| For: | Ai J, Hu Y, Zhou FF, Liao YX, Yang T. Machine learning-assisted ensemble analysis for the prediction of urinary tract infection in elderly patients with ovarian cancer after cytoreductive surgery. World J Clin Oncol 2022; 13(12): 967-979 [PMID: 36618079 DOI: 10.5306/wjco.v13.i12.967] |
|---|---|
| URL: | https://www.wjgnet.com/2220-3141/full/v13/i12/967.htm |
| Number | Citing Articles |
| 1 |
Li Shen, Jialu An, Nanding Wang, Jin Wu, Jia Yao, Yumei Gao. Artificial intelligence and machine learning applications in urinary tract infections identification and prediction: a systematic review and meta-analysis. World Journal of Urology 2024; 42(1) doi: 10.1007/s00345-024-05145-4
|
| 2 |
Manzhu He, Jing Li, Lishan Huang, Fei Liang. Analysis of Risk Factors for Urinary Tract Infection in Ovarian Cancer Patients After Cytoreductive Surgery and Construction of a Nomogram Model. International Journal of Women's Health 2025; : 5035 doi: 10.2147/IJWH.S548036
|
| 3 |
Somayyeh Noei Teymoordash, Hoda Zendehdel, Ali Reza Norouzi, Mahdis Kashian. Diagnostic accuracy of artificial intelligence algorithms to predict remove all macroscopic disease and survival rate after complete surgical cytoreduction in patients with ovarian cancer: a systematic review and meta-analysis. BMC Surgery 2025; 25(1) doi: 10.1186/s12893-025-02766-3
|
| 4 |
Cristina Marelli, Daniele Roberto Giacobbe, Alessandro Limongelli, Sabrina Guastavino, Cristina Campi, Michele Piana, Matteo Bassetti. Neural networks for the prediction of bacterial and fungal infections: current evidence and implications. Journal of Chemotherapy 2025; : 1 doi: 10.1080/1120009X.2025.2492960
|
| 5 |
Chiara Barbati, Luca Viviani, Riccardo Vecchio, Guglielmo Arzilli, Luigi De Angelis, Francesco Baglivo, Lucia Sacchi, Riccardo Bellazzi, Caterina Rizzo, Anna Odone. Artificial intelligence use and performance in detecting and predicting healthcare-associated infections: A systematic review. Artificial Intelligence in Medicine 2026; 172: 103321 doi: 10.1016/j.artmed.2025.103321
|
