1
|
Samad K, Yousuf MS, Ullah H, Ahmed SS, Siddiqui KM, Latif A. Anesthesia and its environmental impact: approaches to minimize exposure to anesthetic gases and reduce waste. Med Gas Res 2025; 15:101-109. [PMID: 39436173 PMCID: PMC11515078 DOI: 10.4103/mgr.medgasres-d-23-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 10/23/2024] Open
Abstract
In today's era of modern healthcare, the intersection between medical practices and environmental responsibility has gained significant attention. One such area of focus is the practice of anesthesia, which plays a crucial role in various surgical procedures. Anesthetics such as nitrous oxide and volatile halogenated ethers (desflurane, isoflurane, sevoflurane) are examples of medical gases that are strong greenhouse gases that contribute to global warming. During medical procedures, most of these anesthetic agents are released into the atmosphere, which exacerbates their influence on the environment. Also anesthesia delivery systems have traditionally utilized high flow rates of gases, leading to not only excessive consumption but also a considerable environmental impact in terms of greenhouse gas emissions. However, the emergence of low-flow anesthesia (LFA) presents a promising solution for achieving emission reduction and cost savings, thereby aligning healthcare practices with sustainability goals. Understanding LFA involves the administration of anesthetic gases to patients at reduced flow rates compared to conventional high-flow methods. This practice requires precision in gas delivery, often incorporating advanced monitoring and control systems. By optimizing gas flow to match the patient's requirements, LFA minimizes wastage and excessive gas release into the environment, subsequently curbing the carbon footprint associated with healthcare operations. Decreasing volatile anesthetic delivery provides safe and effective strategies for anesthesia providers to decrease costs and reduce environmental pollution. Current literature support in favor of LFA represents an area of cost containment and an opportunity to lessen the environmental impact of anesthesia. This article will cover the concept of LFA, the distinctions between low flow and minimal flow, and the potential advantages of LFA, such as those related to patient safety, the environment, and the economy.
Collapse
Affiliation(s)
- Khalid Samad
- Department of Anaesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Hameed Ullah
- Department of Anaesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Shabbir Ahmed
- Department of Anaesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Asad Latif
- Department of Anaesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
2
|
Wenzel C, Flamm B, Loop T, Schumann S, Spaeth J. Efficiency of passive activated carbon anaesthetic gas capturing systems during simulated ventilation. Br J Anaesth 2024; 133:1518-1524. [PMID: 38960831 PMCID: PMC11589552 DOI: 10.1016/j.bja.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Interest in passive flow filter systems to remove sevoflurane from anaesthetic machine exhaust have increased recently to mitigate the environmental impact of volatile anaesthetics. These filter systems consist of chemically activated carbon, with limited evidence on their performance characteristics. We hypothesised that their efficiency depends on filter material. METHODS Binding capacity was tested for three carbon filter materials (CONTRAfluran®, FlurAbsorb®, and Anaesthetic Agent Filter AAF633). Adsorption efficiency and resistive pressure were determined during simulated ventilation at different stages of filter saturation and fresh gas flow. In addition, sevoflurane concentration in filtered gas was measured at randomly selected anaesthesia workstations. RESULTS Sevoflurane concentration in filtered gas exceeded 10 ppm when saturated with 184 ml sevoflurane each for CONTRAfluran and FlurAbsorb and 276 ml for AAF633. During simulated ventilation, sevoflurane concentration >10 ppm passed through CONTRAfluran and AAF633 at fresh gas flow 10 L min-1 only at maximum saturation, but through FlurAbsorb at all stages of saturation. The resistance pressure of all filters was negligible during simulated ventilation, but increased up to 5.2 (0.2) cm H2O during simulated coughing. At two of seven anaesthesia workstations, sevoflurane concentration in filtered exhaust gas was >10 ppm. CONCLUSIONS Depending on the filter material and saturation, the likelihood of sevoflurane passing through passive flow carbon filters depends on the filter material and fresh gas flow. Combining the filter systems with anaesthetic gas scavenging systems could protect from pollution of ambient air with sevoflurane.
Collapse
Affiliation(s)
- Christin Wenzel
- Department of Anesthesiology and Critical Care, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernd Flamm
- Department of Anesthesiology and Critical Care, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Torsten Loop
- Department of Anesthesiology and Critical Care, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Schumann
- Department of Anesthesiology and Critical Care, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Spaeth
- Department of Anesthesiology and Critical Care, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
García-Montoto F, Paz-Martín D, Pestaña D, Soro M, Marcos Vidal JM, Badenes R, Suárez de la Rica A, Bardi T, Pérez-Carbonell A, García C, Cervantes JA, Martínez MP, Guerrero JL, Lorente JV, Veganzones J, Murcia M, Belda FJ. Guidelines for inhaled sedation in the ICU. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:90-111. [PMID: 38309642 DOI: 10.1016/j.redare.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION AND OBJECTIVES Sedation is used in intensive care units (ICU) to improve comfort and tolerance during mechanical ventilation, invasive interventions, and nursing care. In recent years, the use of inhalation anaesthetics for this purpose has increased. Our objective was to obtain and summarise the best evidence on inhaled sedation in adult patients in the ICU, and use this to help physicians choose the most appropriate approach in terms of the impact of sedation on clinical outcomes and the risk-benefit of the chosen strategy. METHODOLOGY Given the overall lack of literature and scientific evidence on various aspects of inhaled sedation in the ICU, we decided to use a Delphi method to achieve consensus among a group of 17 expert panellists. The processes was conducted over a 12-month period between 2022 and 2023, and followed the recommendations of the CREDES guidelines. RESULTS The results of the Delphi survey form the basis of these 39 recommendations - 23 with a strong consensus and 15 with a weak consensus. CONCLUSION The use of inhaled sedation in the ICU is a reliable and appropriate option in a wide variety of clinical scenarios. However, there are numerous aspects of the technique that require further study.
Collapse
Affiliation(s)
- F García-Montoto
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain.
| | - D Paz-Martín
- UCI, Departamento de Anestesia y Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - D Pestaña
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Hospital Universitario Ramon y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - M Soro
- UCI, Servicio de Anestesiología y Cuidados Intensivos, Hospital IMED, Valencia, Spain
| | - J M Marcos Vidal
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Complejo Asistencial Universitario de León, León, Spain
| | - R Badenes
- Departamento Cirugía, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; UCI de Anestesia, Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - A Suárez de la Rica
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario de La Princesa, Madrid, Spain
| | - T Bardi
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - A Pérez-Carbonell
- UCI Quirúrgica, Servicio de Anestesiología, UCI Quirúrgica y Unidad del Dolor, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - C García
- UCI Quirúrgica, Servicio de Anestesiología y Reanimación, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - J A Cervantes
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario Torrecárdenas, Almería, Spain
| | - M P Martínez
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - J L Guerrero
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Universidad de Málaga, Málaga, Spain; Instituto Biomédico de Málaga, Málaga, Spain
| | - J V Lorente
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Juan Ramón Jiménez, Huelva, Spain
| | - J Veganzones
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario La Paz, Madrid, Spain
| | - M Murcia
- UCI, Servicio de Anestesiología y Cuidados Intensivos, Hospital IMED, Valencia, Spain
| | - F J Belda
- Departamento Cirugía, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Aun AG, Damasceno DC, Sinzato YK, Nogueira FR, Souza KM, Lawi YSA, Guedes JL, Silva MAP, de Carvalho LR, Braz LG, Braz MG. High anesthetic exposure leads to oxidative damage and gene expression changes in physicians during medical residency: a cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27577-y. [PMID: 37184787 DOI: 10.1007/s11356-023-27577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Evaluation of the possible toxic effects of occupational exposure to anesthetics is of great importance, and the literature is limited in assessing the possible association between occupational exposure to anesthetics and oxidative stress and genetic damage. To contribute to the gap of knowledge in relation to cause-effect, this cohort study was the first to monitor exposure assessment and to evaluate oxidative stress, DNA damage, and gene expression (OGG1, NRF2, HO-1, and TP53) in young adult physicians occupationally exposed to the most modern halogenated anesthetics (currently the commonly used inhalational anesthetics worldwide) in addition to nitrous oxide gas during the medical residency period. Therefore, the physicians were evaluated before the beginning of the medical residency (before the exposure to anesthetics-baseline), during (1 1/2 year) and at the end (2 1/2 years) of the medical residency. Anesthetic air monitoring was performed in operating rooms without adequate ventilation/scavenging systems, and biological samples were analyzed for lipid peroxidation, protein carbonyl content, primary and oxidative DNA damage, antioxidant enzymes and plasma antioxidant capacity, and expression of some key genes. The results showed induction of lipid peroxidation, DNA damage, glutathione peroxidase activity, and NRF2 and OGG1 expression up to the end of medical residency. Plasma antioxidant capacity progressively increased throughout medical residency; oxidative DNA damage levels started to increase during medical residency and were higher at the end of residency than at baseline. Protein carbonyls increased during but not at the end of medical residency compared to baseline. The antioxidant enzyme superoxide dismutase activity remained lower than baseline during and at the end of medical residency, and HO-1 (related to antioxidant defense) expression was downregulated at the end of medical residency. Additionally, anesthetic concentrations were above international recommendations. In conclusion, high concentrations of anesthetic in the workplace induce oxidative stress, gene expression modulation, and genotoxicity in physicians during their specialization period.
Collapse
Affiliation(s)
- Aline G Aun
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Débora C Damasceno
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Yuri K Sinzato
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Flávia R Nogueira
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Kátina M Souza
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Youssef S A Lawi
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Júlia L Guedes
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Mariane A P Silva
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Lídia R de Carvalho
- Department of Biostatistics, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, São Paulo State, Brazil
| | - Leandro G Braz
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Mariana G Braz
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil.
| |
Collapse
|
5
|
Inhaled Sedation with Volatile Anesthetics for Mechanically Ventilated Patients in Intensive Care Units: A Narrative Review. J Clin Med 2023; 12:jcm12031069. [PMID: 36769718 PMCID: PMC9918250 DOI: 10.3390/jcm12031069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Inhaled sedation was recently approved in Europe as an alternative to intravenous sedative drugs for intensive care unit (ICU) sedation. The aim of this narrative review was to summarize the available data from the literature published between 2005 and 2023 in terms of the efficacy, safety, and potential clinical benefits of inhaled sedation for ICU mechanically ventilated patients. The results indicated that inhaled sedation reduces the time to extubation and weaning from mechanical ventilation and reduces opioid and muscle relaxant consumption, thereby possibly enhancing recovery. Several researchers have reported its potential cardio-protective, anti-inflammatory or bronchodilator properties, alongside its minimal metabolism by the liver and kidney. The reflection devices used with inhaled sedation may increase the instrumental dead space volume and could lead to hypercapnia if the ventilator settings are not optimal and the end tidal carbon dioxide is not monitored. The risk of air pollution can be prevented by the adequate scavenging of the expired gases. Minimizing atmospheric pollution can be achieved through the judicious use of the inhalation sedation for selected groups of ICU patients, where the benefits are maximized compared to intravenous sedation. Very rarely, inhaled sedation can induce malignant hyperthermia, which prompts urgent diagnosis and treatment by the ICU staff. Overall, there is growing evidence to support the benefits of inhaled sedation as an alternative for intravenous sedation in ICU mechanically ventilated patients. The indication and management of any side effects should be clearly set and protocolized by each ICU. More randomized controlled trials (RCTs) are still required to investigate whether inhaled sedation should be prioritized over the current practice of intravenous sedation.
Collapse
|
6
|
Beitler JR, Talmor D. Volatile anesthetics for ICU sedation: the future of critical care or niche therapy? Intensive Care Med 2022; 48:1413-1417. [PMID: 36057666 DOI: 10.1007/s00134-022-06842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, New York-Presbyterian Hospital and Columbia University, New York, NY, USA
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Bellgardt M, Özcelik D, Breuer-Kaiser AFC, Steinfort C, Breuer TGK, Weber TP, Herzog-Niescery J. Extracorporeal membrane oxygenation and inhaled sedation in coronavirus disease 2019-related acute respiratory distress syndrome. World J Crit Care Med 2021; 10:323-333. [PMID: 34888158 PMCID: PMC8613718 DOI: 10.5492/wjccm.v10.i6.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) related acute respiratory distress syndrome (ARDS) is a severe complication of infection with severe acute respiratory syndrome coronavirus 2, and the primary cause of death in the current pandemic. Critically ill patients often undergo extracorporeal membrane oxygenation (ECMO) therapy as the last resort over an extended period. ECMO therapy requires sedation of the patient, which is usually achieved by intravenous administration of sedatives. The shortage of intravenous sedative drugs due to the ongoing pandemic, and attempts to improve treatment outcome for COVID-19 patients, drove the application of inhaled sedation as a promising alternative for sedation during ECMO therapy. Administration of volatile anesthetics requires an appropriate delivery. Commercially available ones are the anesthetic gas reflection systems AnaConDa® and MIRUSTM, and each should be combined with a gas scavenging system. In this review, we describe respiratory management in COVID-19 patients and the procedures for inhaled sedation during ECMO therapy of COVID-19 related ARDS. We focus particularly on the technical details of administration of volatile anesthetics. Furthermore, we describe the advantages of inhaled sedation and volatile anesthetics, and we discuss the limitations as well as the requirements for safe application in the clinical setting.
Collapse
Affiliation(s)
- Martin Bellgardt
- Anesthesia and Intensive Care Medicine, St. Josef-Hospital, University Hospital of Ruhr-University of Bochum, Bochum 44791, Germany
| | - Dennis Özcelik
- Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Zürich 8093, Switzerland
| | | | - Claudia Steinfort
- General and Visceral Surgery, St. Josef-Hospital, University Hospital of Ruhr-University of Bochum, Bochum 44791, Germany
| | - Thomas Georg Karl Breuer
- Internal Medicine/Intensive Care, St. Josef-Hospital, University Hospital of Ruhr-University of Bochum, Bochum 44791, Germany
| | - Thomas Peter Weber
- Anesthesia and Intensive Care Medicine, St. Josef-Hospital, University Hospital of Ruhr-University of Bochum, Bochum 44791, Germany
| | - Jennifer Herzog-Niescery
- Anesthesia and Intensive Care Medicine, St. Josef-Hospital, University Hospital of Ruhr-University of Bochum, Bochum 44791, Germany
| |
Collapse
|
8
|
Gaya da Costa M, Kalmar AF, Struys MMRF. Inhaled Anesthetics: Environmental Role, Occupational Risk, and Clinical Use. J Clin Med 2021; 10:1306. [PMID: 33810063 PMCID: PMC8004846 DOI: 10.3390/jcm10061306] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
Inhaled anesthetics have been in clinical use for over 150 years and are still commonly used in daily practice. The initial view of inhaled anesthetics as indispensable for general anesthesia has evolved during the years and, currently, its general use has even been questioned. Beyond the traditional risks inherent to any drug in use, inhaled anesthetics are exceptionally strong greenhouse gases (GHG) and may pose considerable occupational risks. This emphasizes the importance of evaluating and considering its use in clinical practices. Despite the overwhelming scientific evidence of worsening climate changes, control measures are very slowly implemented. Therefore, it is the responsibility of all society sectors, including the health sector to maximally decrease GHG emissions where possible. Within the field of anesthesia, the potential to reduce GHG emissions can be briefly summarized as follows: Stop or avoid the use of nitrous oxide (N2O) and desflurane, consider the use of total intravenous or local-regional anesthesia, invest in the development of new technologies to minimize volatile anesthetics consumption, scavenging systems, and destruction of waste gas. The improved and sustained awareness of the medical community regarding the climate impact of inhaled anesthetics is mandatory to bring change in the current practice.
Collapse
Affiliation(s)
- Mariana Gaya da Costa
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands;
| | - Alain F. Kalmar
- Department of Anesthesia and Intensive Care Medicine, Maria Middelares Hospital, 9000 Ghent, Belgium;
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Aun AG, Souza KM, Guedes JL, Figueiredo DBS, Lara JR, Silva MAP, Braz LG, Braz MG. Hepatotoxic and neuroendocrine effects in physicians occupationally exposed to most modern halogenated anesthetics and nitrous oxide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103515. [PMID: 33086149 DOI: 10.1016/j.etap.2020.103515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The lack of data on hepatic and hormonal markers for occupational exposure to most modern halogenated anesthetics has stimulated our research, which assessed liver enzymes, high-sensitivity C-reactive protein (hs-CRP) and neuroendocrine response. The study investigated 106 physicians who were categorized in an exposed group (primarily exposed to isoflurane and sevoflurane and less to desflurane and nitrous oxide) as well as as a control group. Anesthetic air monitoring was performed, and biological samples were analyzed for the most important liver enzymes, hs-CRP, adrenocorticotrophic hormone, cortisol and prolactin. No biomarkers were significantly different between the groups. Exposed males showed significant increases in cortisol and prolactin compared to unexposed males. However, values were within the reference ranges, and 22 % of exposed males versus 5 % of unexposed males exhibited higher prolactin values above the reference range. This study suggests that occupational exposure to the most commonly used inhalational anesthetics is not associated with hepatotoxicity or neurohormonal changes.
Collapse
Affiliation(s)
- Aline G Aun
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Kátina M Souza
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Júlia L Guedes
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Drielle B S Figueiredo
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Juliana R Lara
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Mariane A P Silva
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Leandro G Braz
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil
| | - Mariana G Braz
- Department of Anesthesiology, Medical School, São Paulo State University - UNESP, Botucatu, Brazil.
| |
Collapse
|
10
|
Bellgardt M, Georgevici AI, Klutzny M, Drees D, Meiser A, Gude P, Vogelsang H, Weber TP, Herzog-Niescery J. Use of MIRUS™ for MAC-driven application of isoflurane, sevoflurane, and desflurane in postoperative ICU patients: a randomized controlled trial. Ann Intensive Care 2019; 9:118. [PMID: 31620921 PMCID: PMC6795651 DOI: 10.1186/s13613-019-0594-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background The MIRUS™ (TIM, Koblenz, Germany) is an electronical gas delivery system, which offers an automated MAC (minimal alveolar concentration)-driven application of isoflurane, sevoflurane, or desflurane, and can be used for sedation in the intensive care unit. We investigated its consumption of volatile anesthetics at 0.5 MAC (primary endpoint) and the corresponding costs. Secondary endpoints were the technical feasibility to reach and control the MAC automatically, the depth of sedation at 0.5 MAC, and awakening times. Mechanically ventilated and sedated patients after major surgery were enrolled. Upon arrival in the intensive care unit, patients obtained intravenous propofol sedation for at least 1 h to collect ventilation and blood gas parameters, before they were switched to inhalational sedation using MIRUS™ with isoflurane, sevoflurane, or desflurane. After a minimum of 2 h, inhalational sedation was stopped, and awakening times were recorded. A multivariate electroencephalogram and the Richmond Agitation Sedation Scale (RASS) were used to assess the depth of sedation. Vital signs, ventilation parameters, gas consumption, MAC, and expiratory gas concentrations were continuously recorded. Results Thirty patients obtained inhalational sedation for 18:08 [14:46–21:34] [median 1st–3rd quartiles] hours. The MAC was 0.58 [0.50–0.64], resulting in a Narcotrend Index of 37.1 [30.9–42.4] and a RASS of − 3.0 [− 4.0 to (− 3.0)]. The median gas consumption was significantly lowest for isoflurane ([ml h−1]: isoflurane: 3.97 [3.61–5.70]; sevoflurane: 8.91 [6.32–13.76]; and desflurane: 25.88 [20.38–30.82]; p < 0.001). This corresponds to average costs of 0.39 € h−1 for isoflurane, 2.14 € h−1 for sevoflurane, and 7.54 € h−1 for desflurane. Awakening times (eye opening [min]: isoflurane: 9:48 [4:15–20:18]; sevoflurane: 3:45 [0:30–6:30]; desflurane: 2:00 [1:00–6:30]; p = 0.043) and time to extubation ([min]: isoflurane: 10:10 [8:00–20:30]; sevoflurane: 7:30 [4:37–14:22]; desflurane: 3:00 [3:00–6:00]; p = 0.007) were significantly shortest for desflurane. Conclusions A target-controlled, MAC-driven automated application of volatile anesthetics is technically feasible and enables an adequate depth of sedation. Gas consumption was highest for desflurane, which is also the most expensive volatile anesthetic. Although awakening times were shortest, the actual time saving of a few minutes might be negligible for most patients in the intensive care unit. Thus, using desflurane seems not rational from an economic perspective. Trial registration Clinical Trials Registry (ref.: NCT03860129). Registered 24 September 2018—Retrospectively registered.
Collapse
Affiliation(s)
- Martin Bellgardt
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany.
| | - Adrian Iustin Georgevici
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Mitja Klutzny
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Dominik Drees
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Andreas Meiser
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp Gude
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Heike Vogelsang
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Thomas Peter Weber
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anaesthesiology and Intensive Care Medicine, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| |
Collapse
|