1
|
Patrick R, Pando BD, Yang C, Aponte A, Wang F, Ewing T, Ma Y, Yuan SY, Wu MH. Focal adhesion kinase mediates microvascular leakage and endothelial barrier dysfunction in ischemia-reperfusion injury. Microvasc Res 2025; 159:104791. [PMID: 39884384 DOI: 10.1016/j.mvr.2025.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation. We assessed microvascular permeability to plasma proteins in vivo using intravital microscopy, measuring the time-dependent tracer distribution in the intravascular versus extravascular space in the mouse mesentery. Additionally, we examined endothelial cell-cell adhesive barrier resistance and junction morphology in cultured endothelial cell monolayers. At the molecular level, FAK inhibition similarly inhibited endothelial junction opening and barrier dysfunction in response to hydrogen peroxide-induced oxidative stress. To further investigate FAK's role with tissue/cell specificity, we developed an endothelial-specific inducible FAK knockout mouse model by crossbreeding FAK-floxed (FAKfl/fl) mice with Tie-2-CreERT2 transgenic mice. Compared to their wild-type controls, endothelial-specific FAK-deficient mice showed a blunted microvascular hyperpermeability response following I/R injury in the gut. Overall, our study demonstrates that FAK plays a significant signaling role in mediating endothelial barrier dysfunction and microvascular leakage during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rebecca Patrick
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Briana D Pando
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Clement Yang
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Alexandra Aponte
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Fang Wang
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Tom Ewing
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Yonggang Ma
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Sarah Y Yuan
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Mack H Wu
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| |
Collapse
|
2
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
3
|
Jin J, Guang M, Li S, Liu Y, Zhang L, Zhang B, Cheng M, Schmalz G, Huang X. Immune-related signature of periodontitis and Alzheimer's disease linkage. Front Genet 2023; 14:1230245. [PMID: 37849501 PMCID: PMC10577303 DOI: 10.3389/fgene.2023.1230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Background: Periodontits (PD) and Alzheimer's disease (AD) are both associated with ageing and clinical studies increasingly evidence their association. However, specific mechanisms underlying this association remain undeciphered, and immune-related processes are purported to play a signifcant role. The accrual of publicly available transcriptomic datasets permits secondary analysis and the application of data-mining and bioinformatic tools for biological discovery. Aim: The present study aimed to leverage publicly available transcriptomic datasets and databases, and apply a series of bioinformatic analysis to identify a robust signature of immune-related signature of PD and AD linkage. Methods: We downloaded gene-expresssion data pertaining PD and AD and identified crosstalk genes. We constructed a protein-protein network analysis, applied immune cell enrichment analysis, and predicted crosstalk immune-related genes and infiltrating immune cells. Next, we applied consisent cluster analysis and performed immune cell bias analysis, followed by LASSO regression to select biomarker immune-related genes. Results: The results showed a 3 gene set comprising of DUSP14, F13A1 and SELE as a robust immune-related signature. Macrophages M2 and NKT, B-cells, CD4+ memory T-cells and CD8+ naive T-cells emerged as key immune cells linking PD with AD. Conclusion: Candidate immune-related biomarker genes and immune cells central to the assocation of PD with AD were identified, and merit investigation in experimental and clinical research.
Collapse
Affiliation(s)
- Jieqi Jin
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengkai Guang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Menglin Cheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, Leipzig University, Leipzig, Germany
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Guo J, Han S, Chen Q, Wang T, Yu B, Zhou J, Qiu T. Analysis of potential immune-related genes involved in the pathogenesis of ischemia-reperfusion injury following liver transplantation. Front Immunol 2023; 14:1126497. [PMID: 37006305 PMCID: PMC10060527 DOI: 10.3389/fimmu.2023.1126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundHepatic ischemia-reperfusion (I/R) injury is an unavoidable pathological process that occurs after liver transplantation. However, the immune-related molecular mechanism still remains unclear. This study aims to further explore the biological mechanisms of immune-related genes in hepatic I/R injury.MethodsGene microarray data was downloaded from the Gene Expression Omnibus (GEO) expression profile database and the differentially expressed genes (DEGs) were taken for intersection. After identifying common DEGs, functional annotation, protein-protein interaction (PPI) network, and modular construction were performed. The immune-related hub genes were obtained, which their upstream transcription factors and non-RNAs were predicted. Validation of the hub genes expression and immune infiltration were performed in a mouse model of hepatic I/R injury.ResultsA total of 71 common DEGs were obtained from three datasets (GSE12720, GSE14951, GSE15480). The GO and KEGG enrichment analysis results indicated that immune and inflammatory response played an important role in hepatic I/R injury. Finally, 9 immune-related hub genes were identified by intersecting cytoHubba with immune-related genes, including SOCS3, JUND, CCL4, NFKBIA, CXCL8, ICAM1, IRF1, TNFAIP3, and JUN.ConclusionOur study revealed the importance of the immune and inflammatory response in I/R injury following liver transplantation and provided new insights into the therapeutic of hepatic I/R injury.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Jiangqiao Zhou, ; Tao Qiu,
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Jiangqiao Zhou, ; Tao Qiu,
| |
Collapse
|
5
|
Shepherd HM, Gauthier JM, Terada Y, Li W, Krupnick AS, Gelman AE, Kreisel D. Updated Views on Neutrophil Responses in Ischemia-Reperfusion Injury. Transplantation 2022; 106:2314-2324. [PMID: 35749228 PMCID: PMC9712152 DOI: 10.1097/tp.0000000000004221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion injury is an inevitable event during organ transplantation and represents a primary risk factor for the development of early graft dysfunction in lung, heart, liver, and kidney transplant recipients. Recent studies have implicated recipient neutrophils as key mediators of this process and also have found that early innate immune responses after transplantation can ultimately augment adaptive alloimmunity and affect late graft outcomes. Here, we discuss signaling pathways involved in neutrophil recruitment and activation after ischemia-mediated graft injury in solid organ transplantation with an emphasis on lung allografts, which have been the focus of recent studies. These findings suggest novel therapeutic interventions that target ischemia-reperfusion injury-mediated graft dysfunction in transplant recipients.
Collapse
Affiliation(s)
- Hailey M. Shepherd
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Yuriko Terada
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
6
|
Protective effects of apelin on gastric mucosa. Tissue Cell 2022; 78:101885. [PMID: 35940035 DOI: 10.1016/j.tice.2022.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
|
7
|
Zeller J, Bogner B, McFadyen JD, Kiefer J, Braig D, Pietersz G, Krippner G, Nero TL, Morton CJ, Shing KSCT, Parker MW, Peter K, Eisenhardt SU. Transitional changes in the structure of C-reactive protein create highly pro-inflammatory molecules: Therapeutic implications for cardiovascular diseases. Pharmacol Ther 2022; 235:108165. [PMID: 35247517 DOI: 10.1016/j.pharmthera.2022.108165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
C-reactive protein (CRP) is the prototypic acute-phase reactant that has long been recognized almost exclusively as a marker of inflammation and predictor of cardiovascular risk. However, accumulating evidence indicates that CRP is also a direct pathogenic pro-inflammatory mediator in atherosclerosis and cardiovascular diseases. The 'CRP system' consists of at least two protein conformations with distinct pathophysiological functions. The binding of the native, pentameric CRP (pCRP) to activated cell membranes leads to a conformational change resulting in two highly pro-inflammatory isoforms, pCRP* and monomeric CRP (mCRP). The deposition of these pro-inflammatory isoforms has been shown to aggravate the localized tissue injury in a broad range of pathological conditions including atherosclerosis and thrombosis, myocardial infarction, and stroke. Here, we review recent findings on how these structural changes contribute to the inflammatory response and discuss the transitional changes in the structure of CRP as a novel therapeutic target in cardiovascular diseases and overshooting inflammation.
Collapse
Affiliation(s)
- J Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - B Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - J D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - J Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - D Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - G Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - G Krippner
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - T L Nero
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - C J Morton
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - K S Cheung Tung Shing
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - M W Parker
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | - K Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - S U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany.
| |
Collapse
|
8
|
Torres RR, Tannuri ACA, Serafini S, Belon A, Gonçalves JO, Loreto CD, Tannuri U. Does Arterialization of Portal Vein Have Any Effects in Large-for-Size Liver Transplantation? Hemodynamic, Histological, and Biomolecular Experimental Studies. J INVEST SURG 2021; 35:1197-1207. [PMID: 34965813 DOI: 10.1080/08941939.2021.2021333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In pediatric liver transplantation, the optimal size of the transplanted liver ranges between 0.8% and 4.0% of the recipient's weight. Sometimes, the graft weight exceeds this upper limit, characterizing the large-for-size condition potentially associated with reduced blood flow and worsening of ischemia-reperfusion injury. Therefore, it would be beneficial to increase the portal flow through arterialization of the portal vein. Materials and methods: Fifteen pigs underwent large-for-size liver transplants. They were divided into two groups: control (CTRL 6 animals - conventional technique) and arterialization - a shunt was established between the portal vein and the splenic artery (ART 9 animals). Hemodynamic, biochemical, histological, and molecular variables were compared. Results: Arterialization resulted in a significant increase in portal vein pressure but no changes in other hemodynamic variables, as shown in the analysis of variance. It was observed lower ALT values (p = 0.007), with no differences regarding the values of blood pH and lactate (p = 0.54 and p = 0.699 respectively) or histological variables (edema, steatosis, inflammation, necrosis, and IRI - p = 1.0, p = 0.943, p = 0.174, p = 0.832, p = 0.662, respectively). The molecular studies showed significantly increased expression of IL6 after 3 hours of reperfusion (p = 0.048) and decreased expression of ICAM immediately after reperfusion (p = 0.03). The regression analysis suggested a positive influence of portal flow and pressure on biochemical parameters. Conclusion: Arterialization of the portal vein showed no histological, biochemical, or molecular benefits in large-for-size transplantation.
Collapse
Affiliation(s)
- Rafael Rodrigues Torres
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ana Cristina Aoun Tannuri
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Suellen Serafini
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alessandro Belon
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Josiane Oliveira Gonçalves
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Celso di Loreto
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Uenis Tannuri
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
9
|
Deoxynivalenol exposure induces liver damage in mice: Inflammation and immune responses, oxidative stress, and protective effects of Lactobacillus rhamnosus GG. Food Chem Toxicol 2021; 156:112514. [PMID: 34400200 DOI: 10.1016/j.fct.2021.112514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Deoxynivalenol (DON), one of the most common environmental pollutants, substantially affects human and animal health. Much attention has been paid to the ability of probiotics to modulate inflammation and immune responses. In this work, the toxic effects of DON on the liver and the protective effects of Lactobacillus rhamnosus GG (LGG) were investigated. We treated mice with oral gavage of DON (2.4 mg/kg bw/day), LGG (1 × 109 CFU/mouse/day) or both for 28 days. The results showed that DON triggered liver inflammation, reflected by pathological changes and liver function damage but LGG oral administration significantly attenuated these changes. Notably, DON treatment activated the TLR4/NF-κB signaling pathway which contribute to produce inflammatory cytokines, but oral administration of LGG inhibited all the effects of DON. DON treatment can also induce oxidative stress and activate Keap1-Nrf2 signaling pathway, leading to the activation of Nrf2 and the downstream genes, while LGG treatment can improve the antioxidant capacity of liver and protected mice from DON injury. In conclusion, LGG was able to negate the detrimental effects of DON on the liver and may contribute as a potential dietary intervention strategy to reduce mycotoxicity.
Collapse
|
10
|
Ferreira-Silva M, Faria-Silva C, Baptista PV, Fernandes E, Fernandes AR, Corvo ML. Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury. Drug Deliv Transl Res 2021; 11:397-410. [PMID: 33660214 DOI: 10.1007/s13346-021-00915-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia and reperfusion injury (IRI) is an acute inflammatory process that results from surgical interventions, such as liver resection surgery or transplantation, or hemorrhagic shock. This pathology has become a severe clinical issue, due to the increasing incidence of hepatic cancer and the high number of liver transplants. So far, an effective treatment has not been implemented in the clinic. Despite its importance, hepatic IRI has not attracted much interest as an inflammatory disease, and only a few reviews addressed it from a therapeutic perspective with drug delivery nanosystems. In the last decades, drug delivery nanosystems have proved to be a major asset in therapy because of their ability to optimize drug delivery, either by passive or active targeting. Passive targeting is achieved through the enhanced permeability and retention (EPR) effect, a main feature in inflammation that allows the accumulation of the nanocarriers in inflammation sites, enabling a higher efficacy of treatment than conventional therapies. These systems also can be actively targeted to specific compounds, such as inflammatory markers and overexpressed receptors in immune system intermediaries, allowing an even more specialized therapy that have already showed encouraging results. In this manuscript, we review drug delivery nanosystems designed for hepatic IRI treatment, addressing their current state in clinical trials, discussing the main hurdles that hinder their successful translation to the market and providing some suggestions that could potentially advance their clinical translation.
Collapse
Affiliation(s)
- Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Faria-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Ramos Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Maria Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
11
|
Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. BIOLOGY 2020; 9:biology9110395. [PMID: 33198153 PMCID: PMC7697091 DOI: 10.3390/biology9110395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome. With the prevalence of obesity and type 2 diabetes, NAFLD is becoming the most common liver disorder worldwide. More than 10% of NAFLD patients progress to an inflammatory and fibrotic form called nonalcoholic steatohepatitis (NASH), which can lead to end-stage liver disease. Liver sinusoidal endothelial cells (LSEC) are highly specialized cells located at the interface between the flowing blood in the liver and the other liver cells. The current review highlights the recent knowledge of the role of LSEC in the development of NASH, and how LSEC change their structure and function during NAFLD progression. Moreover, the review discusses the pathogenic role of nanometer-sized particles called extracellular vesicles that mediate intercellular communication in the NASH liver. The current manuscript has a special emphasis on the role of adhesion molecules expressed on the LSEC surface in the recruitment of circulating leukocytes to the liver, a critical step in liver inflammation in NASH. Furthermore, the review shed some lights on LSEC-targeted potential therapeutic strategies in NASH. Abstract Nonalcoholic steatohepatitis (NASH) has become a growing public health problem worldwide, yet its pathophysiology remains unclear. Liver sinusoidal endothelial cells (LSEC) have unique morphology and function, and play a critical role in liver homeostasis. Emerging literature implicates LSEC in many pathological processes in the liver, including metabolic dysregulation, inflammation, angiogenesis, and carcinogenesis. In this review, we highlight the current knowledge of the role of LSEC in each of the progressive phases of NASH pathophysiology (steatosis, inflammation, fibrosis, and the development of hepatocellular carcinoma). We discuss processes that have important roles in NASH progression including the detrimental transformation of LSEC called “capillarization”, production of inflammatory and profibrogenic mediators by LSEC as well as LSEC-mediated angiogenesis. The current review has a special emphasis on LSEC adhesion molecules, and their key role in the inflammatory response in NASH. Moreover, we discuss the pathogenic role of extracellular vesicles and their bioactive cargos in liver intercellular communication, inflammation, and fibrosis. Finally, we highlight LSEC-adhesion molecules and derived bioactive product as potential therapeutic targets for human NASH.
Collapse
|
12
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
13
|
Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality-the important role of hepatic microcirculation in donation after circulatory death. Cell Tissue Res 2020; 381:239-254. [PMID: 32347385 PMCID: PMC7369267 DOI: 10.1007/s00441-020-03202-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Donation after circulatory death (DCD) can expand the donor pool effectively. A gap remains in outcome between DCD livers and living donor livers, warranting improved DCD liver quality and urgent resolution. Bone marrow mesenchymal stem cells (BMMSCs) can regulate immunity, participate in the anti-inflammatory response, and secrete cytokines. We investigated the effect of BMMSCs combined with normothermic machine perfusion (NMP) on DCD liver quality, and the role of microcirculation therein. Rat thoracic aortas were clipped to obtain DCD livers, and a rat NMP system was established. The DCD livers were grouped by preservation method: normal, static cold storage (SCS), NMP (P), and BMMSCs plus NMP (BP); storage time was up to 8 h. Liver function in outflow perfusate was detected by biochemical methods; liver tissue histopathology was observed by hematoxylin–eosin staining; hepatocyte ultrastructure was observed by transmission electron microscopy; hepatocyte apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling; liver microcirculation–related indicators were detected by immunofluorescence, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay. Compared with SCS, P and BP significantly improved liver function and liver histological damage, reduced hepatocyte apoptosis, and repaired hepatocyte mitochondrial damage after 6 h in vitro. BP also significantly inhibited intrahepatic macrophage activation and intercellular adhesion, improved endothelial damage, and significantly improved endothelin 1–nitric oxide balance and microcirculation perfusion. In conclusion, BP can improve DCD liver microcirculation and quality. The mechanism may be the improvement of improve hepatic sinusoidal endothelial injury and microcirculation perfusion by inhibiting macrophage activation and intercellular adhesion.
Collapse
|
14
|
Nemcovsky Amar D, Epshtein M, Korin N. Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model. MICROMACHINES 2019; 10:E857. [PMID: 31817733 PMCID: PMC6952880 DOI: 10.3390/mi10120857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Ischemia, lack of blood supply, is associated with a variety of life-threatening cardiovascular diseases, including acute ischemic stroke and myocardial infraction. While blood flow restoration is critical to prevent further damage, paradoxically, rapid reperfusion can increase tissue damage. A variety of animal models have been developed to investigate ischemia/reperfusion injury (IRI), however they do not fully recapitulate human physiology of IRI. Here, we present a microfluidic IRI model utilizing a vascular compartment comprising human endothelial cells, which can be obstructed via a human blood clot and then re-perfused via thrombolytic treatment. Using our model, a significant increase in the expression of the endothelial cell inflammatory surface receptors E-selectin and I-CAM1 was observed in response to embolic occlusion. Following the demonstration of clot lysis and reperfusion via treatment using a thrombolytic agent, a significant decrease in the number of adherent endothelial cells and an increase in I-CAM1 levels compared to embolic occluded models, where reperfusion was not established, was observed. Altogether, the presented model can be applied to allow better understanding of human embolic based IRI and potentially serve as a platform for the development of improved and new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Netanel Korin
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
15
|
Anger F, Camara M, Ellinger E, Germer CT, Schlegel N, Otto C, Klein I. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Liver Regeneration After Ischemia Reperfusion Injury in Mice. Stem Cells Dev 2019; 28:1451-1462. [PMID: 31495270 DOI: 10.1089/scd.2019.0085] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI) remains a major obstacle in liver resection and transplantation surgery, especially in diseased organs. Human mesenchymal stromal cells (MSCs) are reported to acutely alleviate hepatic IRI in mice by releasing bioactive membrane-enclosed extracellular vesicles (EVs), but the long-term effects of MSC-derived EV on hepatic IRI are unknown. Given the considerable differentiation capacity of fibroblasts (FBs) during wound healing and their morphological similarities with MSC, the present study aimed to investigate the potential of these two cell types and their cell-derived EV in attenuating liver damage after IRI. EVs were isolated and purified from the supernatant of MSC and FB cultures and, subsequently, characterized by electron microscopy, nanoparticle tracking analysis, and western blot. Liver injury and organ regeneration in a murine in vivo model of IRI were assessed by serum transaminase levels, histopathology, and immunohistochemistry. Changes in expression of inflammation-associated genes within liver tissue were evaluated by reverse transcriptase quantitative polymerase chain reaction. MSC, MSC-derived EV, FB, and FB-derived EV were systemically administered before hepatic IRI. We found that MSC and MSC-derived EV decreased serum transaminase levels, reduced hepatic necrosis, increased the amount of Ki67-positive hepatocytes, and repressed the transcription of inflammation-associated genes. Although they had no impact on organ damage, FB and FB-derived EV showed some regenerative potential in the late phase of hepatic IRI. Compared to FB, MSC and their derived EV had a stronger potential to attenuate liver damage and improve organ regeneration after hepatic IRI. These results suggest that the key therapeutic factors are located within EV.
Collapse
Affiliation(s)
- Friedrich Anger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Monika Camara
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Elisabeth Ellinger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Di Paola R, Fusco R, Gugliandolo E, D'Amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res 2019; 141:591-601. [PMID: 30711419 DOI: 10.1016/j.phrs.2019.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease is characterised by intricate immune cell interactions with tissue cells and such cross-talks can become deregulated. The formyl peptide receptor 1 (Fpr1) is expressed by both immune and stromal cells including epithelial cells. We evaluated the development of the physiopathology of the DNBS induced colitis in Fpr1 KO mice on the C57BL/6 genetic background compared to C57BL/6 genetic background animals. We have assessed both macroscopic and histological markers of the diseased, together with the immunohistochemical and molecular changes. DNBS-treated Fpr1 KO mice showed a i) reduction in weight loss, ii) lower extent of colon injury and iii) an increase in MPO activity. Molecular analyses indicated that in absence of Fpr1 there was reduced NF-κB translocation into the nucleus, cytokines levels, FOXP3 and GATA3, CD4, CD8 and CD45 expression as well as a dysregulation of TGF-β signalling. In addition, the colon of DNBS-injected Fpr1 KO mice displayed a lower degree of expression of Bax and higher expression of Bcl-2 compared correspondent WT mice. Finally, intravital microscopy investigation of the microcirculation post-DNBS instillation revealed a lower degree of neutrophil-endothelial cell rolling and adhesion - mediated by P-selectin and ICAM-1 - in Fpr1 KO mice. All the main outcome in the study have a P-value, statistical significance of evidence, less than 0.05. We provide evidence for an important pathogenic role of mouse Fpr1 in experimental colitis, an outcome effected through modulation of immune cell recruitment together with a modulation of local cellular activation and survival.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
17
|
Fujii T, Kuriyama N, Hayasaki A, Iizawa Y, Tanemura A, Kato H, Murata Y, Azumi Y, Kishiwada M, Mizuno S, Usui M, Sakurai H, Isaji S. Recombinant Human Soluble Thrombomodulin Attenuates Hepatic Ischemia and/or Reperfusion Injury by Inhibiting Leukocyte Accumulation in Mice With Normal and Fatty Liver. Transplant Proc 2018; 50:2807-2814. [PMID: 30401402 DOI: 10.1016/j.transproceed.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
|
18
|
Xie Y, Zhang H, Liu S, Chen G, He S, Li Z, Wang L. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis. Sci Rep 2018; 8:8365. [PMID: 29849098 PMCID: PMC5976763 DOI: 10.1038/s41598-018-26798-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/18/2018] [Indexed: 01/22/2023] Open
Abstract
The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.
Collapse
Affiliation(s)
- Yanting Xie
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Hongmin Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Susu Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Guoming Chen
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Siyu He
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
19
|
Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, Potempa LA, Grahammer F, Huber TB, Huber-Lang M, Bannasch H, Stark GB, Peter K, Eisenhardt SU. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury. Front Immunol 2018; 9:675. [PMID: 29713320 PMCID: PMC5911593 DOI: 10.3389/fimmu.2018.00675] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction C-reactive protein circulates as a pentameric protein (pCRP). pCRP is a well-established diagnostic marker as plasma levels rise in response to tissue injury and inflammation. We recently described pro-inflammatory properties of CRP, which are mediated by conformational changes from pCRP to bioactive isoforms expressing pro-inflammatory neo-epitopes [pCRP* and monomeric C-reactive protein (mCRP)]. Here, we investigate the role of CRP isoforms in renal ischemia/reperfusion injury (IRI). Methods Rat kidneys in animals with and without intraperitoneally injected pCRP were subjected to IRI by the time of pCRP exposure and were subsequently analyzed for monocyte infiltration, caspase-3 expression, and tubular damage. Blood urea nitrogen (BUN) was analyzed pre-ischemia and post-reperfusion. CRP effects on leukocyte recruitment were investigated via intravital imaging of rat-striated muscle IRI. Localized conformational CRP changes were analyzed by immunohistochemistry using conformation specific antibodies. 1,6-bis(phosphocholine)-hexane (1,6-bisPC), which stabilizes CRP in its native pentameric form was used to validate CRP effects. Leukocyte activation was assessed by quantification of reactive oxygen species (ROS) induction by CRP isoforms ex vivo and in vitro through electron spin resonance spectroscopy. Signaling pathways were analyzed by disrupting lipid rafts with nystatin and subsequent ROS detection. In order to confirm the translational relevance of our findings, biopsies of microsurgical human free tissue transfers before and after IRI were examined by immunofluorescence for CRP deposition and co-localization of CD68+ leukocytes. Results The application of pCRP aggravates tissue damage in renal IRI. 1,6-bisPC reverses these effects via inhibition of the conformational change that leads to exposure of pro-inflammatory epitopes in CRP (pCRP* and mCRP). Structurally altered CRP induces leukocyte–endothelial interaction and induces ROS formation in leukocytes, the latter can be abrogated by blocking lipid raft-dependent signaling pathways with Nystatin. Stabilizing pCRP in its native pentameric state abrogates these pro-inflammatory effects. Importantly, these findings are confirmed in human IRI challenged muscle tissue. Conclusion These results suggest that CRP is a potent modulator of IRI. Stabilizing the native pCRP conformation represents a promising anti-inflammatory therapeutic strategy by attenuation of leukocyte recruitment and ROS formation, the primary pathomechanisms of IRI.
Collapse
Affiliation(s)
- Jan R Thiele
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yvonne Lenz
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lawrence A Potempa
- College of Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,BIOSS Center for Biological Signalling Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Holger Bannasch
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - G Björn Stark
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Yamamoto K, Yamamoto T, Takamura M, Usui S, Murai H, Kaneko S, Taniguchi T. Effects of mineralocorticoid receptor antagonists on responses to hemorrhagic shock in rats. World J Crit Care Med 2018; 7:1-8. [PMID: 29430402 PMCID: PMC5797971 DOI: 10.5492/wjccm.v7.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/03/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of mineralocorticoid receptor (MR) antagonists on mortality and inflammatory responses after hemorrhagic shock (HS) in rats.
METHODS One hundred and two male Sprague–Dawley rats were randomly assigned to one of the following three groups: Control, spironolactone (SPL), and eplerenone (EP) groups. HS was induced by the removal of blood. One half of rats were evaluated to determine mortality, hemodynamics, plasma tumor necrosis factor-alpha (TNF-α) concentrations, and arterial blood gas at 8 h after HS recovery. In the remainder of rats, the expression levels of genes encoding cytokines were evaluated in liver tissue samples at 1 h after HS recovery.
RESULTS The survival rates 8 h after HS recovery were 71%, 94%, and 82% in the control, SPL, and EP groups, respectively. There were no significant differences in survival rates among the three groups (P = 0.219). Furthermore, there were no significant differences in gene expression levels in the liver or plasma TNF-α concentrations among the three groups (P = 0.888).
CONCLUSION Pretreatment with MR antagonists did not improve mortality or cytokine responses in the liver after HS recovery in rats.
Collapse
Affiliation(s)
- Kanako Yamamoto
- Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Yamamoto
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masayuki Takamura
- Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Soichiro Usui
- Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisayoshi Murai
- Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
21
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
22
|
Chen M, Jiang L, Li Y, Bai G, Zhao J, Zhang M, Zhang J. Hydrogen protects against liver injury during CO 2 pneumoperitoneum in rats. Oncotarget 2017; 9:2631-2645. [PMID: 29416797 PMCID: PMC5788665 DOI: 10.18632/oncotarget.23498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the current study was to identify the protective effect of hydrogen gas against liver injury during CO2 pneumoperitoneum. Rats were randomly divided into three groups: control group (C group), pneumoperitoneum group (P15 group) and hydrogen group (H2 group). Rats in the C group were subjected to anesthesia for 90 min. Rats in the P15 group received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Rats in the H2 group received a hypodermic injection of hydrogen gas (0.2 mL/kg) and after 10 min they received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured to evaluate liver function. Malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) content were measured to evaluate oxidative stress. Nuclear factor E2-related factor 2 (Nrf2) and Nrf2 downstream target genes, apoptosis-related genes and inflammatory cytokine mRNA and protein expression were detected. Liver injury was detected under the microscope. Our results revealed that liver function, antioxidants content, inflammation and liver injury were improved after hydrogen preconditioning in H2 group compared with P15 group. Overall, our results revealed that subcutaneous hydrogen injection could exert a protective effect against liver injury during CO2 pneumoperitoneum through reducing oxidative stress, cell apoptosis and inflammatory cytokines release.
Collapse
Affiliation(s)
- Mingzi Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Jiang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiantao Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
23
|
Freitas-Lopes MA, Mafra K, David BA, Carvalho-Gontijo R, Menezes GB. Differential Location and Distribution of Hepatic Immune Cells. Cells 2017; 6:cells6040048. [PMID: 29215603 PMCID: PMC5755505 DOI: 10.3390/cells6040048] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
The liver is one of the main organs in the body, performing several metabolic and immunological functions that are indispensable to the organism. The liver is strategically positioned in the abdominal cavity between the intestine and the systemic circulation. Due to its location, the liver is continually exposed to nutritional insults, microbiota products from the intestinal tract, and to toxic substances. Hepatocytes are the major functional constituents of the hepatic lobes, and perform most of the liver’s secretory and synthesizing functions, although another important cell population sustains the vitality of the organ: the hepatic immune cells. Liver immune cells play a fundamental role in host immune responses and exquisite mechanisms are necessary to govern the density and the location of the different hepatic leukocytes. Here we discuss the location of these pivotal cells within the different liver compartments, and how their frequency and tissular location can dictate the fate of liver immune responses.
Collapse
Affiliation(s)
- Maria Alice Freitas-Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Bruna A David
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary. Calgary, AB T2N 1N4, Canada.
| | - Raquel Carvalho-Gontijo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
24
|
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a major complication of liver surgery, including liver resection, liver transplantation, and trauma surgery. Much has been learned about the inflammatory injury response induced by I/R, including the cascade of proinflammatory mediators and recruitment of activated leukocytes. In this review, we discuss the complex network of events that culminate in liver injury after I/R, including cellular, protein, and molecular mechanisms. In addition, we address the known endogenous regulatory mediators that function to maintain homeostasis and resolve injury. Finally, we cover more recent insights into how the liver repairs and regenerates after I/R injury, a setting in which physical mass remains unchanged, but functional liver mass is greatly reduced. In this regard, we focus on recent work highlighting a novel role of CXC chemokines as important regulators of hepatocyte proliferation and liver regeneration after I/R injury.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
The potential curative effect of rebamipide in hepatic ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:691-700. [PMID: 28361247 DOI: 10.1007/s00210-017-1370-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 01/11/2023]
|
26
|
Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues. PLoS One 2016; 11:e0162540. [PMID: 27603673 PMCID: PMC5014376 DOI: 10.1371/journal.pone.0162540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022] Open
Abstract
During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell—endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection.
Collapse
|
27
|
Molecular studies of the immunological effects of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury. Mol Immunol 2016; 72:1-8. [DOI: 10.1016/j.molimm.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 12/20/2022]
|
28
|
Fayed NA, Sayed EI, Saleh SM, Ehsan NA, Elfert AY. Effect of dexmedetomidine on hepatic ischemia-reperfusion injury in the setting of adult living donor liver transplantation. Clin Transplant 2016; 30:470-82. [DOI: 10.1111/ctr.12713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nirmeen A. Fayed
- Anesthesia and Intensive Care; National Liver Institute; Menoufia University; ShebeenAlkoom Menoufia Egypt
| | - Eman I. Sayed
- Anesthesia and Intensive Care; National Liver Institute; Menoufia University; ShebeenAlkoom Menoufia Egypt
| | - Sherif M. Saleh
- Hepatobiliary Surgery; National Liver Institute; Menoufia University; ShebeenAlkoom Menoufia Egypt
| | - Nermen A. Ehsan
- Pathology; National Liver Institute; Menoufia University; ShebeenAlkoom Menoufia Egypt
| | - Ashraf Y. Elfert
- Clinical Biochemistry; National Liver Institute; Menoufia University; ShebeenAlkoom Menoufia Egypt
| |
Collapse
|
29
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
30
|
MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst. Basic Res Cardiol 2015; 110:32. [PMID: 25916938 DOI: 10.1007/s00395-015-0490-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/27/2022]
Abstract
The inflammatory sequelae of ischemia-reperfusion injury (IRI) are a major causal factor of tissue injury in various clinical settings. MicroRNAs (miRs) are short, non-coding RNAs, which regulate protein expression. Here, we investigated the role of miR-155 in IR-related tissue injury. Quantifying microRNA-expression levels in a human muscle tissue after IRI, we found miR-155 expression to be significantly increased and to correlate with the increased expression of TNF-α, IL-1β, CD105, and Caspase3 as well as with leukocyte infiltration. The direct miR-155 target gene SOCS-1 was downregulated. In a mouse model of myocardial infarction, temporary LAD ligation and reperfusion injury resulted in a smaller area of necrosis in miR-155-/- animals compared to wildtype animals. To investigate the underlying mechanisms, we evaluated the effect of miR-155 on inflammatory cell recruitment by intravital microscopy and on the generation of reactive oxygen species (ROS) of macrophages. Our intravital imaging results demonstrated a decreased recruitment of inflammatory cells in miR-155-/- animals during IRI. The generation of ROS in leukocytic cells of miR-155-/- animals was also reduced. RNA silencing of the direct miR-155 target gene SOCS-1 abrogated this effect. In conclusion, miR-155 aggravates the inflammatory response, leukocyte infiltration and tissue damage in IRI via modulation of SOCS-1-dependent generation of ROS. MiR-155 is thus a potential target for the treatment or prevention of IRI.
Collapse
|
31
|
|
32
|
Hamilton K, Wolfswinkel EM, Weathers WM, Xue AS, Hatef DA, Izaddoost S, Hollier LH. The Delay Phenomenon: A Compilation of Knowledge across Specialties. Craniomaxillofac Trauma Reconstr 2014; 7:112-8. [PMID: 25071876 DOI: 10.1055/s-0034-1371355] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 12/19/2022] Open
Abstract
Objective The purpose of this article is to review and integrate the available literature in different fields to gain a better understanding of the basic physiology and optimize vascular delay as a reconstructive surgery technique. Methods A broad search of the literature was performed using the Medline database. Two queries were performed using "vascular delay," a search expected to yield perspectives from the field of plastic and reconstructive surgery, and "ischemic preconditioning," (IPC) which was expected to yield research on the same topic in other fields. Results The combined searches yielded a total of 1824 abstracts. The "vascular delay" query yielded 76 articles from 1984 to 2011. The "ischemic preconditioning" query yielded 6534 articles, ranging from 1980 to 2012. The abstracts were screened for those from other specialties in addition to reconstructive surgery, analyzed potential or current uses of vascular delay in practice, or provided developments in understanding the pathophysiology of vascular delay. 70 articles were identified that met inclusion criteria and were applicable to vascular delay or ischemic preconditioning. Conclusion An understanding of IPC's implementation and mechanisms in other fields has beneficial implications for the field of reconstructive surgery in the context of the delay phenomenon. Despite an incomplete model of IPC's pathways, the anti-oxidative, anti-apoptotic and anti-inflammatory benefits of IPC are well recognized. The activation of angiogenic genes through IPC could allow for complex flap design, even in poorly vascularized regions. IPC's promotion of angiogenesis and reduction of endothelial dysfunction remain most applicable to reconstructive surgery in reducing graft-related complications and flap failure.
Collapse
Affiliation(s)
| | | | | | - Amy S Xue
- Plastic Surgery, Baylor College of Medicine, Houston, Texas
| | - Daniel A Hatef
- Plastic Surgery, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
33
|
Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol 2013; 59:1094-106. [PMID: 23811302 DOI: 10.1016/j.jhep.2013.06.017] [Citation(s) in RCA: 454] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction post-transplantation. Cellular and biochemical processes occurring during hepatic ischemia-reperfusion are diverse and complex, and include the deregulation of the healthy phenotype of all liver cellular components. Nevertheless, a significant part of these processes are still unknown or unclear. The present review aims at summarizing the current knowledge in liver ischemia-reperfusion, but specifically focusing on liver cell phenotype and paracrine interaction deregulations. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field will be described. Finally, the importance of considering the subclinical situation of liver grafts when translating basic knowledge to the bedside is discussed.
Collapse
Affiliation(s)
- Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | | |
Collapse
|
34
|
Hyperosmolarity attenuates TNF-α-mediated proinflammatory activation of human pulmonary microvascular endothelial cells. Shock 2013; 39:366-72. [PMID: 23364439 DOI: 10.1097/shk.0b013e3182894016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170 vs. 140 mM, osmolarity ranging from 360 to 300 mOsm/L) inhibits proinflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Proinflammatory activation of HMVECs was investigated in response to tumor necrosis factor-α (TNF-α), including interleukin 8 (IL-8) release, intercellular adhesion molecule 1 (ICAM-1) surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression but did lead to concentration-dependent decreases in TNF-α-induced IL-8 release, ICAM-1 surface expression, and PMN-HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNF-α activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNF-α-stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNF-α induced nuclear factor-κB DNA binding, but HTS conditions attenuated this by 31% (P < 0.01). In conclusion, HTS reduces PMN-HMVEC adhesion and TNF-α-induced proinflammatory activation of primary HMVECs via attenuation of nuclear factor-κB signaling.
Collapse
|
35
|
Lu J, Roth RA, Malle E, Ganey PE. Roles of the hemostatic system and neutrophils in liver injury from co-exposure to amiodarone and lipopolysaccharide. Toxicol Sci 2013; 136:51-62. [PMID: 23912913 DOI: 10.1093/toxsci/kft170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been demonstrated that co-treatment of rats with amiodarone (AMD) and bacterial lipopolysaccharide (LPS) produces idiosyncrasy-like liver injury. In this study, the hypothesis that the hemostatic system and neutrophils contribute to AMD/LPS-induced liver injury was explored. Rats were treated with AMD (400 mg/kg, ip) or vehicle and 16 h later with LPS (1.6×10⁶ endotoxin units/kg, iv) or saline (Sal). AMD did not affect the hemostatic system by itself but significantly potentiated LPS-induced coagulation activation and fibrinolysis impairment. Increased hepatic fibrin deposition and subsequent hypoxia were observed only in AMD/LPS-treated animals, starting before the onset of liver injury. Administration of anticoagulant heparin abolished AMD/LPS-induced hepatic fibrin deposition and reduced AMD/LPS-induced liver damage. Polymorphonuclear neutrophils (PMNs) accumulated in liver after treatment with LPS or AMD/LPS, but PMN activation was only observed in AMD/LPS-treated rats. Rabbit anti-rat PMN serum, which reduced accumulation of PMNs in liver, prevented PMN activation and attenuated AMD/LPS-induced liver injury in rats. PMN depletion did not affect hepatic fibrin deposition. Anticoagulation prevented PMN activation without affecting PMN accumulation. In summary, both the hemostatic system alteration and PMN activation contributed to AMD/LPS-induced liver injury in rats, in which fibrin deposition was critical for the activation of PMNs.
Collapse
Affiliation(s)
- Jingtao Lu
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
36
|
Lentsch AB. Regulatory mechanisms of injury and repair after hepatic ischemia/reperfusion. SCIENTIFICA 2012; 2012:513192. [PMID: 24278708 PMCID: PMC3820555 DOI: 10.6064/2012/513192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/12/2012] [Indexed: 06/02/2023]
Abstract
Hepatic ischemia/reperfusion injury is an important complication of liver surgery and transplantation. The mechanisms of this injury as well as the subsequent reparative and regenerative processes have been the subject of thorough study. In this paper, we discuss the complex and coordinated responses leading to parenchymal damage after liver ischemia/reperfusion as well as the manner in which the liver clears damaged cells and regenerates functional mass.
Collapse
Affiliation(s)
- Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45267-0558, USA
| |
Collapse
|
37
|
Monitoring molecular changes induced by ischemia/reperfusion in human free muscle flap tissue samples. Ann Plast Surg 2012; 68:202-8. [PMID: 21508818 DOI: 10.1097/sap.0b013e3181f77ba5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our current knowledge of the pathophysiological sequelae of ischemia or reperfusion (I/R) injury in free tissue transfer in reconstructive surgery is based on data obtained in animal experiments. In this study, we investigated the histologic and molecular changes after 11 free microsurgical muscle transfers in human muscle tissue. METHODS Biopsies of free muscle flap tissue were taken immediately before clipping of the pedicle and 5 days after ischemia and successful microanastomosis and restoration of the blood flow. Samples were analyzed histologically for edema formation and by immunohistochemistry for infiltration of inflammatory cells and angiogenesis. Expression levels of the inflammatory marker proteins interleukin-1β and tumor necrosis factor α and of complement component 3 as a major mediator of I/R injury were analyzed by real-time polymerase chain reaction. A TUNEL (terminal desoxynucleotidyl transferase-mediated-dUTP-nick-end-labeling) assay was used to assess apoptosis levels within the human muscle tissue. RESULTS I/R injury leads to a significant up-regulation of inflammatory parameters, infiltration of inflammatory cells, and angiogenesis. Increased complement component 3 deposition and apoptosis of cells were accompanied by interstitial edema as indication for a pronounced postischemic inflammatory reaction within the muscle tissue after free tissue transfer. CONCLUSIONS Our findings of molecular changes induced by I/R injury in human striated muscle tissue validate data obtained in animal models of I/R injury. The parameters and inflammatory patterns defined in this study will allow for the monitoring of the success of novel pharmaceutical strategies in the future and will help to transfer data obtained in animal work to the in vivo setting in human beings.
Collapse
|
38
|
Subeq YM, Hsu BG, Lin NT, Yang FL, Chao YFC, Peng TC, Kuo CH, Lee RP. Hypothermia caused by slow and limited-volume fluid resuscitation decreases organ damage by hemorrhagic shock. Cytokine 2012; 60:68-75. [PMID: 22748466 DOI: 10.1016/j.cyto.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypothermia frequently occurs during fluid resuscitation of trauma victims, especially in patients with a major blood loss. Recent studies have suggested that mild hypothermia may ameliorate hemorrhagic shock (HS) induced splanchnic damage. OBJECTIVE The aim of the present study is to compare the status of body temperature and splanchnic injury under different resuscitation speeds for HS in conscious rats. METHODS Experimental study in an animal model of HS. Twenty-four male Wistar-Kyoto rats were used in the study. To mimic HS, 40% of the total blood volume was withdrawn. Fluid resuscitation was given 30 min after blood withdrawal. The rats were randomly divided into three groups; the control group, the 10-min rapid group, and the 12-h slow group. RESULTS Levels of blood biochemical parameters, including aspartate transferase (GOT), and alanine transferase (GPT), were measured. Levels of serum tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were measured and levels of bronchoalveolar lavage fluid (BALF) TNF-α and nitric oxide (NO) were measured by ELISA. The lung, liver and small intestine were examined for pathological changes 48 h after HS. CONCLUSIONS Initially slow rate resuscitation with limited-volume significantly decreased body temperature, serum GOT, GPT, TNF-α, and IL-6 levels, levels of TNF-α, and NO in BALF. Moreover, the slow group had lower injury scores in the lung, liver and small intestine than the rapid group after HS. This finding suggests that mild hypothermia induced by a slow fluid resuscitation rate with limited-volume ameliorates HS-induced splanchnic damage in conscious rats.
Collapse
Affiliation(s)
- Yi-Maun Subeq
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Watanabe G, Uchinami H, Yoshioka M, Abe Y, Kikuchi I, Iwasaki W, Kume M, Yamamoto Y. Transfection of naked nuclear factor-κB decoy oligodeoxynucleotides into liver by rapid portal vein infusion in rats: its effect on ischemia-reperfusion injury of liver. Hum Gene Ther 2012; 23:428-36. [PMID: 22397701 DOI: 10.1089/hum.2011.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study was aimed at examining whether rapid portal vein infusion (RPVI) of a small volume of naked oligodeoxynucleotides (ODNs) could be used to transfect sufficient amounts of nuclear factor-κB (NF-κB) decoy ODN into the liver to suppress NF-κB activation during liver ischemia-reperfusion (I/R) injury, in which NF-κB plays a central role in regulating the production of inflammatory cytokines. One milliliter of naked NF-κB decoy ODN solution was administered into the portal vein for a few seconds. Transfection efficacy was examined by labeling the ODN with a fluorescent tag. Activation of NF-κB was investigated by electrophoretic mobility shift assay. Levels of serum liver enzymes and cytokines were measured during liver I/R injury. NF-κB decoy ODN was preferentially incorporated into Kupffer cells and sinusoidal endothelial cells, but not hepatocytes, in the rat liver. Transfected NF-κB decoy ODN suppressed the function of NF-κB in both Kupffer cells and sinusoidal endothelial cells during liver I/R injury, causing significant decreases in serum tumor necrosis factor-α and interleukin-6 levels 3 hr after reperfusion. Although the decrease in serum liver enzymes was not significant, naked NF-κB decoy ODN was successfully incorporated into Kupffer cells and sinusoidal endothelial cells by rapid portal vein infusion, inhibited NF-κB activation in both cells, and suppressed the production of inflammatory cytokines during the early phase of liver I/R injury.
Collapse
Affiliation(s)
- Go Watanabe
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 2012; 134:82-106. [DOI: 10.1016/j.pharmthera.2012.01.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/22/2011] [Indexed: 01/10/2023]
|
41
|
Matsuda A, Jacob A, Wu R, Zhou M, Aziz M, Wang P. Milk fat globule--EGF factor VIII ameliorates liver injury after hepatic ischemia-reperfusion. J Surg Res 2012; 180:e37-46. [PMID: 22487387 DOI: 10.1016/j.jss.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/15/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a serious clinical complication that may compromise liver function because of extensive hepatocyte loss. Therefore, the development of novel and effective therapies for hepatic I/R is critical for the improvement of patient outcome. It has been previously shown that administration of milk fat globule-EGF factor VIII (MFG-E8), a membrane-associated secretory glycoprotein, exerts significant beneficial effects under acute inflammatory conditions through multiple physiological processes associated with tissue remodeling. METHODS To determine whether administration of recombinant human (rh) MFG-E8 attenuates liver injury in an animal model of hepatic I/R, male adult rats were subjected to 70% hepatic ischemia for 90 min, followed by reperfusion. At the beginning of reperfusion, rats were treated intravenously with normal saline (vehicle) or rhMFG-E8 (160 μg/kg) over a period of 30 min. MFG-E8 levels and various measurements were assessed 4 h after reperfusion. In addition, survival study was conducted in MFG-E8(-/-) and rhMFG-E8-treated wild-type (WT) mice using a total hepatic ischemia model. RESULTS Liver and plasma MFG-E8 protein levels were significantly decreased after hepatic I/R. Administration of rhMFG-E8 significantly improved liver injury, suppressed apoptosis, attenuated inflammation and oxidative stress, and downregulated NF-κB pathway. We also noticed that rhMFG-E8 treatment restored the downregulated PPAR-γ expression after hepatic I/R. MFG-E8(-/-) mice showed deterioration on survival and, in contrast, rhMFG-E8-treated WT mice showed a significant improvement of survival compared with vehicle-treated WT mice. CONCLUSIONS MFG-E8-mediated multiple physiological events may represent an effective therapeutic option in tissue injury following an episode of hepatic I/R.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ramachandran S, Liaw JM, Jia J, Glasgow SC, Liu W, Csontos K, Upadhya GA, Mohanakumar T, Chapman WC. Ischemia-reperfusion injury in rat steatotic liver is dependent on NFκB P65 activation. Transpl Immunol 2012; 26:201-6. [PMID: 22286145 DOI: 10.1016/j.trim.2012.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly, contributing to increased primary graft nonfunction following transplantation. Activation of nuclear factor kappa-B (NFκB) following I/R injury plays a crucial role in activation of pro-inflammatory responses leading to injury. METHODS We evaluated the role of NFκB in steatotic liver injury by using an orthotopic liver transplant (OLT) model in Zucker rats (lean to lean or obese to lean) to define the mechanisms of steatotic liver injury. Obese donors were treated with bortezomib to assess the role of NF-κB in steatotic liver I/R injury. Hepatic levels of NF-κB and pro-inflammatory cytokines were analyzed by ELISA. Serum transaminase levels and histopathological analysis were performed to assess associated graft injury. RESULTS I/R injury in steatotic liver results in significant increases in activation of NF-κB (40%, p<0.003), specifically the p65 subunit following transplantation. Steatotic donor pretreatment with proteasome inhibitor bortezomib (0.1mg/kg) resulted in significant reduction in levels of activated NF-κB (0.58±0.18 vs. 1.37±0.06O.D./min/10 μg protein, p<0.003). Bortezomib treatment also reduced expression of pro-inflammatory cytokines MIP-2 compared with control treated steatotic and lean liver transplants respectively (106±17.5 vs. 443.3±49.9 vs. 176±10.6 pg/mL, p=0.02), TNF-α (223.8±29.9 vs. 518.5±66.5 vs. 264.5±30.1 pg/2 μg protein, p=0.003) and IL-1β (6.0±0.91 vs. 19.8±5.2 vs. 5±1.7 pg/10 μg protein, p=0.02) along with a significant reduction in ALT levels (715±71 vs. 3712.5±437.5 vs. 606±286 U/L, p=0.01). CONCLUSION These results suggest that I/R injury in steatotic liver transplantation are associated with exaggerated activation of NFκB subunit p65, leading to an inflammatory mechanism of reperfusion injury and necrosis. Proteasome inhibition in steatotic liver donor reduces NFκB p65 activation and inflammatory I/R injury, improving transplant outcomes of steatotic grafts in a rat model.
Collapse
Affiliation(s)
- Sabarinathan Ramachandran
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Visualizing and Quantifying Acute Inflammation Using ICAM-1 Specific Nanoparticles and MRI Quantitative Susceptibility Mapping. Ann Biomed Eng 2011; 40:1328-38. [DOI: 10.1007/s10439-011-0482-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/28/2011] [Indexed: 10/15/2022]
|
44
|
Negative pressure wound therapy reduces the ischaemia/reperfusion-associated inflammatory response in free muscle flaps. J Plast Reconstr Aesthet Surg 2011; 65:640-9. [PMID: 22137686 DOI: 10.1016/j.bjps.2011.11.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/25/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND We recently established negative pressure wound therapy (NPWT) as a safe postoperative care concept for free muscle flaps; however, the molecular effects of NPWT on free muscle flaps remain elusive. Here we investigated the effects of NPWT on pathological changes associated with ischaemia/reperfusion injury in free flap tissue. METHODS From July 2008 to September 2010, 30 patients receiving skin-grafted free muscle transfer for defect coverage were randomly assigned to two treatment groups: In one group the skin-grafted free flap was covered by a vacuum dressing (NPWT); in the second group, flaps were covered by conventional petroleum gauze dressings (conv). Biopsies were taken intra-operatively prior to clipping of the pedicle and on postoperative day 5. Samples were analysed by immunohistochemistry for infiltration of inflammatory cells, real-time polymerase chain reaction (RT-PCR) for the analysis of expression levels of interleukin-1β (IL-1β) and tumour necrosis factor (TNF)-alpha as markers of inflammation. Histological samples were also examined for interstitial oedema formation, and apoptosis was detected by a terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS NPWT leads to a significantly reduced tissue infiltration of CD68 + macrophages and reduced expression of the inflammatory cytokines IL-1β and TNFα. None of these parameters was significantly elevated in the pre-ischaemic biopsies. Furthermore, NPWT reduced the interstitial oedema formation and the number of apoptotic cells in free flap tissue. CONCLUSION NPWT of skin-grafted free muscle flaps leads to a reduced inflammatory response following ischaemia/reperfusion, resulting in reduced oedema formation improving the microcirculation and ultimately reduced tissue damage. We thereby deliver new insight into the effects of NPWT.
Collapse
|
45
|
Bruns H, Watanpour I, Gebhard MM, Flechtenmacher C, Galli U, Schulze-Bergkamen H, Zorn M, Büchler MW, Schemmer P. Glycine and taurine equally prevent fatty livers from Kupffer cell-dependent injury: an in vivo microscopy study. Microcirculation 2011; 18:205-13. [PMID: 21175929 DOI: 10.1111/j.1549-8719.2010.00078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND IRI still is a major problem in liver surgery due to warm ischemia and organ manipulation. Steatosis is not only induced by diabetes, hyperalimentation, alcohol and toxins, but also chemotherapy given before resection. Since steatotic livers are prone to Kupffer cell-dependent IRI, protection of steatotic livers is of special interest. This study was designed to compare the effect of taurine and glycine on IRI in steatotic livers. MATERIALS AND METHODS Steatosis was induced with ethanol (7 g/kg b.w.; p.o.) in female SD rats. Ten minutes after inactivation of Kupffer cells with taurine or glycine (300 mM; i.v.), left liver lobes underwent 60 minutes of warm ischemia. Controls received the same volume of valine (300 mM; i.v.) or normal saline. After reperfusion, white blood cell-endothelial interactions and latex-bead phagocytosis by Kupffer cells were investigated. Liver enzymes were measured to estimate injury. For statistical analysis, ANOVA and Student's t-test were used. RESULTS Glycine and taurine significantly decreased leukocyte- and platelet-endothelium interactions and latex-bead phagocytosis (p < 0.05). Liver enzymes were significantly lower after glycine and taurine (p < 0.05). CONCLUSIONS This study shows that preconditioning with taurine or glycine is equally effective in preventing injury to fatty livers most likely via Kupffer cell-dependent mechanisms.
Collapse
Affiliation(s)
- Helge Bruns
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kuo CH, Lee SH, Chen KM, Lii CK, Liu CT. Effect of garlic oil on neutrophil infiltration in the small intestine of endotoxin-injected rats and its association with levels of soluble and cellular adhesion molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7717-7725. [PMID: 21688797 DOI: 10.1021/jf201185v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Garlic ( Allium sativum ) possesses anti-inflammatory effects. This study investigated the effects of garlic oil on endotoxin-induced neutrophil infiltration in the small intestine. Wistar rats received by gavage 10, 50, or 100 mg/kg body wt garlic oil (GO) or the vehicle (corn oil; 2 mL/kg body wt) every other day for 2 weeks before being injected with endotoxin (ip, 5 mg/kg body wt). Control rats were administered corn oil and injected with sterile saline. Blood samples for the measurement of soluble adhesion molecules were collected at various time points after injection, and all other samples were collected 18 h after injection. The 10 and 50 mg/kg doses suppressed endotoxin-induced neutrophilia, serum levels of sL-selectin and sICAM-1, cellular CD11b on neutrophils, intestinal ICAM-1 content, and neutrophil infiltration (P < 0.05). The 100 mg/kg dose significantly lowered local ICAM-1 and cellular CD11b on neutrophils (P < 0.05) but did not have a beneficial effect on neutrophil infiltration. In addition, 100 mg/kg of GO worsened the elevation of the local TNF-α level and neutrophilia. Appropriate doses of garlic oil have a preventive effect on endotoxin-induced neutrophil infiltration and damage to the small intestine.
Collapse
Affiliation(s)
- Chia-Hao Kuo
- School of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Sakai N, Shin T, Schuster R, Blanchard J, Lentsch AB, Johnson WT, Schuschke DA. Marginal copper deficiency increases liver neutrophil accumulation after ischemia/reperfusion in rats. Biol Trace Elem Res 2011; 142:47-54. [PMID: 20544302 PMCID: PMC3035736 DOI: 10.1007/s12011-010-8743-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/31/2010] [Indexed: 11/30/2022]
Abstract
Copper deficiency can cause a host of major cardiovascular complications including an augmented inflammatory response through effects on both neutrophils and the microvascular endothelium. In the present study, we evaluated the effect of marginal copper deficiency on the neutrophilic response to hepatic ischemia/reperfusion injury, a condition that induces an inflammatory response. Male weanling Sprague-Dawley rats were fed purified diets which were either copper-adequate (6.3 mg/kg) or copper-marginal (1.62 mg/kg) for 4 weeks prior to undergoing 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Liver injury was assessed by serum levels of alanine aminotransferase and by liver histology. Liver neutrophil accumulation was determined by tissue myeloperoxidase content. There was no significant difference in liver injury between copper-adequate and copper-marginal rats. However, liver neutrophil accumulation was significantly increased in copper-marginal rats. These findings were confirmed histologically. Liver expression of the adhesion molecule, intercellular adhesion molecule-1 (ICAM-1), was increased in copper-marginal rats compared to copper-adequate rats. The results suggest that neutrophil accumulation is increased through enhanced ICAM-1 expression in liver of copper-marginal rats after ischemia/reperfusion, but that this does not result in increased liver injury.
Collapse
Affiliation(s)
- Nozomu Sakai
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas Shin
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Schuster
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John Blanchard
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Alex B. Lentsch
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | - Dale A. Schuschke
- Department of Physiology and Biophysics, Health Sciences Center A1111, University of Louisville, Louisville, KY 40292, USA,
| |
Collapse
|
48
|
Timsit MO, Yuan X, Floerchinger B, Ge X, Tullius SG. Consequences of transplant quality on chronic allograft nephropathy. Kidney Int 2011:S54-8. [PMID: 21116319 DOI: 10.1038/ki.2010.424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using kidneys from expanded-criteria donors to alleviate organ shortage has raised concern on reduced transplant outcomes. In this paper, we review how critical donor-related factors such as donor age, brain death, and consequences of ischemia-reperfusion injury (IRI) determine graft quality and impact chronic allograft nephropathy. We propose that combinatorial effects of organ-intrinsic features associated with increasing age and unspecific injuries related to brain death and IRI will impact innate and adaptive immune responses. Future research will need to explore avenues to optimize donor management, organ preservation, adapted immunosuppressive strategies, as well as modifications of the allocation of suboptimal allografts.
Collapse
Affiliation(s)
- Marc-Olivier Timsit
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Warm hepatic ischemia-reperfusion injury is a significant medical problem in many clinical conditions such as liver transplantation, hepatic surgery for tumor excision, trauma and hepatic failure after hemorrhagic shock. Partial or, mostly, total interruption of hepatic blood flow is often necessary when liver surgery is performed. This interruption of blood flow is termed "warm ischemia" and upon revascularization, when molecular oxygen is reintroduced, the organ undergoes a process called "reperfusion injury" that causes deterioration of organ function. Ischemia reperfusion results in cellular damage and tissue injury associated with a complex series of events. Pathophysiological mechanisms leading to tissue injury following ischemia-reperfusion will be discussed and therapies targeted to reduce liver damage will be summarized within this review.
Collapse
Affiliation(s)
- Serdar Dogan
- Department of Biochemistry, Akdeniz University School of Medicine, Antalya, Turkey
| | | |
Collapse
|
50
|
Laubach VE, French BA, Okusa MD. Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 2010; 15:103-18. [PMID: 21110787 DOI: 10.1517/14728222.2011.541441] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD Ischemia-reperfusion (IR) injury is a common problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus, intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. AREAS COVERED IN THIS REVIEW Current knowledge on IR injury with a focus on lung, heart and kidney and studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. WHAT THE READER WILL GAIN Insight into the role of adenosine receptor signaling in IR injury. TAKE HOME MESSAGE No therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard.
Collapse
Affiliation(s)
- Victor E Laubach
- University of Virginia Health System, Charlottesville, 22908, USA.
| | | | | |
Collapse
|