1
|
Dávila Saldaña BJ, Schultz KR, Ramgopal A, Boiko JR, Beebe K, Carpenter PA, Chan SS, Paczesny S, Aguayo-Hiraldo P, Cuvelier GDE, Rotz SJ, Duncan CN, Williams KM. Pediatric Transplant and Cellular Therapy Consortium RESILIENT Conference on Pediatric Chronic Graft-versus-Host Disease Survivorship after Hematopoietic Cell Transplantation: Part II. Organ Dysfunction and Immune Reconstitution Considerations for Children with Chronic Graft-versus-Host Disease after Hematopoietic Cell Transplantation. Transplant Cell Ther 2025:S2666-6367(25)00913-3. [PMID: 39855565 DOI: 10.1016/j.jtct.2025.01.885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
While highly morbid forms of chronic graft versus host disease (cGVHD) and severe late effects of allogeneic hematopoietic cell transplantation (HCT) can impact children and adults alike, unique considerations arise in pediatric cases regarding diagnosis, monitoring, treatment, and likelihood of resolution. As children can present with atypical features of cGVHD and with more significant disease due to inability to communicate symptoms, they may be at increased risk for highly morbid forms of cGVHD and incur greater subsequent late effects, which may be more pronounced in those with underlying chromosomal breakage syndromes, with higher prevalence in pediatric HCT recipients. The long-term effects of cGVHD and its therapies include impaired immune reconstitution, leading to increased risks of infection and secondary malignant neoplasms. However, children also have the greatest potential for full immune reconstitution, due to thymus recovery that could impact the timing of vaccination with respect to tolerance and restoration of optimal immunity. Developing strategies to mitigate the late effects incurred with, and as a result of, cGVHD is of critical importance. The working group recommends surveillance strategies for late effects in patients with cGVHD, increased utilization of emerging diagnostic tools, integration of monitoring for cGVHD treatment response, and development of new treatments and specifies aims of future research endeavors.
Collapse
Affiliation(s)
- Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, District of Columbia.
| | - Kirk R Schultz
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Archana Ramgopal
- Department of Pediatric Bone Marrow Transplantation & Cellular Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington
| | - Kristen Beebe
- Blood and Marrow Transplantation, Mayo Clinic Arizona and Phoenix Children's Hospital, Phoenix, Arizona
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sherwin S Chan
- Department of Radiology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Paibel Aguayo-Hiraldo
- Cancer and Blood Disorders Institute, Children's Hospital Los Angeles, University Southern California Keck School of Medicine, Los Angeles, California
| | - Geoffrey D E Cuvelier
- Department of Pediatric Oncology and Transplantation, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Christine N Duncan
- Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| |
Collapse
|
2
|
Miyao K, Murata M, Nishida T, Ozawa Y, Uchida N, Fukuda T, Doki N, Eto T, Kawakita T, Mori Y, Takada S, Ohigashi H, Tanaka M, Kanda Y, Matsuoka KI, Ishimaru F, Atsuta Y, Kanda J, Terakura S. Association between early anti-cytomegalovirus therapy and the incidence of chronic graft-versus-host disease. Int J Hematol 2025; 121:110-125. [PMID: 39543007 DOI: 10.1007/s12185-024-03871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Ganciclovir and foscarnet are two representative anti-cytomegalovirus (CMV) agents. A previous regional study revealed a lower risk of chronic graft-versus-host disease (GVHD) in patients who received pre-emptive foscarnet. We conducted a retrospective nationwide study to confirm the results. A total of 8890 patients aged 16 or older with hematological malignancies who received foscarnet (n = 1555) or ganciclovir (n = 7335) during their first hematopoietic stem cell transplantation (HSCT) were included. The risks of chronic GVHD (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.13-1.40; P < 0.001) and extensive chronic GVHD (HR, 1.16; 95% CI, 1.01-1.33; P = 0.033) were higher with ganciclovir. Among male patients with a female donor, the incidence of extensive chronic GVHD 3 years after HSCT was clearly lower with foscarnet (13%; 95% CI, 9-16%) than with ganciclovir (27%; 95% CI, 25-29%; P < 0.001). In male patients who received HSCT from female donors, foscarnet recipients showed significantly lower incidence of extensive chronic GVHD than ganciclovir recipients, regardless of donor source or previous acute GVHD. While caution is necessary, these results indicate that foscarnet affects alloimmunization and might reduce the incidence of chronic GVHD.
Collapse
Affiliation(s)
- Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, 28 Higashihirokute, Anjo-cho, Anjo, Aichi, 446-8602, Japan.
| | - Makoto Murata
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yasuo Mori
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Satoru Takada
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Fumihiko Ishimaru
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Atsugi, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Casal A, Riveiro V, Suárez-Antelo J, Ferreiro L, Rodríguez-Núñez N, Toubes ME, Valdés L. Non-infectious pulmonary complications after haematopoietic progenitor transplantation: a diagnostic approach. J Thorac Dis 2024; 16:8771-8781. [PMID: 39831213 PMCID: PMC11740070 DOI: 10.21037/jtd-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 01/22/2025]
Abstract
Haematopoietic stem cell transplantation (HCT) is an established treatment for a wide variety of haematological diseases, both malignant and non-malignant. Infectious and non-infectious post-HCT pulmonary complications are a major cause of morbidity and mortality, with non-infectious complications becoming more prominent in recent decades as prophylaxis has led to a decrease in infectious complications. Globally, these complications can be divided into three phases (neutropenic, early and late phase) depending on their time of onset in relation to the graft. There is a growing awareness that the assessment of the patient undergoing HCT should start before the transplantation itself. It is known that total body irradiation dose, the source of HCT, myeloablative regimens or lower baseline lung function are key risk factors in the development of pulmonary complications. In general, the treatment of these entities consists of administration of corticosteroids with variable response, which highlights the need to better understand the underlying biology in order to have new drugs with more directed targets to improve the prognosis of post-HCT non-infectious pulmonary complications. In view of the limited therapeutic response mentioned above, preventive measures for patients undergoing HCT, such as conditioning of less ablative regimens or pre-selection of high-risk cases, are of paramount importance in order to mitigate the severity of these devastating pulmonary complications.
Collapse
Affiliation(s)
- Ana Casal
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
| | - Vanessa Riveiro
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
| | - Juan Suárez-Antelo
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
| | - Lucía Ferreiro
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
- Santiago de Compostela Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Nuria Rodríguez-Núñez
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
| | - María E. Toubes
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
| | - Luis Valdés
- Department of Pneumology, Santiago de Compostela University Hospital Complex, Santiago de Compostela, Spain
- Santiago de Compostela Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Medicine, University of Medicine of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Tanaka Y, Amano T, Nakamura A, Deguchi M, Takahashi A, Tsuji S, Murakami T. mTOR inhibitors potentially preserve fertility in female patients with haematopoietic malignancies: a narrative review. Ann Hematol 2024; 103:4953-4969. [PMID: 39537993 DOI: 10.1007/s00277-024-06090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Haematologic malignancies are considered among the more common adolescent and young adult (AYA) cancers. Many female AYA patients with haematopoietic malignancies face impaired fertility. Haematologic malignancies patients tend to be treated with more aggressive systemic chemotherapy than that of solid tumours. In adult women, treatment-related contraception causes age-related fertility loss. Graft-versus-host disease (GVHD) after allogeneic haematopoietic stem cell transplantation is associated with decreased fertility. Ovarian cryopreservation is often indicated for haematopoietic malignancies; however, follicle loss associated with ovarian cryopreservation and ovarian minimal residual disease, which result in the withdrawal of the transplantation, are important issues. These problems may not be fully addressed by conventional methods of fertility preservation, such as oocyte, embryo, and ovarian cryopreservation, leaving room for research into new treatment approaches, such as fertility preservation drugs. In recent years, preclinical studies have shown that mTOR inhibitors may preserve chemotherapy-induced follicular loss, may have follicle-preserving effects on follicle loss associated with cryopreservation and transplantation of ovarian tissue, may have fertility-preserving effects on aging-related infertility. Clinical studies have shown that mTOR inhibitors may have the potential for indirect fertility preservation by controlling GVHD, have a limited anti-tumor effect against haematopoietic malignancies. The purpose of this article is to outline the various issues faced by female survivors of haematopoietic malignancies and discuss the potential of mTOR inhibitors as a safe treatment option. Based on current research, mTOR inhibitors seem promising and innovative fertility preservation agents regarding preclinical conditions, and further study, including clinical trials, should be expected.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan.
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mari Deguchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
5
|
Duque-Afonso J, Rassner P, Walther K, Ihorst G, Wehr C, Marks R, Wäsch R, Bertz H, Köhler T, Frye BC, Stolz D, Zeiser R, Finke J, Maas-Bauer K. Evaluation of risk for bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation with myeloablative conditioning regimens. Bone Marrow Transplant 2024; 59:1744-1753. [PMID: 39333758 PMCID: PMC11611741 DOI: 10.1038/s41409-024-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Bronchiolitis obliterans syndrome (BOS), as chronic manifestation of graft-versus-host disease (GVHD), is a debilitating complication leading to lung function deterioration in patients after allogeneic hematopoietic cell transplantation (allo-HCT). In the present study, we evaluated BOS development risk in patients after receiving myeloablative conditioning (MAC) regimens. We performed a retrospective analysis of patients undergoing allo-HCT, who received MAC with busulfan/cyclophosphamid (BuCy, n = 175) busulfan/fludarabin (FluBu4, n = 29) or thiotepa/busulfan/fludarabine (TBF MAC, n = 37). The prevalence of lung disease prior allo-HCT, smoking status, GvHD prophylaxis, HCT-CI score, EBMT risk score and GvHD incidence varied across the groups. The cumulative incidence of BOS using the NIH diagnosis consensus criteria at 2 years after allo-HCT was 8% in FluBu4, 23% in BuCy and 19% in TBF MAC (p = 0.07). In the multivariate analysis, we identified associated factors for time to BOS such as FEV1
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Paraschiva Rassner
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Kristin Walther
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Thomas Köhler
- Clinic of Respiratory Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Björn Christian Frye
- Clinic of Respiratory Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Kristina Maas-Bauer
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
O'Brien H, Murray J, Orfali N, Fahy RJ. Pulmonary complications of bone marrow transplantation. Breathe (Sheff) 2024; 20:240043. [PMID: 39360022 PMCID: PMC11444492 DOI: 10.1183/20734735.0043-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/15/2024] [Indexed: 10/04/2024] Open
Abstract
Bone marrow transplantation, now often known as haematopoietic stem cell transplantation (HSCT), is a complex choreographed procedure used to treat both acquired and inherited disorders of the bone marrow. It has proven invaluable as therapy for haematological and immunological disorders, and more recently in the treatment of metabolic and enzyme disorders. As the number of performed transplants grows annually, and with patients enjoying improved survival, a knowledge of both early and late complications of HSCT is essential for respiratory trainees and physicians in practice. This article highlights the spectrum of respiratory complications, both infectious and non-infectious, the timeline of their likely occurrence, and the approaches used for diagnosis and treatment, keeping in mind that more than one entity may occur simultaneously. As respiratory issues are often a leading cause of short- and long-term morbidity, consideration of a combined haematology/respiratory clinic may prove useful in this patient population.
Collapse
Affiliation(s)
- Helen O'Brien
- Division of Respiratory Medicine, St James Hospital, Dublin, Ireland
- These authors contributed equally
| | - John Murray
- Division of Respiratory Medicine, St James Hospital, Dublin, Ireland
- These authors contributed equally
| | - Nina Orfali
- Division of Haematology, St James Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ruairi J. Fahy
- Division of Respiratory Medicine, St James Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Pidala JA, Gooley TA, Luznik L, Blazar BR. Chronic graft-versus-host disease: unresolved complication or ancient history? Blood 2024; 144:1363-1373. [PMID: 39008818 PMCID: PMC11451335 DOI: 10.1182/blood.2023022735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is associated with morbidity, mortality, impaired quality of life, prolonged immunosuppressive therapy, and infection risk after allogeneic hematopoietic cell transplantation (HCT). Major strides have occurred in the understanding of cGVHD biology; National Institutes of Health Consensus meetings have refined rigorous approaches to diagnosis, staging, and response criteria; major interventional trials have established standard benchmarks for treatment outcome; and 3 agents to date have been US Food and Drug Administration approved for treating corticosteroid-refractory cGVHD. Promising results from several recent trials have led some, but not others, to conclude that the risk of developing cGVHD is sufficiently low to be considered a major post-HCT complication of the past. We propose that it is time to critically examine the results of contemporary graft-versus-host disease (GVHD) prophylaxis regimens and discuss the state of the science and associated controversies in the spectrum of conclusions reached as to the risk of cGVHD. With these data, the current cGVHD incidence can be most precisely determined, and the present and future burden of cGVHD-affected patients can be accurately modeled. Through review of existing evidence, we highlight unresolved needs and opportunities to refine best GVHD prophylaxis or preemptive therapy approaches and optimize established cGVHD therapy, and make the argument that support of preclinical and clinical research is critical in improving patient outcomes.
Collapse
Affiliation(s)
- Joseph A. Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Leo Luznik
- Section of Hematology and Oncology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Harris AC, Ganjaei K, Vilela C, Geyer A. Late-Onset Noninfectious Pulmonary Complications after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:S585-S596. [PMID: 39370238 DOI: 10.1016/j.jtct.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Andrew C Harris
- Pediatric Transplantation and Cellular Therapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimia Ganjaei
- Pulmonary Service. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Camila Vilela
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Geyer
- Division of Pulmonary, Critical Care and Sleep Medicine, Lenox Hill Hospital, Northwell Health, New York, New York.
| |
Collapse
|
9
|
Epstein DJ, Otoukesh S, Shahid Z, Dadwal SS. Infectious Disease Considerations in Chronic Graft-versus-Host Disease and Transplantation Survivors. Transplant Cell Ther 2024; 30:S534-S547. [PMID: 39370235 DOI: 10.1016/j.jtct.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 10/08/2024]
Abstract
Chronic graft-versus-host disease is a frequent and serious complication of allogeneic hematopoietic cell transplantation and is associated with an increased risk of serious infections. Impaired humoral immunity increases the risk of recurrent or severe sinopulmonary infections, and functional asplenia predisposes to infections from encapsulated organisms. Herpesvirus infections and community-acquired respiratory viral infections are problematic as well. Pneumocystis pneumonia remains a risk, and mold infections occur in some patients. Understanding the epidemiology and pathophysiology of these infections is important for determining optimal monitoring and prophylaxis, and guiding patient counseling.
Collapse
Affiliation(s)
- David J Epstein
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| | - Salman Otoukesh
- Department of Hematology and HCT, City of Hope National Medical Center, Philadelphia, Pennsylvania
| | - Zainab Shahid
- Division of Infectious Disease, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sanjeet S Dadwal
- Division of Infectious Disease, City of Hope National Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Tameni A, Toffalori C, Vago L. Tricking the trickster: precision medicine approaches to counteract leukemia immune escape after transplant. Blood 2024; 143:2710-2721. [PMID: 38728431 DOI: 10.1182/blood.2023019962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Annalisa Tameni
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Dickey JS, Dickey BF, Alousi AM, Champlin RE, Sheshadri A. Early and rapid development of bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation. Respir Med Case Rep 2024; 49:102001. [PMID: 38745870 PMCID: PMC11091444 DOI: 10.1016/j.rmcr.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 05/16/2024] Open
Abstract
Bronchiolitis obliterans (BO) is a form of graft-versus-host disease (GVHD) in the lung and manifests as moderate to severe airflow obstruction after hematopoietic stem cell transplantation (HCT). New-onset airflow obstruction on spirometry is considered diagnostic of bronchiolitis obliterans syndrome (BOS). BOS affects about 5% of all HCT recipients. In general, BO is thought of as a late complication of HCT, usually occurring after day 100 post-transplantation. However, the onset of airflow obstruction can be rapid and is most often irreversible even with treatment. We describe a patient who rapidly developed severe airflow obstruction less than one month after transplantation following the development of upper airway symptoms. Despite aggressive immunosuppression, the patient had no improvement in airflow obstruction. We hypothesize that early screening and treatment may help prevent BOS after HCT.
Collapse
Affiliation(s)
| | - Burton F. Dickey
- The University of Texas MD Anderson Cancer Center, Department of Pulmonary Medicine, Houston, TX, USA
| | - Amin M. Alousi
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA
| | - Richard E. Champlin
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA
| | - Ajay Sheshadri
- The University of Texas MD Anderson Cancer Center, Department of Pulmonary Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Zajacova A, Scaramozzino MU, Bellini A, Purwar P, Ricciardi S, Migliore M, Meloni F, Esendagli D. ERS International Congress 2023: highlights from the Thoracic Surgery and Lung Transplantation Assembly. ERJ Open Res 2024; 10:00854-2023. [PMID: 38590936 PMCID: PMC11000272 DOI: 10.1183/23120541.00854-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024] Open
Abstract
Five sessions presented at the European Respiratory Society Congress 2023 were selected by Assembly 8, consisting of thoracic surgeons and lung transplant professionals. Highlights covering management of adult spontaneous pneumothorax, malignant pleural effusion, infectious and immune-mediated complications after lung transplantation, as well as the pro and con debate on age limit in lung transplantation and results of the ScanCLAD study were summarised by early career members, supervised by the assembly faculty.
Collapse
Affiliation(s)
- Andrea Zajacova
- Prague Lung Transplant Program, Department of Pneumology, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Marco Umberto Scaramozzino
- Pulmonology “La Madonnina” Reggio Calabria, Reggio Calabria, Italy
- Villa aurora Hospital Reggio Calabria, Reggio Calabria, Italy
| | - Alice Bellini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC) of the Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Giovanni Battista Morgagni-Luigi Pierantoni Hospital, Forlì, Italy
| | | | - Sara Ricciardi
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marcello Migliore
- Program of Minimally Invasive Thoracic Surgery and New Technologies, Policlinic Hospital, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- Thoracic Surgery and Lung Transplantation, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Federica Meloni
- Transplant Center, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Dorina Esendagli
- Baskent University, Faculty of Medicine, Chest Diseases Department, Ankara, Turkey
| |
Collapse
|
14
|
Bos S, Murray J, Marchetti M, Cheng GS, Bergeron A, Wolff D, Sander C, Sharma A, Badawy SM, Peric Z, Piekarska A, Pidala J, Raj K, Penack O, Kulkarni S, Beestrum M, Linke A, Rutter M, Coleman C, Tonia T, Schoemans H, Stolz D, Vos R. ERS/EBMT clinical practice guidelines on treatment of pulmonary chronic graft- versus-host disease in adults. Eur Respir J 2024; 63:2301727. [PMID: 38485149 DOI: 10.1183/13993003.01727-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 04/02/2024]
Abstract
Chronic graft-versus-host disease (cGvHD) is a common complication after allogeneic haematopoietic stem cell transplantation, characterised by a broad disease spectrum that can affect virtually any organ. Although pulmonary cGvHD is a less common manifestation, it is of great concern due to its severity and poor prognosis. Optimal management of patients with pulmonary cGvHD is complicated and no standardised approach is available. The purpose of this joint European Respiratory Society (ERS) and European Society for Blood and Marrow Transplantation task force was to develop evidence-based recommendations regarding the treatment of pulmonary cGvHD phenotype bronchiolitis obliterans syndrome in adults. A multidisciplinary group representing specialists in haematology, respiratory medicine and methodology, as well as patient advocates, formulated eight PICO (patient, intervention, comparison, outcome) and two narrative questions. Following the ERS standardised methodology, we conducted systematic reviews to address these questions and used the Grading of Recommendations Assessment, Development and Evaluation approach to develop recommendations. The resulting guideline addresses common therapeutic options (inhalation therapy, fluticasone-azithromycin-montelukast, imatinib, ibrutinib, ruxolitinib, belumosudil, extracorporeal photopheresis and lung transplantation), as well as other aspects of general management, such as lung functional and radiological follow-up and pulmonary rehabilitation, for adults with pulmonary cGvHD phenotype bronchiolitis obliterans syndrome. These recommendations include important advancements that could be incorporated in the management of adults with pulmonary cGvHD, primarily aimed at improving and standardising treatment and improving outcomes.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Murray
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Monia Marchetti
- Dept of Haematology, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Guang-Shing Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Anne Bergeron
- Dept of Pulmonology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Daniel Wolff
- Dept of Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensberg, Germany
| | - Clare Sander
- Dept of Respiratory Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Akshay Sharma
- Dept of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif M Badawy
- Dept of Pediatrics, Division of Haematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zinaida Peric
- Dept of Haematology, University Hospital Zagreb, Zagreb, Croatia
- TCWP (Transplant Complications Working Party) of the EBMT
| | - Agnieszka Piekarska
- Dept of Haematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Joseph Pidala
- Dept of Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kavita Raj
- Dept of Haematology, University College London Hospital NHS Foundation Trust, London, UK
| | - Olaf Penack
- TCWP (Transplant Complications Working Party) of the EBMT
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept of Hematology, Oncology and Tumorimmunology, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Samar Kulkarni
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Molly Beestrum
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Matthew Rutter
- ERS Patient Advocacy Committee
- Dept of Respiratory Physiology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Hélène Schoemans
- Dept of Haematology, University Hospitals Leuven, Leuven, Belgium
- Dept of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Contributed equally as senior author
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Contributed equally as senior author
| |
Collapse
|
15
|
Penack O, Marchetti M, Aljurf M, Arat M, Bonifazi F, Duarte RF, Giebel S, Greinix H, Hazenberg MD, Kröger N, Mielke S, Mohty M, Nagler A, Passweg J, Patriarca F, Ruutu T, Schoemans H, Solano C, Vrhovac R, Wolff D, Zeiser R, Sureda A, Peric Z. Prophylaxis and management of graft-versus-host disease after stem-cell transplantation for haematological malignancies: updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol 2024; 11:e147-e159. [PMID: 38184001 DOI: 10.1016/s2352-3026(23)00342-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 01/08/2024]
Abstract
Graft-versus-host disease (GVHD) is a major factor contributing to mortality and morbidity after allogeneic haematopoietic stem-cell transplantation (HSCT). In the last 3 years, there has been regulatory approval of new drugs and considerable change in clinical approaches to prophylaxis and management of GVHD. To standardise treatment approaches, the European Society for Blood and Marrow Transplantation (EBMT) has updated its clinical practice recommendations. We formed a panel of one methodologist and 22 experts in the field of GVHD management. The selection was made on the basis of their role in GVHD management in Europe and their contributions to the field, such as publications, presentations at conferences, and other research. We applied the GRADE process to ten PICO (patient, intervention, comparator, and outcome) questions: evidence was searched for by the panel and graded for each crucial outcome. In two consensus meetings, we discussed the evidence and voted on the wording and strengths of recommendations. Key updates to the recommendations include: (1) primary use of ruxolitinib in steroid-refractory acute GVHD and steroid-refractory chronic GVHD as the new standard of care, (2) use of rabbit anti-T-cell (thymocyte) globulin or post-transplantation cyclophosphamide as standard GVHD prophylaxis in peripheral blood stem-cell transplantations from unrelated donors, and (3) the addition of belumosudil to the available treatment options for steroid-refractory chronic GVHD. The EBMT proposes to use these recommendations as the basis for routine management of GVHD during allogenic HSCT. The current recommendations favour European practice and do not necessarily represent global preferences.
Collapse
Affiliation(s)
- Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Monia Marchetti
- Hematology Service, Oncology Unit, Hospital Cardinal Massaia, Asti, Italy
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mutlu Arat
- Istanbul Florence Nightingale Hospital, Stem Cell Transplantation Unit, Istanbul, Türkiye
| | | | - Rafael F Duarte
- Hematopoietic Transplantation and Hemato-Oncology Section, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sebastian Giebel
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Hildegard Greinix
- Division of Hematology, Medical University Graz, Auenbruggerplatz, Graz, Austria
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | | | - Stephan Mielke
- Karolinska Instituet and University Hospital, Department of Laboratory Medicine, Cell Therapy and Allogenic Stem Cell Transplantation (CAST), Stockholm, Sweden
| | - Mohamad Mohty
- Department of Haematology, Hôpital Saint-Antoine, Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM) Paris, France
| | - Arnon Nagler
- Hematology and Bone Marrow Transplant, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Jakob Passweg
- Hematology Division, University Hospital, Basel, Switzerland
| | - Francesca Patriarca
- Haematological Clinic and Transplant Centre, University Hospital of Central Friuli, Dipartimento Area Medica, University of Udine, Udine, Italy
| | - Tapani Ruutu
- Helsinki University Hospital Comprehensive Cancer Center and Clinical Research Institute, Helsinki University Hospital, Helsinki, Finland
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery (AccentVV), KU Leuven, Leuven, Belgium
| | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario - INCLIVA, University of Valencia, Valencia, Spain
| | - Radovan Vrhovac
- Department of Haematology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Daniel Wolff
- Medical Clinic 3, Haematology and Oncology, Klinikum der Universität Regensburg, Regensburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Zinaida Peric
- Department of Haematology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
16
|
Hand J, Imlay H. Antimicrobial Stewardship in Immunocompromised Patients: Current State and Future Opportunities. Infect Dis Clin North Am 2023; 37:823-851. [PMID: 37741735 DOI: 10.1016/j.idc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Immunocompromised (IC) patients are high risk for complications due to a high rate of antibiotic exposure. Antimicrobial stewardship interventions targeted to IC patients can be challenging due to limited data in this population and a high risk of severe infection-related outcomes. Here, the authors review immunocompromised antimicrobial stewardship barriers, metrics, and opportunities for antimicrobial use and testing optimization. Last, the authors highlight future steps in the field.
Collapse
Affiliation(s)
- Jonathan Hand
- Ochsner Health, New Orleans, LA, USA; University of Queensland School of Medicine, Ochsner Clinical School
| | - Hannah Imlay
- University of Utah Department of Internal Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Lim JU, Park S, Yoon JH, Lee SE, Cho BS, Kim YJ, Lee S, Kim HJ, Rhee CK. Efficacy of inhaled tiotropium add-on to budesonide/formoterol in patients with bronchiolitis obliterans developing after hematopoietic stem cell transplantation. Respir Med 2023; 218:107410. [PMID: 37696312 DOI: 10.1016/j.rmed.2023.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is the lung manifestation of chronic graft-versus-host disease after hematopoietic stem cell transplantation (HSCT). We assessed whether inhaled tiotropium add-on to the combination regimen including budesonide/formoterol improve pulmonary function and the chronic obstructive pulmonary disease assessment test (CAT) scores in patients with BOS. METHODS Post-HSCT patients diagnosed as BOS in Seoul St. Mary's Hospital were reviewed retrospectively. Patients defined as BOS and treated with budesonide/formoterol/tiotropium combination therapy after budesonide/formoterol therapy from January 2011 to June 2019 were enrolled. RESULTS Total of 86 patients were evaluated. After tiotropium add-on, the absolute FEV1 increased significantly from 1.47 ± 0.49 to 1.53 ± 0.57 L (p = 0.023) and the % predicted FEV1 from 45.0 ± 12.8 to 46.8 ± 14.5% (p = 0.031). The % predicted DLCO increased significantly after tiotropium add-on (from 61.6 ± 16.7 to 64.3 ± 16.3%, p = 0.028). Among 56 patients with complete CAT scores, no significant change was present in total CAT scores. In all, 30 of the 72 patients (41.7%) evidenced FEV1 increases > 100 mL, and 20 of 56 patients (35.7%) had CAT score decreases of ≥ 2 points. When the FEV1 and CAT scores were combined, the overall response rate to tiotropium add-on was 56.2% (41/73). The response group evidenced a significantly greater FVC increase, and a significant decrease in the RV/TLC ratio compared to the no-response group. CONCLUSIONS Inhaled tiotropium add-on to combination budesonide/formoterol significantly improved lung function, but not respiratory symptoms, in patients with post-HSCT BOS.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
18
|
Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F. A mini-review on anticancer-related properties of azithromycin and its potential activities in overcoming the challenges of glioblastoma. Fundam Clin Pharmacol 2023; 37:918-927. [PMID: 37069134 DOI: 10.1111/fcp.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
The resistance, plasticity and heterogeneity of cancer cells, including glioblastoma (GB) cells, have prompted the investigation of various agents for possible adjuncts and alternatives to existing therapies. This includes a macrolide antibiotic, azithromycin (AZI). It possesses intriguing anticancer properties in a range of cancer models in vitro, such as antiproliferative, pro-apoptotic, anti-autophagy and anti-angiogenic effects. In fact, AZI is renowned for its ability to eradicate cancer stem cells by inhibiting mitochondrial biogenesis and respiration. AZI-containing regimens in cancer patients for different purposes have shown favourable (i.e., attributed to its antibacterial activity) and unfavourable outcomes. Whilst its direct anticancer effects have yet to be clinically proven. To that end, this review provides a summary of AZI anticancer studies and delineates its potential activities in overcoming the challenges of GB.
Collapse
Affiliation(s)
- Siti Nazihahasma Hassan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
19
|
Vallet N, Salmona M, Malet-Villemagne J, Bredel M, Bondeelle L, Tournier S, Mercier-Delarue S, Cassonnet S, Ingram B, Peffault de Latour R, Bergeron A, Socié G, Le Goff J, Lepage P, Michonneau D. Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses. Cell Host Microbe 2023; 31:1386-1403.e6. [PMID: 37463582 DOI: 10.1016/j.chom.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Early administration of azithromycin after allogeneic hematopoietic stem cell transplantation was shown to increase the relapse of hematological malignancies. To determine the impact of azithromycin on the post-transplant gut ecosystem and its influence on relapse, we characterized overtime gut bacteriome, virome, and metabolome of 55 patients treated with azithromycin or a placebo. We describe four enterotypes and the network of associated bacteriophage species and metabolic pathways. One enterotype associates with sustained remission. One taxon from Bacteroides specifically associates with relapse, while two from Bacteroides and Prevotella correlate with complete remission. These taxa are associated with lipid, pentose, and branched-chain amino acid metabolic pathways and several bacteriophage species. Enterotypes and taxa associate with exhausted T cells and the functional status of circulating immune cells. These results illustrate how an antibiotic influences a complex network of gut bacteria, viruses, and metabolites and may promote cancer relapse through modifications of immune cells.
Collapse
Affiliation(s)
- Nicolas Vallet
- Université de Paris Cité, INSERM U976, 75010 Paris, France
| | - Maud Salmona
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Maxime Bredel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Louise Bondeelle
- Pneumology Unit, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Simon Tournier
- Core Facilities, Saint-Louis Research Institute, Université de Paris Cité, UAR 2030/US 53, 75010 Paris, France
| | | | - Stéphane Cassonnet
- Service de Biostatistique et Information Médicale, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | | | - Régis Peffault de Latour
- Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France; Cryostem Consortium, 13382 Marseille, France
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Gérard Socié
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Jérome Le Goff
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - David Michonneau
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|
20
|
Wu Z, Chen X, Zhang K, Liu Z, Zhang H, Zheng Z, Zhang X, Chen Y, Peng Y, Li H, Huang K, Tang S, Zhao L, Chen D. Identification of Hub Genes in the Pathogenesis of Bronchiolitis Obliterans via Bioinformatic Analysis and Experimental Verification. J Inflamm Res 2023; 16:3303-3317. [PMID: 37576152 PMCID: PMC10422971 DOI: 10.2147/jir.s419845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Background Bronchiolitis obliterans (BO) is a chronic disease that can arise as a complication of severe childhood pneumonia and can also impact the long-term survival of patients after lung transplantation. However, the precise molecular mechanism underlying BO remains unclear. We aimed to identify BO-associated hub genes and their molecular mechanisms. Methods BO-associated transcriptome datasets (GSE52761, GSE137169, and GSE94557) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Additional bioinformatics analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses, were performed to determine functional roles and DEG-associated regulatory networks. Prediction of hub genes using the 12 algorithms available in the Cytohubba plugin of Cytoscape software was also performed. Verification was performed using the BO mouse model. Results Our results revealed 57 DEGs associated with BO, of which 18 were down-regulated and 39 were up-regulated. The Cytohubba plugin data further narrowed down the 57 DEGs into 9 prominent hub genes (CCR2, CD1D, GM2A, TFEC, MPEG1, CTSS, GPNMB, BIRC2, and CTSZ). Genes such as CCR2, TFEC, MPEG1, CTSS, and CTSZ were dysregulated in 2,3-butanedione-induced BO mice, whereas TFEC, CTSS, and CTSZ were dysregulated in nitric acid-induced BO mouse models. Conclusion Our study identified and validated four novel BO biomarkers, which may allow further investigation into the development of distinct BO diagnostic markers and novel therapeutic avenues.
Collapse
Affiliation(s)
- Zhongji Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Xiaowen Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Kangkang Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Zhenwei Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Haidi Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Zhaocong Zheng
- Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Xiaodie Zhang
- Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Yubiao Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510000, People’s Republic of China
| | - Yinghui Peng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Hui Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Kaiyin Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Sixiang Tang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Li Zhao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Dehui Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
21
|
Chaaban S, Zimmer A, Bhatt VR, Schmidt C, Sadikot RT. Bacterial Pathogens Causing Pneumonia Post Hematopoietic Stem Cell Transplant: The Chronic GVHD Population. Pathogens 2023; 12:726. [PMID: 37242396 PMCID: PMC10224497 DOI: 10.3390/pathogens12050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Allogeneic stem cell transplantation is a lifesaving treatment for many malignancies. Post-transplant patients may suffer from graft versus host disease in the acute and/or the chronic form(s). Post-transplantation immune deficiency due to a variety of factors is a major cause of morbidity and mortality. Furthermore, immunosuppression can lead to alterations in host factors that predisposes these patients to infections. Although patients who receive stem cell transplant are at an increased risk of opportunistic pathogens, which include fungi and viruses, bacterial infections remain the most common cause of morbidity. Here, we review bacterial pathogens that lead to pneumonias specifically in the chronic GVHD population.
Collapse
Affiliation(s)
- Said Chaaban
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA;
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrea Zimmer
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Vijaya Raj Bhatt
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Cynthia Schmidt
- McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA;
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Yu X, Tian AL, Wang P, Li J, Wu J, Li B, Liu Z, Liu S, Gao Z, Sun S, Sun S, Tu Y, Wu Q. Macrolide antibiotics activate the integrated stress response and promote tumor proliferation. Cell Stress 2023; 7:20-33. [PMID: 37021084 PMCID: PMC10069438 DOI: 10.15698/cst2023.04.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Macrolide antibiotics are widely used antibacterial agents that are associated with autophagy inhibition. This study aimed to investigate the association between macrolide antibiotics and malignant tumors, as well as the effect on autophagy, reactive oxygen species (ROS) accumulation and integrated stress response (ISR). The meta-analysis indicated a modestly higher risk of cancer in macrolide antibiotic ever-users compared to non-users. Further experiments showed that macrolides block autophagic flux by inhibiting lysosomal acidification. Additionally, azithromycin, a representative macrolide antibiotic, induced the accumulation of ROS, and stimulated the ISR and the activation of transcription factor EB (TFEB) and TFE3 in a ROS-dependent manner. Finally, animal experiments confirmed that azithromycin promoted tumor progression in vivo, which could be receded by N-acetylcysteine, an inhibitor of ROS and ISR. Overall, this study reveals the potential role of macrolide antibiotics in malignant progression and highlights the need for further investigation into their effects.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- # These authors have contributed equally to this work and share first authorship
| | - Ai-Ling Tian
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- # These authors have contributed equally to this work and share first authorship
| | - Ping Wang
- Medical College, Anhui University of Science and Technology, Huainan, AnHui, P. R. China
- # These authors have contributed equally to this work and share first authorship
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Siqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- * Corresponding Author: Dr. Shengrong Sun, Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan 430060, Hubei Province, P. R. China; E-mail:
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- * Corresponding Author: Dr. Yi Tu, Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan 430060, Hubei Province, P. R. China; E-mail:
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- * Corresponding Author: Dr. Qi Wu, Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China; E-mail:
| |
Collapse
|
23
|
Fraebel J, Engelhardt BG, Kim TK. Noninfectious Pulmonary Complications after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:82-93. [PMID: 36427785 DOI: 10.1016/j.jtct.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Pulmonary complications after hematopoietic stem cell transplantation (HSCT) are important sources of morbidity and mortality. Improvements in infection-related complications have made noninfectious pulmonary complications an increasingly significant driver of transplantation-related mortality. Broadly, these complications can be characterized as either early or late complications, with idiopathic pneumonia syndrome and bronchiolitis obliterans syndrome the most prevalent early and late complications, respectively. Outcomes with historical treatment consisting mainly of corticosteroids are often poor, highlighting the need for a deeper understanding of these complications' underlying disease biology to guide the adoption of novel therapies that are being increasingly used in the modern era.
Collapse
Affiliation(s)
- Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian G Engelhardt
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
24
|
What a "harmless" antibiotic can teach us about GVL. Blood 2022; 140:2420-2422. [PMID: 36480222 DOI: 10.1182/blood.2022018225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation. Blood 2022; 140:2500-2513. [PMID: 35984904 DOI: 10.1182/blood.2022016926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/13/2022] Open
Abstract
Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.
Collapse
|
26
|
Epstein DJ, Liang EC, Sharifi H, Lai YK, Arai S, Graber-Naidich A, Sundaram V, Nelson J, Hsu JL. Epidemiology of Lower Respiratory Tract Infections and Community-Acquired Respiratory Viruses in Patients with Bronchiolitis Obliterans Syndrome after Hematopoietic Cell Transplantation: A Retrospective Cohort Study. Transplant Cell Ther 2022; 28:705.e1-705.e10. [PMID: 35872303 PMCID: PMC9547900 DOI: 10.1016/j.jtct.2022.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS)-chronic graft-versus-host disease (cGVHD) affecting the lungs-is an uncommon complication of allogeneic hematopoietic cell transplant (HCT). The epidemiology and complications of lower respiratory tract infections (LRTIs) and community-acquired respiratory viruses (CARVs) in these patients are poorly understood. OBJECTIVES We aim to characterize the epidemiology of LRTIs in patients with BOS complicating HCT. We also aim to explore the association of LRTIs and CARV detection on lung function in BOS patients. STUDY DESIGN Adult patients with BOS at Stanford Health Care between January 2010 and December 2019 were included in this retrospective cohort study. LRTI diagnosis was based on combined clinical, microbiologic, and radiographic criteria, using consensus criteria where available. RESULTS Fifty-five patients with BOS were included. BOS was diagnosed at a median of 19.2 (IQR 12.5-24.7) months after HCT, and patients were followed for a median of 29.3 (IQR 9.9-53.2) months from BOS diagnosis. Twenty-two (40%) patients died after BOS diagnosis; 17 patients died from complications of cGVHD (including respiratory failure and infection) and 5 died from relapsed disease. Thirty-four (61.8%) patients developed at least one LRTI. Viral LRTIs were most common, occurring in 29 (52.7%) patients, primarily due to rhinovirus. Bacterial LRTIs-excluding Nocardia and non-tuberculous mycobacteria (NTM)-were the second most common, occurring in 21 (38.2%) patients, mostly due to Pseudomonas aeruginosa. Fungal LRTIs, NTM, and nocardiosis occurred in 14 (25.5%), 10 (18.2%), and 4 (7.3%) patients, respectively. Median time to development of the first LRTI after BOS diagnosis was 15.3 (4.7-44.7) months. Twenty-six (76.5%) of the 34 patients who developed LRTIs had infections due to more than one type of organism-fungi, viruses, Nocardia, NTM, and other bacteria-over the observation period. Patients with at least one LRTI had significantly lower forced expiratory volume in one second percent predicted (FEV1%) (37% vs. 53%, p = 0.0096) and diffusing capacity of carbon monoxide (DLCO) (45.5% predicted vs. 69% predicted, p = 0.0001). Patients with at least one LRTI trended toward lower overall survival (OS) (p = 0.0899) and higher non-relapse mortality (NRM) (p = 0.2707). Patients with a CARV detected or LRTI diagnosed after BOS-compared to those without any CARV detected or LRTI diagnosed-were more likely to have a sustained drop in FEV1% from baseline of at least 10% (21 [61.8%] versus 7 [33.3%]) and a sustained drop in FEV1% of at least 30% (12 [36.4%] versus 2 [9.5%]). CONCLUSIONS LRTIs are common in BOS and associated with lower FEV1%, lower DLCO, and a trend toward decreased OS and higher NRM. Patients with LRTIs or CARVs (even absent lower respiratory tract involvement) were more likely to have substantial declines in FEV1% over time than those without. The array of organisms-including P. aeruginosa, mold, Nocardia, NTM, and CARVs-seen in BOS reflects the unique pathophysiology of this form of cGVHD, involving both systemic immunodeficiency and structural lung disease. These patterns of LRTIs and their outcomes can be used to guide clinical decisions and inform future research.
Collapse
Affiliation(s)
- David J Epstein
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| | - Emily C Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Husham Sharifi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yu Kuang Lai
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sally Arai
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
| | - Anna Graber-Naidich
- Department of Medicine, Stanford University School of Medicine, Stanford, California; Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
| | - Vandana Sundaram
- Department of Medicine, Stanford University School of Medicine, Stanford, California; Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California; Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joanna Nelson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joe L Hsu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
27
|
Exposure to antibiotics with anaerobic activity before respiratory viral infection is associated with respiratory disease progression after hematopoietic cell transplant. Bone Marrow Transplant 2022; 57:1765-1773. [PMID: 36064752 DOI: 10.1038/s41409-022-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
We examined associations between specific antibiotic exposures and progression to lower respiratory tract disease (LRTD) following individual respiratory viral infections (RVIs) after hematopoietic cell transplantation (HCT). We analyzed allogeneic HCT recipients of all ages with their first RVI during the first 100 days post-HCT. For the 21 days before RVI onset, we recorded any receipt of specific groups of antibiotics, and the cumulative sum of the number of antibiotics received for each day (antibiotic-days). We used Cox proportional hazards models to assess the relationship between antibiotic exposure and progression to LRTD. Among 469 patients with RVI, 124 progressed to LRTD. Compared to no antibiotics, use of antibiotics with broad anaerobic activity in the prior 21 days was associated with progression to LRTD after adjusting for age, virus type, hypoalbuminemia, neutropenia, steroid use, and monocytopenia (HR 2.2, 95% CI 1.1-4.1). Greater use of those antibiotics (≥7 antibiotic days) was also associated with LRTD in adjusted models (HR 2.2, 95% CI 1.1-4.3). Results were similar after adjusting for lymphopenia instead of monocytopenia. Antibiotic use is associated with LRTD after RVI across different viruses in HCT recipients. Prospective studies using anaerobe-sparing antibiotics should be explored to assess impact on LRTD in patients undergoing HCT.
Collapse
|
28
|
Tezcan G, Alsaadi M, Hamza S, Garanina EE, Martynova EV, Ziganshina GR, Farukshina ER, Rizvanov AA, Khaiboullina SF. Azithromycin and Ceftriaxone Differentially Activate NLRP3 in LPS Primed Cancer Cells. Int J Mol Sci 2022; 23:ijms23169484. [PMID: 36012769 PMCID: PMC9409354 DOI: 10.3390/ijms23169484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cancer patients are prescribed antibiotics, such as macrolides and lactamides, for infection treatment. However, the effect of these antibiotics on NLRP3 activation remains largely unknown. Method: Lung cancer (A549) and prostate cancer (PC3) cell lines were primed with lipopolysaccharide (LPS) to activate NLRP3 transcription. Cells were then treated with azithromycin (Az) or ceftriaxone (Cf). NLRP3 activation was analyzed by qPCR, Western blot, and ELISA. Cell growth and viability were assessed by real-time cell analysis and Annexin V expression. Levels of 41 cytokines were also analyzed using a multiplex assay. Results: LPS-Az activated transcription of NLRP3, Pro-CASP-1, and Pro-IL-1β in A549 cells, while failing to upregulate NLRP3 and Pro-IL-1β in PC3 cells. LPS-Az decreased the secretion of pro-inflammatory cytokines while it induced the pro-angiogenic factors in A549 and PC3 cells. In contrast, LPS-Cf suppressed the expression of NLRP3-associated genes, NLRP3 protein expression, the inflammatory cytokine secretion in A549 and PC3 cells. LPS-Az and LPS-Cf had a limited effect on cell growth and viability. Discussion: Our data suggest that Cf could suppress LPS induced NLRP3, which should be considered when selecting antibiotics for cancer treatment. In contrast, the effect of Az on LPS primed NLRP3 and the inflammatory cytokines production appears to depend on the cancer cell origin. Therefore, these data indicate that considerations are required when selecting Az for the treatment of cancer patients.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina V. Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Gulshat R. Ziganshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elina R. Farukshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or
| |
Collapse
|
29
|
Hao X, Peng C, Lian W, Liu H, Fu G. Effect of azithromycin on bronchiolitis obliterans syndrome in posttransplant recipients: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29160. [PMID: 35839027 PMCID: PMC11132355 DOI: 10.1097/md.0000000000029160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is a devastating complication that occurs after transplantation. Although azithromycin is currently used for the treatment of BOS, the evidence is sparse and controversial. The aim of this meta-analysis is to evaluate the effects of azithromycin on forced expiratory volume in 1 second (FEV1) and patient's survival. METHODS PubMed, Embase, Cochrane library, Web of Science databases, and the ClinicalTrials.gov registry were systematically searched from inception until December 2020 for relevant original research articles. Random-effects models were used to calculate pooled-effect estimates. RESULTS Searches identified 15 eligible studies involving 694 participants. For FEV1 (L), there was a significant increase after short-term (≤12 weeks; P = .00) and mid-term (12-24 weeks; P = .01) administration of azithromycin. For FEV1 (%) compared to baseline, there was a significant increase after short-term (≤12 weeks) administration of azithromycin (P = .02), while there were no statistically significant differences in the medium and long term. When pooled FEV1% was predicted, it exhibited a similar trend to FEV1 (%) compared to baseline. In addition, we discovered that azithromycin reduced the risk of death (hazard ratio = 0.26; 95% confidence interval = 0.17 to 0.40; P = .00) in patients with BOS post-lung transplantation. CONCLUSIONS Azithromycin therapy is both effective and safe for lung function improvement in patients with posttransplant BOS after the short- and medium-term administration. Additionally, it has been demonstrated a significant survival benefit among patients with BOS post-lung transplant. Higher quality randomized controlled trials and more extensive prospective cohort studies are needed to confirm the effect of azithromycin on patients with posttransplant BOS.
Collapse
Affiliation(s)
- Xiaohui Hao
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Peng
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Wenwen Lian
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Han Liu
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Guiying Fu
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Sabulski A, Wallace G, Lane A, Davies SM, Myers KC. Azithromycin does not increase hematologic relapse in pediatric hematopoietic cell transplant recipients. Bone Marrow Transplant 2022; 57:1589-1591. [PMID: 35778608 DOI: 10.1038/s41409-022-01746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anthony Sabulski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Gregory Wallace
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Glanville AR, Benden C, Bergeron A, Cheng GS, Gottlieb J, Lease ED, Perch M, Todd JL, Williams KM, Verleden GM. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: current management and future directions. ERJ Open Res 2022; 8:00185-2022. [PMID: 35898810 PMCID: PMC9309343 DOI: 10.1183/23120541.00185-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) may develop after either lung or haematopoietic stem cell transplantation (HSCT), with similarities in histopathological features and clinical manifestations. However, there are differences in the contributory factors and clinical trajectories between the two conditions. BOS after HSCT occurs due to systemic graft-versus-host-disease (GVHD), whereas BOS after lung transplantation is limited to the lung allograft. BOS diagnosis after HSCT is more challenging, as the lung function decline may occur due to extrapulmonary GVHD, causing sclerosis or inflammation in the fascia or muscles of the respiratory girdle. Treatment is generally empirical with no established effective therapies. This review provides rare insights and commonalities of both conditions, that are not well elaborated elsewhere in contemporary literature, and highlights the importance of cross disciplinary learning from experts in other transplant modalities. Treatment algorithms for each condition are presented, based on the published literature and consensus clinical opinion. Immunosuppression should be optimised, and other conditions or contributory factors treated where possible. When initial treatment fails, the ultimate therapeutic option is lung transplantation (or re-transplantation in the case of BOS after lung transplantation) in carefully selected candidates. Novel therapies under investigation include aerosolised liposomal cyclosporine, Janus kinase inhibitors, antifibrotic therapies, and (in patients with BOS after lung transplantation) B-cell–directed therapies. Effective novel treatments that have a tangible impact on survival and thereby avoid the need for lung transplantation or re-transplantation are urgently required.
Collapse
|
32
|
[Chinese consensus on diagnosis and treatment of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:441-447. [PMID: 35968585 PMCID: PMC9800223 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 12/24/2022]
|
33
|
Pagani IS, Poudel G, Wardill HR. A Gut Instinct on Leukaemia: A New Mechanistic Hypothesis for Microbiota-Immune Crosstalk in Disease Progression and Relapse. Microorganisms 2022; 10:microorganisms10040713. [PMID: 35456764 PMCID: PMC9029211 DOI: 10.3390/microorganisms10040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Despite significant advances in the treatment of Chronic Myeloid and Acute Lymphoblastic Leukaemia (CML and ALL, respectively), disease progression and relapse remain a major problem. Growing evidence indicates the loss of immune surveillance of residual leukaemic cells as one of the main contributors to disease recurrence and relapse. More recently, there was an appreciation for how the host’s gut microbiota predisposes to relapse given its potent immunomodulatory capacity. This is especially compelling in haematological malignancies where changes in the gut microbiota have been identified after treatment, persisting in some patients for years after the completion of treatment. In this hypothesis-generating review, we discuss the interaction between the gut microbiota and treatment responses, and its capacity to influence the risk of relapse in both CML and ALL We hypothesize that the gut microbiota contributes to the creation of an immunosuppressive microenvironment, which promotes tumour progression and relapse.
Collapse
Affiliation(s)
- Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Correspondence:
| | - Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Hannah R. Wardill
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
34
|
José RJ, Dickey BF, Sheshadri A. Airway disease in hematologic malignancies. Expert Rev Respir Med 2022; 16:303-313. [PMID: 35176948 PMCID: PMC9067103 DOI: 10.1080/17476348.2022.2043746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Hematologic malignancies are cancers of the blood, bone marrow and lymph nodes and represent a heterogenous group of diseases that affect people of all ages. Treatment generally involves chemotherapeutic or targeted agents that aim to kill malignant cells. In some cases, hematopoietic stem cell transplantation (HCT) is required to replenish the killed blood and stem cells. Both disease and therapies are associated with pulmonary complications. As survivors live longer with the disease and are treated with novel agents that may result in secondary immunodeficiency, airway diseases and respiratory infections will increasingly be encountered. To prevent airways diseases from adding to the morbidity of survivors or leading to long-term mortality, improved understanding of the pathogenesis and treatment of viral bronchiolitis, BOS, and bronchiectasis is necessary. AREAS COVERED This review focuses on viral bronchitis, BOS and bronchiectasis in people with hematological malignancy. Literature was reviewed from Pubmed for the areas covered. EXPERT OPINION Airway disease impacts significantly on hematologic malignancies. Viral bronchiolitis, BOS and bronchiectasis are common respiratory manifestations in hematological malignancy. Strategies to identify patients early in their disease course may improve the efficacy of treatment and halt progression of lung function decline and improve quality of life.
Collapse
Affiliation(s)
- Ricardo J José
- Department of Respiratory Medicine, Host Defence, Royal Brompton Hospital, Chelsea, London, UK
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, UK
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr Res 2022; 91:1036-1042. [PMID: 34120139 PMCID: PMC9122820 DOI: 10.1038/s41390-021-01613-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Macrolide antibiotics are one of the most commonly used broad-spectrum antibiotics. They have an inhibitory effect on a variety of respiratory pathogens; besides, they have non-anti-infective effects, including anti-inflammatory, regulating airway secretion, immune regulation, and other effects. A growing number of studies have shown that the non-anti-infective effects of macrolides have important and potential value in the treatment of pediatric chronic airway diseases; the therapy was described as "long-term, low-dose usage"; unfortunately, there is no guideline or consensus that applies to children. To better carry out the mechanism and clinical research of non-anti-infective effect and promote its rational use in children, the authors summarize the evidence of the usage of long-term, low-dose macrolide antibiotic therapy (LLMAT) in the treatment of chronic airway diseases in children and the progress in recent years. IMPACT: This review summarizes the evidence (mostly in recent 5 years) of the usage of long-term, low-dose macrolide antibiotic therapy in the treatment of chronic airway diseases. The recent studies and guidelines support and enrich the point that long-term, low-dose macrolide antibiotic therapy has potential benefit for children with severe asthma, CF, non-CF bronchiectasis, and BO, which provides clinical references and is of clinical interest. Long-term, low-dose macrolide antibiotic therapy has good safety, and no serious events have been reported; however, potential cardiac side effects and macrolide resistance should be clinically noted.
Collapse
|
36
|
Williams KM. Noninfectious complications of hematopoietic cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:578-586. [PMID: 34889438 PMCID: PMC8791176 DOI: 10.1182/hematology.2021000293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noninfectious lung diseases contribute to nonrelapse mortality. They constitute a spectrum of diseases that can affect the parenchyma, airways, or vascular pulmonary components and specifically exclude cardiac and renal causes. The differential diagnoses of these entities differ as a function of time after hematopoietic cell transplantation. Specific diagnosis, prognosis, and optimal treatment remain challenging, although progress has been made in recent decades.
Collapse
Affiliation(s)
- Kirsten M. Williams
- Correspondence Kirsten M. Williams, Blood and Marrow
Transplant Program, Aflac Cancer and Blood Disorders Center, Emory University
School of Medicine, Children's Healthcare of Atlanta, 1760 Haygood Dr,
3rd floor W362, Atlanta, GA 30322; e-mail:
| |
Collapse
|
37
|
Wolff D, Radojcic V, Lafyatis R, Cinar R, Rosenstein RK, Cowen EW, Cheng GS, Sheshadri A, Bergeron A, Williams KM, Todd JL, Teshima T, Cuvelier GDE, Holler E, McCurdy SR, Jenq RR, Hanash AM, Jacobsohn D, Santomasso BD, Jain S, Ogawa Y, Steven P, Luo ZK, Dietrich-Ntoukas T, Saban D, Bilic E, Penack O, Griffith LM, Cowden M, Martin PJ, Greinix HT, Sarantopoulos S, Socie G, Blazar BR, Pidala J, Kitko CL, Couriel DR, Cutler C, Schultz KR, Pavletic SZ, Lee SJ, Paczesny S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 PMCID: PMC8478861 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
Affiliation(s)
- Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Rachel K Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Bergeron
- Department of Pulmonary Medicine, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Shannon R McCurdy
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alan M Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - David Jacobsohn
- Children's National Hospital, George Washington University, Washington, District of Columbia
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York New York
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois Eye & Ear Infirmary, Chicago, Illinois
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Philipp Steven
- Division for Dry-Eye and ocular GvHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui Katie Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Tina Dietrich-Ntoukas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität Berlin, Department of Ophthalmology, Berlin, Germany
| | - Daniel Saban
- Department of Ophthalmology and Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Ervina Bilic
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olaf Penack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy. H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carrie L Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel R Couriel
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
38
|
Kemp R, Pustulka I, Boerner G, Smela B, Hofstetter E, Sabeva Y, François C. Relationship between FEV 1 decline and mortality in patients with bronchiolitis obliterans syndrome-a systematic literature review. Respir Med 2021; 188:106608. [PMID: 34517199 DOI: 10.1016/j.rmed.2021.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is one of the most severe complications and the leading cause of late mortality and morbidity after lung transplantation (LT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT). No approved treatment for BOS is available. This review aimed to systematically identify and summarise the findings regarding the relationship between FEV1 decline and mortality in patients who developed BOS following LT or allo-HSCT. METHODS A systematic literature search was performed in the Medline, Embase and Cochrane reviews databases. Of the 501 potential studies identified 25 met inclusion criteria and were analysed. RESULTS Overall, 13 studies reported a relationship between FEV1 and mortality, and 12 studies reported both mortality and FEV1 results but did not investigate the relationship between them. There was heterogeneity in the analyses, which investigated the relationship between FEV1 decline and mortality across the studies in terms of levels of lung functioning, comparison to a control group, treatment, and statistical methodology; nevertheless, a clear and consistent increase in the risk of death associated with FEV1 decrease was seen in the analysed studies. CONCLUSIONS The systematic literature review identified studies and findings that support a relationship between FEV1 and mortality, with a decrease in FEV1 being statistically associated with increased risk of death. Knowing that lower FEV1 levels are associated with higher mortality rates may help assess the condition of a patient with BOS and monitor future treatment effectiveness. However, more evidence is needed to further investigate this relationship and to verify its clinical usefulness.
Collapse
Affiliation(s)
- Robert Kemp
- Breath Therapeutics, a Zambon Company, Menlo Park, CA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation. A National Institutes of Health Workshop Summary. Ann Am Thorac Soc 2021; 18:381-394. [PMID: 33058742 DOI: 10.1513/annalsats.202001-006ot] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Approximately 2,500 pediatric hematopoietic cell transplants (HCTs), most of which are allogeneic, are performed annually in the United States for life-threatening malignant and nonmalignant conditions. Although HCT is undertaken with curative intent, post-HCT complications limit successful outcomes, with pulmonary dysfunction representing the leading cause of nonrelapse mortality. To better understand, predict, prevent, and/or treat pulmonary complications after HCT, a multidisciplinary group of 33 experts met in a 2-day National Institutes of Health Workshop to identify knowledge gaps and research strategies most likely to improve outcomes. This summary of Workshop deliberations outlines the consensus focus areas for future research.
Collapse
|
40
|
Pidala J, Kitko C, Lee SJ, Carpenter P, Cuvelier GDE, Holtan S, Flowers ME, Cutler C, Jagasia M, Gooley T, Palmer J, Randolph T, Levine JE, Ayuk F, Dignan F, Schoemans H, Tkaczyk E, Farhadfar N, Lawitschka A, Schultz KR, Martin PJ, Sarantopoulos S, Inamoto Y, Socie G, Wolff D, Blazar B, Greinix H, Paczesny S, Pavletic S, Hill G. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIb. The 2020 Preemptive Therapy Working Group Report. Transplant Cell Ther 2021; 27:632-641. [PMID: 33836313 PMCID: PMC8934187 DOI: 10.1016/j.jtct.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022]
Abstract
Chronic graft-versus-host disease (GVHD) commonly occurs after allogeneic hematopoietic cell transplantation (HCT) despite standard prophylactic immune suppression. Intensified universal prophylaxis approaches are effective but risk possible overtreatment and may interfere with the graft-versus-malignancy immune response. Here we summarize conceptual and practical considerations regarding preemptive therapy of chronic GVHD, namely interventions applied after HCT based on evidence that the risk of developing chronic GVHD is higher than previously appreciated. This risk may be anticipated by clinical factors or risk assignment biomarkers or may be indicated by early signs and symptoms of chronic GVHD that do not fully meet National Institutes of Health diagnostic criteria. However, truly preemptive, individualized, and targeted chronic GVHD therapies currently do not exist. In this report, we (1) review current knowledge regarding clinical risk factors for chronic GVHD, (2) review what is known about chronic GVHD risk assignment biomarkers, (3) examine how chronic GVHD pathogenesis intersects with available targeted therapeutic agents, and (4) summarize considerations for preemptive therapy for chronic GVHD, emphasizing trial development, including trial design and statistical considerations. We conclude that robust risk assignment models that accurately predict chronic GVHD after HCT and early-phase preemptive therapy trials represent the most urgent priorities for advancing this novel area of research.
Collapse
Affiliation(s)
- Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Carrie Kitko
- Division of Pediatric Hematology/Oncology, Dpeartment of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Shernan Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mary E Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Madan Jagasia
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Joycelynne Palmer
- Division of Biostatistics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Tim Randolph
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fiona Dignan
- Department of Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven and Department of Public Health, KU Leuven, Leuven, Belgium
| | - Eric Tkaczyk
- Department of Veterans Affairs and Departments of Dermatology and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nosha Farhadfar
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Department of Medicine, Durham, North Carolina
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Gerard Socie
- Hematology and Bone Marrow Transplant Department, AP-HP Saint Louis Hospital and University of Paris, Paris, France
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Bruce Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoffrey Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
41
|
Saad A, de Lima M, Anand S, Bhatt VR, Bookout R, Chen G, Couriel D, Di Stasi A, El-Jawahri A, Giralt S, Gutman J, Ho V, Horwitz M, Hsu J, Juckett M, Kharfan-Dabaja MA, Loren A, Meade J, Mielcarek M, Moreira J, Nakamura R, Nieto Y, Roddy J, Satyanarayana G, Schroeder M, Tan CR, Tzachanis D, Burn J, Pluchino L. Hematopoietic Cell Transplantation, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 18:599-634. [PMID: 32519831 DOI: 10.6004/jnccn.2020.0021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematopoietic cell transplantation (HCT) involves the infusion of hematopoietic progenitor cells into patients with hematologic disorders with the goal of re-establishing normal hematopoietic and immune function. HCT is classified as autologous or allogeneic based on the origin of hematopoietic cells. Autologous HCT uses the patient's own cells while allogeneic HCT uses hematopoietic cells from a human leukocyte antigen-compatible donor. Allogeneic HCT is a potentially curative treatment option for patients with certain types of hematologic malignancies, and autologous HCT is primarily used to support patients undergoing high-dose chemotherapy. Advances in HCT methods and supportive care in recent decades have led to improved survival after HCT; however, disease relapse and posttransplant complications still commonly occur in both autologous and allogeneic HCT recipients. Allogeneic HCT recipients may also develop acute and/or chronic graft-versus-host disease (GVHD), which results in immune-mediated cellular injury of several organs. The NCCN Guidelines for Hematopoietic Cell Transplantation focus on recommendations for pretransplant recipient evaluation and the management of GVHD in adult patients with malignant disease.
Collapse
Affiliation(s)
- Ayman Saad
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Marcos de Lima
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | | | | | | | - Vincent Ho
- Dana-Farber/Brigham and Women's Cancer Center
| | | | | | | | | | - Alison Loren
- Abramson Cancer Center at the University of Pennsylvania
| | - Javier Meade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Marco Mielcarek
- Fred Hutchinson Cancer Research Center/ Seattle Cancer Care Alliance
| | - Jonathan Moreira
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Yago Nieto
- The University of Texas MD Anderson Cancer Center
| | - Juliana Roddy
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | - Mark Schroeder
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | |
Collapse
|
42
|
Zhao Y, OuYang G, Shi J, Luo Y, Tan Y, Yu J, Fu H, Lai X, Liu L, Huang H. Salvage Therapy With Low-Dose Ruxolitinib Leads to a Significant Improvement in Bronchiolitis Obliterans Syndrome in Patients With cGVHD After Allogeneic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2021; 12:668825. [PMID: 34262450 PMCID: PMC8273229 DOI: 10.3389/fphar.2021.668825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is a life-threatening pulmonary manifestation of chronic graft versus host disease (cGVHD) post-allogeneic hematopoietic stem cell transplantation (HSCT), without clear standard of care. This study included 30 patients undergoing an allogeneic HSCT for a hematological malignancy and the outcomes with post-HSCT BOS treated with ruxolitinib as a salvage treatment were reviewed. After a median duration of ruxolitinib therapy of 9.25 (1.5–27) months, the best overall response (BOR) rate was 66.7%: three patients (10.0%) achieved complete remission, and 17 (56.7%) achieved partial remission. The median time from initiation of ruxolitinib to achieve the best responses was 3 months. Since initiating ruxolitinib, forced expiratory volume in 1 s of predicted (FEV1%pred) slightly increased after 3 and 6 months compared with measurements before ruxolitinib in responders. Only FEV1%pred mild decline before ruxolitinib with a ratio ≤15% was an independent predictor to achieve a response to ruxolitinib. Eleven patients (36.7%) had severe pulmonary infection of ≥3 grade. Following a median follow-up of 318 days after ruxolitinib, the 2-years incidence of nonrelapse mortality and 2-years overall survival rate after ruxolitinib among patients with BOS was 25.1 and 62.6%, respectively. Ruxolitinib is a promising treatment option to improve the prognosis of post-HSCT BOS.
Collapse
Affiliation(s)
- Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Guifang OuYang
- Department of Hematology, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Stohs E, Kalil AC. A Sepsis Screening Tool for Hematopoietic Cell Transplant Recipients Remains Elusive. Clin Infect Dis 2021; 72:1230-1231. [PMID: 32133484 DOI: 10.1093/cid/ciaa221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Erica Stohs
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andre C Kalil
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
44
|
Batiha GES, Zayed MA, Awad AA, Shaheen HM, Mustapha S, Herrera-Calderon O, Pagnossa JP, Algammal AM, Zahoor M, Adhikari A, Pandey I, Elazab ST, Rengasamy KRR, Cruz-Martins N, Hetta HF. Management of SARS-CoV-2 Infection: Key Focus in Macrolides Efficacy for COVID-19. Front Med (Lausanne) 2021; 8:642313. [PMID: 33937285 PMCID: PMC8079973 DOI: 10.3389/fmed.2021.642313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Macrolides (e.g., erythromycin, fidaxomicin, clarithromycin, and azithromycin) are a class of bacteriostatic antibiotics commonly employed in medicine against various gram-positive and atypical bacterial species mostly related to respiratory tract infections, besides they possess anti-inflammatory and immunomodulatory effects. Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). It was first detected in Wuhan, Hubei, China, in December 2019 and resulted in a continuing pandemic. Macrolides have been extensively researched as broad adjunctive therapy for COVID-19 due to its immunostimulant abilities. Among such class of drugs, azithromycin is described as azalide and is well-known for its ability to decrease the production of pro-inflammatory cytokines, including matrix metalloproteinases, tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8. In fact, a report recently published highlighted the effectiveness of combining azithromycin and hydroxychloroquine for COVID-19 treatment. Indeed, it has been underlined that azithromycin quickly prevents SARS-CoV-2 infection by raising the levels of both interferons and interferon-stimulated proteins at the same time which reduces the virus replication and release. In this sense, the current review aims to evaluate the applications of macrolides for the treatment of COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Marwa A. Zayed
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Aya A. Awad
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Suleiman Mustapha
- Department of Crop Protection, University of Ilorin, Ilorin, Nigeria
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuwan University, Kritipur, Nepal
| | - Ishan Pandey
- Department of Pathology, Motilal Nehru Medical College, Prayagraj, India
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, South Africa
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
45
|
Zinter MS, Lindemans CA, Versluys BA, Mayday MY, Sunshine S, Reyes G, Sirota M, Sapru A, Matthay MA, Kharbanda S, Dvorak CC, Boelens JJ, DeRisi JL. The pulmonary metatranscriptome prior to pediatric HCT identifies post-HCT lung injury. Blood 2021; 137:1679-1689. [PMID: 33512420 PMCID: PMC7995292 DOI: 10.1182/blood.2020009246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Lung injury after pediatric allogeneic hematopoietic cell transplantation (HCT) is a common and disastrous complication that threatens long-term survival. To develop strategies to prevent lung injury, novel tools are needed to comprehensively assess lung health in HCT candidates. Therefore, this study analyzed biospecimens from 181 pediatric HCT candidates who underwent routine pre-HCT bronchoalveolar lavage (BAL) at the University Medical Center Utrecht between 2005 and 2016. BAL fluid underwent metatranscriptomic sequencing of microbial and human RNA, and unsupervised clustering and generalized linear models were used to associate microbiome gene expression data with the development of post-HCT lung injury. Microbe-gene correlations were validated using a geographically distinct cohort of 18 pediatric HCT candidates. The cumulative incidence of post-HCT lung injury varied significantly according to 4 pre-HCT pulmonary metatranscriptome clusters, with the highest incidence observed in children with pre-HCT viral enrichment and innate immune activation, as well as in children with profound microbial depletion and concomitant natural killer/T-cell activation (P < .001). In contrast, children with pre-HCT pulmonary metatranscriptomes containing diverse oropharyngeal taxa and lacking inflammation rarely developed post-HCT lung injury. In addition, activation of epithelial-epidermal differentiation, mucus production, and cellular adhesion were associated with fatal post-HCT lung injury. In a separate validation cohort, associations among pulmonary respiratory viral load, oropharyngeal taxa, and pulmonary gene expression were recapitulated; the association with post-HCT lung injury needs to be validated in an independent cohort. This analysis suggests that assessment of the pre-HCT BAL fluid may identify high-risk pediatric HCT candidates who may benefit from pathobiology-targeted interventions.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine and
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Caroline A Lindemans
- Department of Pediatric Stem Cell Transplantation, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematopoietic Cell Transplantation, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Birgitta A Versluys
- Department of Pediatric Stem Cell Transplantation, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematopoietic Cell Transplantation, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Madeline Y Mayday
- Graduate Program in Experimental Pathology, and Yale Stem Cell Center, Department of Pathology, Yale University, New Haven, CT
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, School of Medicine
| | | | - Marina Sirota
- Bakar Computational Health Sciences Institute, and
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Anil Sapru
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, Los Angeles, CA
| | - Michael A Matthay
- Department of Medicine and
- Department of Anesthesiology, Cardiovascular Research Institute, School of Medicine, University of California, San Francisco, CA
| | - Sandhya Kharbanda
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA
| | - Jaap J Boelens
- Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, School of Medicine
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
46
|
Abstract
Bronchiolar abnormalities are common and can occur in conditions that affect either the large airways or the more distal parenchyma. In this review, we focus on the diagnosis and management of primary bronchiolar disorders, or conditions in which bronchiolitis is the predominant pathologic process, including constrictive bronchiolitis, follicular bronchiolitis, acute bronchiolitis, respiratory bronchiolitis, and diffuse panbronchiolitis. Due to the nature of abnormalities in the small airway, clinical and physiological changes in bronchiolitis can be subtle, making diagnosis challenging. Primary bronchiolar disorders frequently present with progressive dyspnea and cough that can be out of proportion to imaging and physiologic studies. Pulmonary function tests may be normal, impaired in an obstructive, restrictive, or mixed pattern, or have an isolated decrease in diffusion capacity. High-resolution computed tomography scan is an important diagnostic tool that may demonstrate one or more of the following three patterns: 1) solid centrilobular nodules, often with linear branching opacities (i.e., "tree-in-bud" pattern); 2) ill-defined ground glass centrilobular nodules; and 3) mosaic attenuation on inspiratory images that is accentuated on expiratory images, consistent with geographic air trapping. Bronchiolitis is often missed on standard transbronchial lung biopsies, as the areas of small airway involvement can be patchy. Fortunately, many patients can be diagnosed with a combination of clinical suspicion, inspiratory and expiratory high-resolution computed tomography scans, and pulmonary function testing. Joint consultation of clinicians with both radiologists and pathologists (in cases where histopathology is pursued) is critical to appropriately assess the clinical-radiographic-pathologic context in each individual patient.
Collapse
|
47
|
Expect the unexpected. Blood 2021; 137:3163-3164. [PMID: 34110401 DOI: 10.1182/blood.2021011368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Biard L, Bergeron A, Lévy V, Chevret S. Bayesian survival analysis for early detection of treatment effects in phase 3 clinical trials. Contemp Clin Trials Commun 2021; 21:100709. [PMID: 33511301 PMCID: PMC7817368 DOI: 10.1016/j.conctc.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
Despite appealing characteristics for the clinical trials setting, Bayesian inference methods remain scarcely used, especially in randomized controlled clinical trials (RCT). This is particularly true when dealing with a survival endpoint, likely due to the additional complexities to model specifications. We propose to use Bayesian inference to estimate the treatment effect in this setting, using a proportional hazards (PH) model for right-censored data. Implementation of such an estimation process is illustrated on two working examples from cancer RCTs, the ALLOZITHRO and the CLL7-SA trials, both originally analyzed using a frequentist approach. In these two different settings, we show that Bayesian sequential analyses can provide early insight on treatment effect in RCTs. Relying on posterior distributions and predictive posterior probabilities, we find that Bayesian sequential analyses of the ALLOZITHRO trial, which was terminated early due to an unanticipated deleterious effect of the intervention on survival, allow quantifying early that the treatment effect was opposite to what was expected. Then, incorporating historical data in the sequential analyses of the CLL7-SA trial would have allowed the treatment effect to be closer to the protocol hypothesis. These post-hoc results give grounds to advocate for a wider use of Bayesian approaches in RCTs, including those with right-censored endpoints, as informative decision tools.
Collapse
Affiliation(s)
- Lucie Biard
- INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, Paris, France
- AP-HP Hôpital Saint Louis, Service de Biostatistique et Information Médicale, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Anne Bergeron
- INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, Paris, France
- AP-HP Hôpital Saint Louis, Service de Pneumologie, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Vincent Lévy
- INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université Paris 13, France
- AP-HP Hôpital Avicenne, Unité de Recherche Clinique Bobigny, France
| | - Sylvie Chevret
- INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, Paris, France
- AP-HP Hôpital Saint Louis, Service de Biostatistique et Information Médicale, 1 avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
49
|
Pham J, Rangaswamy J, Avery S, Borg B, Martin C, Munsif M, Lin T, Dabscheck E. Updated prevalence, predictors and treatment outcomes for bronchiolitis obliterans syndrome after allogeneic stem cell transplantation. Respir Med 2021; 177:106286. [PMID: 33383436 DOI: 10.1016/j.rmed.2020.106286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Bronchiolitis obliterans syndrome (BOS) after allogeneic haemopoietic stem cell transplant (HSCT) is an under-recognised and difficult to treat disease. This occurs in the context of limited clinical research and inconsistent diagnostic criteria. METHOD Retrospective data was collected on 275 patients who underwent allogeneic HSCT at an Australian tertiary hospital between 2007 and 2017. The prevalence of BOS, defined by 2014 National Institute of Health criteria, as well as predictors for BOS and mortality were determined. Treatment outcomes, using serial spirometry, were compared between patients who received early versus late immunosuppression for BOS. RESULTS The prevalence of BOS was 9.1%. Myeloablative conditioning (OR: 2.7, 95%CI: 1.13-6.50, p = 0.03) and extra-pulmonary chronic graft-versus-host disease (OR 2.62, 95% CI: 1.04-6.60, p = 0.04) were associated with BOS. There was reduced median survival in the BOS group compared with the non-BOS group, but this was not statistically significant (4.1years (IQR: 2.8, 6.8) versus 4.6years (IQR: 2.4, 7.8), respectively, p = 0.33). The vast majority (87.5%) of BOS patients failed to attain improvement in FEV1 at 12 months, regardless of treatment strategy. Patients who underwent a late immunosuppression strategy had worse mean FEV1 decline compared to those who received early immunosuppression (-36.3% versus -1.6%, respectively, p = 0.03). CONCLUSION BOS is a common and progressive disease following HSCT and is largely refractory to current treatment strategies. Compared to late immunosuppression, early augmentation of immunosuppression may slow lung function deterioration in the short term. However, further research is urgently needed to identify effective prevention and treatment strategies for BOS.
Collapse
|
50
|
Malek AE, Granwehr BP. Doxycycline as an Alternative to Azithromycin in Elderly Patients. Int J Antimicrob Agents 2021; 57:106168. [PMID: 33408018 PMCID: PMC7779281 DOI: 10.1016/j.ijantimicag.2020.106168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandre Elias Malek
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St., Houston, TX 77030, USA; Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | - Bruno P Granwehr
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|