingly studied, potentially offering real-time monitoring at the bedside. In this review, we discuss advances in automatic detection of PVA, focusing on developments of the last 15 years. RESULTS Nineteen studies were identified. Multiple forms of AI have been used for the automated detection of PVA, including rule-based algorithms, machine learning and deep learning. Three licensed algorithms are currently reported. Results of algorithms are generally promising (average reported sensitivity, specificity and accuracy of 0.80, 0.93 and 0.92, respectively), but most algorithms are only available offline, can detect a small subset of PVAs (focusing mostly on ineffective effort and double trigger asynchronies), or remain in the development or validation stage (84% (16/19 of the reviewed studies)). Moreover, only in 58% (11/19) of the studies a reference method for monitoring patient's breathing effort was available. To move from bench to bedside implementation, data quality should be improved and algorithms that can detect multiple PVAs should be externally validated, incorporating measures for breathing effort as ground truth. Last, prospective integration and model testing/finetuning in different ICU settings is key. CONCLUSIONS AI-based techniques for automated PVA detection are increasingly studied and show potential. For widespread implementation to succeed, several steps, including external validation and (near) real-time employment, should be considered. Then, automated PVA detection could aid in monitoring and mitigating PVAs, to eventually optimize personalized mechanical ventilation, improve clinical outcomes and reduce clinician's workload.
Collapse
Affiliation(s)
- Thijs P Rietveld
- Adult Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Björn J P van der Ster
- Adult Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Abraham Schoe
- Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik Endeman
- Adult Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
- Intensive Care, OLVG, Amsterdam, The Netherlands
| | | | | | | | - Annemijn H Jonkman
- Adult Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Docci M, Rodrigues A, Dubo S, Ko M, Brochard L. Does patient-ventilator asynchrony really matter? Curr Opin Crit Care 2025; 31:21-29. [PMID: 39445589 DOI: 10.1097/mcc.0000000000001225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW Past observational studies have reported the association between patient-ventilator asynchronies and poor clinical outcomes, namely longer duration of mechanical ventilation and higher mortality. But causality has remained undetermined. During the era of lung and diaphragm protective ventilation, should we revolutionize our clinical practice to detect and treat dyssynchrony? RECENT FINDINGS Clinicians' ability to recognize asynchronies is typically low. Automatized softwares based on artificial intelligence have been trained to largely outperform human eyesight and are close to be implemented at the bedside. There is growing evidence that in susceptible patients, dyssynchrony may lead to ventilation-induced lung injury (or patient self-inflicted lung injury) and that clusters of such dyssynchronous events have the highest association with poor outcomes. Dyssynchrony may also be associated with harm indirectly when it reflects over-assistance or over-sedation. However, the occurrence of reverse triggering by means of low inspiratory efforts during passive ventilation may prevent diaphragm dysfunction and atrophy and be beneficial. SUMMARY Most recent evidence on the topic suggests that synchrony between the patient and the mechanical ventilator is a critical element for protecting lung and diaphragm during the time of invasive mechanical ventilation or may reflect inadequate settings or sedation. Therefore, it is a complex situation, and clinical trials are still needed to test the effectiveness of keeping patient-ventilator interaction synchronous on clinical outcomes.
Collapse
Affiliation(s)
- Mattia Docci
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Dubo
- Department of Physiotherapy, Faculty of Medicine, Universidad de Concepciòn, Concepciòn, Chile
| | - Matthew Ko
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Bosma KJ. Proportional modes to hasten weaning. Curr Opin Crit Care 2025; 31:57-69. [PMID: 39641283 DOI: 10.1097/mcc.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the current state of the evidence, including several recent systematic reviews and meta-analyses, to determine if proportional modes of ventilation have the potential to hasten weaning from mechanical ventilation for adult critically ill patients, compared to pressure support ventilation (PSV), the current standard of care during the recovery and weaning phases of mechanical ventilation. RECENT FINDINGS Proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA) are two commercially available proportional modes that have been studied in randomized controlled trials (RCTs). Although several feasibility studies were not powered to detect differences in clinical outcomes, emerging evidence suggests that both PAV and NAVA may reduce duration of mechanical ventilation, intensive care unit (ICU) length of stay, and hospital mortality compared to PSV, as shown in some small, primarily single-centre studies. Recent meta-analyses suggest that PAV shortens duration of mechanical ventilation and improves weaning success rate, and NAVA may reduce ICU and hospital mortality. SUMMARY The current state of the evidence suggests that proportional modes may hasten weaning from mechanical ventilation, but larger, multicentre RCTS are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Karen J Bosma
- Critical Care Western, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario
- University Hospital, London Health Sciences Centre
- London Health Sciences Centre Research Institute, London, Canada
| |
Collapse
|
4
|
Locihová H, Jarošová D, Šrámková K, Slonková J, Zoubková R, Maternová K, Šonka K. Effect of sleep quality on weaning from mechanical ventilation: A scoping review. J Crit Care Med (Targu Mures) 2025; 11:23-32. [PMID: 40017482 PMCID: PMC11864068 DOI: 10.2478/jccm-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/30/2024] [Indexed: 03/01/2025] Open
Abstract
Introduction Mechanically ventilated patients have disturbed sleep. Aim of the study To explore whether there is a relationship between successful or unsuccessful weaning of patients and their sleep quality and circadian rhythm. Materials and Methods A scoping review. The search process involved four online databases: CINAHL, MEDLINE, ProQuest, and ScienceDirect. Original studies published between January 2020 and October 2022 were included in the review. Results Six studies met the inclusion criteria. These studies showed that patients with difficult weaning were more likely to have atypical sleep, shorter REM sleep, and reduced melatonin metabolite excretion. Muscle weakness was an independent factor associated with prolonged weaning from mechanical ventilation and was significantly more frequent in patients with atypical sleep. Heterogeneous patient samples and the methodology of the studies hamper a clear interpretation of the results. Conclusions A relationship was found between abnormal sleep patterns, reduced melatonin metabolite (6-sulfa-toxymelatonin) excretion, and unsuccessful weaning. However, the causality is not clear from the existing research.
Collapse
Affiliation(s)
- Hana Locihová
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, Faculty of Medicine, University of Ostrava, Ostrava -Vítkovice, Czech Republic; Department of Nursing and Midwifery, Faculty of Medicine, University of Ostrava, Ostrava - Vítkovice, Czech Republic
| | - Darja Jarošová
- Department of Nursing and Midwifery, Faculty of Medicine, University of Ostrava, Ostrava - Vítkovice, Czech Republic
| | - Karolína Šrámková
- Department of Neurology, University Hospital Ostrava, Ostrava - Vítkovice, Czech Republic
| | - Jana Slonková
- Department of Neurology, University Hospital Ostrava; Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava - Vítkovice, Czech Republic
| | - Renáta Zoubková
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, Faculty of Medicine, University of Ostrava; Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Ostrava, Ostrava - Vítkovice, Czech Republic
| | - Klára Maternová
- 2 Department of Surgery – Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Center of Clinical Neurosciences, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Docci M, Foti G, Brochard L, Bellani G. Pressure support, patient effort and tidal volume: a conceptual model for a non linear interaction. Crit Care 2024; 28:358. [PMID: 39506755 PMCID: PMC11539557 DOI: 10.1186/s13054-024-05144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Pressure support ventilation (PSV) is a form of assisted ventilation which has become frequently used, with the aim of partially unloading the patient's inspiratory muscles. Both under- and over-assistance should be avoided to target a lung- and diaphragm- protective ventilation. Herein, we propose a conceptual model, supported by actual data, to describe how patient and ventilator share the generation of tidal volume (Vt) in PSV and how respiratory system compliance (Crs) affects this interaction. We describe the presence of a patient-specific range of PSV levels, within which the inspiratory effort (Pmus) is modulated, keeping Vt relatively steady on a desired value (Vttarget). This range of assistance may be considered the "adequate PSV assistance" required by the patient, while higher and lower levels may result in over- and under-assistance respectively. As we also show, the determinants of over- and under- assistance borders depend on the combination of Crs and the inspiratory effort which the patient is able to sustain over a period of time. These concepts can be applied at the bedside to understand if the level of assistance is adequate to patient's demand, focusing on the variation of relevant parameters (Vt, Pmus and pressure-muscle-index) as patient reaction to a change in the level of assistance.
Collapse
Affiliation(s)
- Mattia Docci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy.
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy.
| |
Collapse
|
6
|
Shaikh H, Ionita R, Khan U, Park Y, Jubran A, Tobin MJ, Laghi F. Effect of Atypical Sleep EEG Patterns on Weaning From Prolonged Mechanical Ventilation. Chest 2024; 165:1111-1119. [PMID: 38211699 PMCID: PMC11214907 DOI: 10.1016/j.chest.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Approximately one-third of acute ICU patients display atypical sleep patterns that cannot be interpreted by using standard EEG criteria for sleep. Atypical sleep patterns have been associated with poor weaning outcomes in acute ICUs. RESEARCH QUESTION Do patients being weaned from prolonged mechanical ventilation experience atypical sleep EEG patterns, and are these patterns linked with weaning outcomes? STUDY DESIGN AND METHODS EEG power spectral analysis during wakefulness and overnight polysomnogram were performed on alert, nondelirious patients at a long-term acute care facility. RESULTS Forty-four patients had been ventilated for a median duration of 38 days at the time of the polysomnogram study. Eleven patients (25%) exhibited atypical sleep EEG. During wakefulness, relative EEG power spectral analysis revealed higher relative delta power in patients with atypical sleep than in patients with usual sleep (53% vs 41%; P < .001) and a higher slow-to-fast power ratio during wakefulness: 4.39 vs 2.17 (P < .001). Patients with atypical sleep displayed more subsyndromal delirium (36% vs 6%; P = .027) and less rapid eye movement sleep (4% vs 11% total sleep time; P < .02). Weaning failure was more common in the atypical sleep group than in the usual sleep group: 91% vs 45% (P = .013). INTERPRETATION This study provides the first evidence that patients in a long-term acute care facility being weaned from prolonged ventilation exhibit atypical sleep EEG patterns that are associated with weaning failure. Patients with atypical sleep EEG patterns had higher rates of subsyndromal delirium and slowing of the wakeful EEG, suggesting that these two findings represent a biological signal for brain dysfunction.
Collapse
Affiliation(s)
- Hameeda Shaikh
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL
| | - Ramona Ionita
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL
| | - Usman Khan
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL
| | - Youngsook Park
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL; RML Specialty Hospital, Hinsdale, IL
| | - Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL.
| | - Franco Laghi
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital and Loyola University of Chicago Stritch School of Medicine, Hines, IL; RML Specialty Hospital, Hinsdale, IL
| |
Collapse
|
7
|
Showler L, Ali Abdelhamid Y, Goldin J, Deane AM. Sleep during and following critical illness: A narrative review. World J Crit Care Med 2023; 12:92-115. [PMID: 37397589 PMCID: PMC10308338 DOI: 10.5492/wjccm.v12.i3.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 06/08/2023] Open
Abstract
Sleep is a complex process influenced by biological and environmental factors. Disturbances of sleep quantity and quality occur frequently in the critically ill and remain prevalent in survivors for at least 12 mo. Sleep disturbances are associated with adverse outcomes across multiple organ systems but are most strongly linked to delirium and cognitive impairment. This review will outline the predisposing and precipitating factors for sleep disturbance, categorised into patient, environmental and treatment-related factors. The objective and subjective methodologies used to quantify sleep during critical illness will be reviewed. While polysomnography remains the gold-standard, its use in the critical care setting still presents many barriers. Other methodologies are needed to better understand the pathophysiology, epidemiology and treatment of sleep disturbance in this population. Subjective outcome measures, including the Richards-Campbell Sleep Questionnaire, are still required for trials involving a greater number of patients and provide valuable insight into patients’ experiences of disturbed sleep. Finally, sleep optimisation strategies are reviewed, including intervention bundles, ambient noise and light reduction, quiet time, and the use of ear plugs and eye masks. While drugs to improve sleep are frequently prescribed to patients in the ICU, evidence supporting their effectiveness is lacking.
Collapse
Affiliation(s)
- Laurie Showler
- Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Yasmine Ali Abdelhamid
- Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Jeremy Goldin
- Sleep and Respiratory Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Adam M Deane
- Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| |
Collapse
|
8
|
Knauert MP, Ayas NT, Bosma KJ, Drouot X, Heavner MS, Owens RL, Watson PL, Wilcox ME, Anderson BJ, Cordoza ML, Devlin JW, Elliott R, Gehlbach BK, Girard TD, Kamdar BB, Korwin AS, Lusczek ER, Parthasarathy S, Spies C, Sunderram J, Telias I, Weinhouse GL, Zee PC. Causes, Consequences, and Treatments of Sleep and Circadian Disruption in the ICU: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2023; 207:e49-e68. [PMID: 36999950 PMCID: PMC10111990 DOI: 10.1164/rccm.202301-0184st] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Background: Sleep and circadian disruption (SCD) is common and severe in the ICU. On the basis of rigorous evidence in non-ICU populations and emerging evidence in ICU populations, SCD is likely to have a profound negative impact on patient outcomes. Thus, it is urgent that we establish research priorities to advance understanding of ICU SCD. Methods: We convened a multidisciplinary group with relevant expertise to participate in an American Thoracic Society Workshop. Workshop objectives included identifying ICU SCD subtopics of interest, key knowledge gaps, and research priorities. Members attended remote sessions from March to November 2021. Recorded presentations were prepared and viewed by members before Workshop sessions. Workshop discussion focused on key gaps and related research priorities. The priorities listed herein were selected on the basis of rank as established by a series of anonymous surveys. Results: We identified the following research priorities: establish an ICU SCD definition, further develop rigorous and feasible ICU SCD measures, test associations between ICU SCD domains and outcomes, promote the inclusion of mechanistic and patient-centered outcomes within large clinical studies, leverage implementation science strategies to maximize intervention fidelity and sustainability, and collaborate among investigators to harmonize methods and promote multisite investigation. Conclusions: ICU SCD is a complex and compelling potential target for improving ICU outcomes. Given the influence on all other research priorities, further development of rigorous, feasible ICU SCD measurement is a key next step in advancing the field.
Collapse
|
9
|
Kakar E, Priester M, Wessels P, Slooter AJC, Louter M, van der Jagt M. Sleep assessment in critically ill adults: A systematic review and meta-analysis. J Crit Care 2022; 71:154102. [PMID: 35849874 DOI: 10.1016/j.jcrc.2022.154102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE To systematically review sleep evaluation, characterize sleep disruption, and explore effects of sleepdisruption on outcomes in adult ICU patients. MATERIALS AND METHODS We systematically searched databases from May 1969 to June 2021 (PROSPERO protocol number: CRD42020175581). Prospective and retrospective studies were included studying sleep in critically ill adults, excluding patients with sleep or psychiatric disorders. Meta-regression methods were applied when feasible. RESULTS 132 studies (8797 patients) were included. Fifteen sleep assessment methods were identified, with only two validated. Patients had significant sleep disruption, with low sleep time, and low proportion of restorative rapid eye movement (REM). Sedation was associated with higher sleep efficiency and sleep time. Surgical versus medical patients had lower sleep quality. Patients on ventilation had a higher amount of light sleep. Meta-regression only suggested an association between total sleep time and occurrence of delirium (p < 0.001, 15 studies, 519 patients). Scarce data precluded further analyses. Sleep characterized with polysomnography (PSG) correlated well with actigraphy and Richards Campbell Sleep Questionnaire (RCSQ). CONCLUSIONS Sleep in critically ill patients is severely disturbed, and actigraphy and RCSQ seem reliable alternatives to PSG. Future studies should evaluate impact of sleep disruption on outcomes.
Collapse
Affiliation(s)
- Ellaha Kakar
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Department of Intensive Care Adults, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| | | | | | - Arjen J C Slooter
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - M Louter
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - M van der Jagt
- Department of Intensive Care Adults, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
10
|
Lam MTY, Malhotra A, LaBuzetta JN, Kamdar BB. Sleep in Critical Illness. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Albaiceta GM, Brochard L, Dos Santos CC, Fernández R, Georgopoulos D, Girard T, Jubran A, López-Aguilar J, Mancebo J, Pelosi P, Skrobik Y, Thille AW, Wilcox ME, Blanch L. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth 2021; 127:648-659. [PMID: 34340836 DOI: 10.1016/j.bja.2021.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Rafael Fernández
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, Althaia Xarxa Assistencial Universitaria de Manresa, Universitat Internacional de Catalunya, Manresa, Spain
| | - Dimitris Georgopoulos
- Intensive Care Medicine Department, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Timothy Girard
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines VA Hospital, Hines, IL, USA; Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Mancebo
- Servei Medicina Intensiva, University Hospital Sant Pau, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Yoanna Skrobik
- Department of Medicine, McGill University, Regroupement de Soins Critiques Respiratoires, Réseau de Soins Respiratoires FRQS, Montreal, QC, Canada
| | - Arnaud W Thille
- CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France; INSERM CIC 1402 ALIVE, Université de Poitiers, Poitiers, France
| | - Mary E Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology (Critical Care Medicine), University Health Network, Toronto, ON, Canada
| | - Lluis Blanch
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
12
|
Yuan X, Lu X, Chao Y, Beck J, Sinderby C, Xie J, Yang Y, Qiu H, Liu L. Neurally adjusted ventilatory assist as a weaning mode for adults with invasive mechanical ventilation: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:222. [PMID: 34187528 PMCID: PMC8240429 DOI: 10.1186/s13054-021-03644-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Background Prolonged ventilatory support is associated with poor clinical outcomes. Partial support modes, especially pressure support ventilation, are frequently used in clinical practice but are associated with patient–ventilation asynchrony and deliver fixed levels of assist. Neurally adjusted ventilatory assist (NAVA), a mode of partial ventilatory assist that reduces patient–ventilator asynchrony, may be an alternative for weaning. However, the effects of NAVA on weaning outcomes in clinical practice are unclear. Methods We searched PubMed, Embase, Medline, and Cochrane Library from 2007 to December 2020. Randomized controlled trials and crossover trials that compared NAVA and other modes were identified in this study. The primary outcome was weaning success which was defined as the absence of ventilatory support for more than 48 h. Summary estimates of effect using odds ratio (OR) for dichotomous outcomes and mean difference (MD) for continuous outcomes with accompanying 95% confidence interval (CI) were expressed. Results Seven studies (n = 693 patients) were included. Regarding the primary outcome, patients weaned with NAVA had a higher success rate compared with other partial support modes (OR = 1.93; 95% CI 1.12 to 3.32; P = 0.02). For the secondary outcomes, NAVA may reduce duration of mechanical ventilation (MD = − 2.63; 95% CI − 4.22 to − 1.03; P = 0.001) and hospital mortality (OR = 0.58; 95% CI 0.40 to 0.84; P = 0.004) and prolongs ventilator-free days (MD = 3.48; 95% CI 0.97 to 6.00; P = 0.007) when compared with other modes. Conclusions Our study suggests that the NAVA mode may improve the rate of weaning success compared with other partial support modes for difficult to wean patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03644-z.
Collapse
Affiliation(s)
- Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xinxing Lu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yali Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jennifer Beck
- Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, Canada
| | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, Canada
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
13
|
Nilius G, Richter M, Schroeder M. Updated Perspectives on the Management of Sleep Disorders in the Intensive Care Unit. Nat Sci Sleep 2021; 13:751-762. [PMID: 34135650 PMCID: PMC8200142 DOI: 10.2147/nss.s284846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Sleep disorders and circadian dysrhythmias are extremely prevalent in critically ill patients. Impaired sleep has a variety of etiologies, exhibits a wide range of negative effects and, moreover, might deteriorate the patient's prognosis. Despite a number of scientific findings and increased awareness, the importance of sleep optimization is still lower on the list of priories in the intensive care unit (ICU). The techniques of measuring and the evaluation of sleep quantity and quality are a great challenge in the ICU setting. The subjective and objective tools of sleep validation continue to suffer from deficiencies. Treatment approaches to improve the critically ill patient's sleep have focused on non-pharmacologic and pharmacologic strategies with some promising results. But pharmacological interventions alone could not provide sufficient patient benefit. Being aware and knowing of sleep problems and the beneficial effect of the necessary therapies in ICU patients requires greater acceptance. The application of available methods and the development of new methods to prevent sleep disorders in the ICU offer the potential to improve the critically ill patient's outcome.
Collapse
Affiliation(s)
- Georg Nilius
- Kliniken Essen Mitte, Department of Pneumology, Essen, Germany
- Witten/Herdecke University, Department of Internal Medicine, Witten, Germany
| | | | - Maik Schroeder
- Kliniken Essen Mitte, Department of Pneumology, Essen, Germany
| |
Collapse
|
14
|
Abstract
Sleep is fundamental for everyday functioning, yet it is often negatively impacted in critically ill patients by the intensive care setting. With a focus on the neurological intensive care unit (NeuroICU), this narrative review summarizes methods of measuring sleep and addresses common causes of sleep disturbance in the hospital including environmental, pharmacological, and patient-related factors. The effects of sleep deprivation on the cardiovascular, pulmonary, immune, endocrine, and neuropsychological systems are discussed, with a focus on short-term deprivation in critically ill populations. Where evidence is lacking in the literature, long-term sleep deprivation studies and the effects of sleep deprivation in healthy individuals are also referenced. Lastly, strategies for the promotion of sleep in the NeuroICU are presented.
Collapse
|
15
|
Schönhofer B, Geiseler J, Dellweg D, Fuchs H, Moerer O, Weber-Carstens S, Westhoff M, Windisch W. Prolonged Weaning: S2k Guideline Published by the German Respiratory Society. Respiration 2020; 99:1-102. [PMID: 33302267 DOI: 10.1159/000510085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanical ventilation (MV) is an essential part of modern intensive care medicine. MV is performed in patients with severe respiratory failure caused by respiratory muscle insufficiency and/or lung parenchymal disease; that is, when other treatments such as medication, oxygen administration, secretion management, continuous positive airway pressure (CPAP), or nasal high-flow therapy have failed. MV is required for maintaining gas exchange and allows more time to curatively treat the underlying cause of respiratory failure. In the majority of ventilated patients, liberation or "weaning" from MV is routine, without the occurrence of any major problems. However, approximately 20% of patients require ongoing MV, despite amelioration of the conditions that precipitated the need for it in the first place. Approximately 40-50% of the time spent on MV is required to liberate the patient from the ventilator, a process called "weaning". In addition to acute respiratory failure, numerous factors can influence the duration and success rate of the weaning process; these include age, comorbidities, and conditions and complications acquired during the ICU stay. According to international consensus, "prolonged weaning" is defined as the weaning process in patients who have failed at least 3 weaning attempts, or require more than 7 days of weaning after the first spontaneous breathing trial (SBT). Given that prolonged weaning is a complex process, an interdisciplinary approach is essential for it to be successful. In specialised weaning centres, approximately 50% of patients with initial weaning failure can be liberated from MV after prolonged weaning. However, the heterogeneity of patients undergoing prolonged weaning precludes the direct comparison of individual centres. Patients with persistent weaning failure either die during the weaning process, or are discharged back to their home or to a long-term care facility with ongoing MV. Urged by the growing importance of prolonged weaning, this Sk2 Guideline was first published in 2014 as an initiative of the German Respiratory Society (DGP), in conjunction with other scientific societies involved in prolonged weaning. The emergence of new research, clinical study findings and registry data, as well as the accumulation of experience in daily practice, have made the revision of this guideline necessary. The following topics are dealt with in the present guideline: Definitions, epidemiology, weaning categories, underlying pathophysiology, prevention of prolonged weaning, treatment strategies in prolonged weaning, the weaning unit, discharge from hospital on MV, and recommendations for end-of-life decisions. Special emphasis was placed on the following themes: (1) A new classification of patient sub-groups in prolonged weaning. (2) Important aspects of pulmonary rehabilitation and neurorehabilitation in prolonged weaning. (3) Infrastructure and process organisation in the care of patients in prolonged weaning based on a continuous treatment concept. (4) Changes in therapeutic goals and communication with relatives. Aspects of paediatric weaning are addressed separately within individual chapters. The main aim of the revised guideline was to summarize both current evidence and expert-based knowledge on the topic of "prolonged weaning", and to use this information as a foundation for formulating recommendations related to "prolonged weaning", not only in acute medicine but also in the field of chronic intensive care medicine. The following professionals served as important addressees for this guideline: intensivists, pulmonary medicine specialists, anaesthesiologists, internists, cardiologists, surgeons, neurologists, paediatricians, geriatricians, palliative care clinicians, rehabilitation physicians, intensive/chronic care nurses, physiotherapists, respiratory therapists, speech therapists, medical service of health insurance, and associated ventilator manufacturers.
Collapse
Affiliation(s)
- Bernd Schönhofer
- Klinikum Agnes Karll Krankenhaus, Klinikum Region Hannover, Laatzen, Germany,
| | - Jens Geiseler
- Klinikum Vest, Medizinische Klinik IV: Pneumologie, Beatmungs- und Schlafmedizin, Marl, Germany
| | - Dominic Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Abteilung Pneumologie II, Schmallenberg, Germany
| | - Hans Fuchs
- Universitätsklinikum Freiburg, Zentrum für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Freiburg, Germany
| | - Onnen Moerer
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Göttingen, Germany
| | - Steffen Weber-Carstens
- Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Campus Mitte, Berlin, Germany
| | - Michael Westhoff
- Lungenklinik Hemer, Hemer, Germany
- Universität Witten/Herdecke, Herdecke, Germany
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Herdecke, Germany
| |
Collapse
|
16
|
Daou M, Telias I, Younes M, Brochard L, Wilcox ME. Abnormal Sleep, Circadian Rhythm Disruption, and Delirium in the ICU: Are They Related? Front Neurol 2020; 11:549908. [PMID: 33071941 PMCID: PMC7530631 DOI: 10.3389/fneur.2020.549908] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Delirium is a syndrome characterized by acute brain failure resulting in neurocognitive disturbances affecting attention, awareness, and cognition. It is highly prevalent among critically ill patients and is associated with increased morbidity and mortality. A core domain of delirium is represented by behavioral disturbances in sleep-wake cycle probably related to circadian rhythm disruption. The relationship between sleep, circadian rhythm and intensive care unit (ICU)-acquired delirium is complex and likely bidirectional. In this review, we explore the proposed pathophysiological mechanisms of sleep disruption and circadian dysrhythmia as possible contributing factors in transitioning to delirium in the ICU and highlight some of the most relevant caveats for understanding the relationship between these complex phenomena. Specifically, we will (1) review the physiological consequences of poor sleep quality and efficiency; (2) explore how the neural substrate underlying the circadian clock functions may be disrupted in delirium; (3) discuss the role of sedative drugs as contributors to delirium and chrono-disruption; and, (4) describe the association between abnormal sleep-pathological wakefulness, circadian dysrhythmia, delirium and critical illness. Opportunities to improve sleep and readjust circadian rhythmicity to realign the circadian clock may exist as therapeutic targets in both the prevention and treatment of delirium in the ICU. Further research is required to better define these conditions and understand the underlying physiologic relationship to develop effective prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Marietou Daou
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| | - Irene Telias
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | | | - Laurent Brochard
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - M Elizabeth Wilcox
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Neurally Adjusted Ventilatory Assist versus Pressure Support Ventilation in Difficult Weaning: A Randomized Trial. Anesthesiology 2020; 132:1482-1493. [PMID: 32217876 DOI: 10.1097/aln.0000000000003207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Difficult weaning frequently develops in ventilated patients and is associated with poor outcome. In neurally adjusted ventilatory assist, the ventilator is controlled by diaphragm electrical activity, which has been shown to improve patient-ventilator interaction. The objective of this study was to compare neurally adjusted ventilatory assist and pressure support ventilation in patients difficult to wean from mechanical ventilation. METHODS In this nonblinded randomized clinical trial, difficult-to-wean patients (n = 99) were randomly assigned to neurally adjusted ventilatory assist or pressure support ventilation mode. The primary outcome was the duration of weaning. Secondary outcomes included the proportion of successful weaning, patient-ventilator asynchrony, ventilator-free days, and mortality. Weaning duration was calculated as 28 days for patients under mechanical ventilation at day 28 or deceased before day 28 without successful weaning. RESULTS Weaning duration in all patients was statistically significant shorter in the neurally adjusted ventilatory assist group (n = 47) compared with the pressure support ventilation group (n = 52; 3.0 [1.2 to 8.0] days vs. 7.4 [2.0 to 28.0], mean difference: -5.5 [95% CI, -9.2 to -1.4], P = 0.039). Post hoc sensitivity analysis also showed that the neurally adjusted ventilatory assist group had shorter weaning duration (hazard ratio, 0.58; 95% CI, 0.34 to 0.98). The proportion of patients with successful weaning from invasive mechanical ventilation was higher in neurally adjusted ventilatory assist (33 of 47 patients, 70%) compared with pressure support ventilation (25 of 52 patients, 48%; respiratory rate for neurally adjusted ventilatory assist: 1.46 [95% CI, 1.04 to 2.05], P = 0.026). The number of ventilator-free days at days 14 and 28 was statistically significantly higher in neurally adjusted ventilatory assist compared with pressure support ventilation. Neurally adjusted ventilatory assist improved patient ventilator interaction. Mortality and length of stay in the intensive care unit and in the hospital were similar among groups. CONCLUSIONS In patients difficult to wean, neurally adjusted ventilatory assist decreased the duration of weaning and increased ventilator-free days.
Collapse
|
18
|
Jonkman AH, Rauseo M, Carteaux G, Telias I, Sklar MC, Heunks L, Brochard LJ. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med 2020; 46:2301-2313. [PMID: 32780167 PMCID: PMC7417783 DOI: 10.1007/s00134-020-06206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
Proportional modes of ventilation assist the patient by adapting to his/her effort, which contrasts with all other modes. The two proportional modes are referred to as neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation with load-adjustable gain factors (PAV+): they deliver inspiratory assist in proportion to the patient’s effort, and hence directly respond to changes in ventilatory needs. Due to their working principles, NAVA and PAV+ have the ability to provide self-adjusted lung and diaphragm-protective ventilation. As these proportional modes differ from ‘classical’ modes such as pressure support ventilation (PSV), setting the inspiratory assist level is often puzzling for clinicians at the bedside as it is not based on usual parameters such as tidal volumes and PaCO2 targets. This paper provides an in-depth overview of the working principles of NAVA and PAV+ and the physiological differences with PSV. Understanding these differences is fundamental for applying any assisted mode at the bedside. We review different methods for setting inspiratory assist during NAVA and PAV+ , and (future) indices for monitoring of patient effort. Last, differences with automated modes are mentioned.
Collapse
Affiliation(s)
- Annemijn H Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Michela Rauseo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, Créteil, F-94010, France.,Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, F-94010, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, F-94010, France
| | - Irene Telias
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Laurent J Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Pinzon D, Galetke W. [Sleep in the intensive care unit]. SOMNOLOGIE 2020; 24:16-20. [PMID: 32431564 PMCID: PMC7222097 DOI: 10.1007/s11818-020-00246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 11/03/2022]
Abstract
Zahlreiche Patienten werden täglich auf Intensivstationen behandelt, häufig über einen längeren Zeitraum. Der Schlaf spielt eine nicht zu unterschätzende Rolle für diese Patienten. Schlafstörungen sind ein relevantes Problem für Intensivpatienten. Sie führen zu einer höheren Prävalenz eines Delirs bei diesen Patienten und somit zu einer längeren Verweildauer auf der Intensivstation und zu einer höheren Mortalität. Dieser Artikel versucht die Ursachen von Schlafstörungen in der Intensivmedizin und mögliche Strategien zur Vermeidung von Schlafstörungen aufzuzeigen.
Collapse
Affiliation(s)
- Daniel Pinzon
- Klinik für Pneumologie, VAMED Klinik Hagen Ambrock, Ambrocker Weg 60, 58091 Hagen, Deutschland
| | - Wolfgang Galetke
- Klinik für Pneumologie, VAMED Klinik Hagen Ambrock, Ambrocker Weg 60, 58091 Hagen, Deutschland
| |
Collapse
|
20
|
Effect of Neurally Adjusted Ventilatory Assist on Patient-Ventilator Interaction in Mechanically Ventilated Adults: A Systematic Review and Meta-Analysis. Crit Care Med 2020; 47:e602-e609. [PMID: 30882481 DOI: 10.1097/ccm.0000000000003719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patient-ventilator asynchrony is common among critically ill patients undergoing mechanical ventilation and has been associated with adverse outcomes. Neurally adjusted ventilatory assist is a ventilatory mode that may lead to improved patient-ventilator synchrony. We conducted a systematic review to determine the impact of neurally adjusted ventilatory assist on patient-ventilator asynchrony, other physiologic variables, and clinical outcomes in adult patients undergoing invasive mechanical ventilation in comparison with conventional pneumatically triggered ventilatory modes. DATA SOURCES We searched Medline, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central, CINAHL, Scopus, Web of Science, conference abstracts, and ClinicalTrials.gov until July 2018. STUDY SELECTION Two authors independently screened titles and abstracts for randomized and nonrandomized controlled trials (including crossover design) comparing the occurrence of patient-ventilator asynchrony between neurally adjusted ventilatory assist and pressure support ventilation during mechanical ventilation in critically ill adults. The asynchrony index and severe asynchrony (i.e., asynchrony index > 10%) were the primary outcomes. DATA EXTRACTION Two authors independently extracted study characteristics and outcomes and assessed risk of bias of included studies. DATA SYNTHESIS Of 11,139 unique citations, 26 studies (522 patients) met the inclusion criteria. Sixteen trials were included in the meta-analysis using random effects models through the generic inverse variance method. In several different clinical scenarios, the use of neurally adjusted ventilatory assist was associated with significantly reduced asynchrony index (mean difference, -8.12; 95% CI, -11.61 to -4.63; very low quality of evidence) and severe asynchrony (odds ratio, 0.42; 95% CI, 0.23-0.76; moderate quality of evidence) as compared with pressure support ventilation. Furthermore, other measurements of asynchrony were consistently improved during neurally adjusted ventilatory assist. CONCLUSIONS Neurally adjusted ventilatory assist improves patient-ventilator synchrony; however, its effects on clinical outcomes remain uncertain. Randomized controlled trials are needed to determine whether the physiologic efficiency of neurally adjusted ventilatory assist affects patient-important outcomes in critically ill adults.
Collapse
|
21
|
Akoumianaki E, Vaporidi K, Georgopoulos D. The Injurious Effects of Elevated or Nonelevated Respiratory Rate during Mechanical Ventilation. Am J Respir Crit Care Med 2019; 199:149-157. [PMID: 30199652 DOI: 10.1164/rccm.201804-0726ci] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Respiratory rate is one of the key variables that is set and monitored during mechanical ventilation. As part of increasing efforts to optimize mechanical ventilation, it is prudent to expand understanding of the potential harmful effects of not only volume and pressures but also respiratory rate. The mechanisms by which respiratory rate may become injurious during mechanical ventilation can be distinguished in two broad categories. In the first, well-recognized category, concerning both controlled and assisted ventilation, the respiratory rate per se may promote ventilator-induced lung injury, dynamic hyperinflation, ineffective efforts, and respiratory alkalosis. It may also be misinterpreted as distress delaying the weaning process. In the second category, which concerns only assisted ventilation, the respiratory rate may induce injury in a less apparent way by remaining relatively quiescent while being challenged by chemical feedback. By responding minimally to chemical feedback, respiratory rate leaves the control of V. e almost exclusively to inspiratory effort. In such cases, when assist is high, weak inspiratory efforts promote ineffective triggering, periodic breathing, and diaphragmatic atrophy. Conversely, when assist is low, diaphragmatic efforts are intense and increase the risk for respiratory distress, asynchronies, ventilator-induced lung injury, diaphragmatic injury, and cardiovascular complications. This review thoroughly presents the multiple mechanisms by which respiratory rate may induce injury during mechanical ventilation, drawing the attention of critical care physicians to the potential injurious effects of respiratory rate insensitivity to chemical feedback during assisted ventilation.
Collapse
Affiliation(s)
- Evangelia Akoumianaki
- 1 Intensive Care Medicine Department, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Katerina Vaporidi
- 1 Intensive Care Medicine Department, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitris Georgopoulos
- 1 Intensive Care Medicine Department, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
22
|
Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med 2019; 46:e825-e873. [PMID: 30113379 DOI: 10.1097/ccm.0000000000003299] [Citation(s) in RCA: 2038] [Impact Index Per Article: 339.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To update and expand the 2013 Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the ICU. DESIGN Thirty-two international experts, four methodologists, and four critical illness survivors met virtually at least monthly. All section groups gathered face-to-face at annual Society of Critical Care Medicine congresses; virtual connections included those unable to attend. A formal conflict of interest policy was developed a priori and enforced throughout the process. Teleconferences and electronic discussions among subgroups and whole panel were part of the guidelines' development. A general content review was completed face-to-face by all panel members in January 2017. METHODS Content experts, methodologists, and ICU survivors were represented in each of the five sections of the guidelines: Pain, Agitation/sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption). Each section created Population, Intervention, Comparison, and Outcome, and nonactionable, descriptive questions based on perceived clinical relevance. The guideline group then voted their ranking, and patients prioritized their importance. For each Population, Intervention, Comparison, and Outcome question, sections searched the best available evidence, determined its quality, and formulated recommendations as "strong," "conditional," or "good" practice statements based on Grading of Recommendations Assessment, Development and Evaluation principles. In addition, evidence gaps and clinical caveats were explicitly identified. RESULTS The Pain, Agitation/Sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption) panel issued 37 recommendations (three strong and 34 conditional), two good practice statements, and 32 ungraded, nonactionable statements. Three questions from the patient-centered prioritized question list remained without recommendation. CONCLUSIONS We found substantial agreement among a large, interdisciplinary cohort of international experts regarding evidence supporting recommendations, and the remaining literature gaps in the assessment, prevention, and treatment of Pain, Agitation/sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption) in critically ill adults. Highlighting this evidence and the research needs will improve Pain, Agitation/sedation, Delirium, Immobility (mobilization/rehabilitation), and Sleep (disruption) management and provide the foundation for improved outcomes and science in this vulnerable population.
Collapse
|
23
|
Wang CY, Shang M, Feng LZ, Zhou CL, Zhou QS, Hu K. Correlation between APACHE III score and sleep quality in ICU patients. J Int Med Res 2019; 47:3670-3680. [PMID: 31238759 PMCID: PMC6726793 DOI: 10.1177/0300060519856745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective To reveal the correlation between APACHE III score and sleep quality in patients in the intensive care unit (ICU). Methods This prospective, observational study included patients aged ≥18 years, who had been admitted to an integrated ICU for ≥48 h. Age, sex, Pittsburgh Sleep Quality Index (PSQI) prior to ICU, Numeric Rating Scales (NRS), noise, illumination, number of nursing interventions, Richards Campbell Sleep Questionnaire (RCSQ), and APACHE III score during sleep were evaluated. Results A total of 124 ICU patients were included, all with APACHE III scores < 60. APACHE III scores were not significantly associated with RCSQ scores. There were significant inverse associations between sleep quality in the ICU and PSQI score prior to ICU (odds ratio [OR] 0.587, 95% confidence interval [CI] 0.365, 0.945) and noise (OR 0.628, 95% CI 0.522, 0.756). Conclusion In ICU patients with APACHE III scores below 60 points, APACHE III score was not associated with sleep quality. PSQI score prior to ICU and noise were significantly inversely associated with sleep quality in this ICU patient population.
Collapse
Affiliation(s)
- Chang-Yong Wang
- 1 Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Shang
- 1 Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li-Zhi Feng
- 2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen-Liang Zhou
- 2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Shan Zhou
- 2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- 1 Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, Corrado S, Vetrugno L, Longhini F, Navalesi P. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019; 85:676-688. [PMID: 30762325 DOI: 10.23736/s0375-9393.19.13436-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patient-ventilator asynchrony is considered a major clinical problem for mechanically ventilated patients. It occurs during partial ventilatory support, when the respiratory muscles and the ventilator interact to contribute generating the volume output. In this review article, we consider all studies published on patient-ventilator asynchrony in the last 25 years. EVIDENCE ACQUISITION We selected 62 studies. The different forms of asynchrony are first defined and classified. We also describe the methods used for detecting and quantifying asynchronies. We then outline the outcome variables considered for evaluating the clinical consequences of asynchronies. The methodology for detection and quantification of patient-ventilator asynchrony are quite heterogeneous. In particular, the Asynchrony Index is calculated differently among studies. EVIDENCE SYNTHESIS Sixteen studies established some relationship between asynchronies and one or more clinical outcomes, such as duration of mechanical ventilation (seven studies), mortality (five studies), length of intensive care and hospital stay (four studies), patient comfort (four studies), quality of sleep (three studies), and rate of tracheotomy (three studies). In patients with severe patient-ventilator asynchrony, four of seven studies (57%) report prolonged duration of mechanical ventilation, one of five (20%) increased mortality, one of four (25%) longer intensive care and hospital lengths of stay, four of four (100%) worsened comfort, three of four (75%) deteriorated quality of sleep, and one of three (33%) increased rate of tracheotomy. CONCLUSIONS Given the varying outcomes considered and the erratic results, it remains unclear whether asynchronies really affects patient outcome, and the relationship between asynchronies and outcome is causative or associative.
Collapse
Affiliation(s)
- Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Gianmaria Cammarota
- Unit of Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Paolo Murabito
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", "G. Rodolico" University Policlinic, University of Catania, Catania, Italy
| | - Silvia Corrado
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care, University of Udine, Udine, Italy
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy -
| | - Paolo Navalesi
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
25
|
Grover S, Dua D, Sahoo S, Chakrabarti S, Avasthi A. Effectiveness of melatonin in the management of delirium: A retrospective study. JOURNAL OF MENTAL HEALTH AND HUMAN BEHAVIOUR 2019. [DOI: 10.4103/jmhhb.jmhhb_56_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Esquinas AM, Steier JS, Karim HMR. Impact of sleep alterations on weaning duration of mechanically ventilated patients: how much is bad? Eur Respir J 2018; 52:52/1/1800925. [PMID: 29973357 DOI: 10.1183/13993003.00925-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
| | - Joerg S Steier
- Respiratory and Sleep Medicine, Life Sciences and Medicine, King's College London, London, UK.,Lane Fox Unit/Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Habib M R Karim
- Dept of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur, India
| |
Collapse
|
27
|
Locihová H, Žiaková K. The effects of mechanical ventilation on the quality of sleep of hospitalised patients in the Intensive Care Unit. Rom J Anaesth Intensive Care 2018; 25:61-72. [PMID: 29756065 DOI: 10.21454/rjaic.7518.251.ven] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim To examine the effects of mechanical ventilation on the quality of sleep in patients in the intensive care unit (ICU) using recent and relevant literature. Methods To verify the examined objective, the results of the analysis of available original scientific works have been used including defined inclusion/exclusion criteria and search strategy. Appropriate works found were analysed further. The applied methodology was in line with the general principles of Evidence-Based Medicine. The following literary databases were used: CINAHL, Medline and gray literature: Google Scholar. Results A total of 91 trials were found. Eleven of these relevant to the follow-up analysis were selected: all trials were carried out under real ICU conditions and the total of 192 patients were included in the review. There is an agreement within all trials that sleep in patients requiring mechanical ventilation is disturbed. Most reviewed trials have shown that mechanical ventilation is probably not the main factor causing sleep disturbances, but an appropriate ventilation strategy can significantly help to improve its quality by reducing the frequency of the patient-ventilator asynchrony. Conclusion Based on the analysis, it appears that an appropriate ventilation mode setting can have a beneficial effect on the quality of sleep in ICU patients.
Collapse
Affiliation(s)
- Hana Locihová
- Department of Nursing, Jesseniuss Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic.,AGEL Educational and Research Institute (VAVIA), Prostějov, Czech Republic
| | - Katarína Žiaková
- Department of Nursing, Jesseniuss Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
28
|
Younes M. To sleep: perchance to ditch the ventilator. Eur Respir J 2018; 51:51/4/1800624. [DOI: 10.1183/13993003.00624-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/05/2022]
|
29
|
Neural Breathing Pattern and Patient-Ventilator Interaction During Neurally Adjusted Ventilatory Assist and Conventional Ventilation in Newborns. Pediatr Crit Care Med 2018; 19:48-55. [PMID: 29189671 DOI: 10.1097/pcc.0000000000001385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To compare neurally adjusted ventilatory assist and conventional ventilation on patient-ventilator interaction and neural breathing patterns, with a focus on central apnea in preterm infants. DESIGN Prospective, observational cross-over study of intubated and ventilated newborns. Data were collected while infants were successively ventilated with three different ventilator conditions (30 min each period): 1) synchronized intermittent mandatory ventilation (SIMV) combined with pressure support at the clinically prescribed, SIMV with baseline settings (SIMVBL), 2) neurally adjusted ventilatory assist, 3) same as SIMVBL, but with an adjustment of the inspiratory time of the mandatory breaths (SIMV with adjusted settings [SIMVADJ]) using feedback from the electrical activity of the diaphragm). SETTING Regional perinatal center neonatal ICU. PATIENTS Neonates admitted in the neonatal ICU requiring invasive mechanical ventilation. MEASUREMENTS AND MAIN RESULTS Twenty-three infants were studied, with median (range) gestational age at birth 27 weeks (24-41 wk), birth weight 780 g (490-3,610 g), and 7 days old (1-87 d old). Patient ventilator asynchrony, as quantified by the NeuroSync index, was lower during neurally adjusted ventilatory assist (18.3% ± 6.3%) compared with SIMVBL (46.5% ±11.7%; p < 0.05) and SIMVADJ (45.8% ± 9.4%; p < 0.05). There were no significant differences in neural breathing parameters, or vital signs, except for the end-expiratory electrical activity of the diaphragm, which was lower during neurally adjusted ventilatory assist. Central apnea, defined as a flat electrical activity of the diaphragm more than 5 seconds, was significantly reduced during neurally adjusted ventilatory assist compared with both SIMV periods. These results were comparable for term and preterm infants. CONCLUSIONS Patient-ventilator interaction appears to be improved with neurally adjusted ventilatory assist. Analysis of the neural breathing pattern revealed a reduction in central apnea during neurally adjusted ventilatory assist use.
Collapse
|
30
|
Pham T, Brochard LJ, Slutsky AS. Mechanical Ventilation: State of the Art. Mayo Clin Proc 2017; 92:1382-1400. [PMID: 28870355 DOI: 10.1016/j.mayocp.2017.05.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement.
Collapse
Affiliation(s)
- Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
31
|
Boyko Y, Jennum P, Toft P. Sleep quality and circadian rhythm disruption in the intensive care unit: a review. Nat Sci Sleep 2017; 9:277-284. [PMID: 29184454 PMCID: PMC5689030 DOI: 10.2147/nss.s151525] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sleep and circadian rhythm are reported to be severely abnormal in critically ill patients. Disturbed sleep can lead to the development of delirium and, as a result, can be associated with prolonged stay in the intensive care unit (ICU) and increased mortality. The standard criterion method of sleep assessment, polysomnography (PSG), is complicated in critically ill patients due to the practical challenges and interpretation difficulties. Several PSG sleep studies in the ICU reported the absence of normal sleep characteristics in many critically ill patients, making the standard method of sleep scoring insufficient in this patient group. Watson et al proposed a modified classification for sleep scoring in critically ill patients. This classification has not yet been validated. Sleep disturbance in the ICU is a multifactorial problem. The ICU environment, mechanical ventilation, medication, as well as the critical illness itself have been reported as important sleep disturbing factors. Secretion of sleep hormone, melatonin, expressing circadian rhythmicity was found abolished or phase delayed in critically ill patients. Various interventions have been tested in several studies aiming to improve sleep quality and circadian rhythm in the ICU. The results of these studies were inconclusive due to using the sleep assessment methods other than PSG or the absence of a reliable sleep scoring tool for the analysis of the PSG findings in this patient population. Development of a valid sleep scoring classification is essential for further sleep research in critically ill patients.
Collapse
Affiliation(s)
- Yuliya Boyko
- Department of Anesthesia and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
| | - Poul Jennum
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, Denmark
| | - Palle Toft
- Department of Anesthesia and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
| |
Collapse
|
32
|
Kuo NY, Tu ML, Hung TY, Liu SF, Chung YH, Lin MC, Wu CC. A randomized clinical trial of neurally adjusted ventilatory assist versus conventional weaning mode in patients with COPD and prolonged mechanical ventilation. Int J Chron Obstruct Pulmon Dis 2016; 11:945-51. [PMID: 27274216 PMCID: PMC4869614 DOI: 10.2147/copd.s103213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Patient-ventilator asynchrony is a common problem in mechanically ventilated patients; the problem is especially obvious in COPD. Neutrally adjusted ventilatory assist (NAVA) can improve patient-ventilator asynchrony; however, the effect in COPD patients with prolonged mechanical ventilation is still unknown. The goals of this study are to evaluate the effect of NAVA and conventional weaning mode in patients with COPD during prolonged mechanical ventilation. METHODS The study enrolled a total of 33 COPD patients with ventilator dependency for more than 21 days in the weaning center. A diaphragm electrical activity (Edi) catheter was inserted in patients within 24 hours after admission to the respiratory care center, and patients were randomly allocated to NAVA or conventional group. A spontaneous breathing trial was performed every 24 hours. The results correlated with the clinical parameters. RESULTS There were significantly higher asynchrony incidence rates in the whole group after using Edi catheter (before vs post-Edi catheter insertion =60.6% vs 87.9%, P<0.001). Asynchrony index: before vs post-Edi catheter insertion =7.4%±8.5% vs 13.2%±13.5%, P<0.01. Asynchrony incidence: NAVA vs conventional =0% vs 84.2%, P<0.001. Asynchrony index: NAVA vs conventional =0 vs 11.9±11.2 (breath %), P<0.001. The most common asynchrony events were ineffective trigger and delayed trigger. CONCLUSION Compared to conventional mode, NAVA mode can significantly enhance respiratory monitoring and improve patient-ventilator interaction in COPD patients with prolonged mechanical ventilation in respiratory care center.
Collapse
Affiliation(s)
- Nai-Ying Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
- Kaohsiung Medical University, Chiayi, Taiwan
| | - Mei-Lien Tu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
- Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Tsai-Yi Hung
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hsiu Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Abstract
Sleep disturbances in critically ill mechanically ventilated patients are common. Although many factors may potentially contribute to sleep loss in critical care, issues around mechanical ventilation are among the more complex. Sleep deprivation has systemic effects that may prolong the need for mechanical ventilation and length of stay in critical care and result in worse outcomes. This article provides a brief review of the physiology of sleep, physiologic changes in breathing associated with sleep, and the impact of mechanical ventilation on sleep. A summary of the issues regarding research studies to date is also included. Recommendations for the critical care nurse are provided.
Collapse
Affiliation(s)
- Patricia A Blissitt
- Harborview Medical Center, Clinical Education Box 359733, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
34
|
Rittayamai N, Wilcox E, Drouot X, Mehta S, Goffi A, Brochard L. Positive and negative effects of mechanical ventilation on sleep in the ICU: a review with clinical recommendations. Intensive Care Med 2016; 42:531-541. [PMID: 26759012 DOI: 10.1007/s00134-015-4179-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE Sleep is an essential physiologic process that helps to restore normal body homeostasis. Sleep disturbances have been shown to be associated with poor clinical outcomes, such as a greater risk of cardiovascular disease and increasing mortality. Critically ill patients, particularly those receiving mechanical ventilation, may be more susceptible to sleep disruption. METHODS AND RESULTS Mechanical ventilation is an important factor influencing sleep in critically ill patients as it may have positive or negative effects, depending on patient population, mode, and specific settings. Other causes of sleep disruption include the acute illness itself, the daily routine care, and the effects of medications. Improving sleep in patients admitted to an intensive care unit has the potential to improve both short- and long-term clinical outcomes. In this article we review the specific aspects of sleep in critically ill mechanically ventilated patients, including abnormal sleep patterns and loss of circadian rhythm, as well as the effects of mechanical ventilation and intravenous sedatives on sleep quality and quantity. CONCLUSIONS We provide recommendations for clinicians regarding optimal ventilatory settings and discuss fields for future research.
Collapse
Affiliation(s)
- Nuttapol Rittayamai
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada
- Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Elizabeth Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Division of Respirology (Critical Care), Department of Medicine, University Health Network, Toronto, Canada
| | - Xavier Drouot
- CHU de Poitiers, Service de Neurophysiologie Clinique, Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
- INSERM CIC 1402, Poitiers, France
| | - Sangeeta Mehta
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Division of Respirology (Critical Care), Department of Medicine, University Health Network, Toronto, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
McAndrew NS, Leske J, Guttormson J, Kelber ST, Moore K, Dabrowski S. Quiet time for mechanically ventilated patients in the medical intensive care unit. Intensive Crit Care Nurs 2016; 35:22-7. [PMID: 26916664 DOI: 10.1016/j.iccn.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Sleep disruption occurs frequently in critically ill patients. The primary aim of this study was to examine the effect of quiet time (QT) on patient sedation frequency, sedation and delirium scores; and to determine if consecutive QTs influenced physiologic measures (heart rate, mean arterial blood pressure and respiratory rate). METHOD A prospective study of a quiet time protocol was conducted with 72 adult patients on mechanical ventilation. SETTING A Medical Intensive Care Unit (MICU) in the Midwest region of the United States. RESULTS Sedation was given less frequently after QT (p=0.045). Those who were agitated prior to QT were more likely to be at goal sedation after QT (p<0.001). Although not statistically significant, the majority of patients who were negative on the Confusion Assessment Method (CAM-ICU) prior to QT remained delirium free after QT. Repeated measures analysis of variance (ANOVA) for three consecutive QTs showed a significant difference for respiratory rate (p=0.035). CONCLUSION QT may influence sedation administration and promote patient rest. Future studies are required to further understand the influence of QT on mechanically ventilated patients in the intensive care unit.
Collapse
Affiliation(s)
- Natalie S McAndrew
- Medical Intensive Care Unit, Froedtert Hospital, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States.
| | - Jane Leske
- Medical Intensive Care Unit, Froedtert Hospital, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States
| | | | | | - Kaylen Moore
- Medical Intensive Care Unit, Froedtert Hospital, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States
| | - Sylvia Dabrowski
- Medical Intensive Care Unit, Froedtert Hospital, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States
| |
Collapse
|
36
|
Beltrami FG, Nguyen XL, Pichereau C, Maury E, Fleury B, Fagondes S. Sleep in the intensive care unit. J Bras Pneumol 2015; 41:539-46. [PMID: 26785964 PMCID: PMC4723006 DOI: 10.1590/s1806-37562015000000056] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
Abstract
Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion.
Collapse
Affiliation(s)
- Flávia Gabe Beltrami
- . Programa de Pós-Graduação de Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | - Xuân-Lan Nguyen
- . Unité de Somnologie et Fonction Respiratoire, Département de Physiologie Respiratoire et Sommeil, Hôpital Saint-Antoine, Paris, France
| | - Claire Pichereau
- . Service de Réanimation Médicale, Hôpital Saint-Antoine, Paris, France
| | - Eric Maury
- . Service de Réanimation Médicale, Hôpital Saint-Antoine, Paris, France
| | - Bernard Fleury
- . Collège de Médecine des Hôpitaux de Paris, Département de Physiologie Respiratoire et Sommeil, Hôpital Saint-Antoine, Paris, France
| | - Simone Fagondes
- . Programa de Pós-Graduação de Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS) Brasil
- . Programa de Residência em Pneumologia e em Medicina do Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil
| |
Collapse
|
37
|
|
38
|
Patthum A, Peters M, Lockwood C. Effectiveness and safety of Neurally Adjusted Ventilatory Assist (NAVA) mechanical ventilation compared to standard conventional mechanical ventilation in optimizing patient-ventilator synchrony in critically ill patients: a systematic review protocol. ACTA ACUST UNITED AC 2015; 13:31-46. [PMID: 26447047 DOI: 10.11124/jbisrir-2015-1914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 10/31/2022]
Affiliation(s)
- Arisara Patthum
- Faculty of Health Sciences, Joanna Briggs Institute, University of Adelaide, South Australia.,Lyell McEwin Hospital, Adelaide, South Australia
| | - Micah Peters
- Faculty of Health Sciences, Joanna Briggs Institute, University of Adelaide, South Australia
| | - Craig Lockwood
- Faculty of Health Sciences, Joanna Briggs Institute, University of Adelaide, South Australia
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Delirium in the ICU affects as many as 60-80% of mechanically ventilated patients and a smaller but substantial percentage of other critically ill patients. Poor sleep quality has been consistently observed in critically ill patients. These problems are associated with worse ICU outcomes and, in many cases, delirium and poor sleep quality may be related. This review will summarize the recent literature relevant to both the problems and provide a potential pathway toward improvement. RECENT FINDINGS Many cases of delirium and the poor sleep experienced by ICU patients may be iatrogenic. How critical care practitioners prescribe sedatives and analgesics and, perhaps more broadly, how all medications are administered to critically ill patients, may be at the root of some of these problems. Reducing the administration of some commonly used ICU medications, especially some sedatives and anticholinergic medications, and keeping patients more awake and actively engaged in their care during the day may lead to better outcomes. SUMMARY It is our responsibility to apply the best available, evidence-based medicine to our practice. Adherence to new guidelines for the treatment of pain, agitation, and delirium may be the best pathway toward reducing delirium, improving sleep quality, and improving related outcomes.
Collapse
|
40
|
Elliott R, Rai T, McKinley S. Factors affecting sleep in the critically ill: an observational study. J Crit Care 2014; 29:859-63. [PMID: 24973105 DOI: 10.1016/j.jcrc.2014.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The aims of the current study were to describe the extrinsic and intrinsic factors affecting sleep in critically ill patients and to examine potential relationships with sleep quality. MATERIALS AND METHODS Sleep was recorded using polysomnography (PSG) and self-reports collected in adult patients in intensive care. Sound and illuminance levels were recorded during sleep recording. Objective sleep quality was quantified using total sleep time divided by the number of sleep periods (PSG sleep period time ratio). A regression model was specified using the "PSG sleep period time ratio" as a dependent variable. RESULTS Sleep was highly fragmented. Patients rated noise and light as the most sleep disruptive. Continuous equivalent sound levels were 56 dB (A). Median daytime illuminance level was 74 lux, and nighttime levels were 1 lux. The regression model explained 25% of the variance in sleep quality (P = .027); the presence of an artificial airway was the only statistically significant predictor in the model (P = .007). CONCLUSIONS The presence of an artificial airway during sleep monitoring was the only significant predictor in the regression model and may suggest that although potentially uncomfortable, an artificial airway may actually promote sleep. This requires further investigation.
Collapse
Affiliation(s)
- Rosalind Elliott
- Faculty of Health, University of Technology Sydney, Broadway 2007, New South Wales, Australia.
| | - Tapan Rai
- School of Mathematical Sciences, Faculty of Science, University of Technology Sydney, Broadway 2007, New South Wales, Australia.
| | - Sharon McKinley
- Faculty of Health, University of Technology Sydney, Broadway 2007, New South Wales, Australia; Intensive Care Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards 2065, New South Wales, Australia.
| |
Collapse
|
41
|
Skorko A, Hadfield D, Shah A, Hopkins P. Advances in Ventilation — Neurally Adjusted Ventilatory Assist (NAVA). J Intensive Care Soc 2013. [DOI: 10.1177/175114371301400409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review aims to introduce neurally-adjusted ventilatory assist (NAVA) to readers who do not have experience in using this form of ventilation. We will describe the basic principles and theoretical advantages of NAVA together with our experiences of introducing and using this mode in an intensive care unit.
Collapse
Affiliation(s)
- Agnieszka Skorko
- Clinical Research Fellow in Intensive Care, King's College Hospital, London
| | | | - Anand Shah
- Foundation Year 1, The Whittington Hospital
| | - Philip Hopkins
- Consultant in Intensive Care, King's College Hospital, London
| |
Collapse
|
42
|
|
43
|
Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically III tracheostomized patients. Crit Care Med 2013; 41:1637-44. [PMID: 23507721 DOI: 10.1097/ccm.0b013e318287f569] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In mechanically ventilated patients under mechanical ventilation in the ICU, ventilatory mode or settings may influence sleep quality. The aim of this study was to evaluate the direct impact of mechanical ventilation per se on sleep quantity and quality in patients who were able to tolerate separation from mechanical ventilation over prolonged periods. DESIGN AND SETTING Randomized crossover clinical trial in a medical ICU. PATIENTS Sixteen conscious patients, free of sedation and tracheostomized because of prolonged weaning from mechanical ventilation, were included in the study when able to tolerate at least 5 hours of spontaneous ventilation. INTERVENTIONS Patients were randomized to receive either spontaneous ventilation or mechanical ventilation at low levels of pressure support for two crossover periods of 5-hour duration each, from 22:00 to 08:00. Polysomnography was performed throughout the study. MEASUREMENTS AND RESULTS Total sleep time was higher during mechanical ventilation than during spontaneous ventilation (183 min vs 132 min, p = 0.04). No significant differences between mechanical ventilation and spontaneous ventilation were observed in slow wave sleep time (45 min vs 28 min), rapid eye movement sleep time (11 min vs 3 min), or the fragmentation index (25 vs 23 arousals and awakenings per hr). In four patients, however, our analysis of patient-ventilator interaction suggested that the ventilatory settings were suboptimal and could have been improved to potentially improve sleep. CONCLUSIONS In difficult-to-wean tracheostomized patients, sleep quality was similar with or without the ventilator. Sleep quantity was higher during mechanical ventilation. Reconnection to the ventilator during the night period may favor sleep efficiency in tracheostomized patients in prolonged weaning.
Collapse
|
44
|
Strey KA, Baertsch NA, Baker-Herman TL. Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity. Respir Physiol Neurobiol 2013; 189:384-94. [PMID: 23816599 DOI: 10.1016/j.resp.2013.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/04/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022]
Abstract
Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity.
Collapse
Affiliation(s)
- K A Strey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
45
|
Gama de Abreu M, Belda FJ. Neurally adjusted ventilatory assist: letting the respiratory center take over control of ventilation. Intensive Care Med 2013; 39:1481-3. [PMID: 23793885 DOI: 10.1007/s00134-013-2953-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
46
|
Watson PL, Ceriana P, Fanfulla F. Delirium: is sleep important? Best Pract Res Clin Anaesthesiol 2013; 26:355-66. [PMID: 23040286 DOI: 10.1016/j.bpa.2012.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
Abstract
Delirium and poor sleep quality are common and often co-exist in hospitalised patients. A link between these disorders has been hypothesised but whether this link is a cause-and-effect relationship or simply an association resulting from shared mechanisms is yet to be determined. Potential shared mechanisms include: abnormalities of neurotransmitters, tissue ischaemia, inflammation and sedative exposure. Sedatives, while decreasing sleep latency, often cause a decrease in slow wave sleep and stage rapid eye movement (REM) sleep and therefore may not provide the same restorative properties as natural sleep. Mechanical ventilation, an important cause of sleep disruption in intensive care unit (ICU) patients, may lead to sleep disruption not only from the discomfort of the endotracheal tube but also as a result of ineffective respiratory efforts and by inducing central apnoea events if not properly adjusted for the patient's physiologic needs. When possible, efforts should be made to optimise the patient-ventilator interaction to minimise sleep disruptions.
Collapse
Affiliation(s)
- Paula L Watson
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | |
Collapse
|
47
|
Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med 2013; 39:1040-7. [PMID: 23417203 DOI: 10.1007/s00134-013-2850-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To examine patient-ventilator asynchrony and sleep quality in non-sedated critically ill patients ventilated with proportional assist ventilation with load adjustable gain factors (PAV+) and pressure support (PSV). METHODS This was a randomized crossover physiological study conducted in an adult ICU at a tertiary hospital. Patients who exhibited patient-ventilator asynchrony on PSV were selected. Polysomnography was performed in these patients over 24 h, during which respiratory variables were continuously recorded. During the study period, each patient was randomized to receive alternating 4-h periods of PSV and PAV+ equally distributed during the day and night. Sleep architecture was analyzed manually using predetermined criteria. Patient-ventilator asynchrony was evaluated breath by breath using the flow-time and airway pressure-time waveforms. RESULTS Fourteen patients were studied. The majority (85.7 %) had either acute exacerbation of COPD as admission diagnosis or COPD as comorbidity. During sleep, compared to PSV, PAV+ significantly reduced the patient-ventilator asynchrony events per hour of sleep [5 (1-17) vs. 40 (4-443), p = 0.02, median (25-75th interquartile range)]. Compared to PSV, PAV+ was associated with slightly but significantly greater sleep fragmentation [18.8 (13.1-33.1) versus 18.1 (7.0-22.8) events/h, p = 0.01] and less REM sleep [0.0 % (0.0-8.4) vs. 5.8 % (0.0-21.9), p = 0.02). CONCLUSIONS PAV+ failed to improve sleep in mechanically ventilated patients despite the fact that this mode was associated with better synchrony between the patient and ventilator. These results do not support the hypothesis that patient-ventilator synchrony plays a central role in determining sleep quality in this group of patients.
Collapse
|
48
|
|
49
|
Altérations du sommeil en unité de soins intensifs. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Asynchronies and sleep disruption in neuromuscular patients under home noninvasive ventilation. Respir Med 2012; 106:1478-85. [DOI: 10.1016/j.rmed.2012.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022]
|