1
|
Pi H, Fu Q, Liu J, Zhou H, Wang Y. Excessive apoptosis, glycolysis, and abnormal levels of gluconeogenase in rheumatoid arthritis involves in the dysregulation of glucose metabolism: an animal model study. Autoimmunity 2025; 58:2499730. [PMID: 40366874 DOI: 10.1080/08916934.2025.2499730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 05/16/2025]
Abstract
Rheumatoid arthritis (RA) has been associated with an elevated risk of developing disorders related to glucose metabolism, including decreased insulin secretion, impaired glucose tolerance, and type 2 diabetes mellitus. The previse mechanisms underlying this association remain incompletely elucidated. In this study, we utilized a cohort of fifty Wistar female rats, establishing a type II collagen-induced arthritis (CIA) model (n = 30). Out observations indicated abnormal glucose and inulin levels in the CIA rats, accompanied by diminished β cell function. Additionally, we detected elevated cytokines levels and increased apoptosis within the pancreatic tissue of the CIA rats. It is hypothesized that the heightened apoptosis may be induced by cytokines, potentially leading to reduced insulin synthesis and dysregulated glucose metabolism. Through transcriptomic and proteomic analyses, we identified differential expression of genes and proteins involved in pathways that directly or indirectly regulate glycolysis in the CIA rats. Notably, we discovered novel differentially expressed enzymes implicated in the glycolysis pathway, such as hexokinase and fructose-bisphosphate aldolase, within the CIA rat model, which may serve as new markers for the diagnosis of RA or provide new perspectives to treat RA or RA-related glucose metabolism disorder.
Collapse
Affiliation(s)
- Hui Pi
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Juan Liu
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Haotong Zhou
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Youlian Wang
- Department of Rheumatology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Shero JA, Lindholm ME, Sandri M, Stanford KI. Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity. Circ Res 2025; 136:1407-1432. [PMID: 40403102 PMCID: PMC12101524 DOI: 10.1161/circresaha.124.325614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/24/2025]
Abstract
Physical exercise is critical for preventing and managing chronic conditions, such as cardiovascular disease, type 2 diabetes, hypertension, and sarcopenia. Regular physical activity significantly reduces cardiovascular and all-cause mortality. Exercise also enhances metabolic health by promoting muscle growth, mitochondrial biogenesis, and improved nutrient storage while preventing age-related muscle dysfunction. Key metabolic benefits include increased glucose uptake, enhanced fat oxidation, and the release of exercise-induced molecules called myokines, which mediate interorgan communication and improve overall metabolic function. These myokines and other exercise-induced signaling molecules hold promise as therapeutic targets for aging and obesity-related conditions.
Collapse
Affiliation(s)
- Julia A. Shero
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Maléne E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
3
|
Trinh B, Rasmussen SJ, Brøgger-Jensen ME, Engelhard CA, Lund A, Tavanez AR, Vassilieva A, Janum S, Iepsen UW, Kiens B, Møller K, Pedersen BK, Van Hall G, Ellingsgaard H. Inhibition of basal IL-6 activity promotes subcutaneous fat retention in humans during fasting and postprandial states. Cell Rep Med 2025; 6:102042. [PMID: 40147447 PMCID: PMC12047529 DOI: 10.1016/j.xcrm.2025.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Interleukin-6 (IL-6) knockout mice and humans treated with IL-6 receptor blockade gain adipose tissue mass. This study investigates whether basal IL-6 activity (resting IL-6 levels) influences fat storage during fasting and postprandial states. Using stable-isotope tracer techniques and IL-6 receptor blockade with tocilizumab, we examine fat kinetics in humans. Blocking basal IL-6 activity reduces fasting whole-body lipolysis, decreases hormone-sensitive lipase (HSL) phosphorylation and fatty acid release in adipose tissue, and impairs postprandial fatty acid uptake in the leg. These results suggest diminished fatty acid uptake and oxidation in skeletal muscle, along with enhanced fatty acid entrapment in adipose tissue, which may account for the increased adiposity in the absence of IL-6 activity. Additionally, IL-6 blockade increases the escape of meal-derived fatty acids into the bloodstream. Whether this affects fatty acid storage and lipotoxicity in other tissues warrants further investigation. This study was registered at ClinicalTrials.gov (NCT04687540).
Collapse
Affiliation(s)
- Beckey Trinh
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Endocrinology, Diabetes and Metabolism Clinic, University Hospital of Basel, Basel, Switzerland
| | - Signe Johanne Rasmussen
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anton Lund
- Department of Neuroanaesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ana Rita Tavanez
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexandra Vassilieva
- Department of Neuroanaesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Janum
- Department of Neuroanaesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Winning Iepsen
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Anaesthesia and Intensive Care, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; The Neuroscience Center and Institute for Clinical Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit Van Hall
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helga Ellingsgaard
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Li C, Du L, Xiao Y, Fan L, Li Q, Cao CY. Multi-active phlorotannins boost antimicrobial peptide LL-37 to promote periodontal tissue regeneration in diabetic periodontitis. Mater Today Bio 2025; 31:101535. [PMID: 39990735 PMCID: PMC11847560 DOI: 10.1016/j.mtbio.2025.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
The bidirectional correlation between diabetes and periodontitis positions the latter as the most prevalent complication of the former. Rehabilitation of the periodontal tissues damaged by diabetic periodontitis presents a significant clinical challenge. The multifaceted nature of the pathogenesis of diabetic periodontitis necessitates a comprehensive approach in its treatment to mitigate its adverse effects. To address this, a temperature-sensitive hydrogel containing phlorotannins (PL) and antimicrobial peptide LL-37 was developed to shift the microenvironment of diabetic periodontitis from an exacerbated high-glycemic inflammatory state to a regenerative one. The addition of PL significantly enhanced the antimicrobial properties, stability, and safety of LL-37. Vitro experiments confirmed that PL/LL-37 had good biocompatibility and promoted osteogenic differentiation of bone. PL/LL-37 demonstrated antioxidant properties by scavenging DPPH free radicals and inhibiting NO production. Furthermore, PL/LL-37 effectively modulated macrophage polarization from a M1 phenotype to an M2 phenotype through NF-κB P-p65 inflammatory pathway, thereby reducing the release of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Interestingly, it could downregulate the AGE-RAGE signaling pathway, exerting a protective effect against diabetes. In addition, PL/LL-37 could attenuate inflammation levels, inhibit osteoclast production, promote bone regeneration, inhibit apoptosis and decrease RAGE levels in a rat model of diabetic periodontitis. These combined features synergistically accelerate diabetic periodontal bone regeneration. Consequently, PL/LL-37 emerges as a promising candidate for clinical treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Cancan Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Luowen Du
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yingying Xiao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quanli Li
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen, 518172, China
| | - Chris Ying Cao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| |
Collapse
|
5
|
Lin S, Cienfuegos S, Ezpeleta M, Pavlou V, Corapi S, Runchey MC, Alexandria SJ, Tussing-Humphreys L, Varady KA. Time-Restricted Eating Versus Daily Calorie Restriction: Effects on Inflammatory Markers over 12 Months in Adults with Obesity. Nutrients 2025; 17:1130. [PMID: 40218888 PMCID: PMC11990601 DOI: 10.3390/nu17071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Obesity is associated with chronic systemic inflammation and elevated levels of inflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and C-reactive protein (CRP). Weight loss through lifestyle interventions can reduce inflammation in adults with obesity. Time-restricted eating (TRE) and calorie restriction (CR) are two popular diet interventions that can produce clinically significant weight loss. However, to date, no studies have directly compared the effects of TRE versus CR on inflammatory cytokines in adults with obesity. Methods: Here, we performed a secondary analysis on a recently published study to compare the long-term (12-month) effects of TRE versus CR on key inflammatory cytokines. Results: We found that while TRE and CR produced similar amounts of weight loss (4-5% from baseline), no statistically significant changes in circulating levels of TNF-alpha, IL-6, and CRP were noted in the TRE or CR groups, compared to the controls, by month 12. However, we did observe that circulating CRP levels were positively related to body weight, visceral fat mass, and insulin resistance, while IL-6 and TNF-alpha were not related to any metabolic marker. Conclusions: Thus, TRE and CR may not affect key inflammatory mediators with 4-5% weight loss, but more research is warranted.
Collapse
Affiliation(s)
- Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Mark Ezpeleta
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Vasiliki Pavlou
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Sarah Corapi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Mary-Claire Runchey
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Shaina J. Alexandria
- Department of Preventative Medicine (Biostatistics), Northwestern University, Chicago, IL 60208, USA;
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA; (S.L.); (S.C.); (V.P.); (S.C.); (M.-C.R.); (L.T.-H.)
| |
Collapse
|
6
|
Wiley CR, Williams DP, Sigrist C, Brownlow BN, Markser A, Hong S, Sternberg EM, Kapuku G, Koenig J, Thayer JF. Differences in inflammation among black and white individuals: A systematic review and meta-analysis. Brain Behav Immun 2025; 127:269-286. [PMID: 40101808 DOI: 10.1016/j.bbi.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/13/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
IMPORTANCE Despite persisting health disparities between Black and White individuals, racial differences in inflammation have yet to be comprehensively examined. OBJECTIVE To determine if significant differences in circulating levels of inflammatory markers between Black and White populations exist. DATA SOURCES Studies were identified through systematic searches of four electronic databases in January 2022. Additional studies were identified via reference lists and e-mail contact. STUDY SELECTION Eligible studies included full-text empirical articles that consisted of Black and White individuals and reported statistics for inflammatory markers for each racial group. Of the 1368 potentially eligible studies, 84 (6.6 %) representing more than one million participants met study selection criteria. DATA EXTRACTION AND SYNTHESIS Risk of bias was assessed via meta regressions that considered relevant covariates. Data heterogeneity was tested using both the Cochrane Q-statistic and the standard I2 index. Random effects models were used to calculate estimates of effect size from standardized mean differences. MAIN OUTCOMES AND MEASURES Outcome measures included 12 inflammatory markers, including C-reactive protein (CRP), Fibrinogen, Interleukin-6 (IL-6), Tumor necrosis factor-alpha (TNF-α), and soluble intercellular adhesion molecule 1 (sICAM-1). RESULTS Several markers had robust sample sizes for analysis, including CRP (White N = 934,594; Black N = 55,234), Fibrinogen (White N = 80,880; Black N = 18,001), and IL-6 (White N = 20,269; Black N = 14,675). Initial results indicated significant effects on CRP (k = 56, pooled Hedges' g = 0.24), IL-6 (k = 33, g = 0.15), and Fibrinogen (k = 19, g = 0.49), with Black individuals showing higher levels. Results also indicated significant effects on sICAM-1 (k = 6, g = -0.46), and Interleukin-10 (k = 4, g = -0.18), with White individuals showing higher levels. Sensitivity analyses confirmed robust effects for CRP, IL-6, Fibrinogen, and sICAM-1 while also revealing significant effects on TNF-α (k = 18, g = -0.17) and Interleukin-8 (k = 5, g = -0.19), with White individuals showing higher levels of both. CONCLUSIONS AND RELEVANCE Current meta-analytic results provide evidence for marked racial differences in common circulating inflammatory markers and illustrate the complexity of the inflammatory profile differences between Black and White individuals. Review Pre-Registration: PROSPERO Identifier - CRD42022312352.
Collapse
Affiliation(s)
- Cameron R Wiley
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Psychological Science, University of California, Irvine, Irvine, CA, United States.
| | - DeWayne P Williams
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Christine Sigrist
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Briana N Brownlow
- Duke University Medical Center, Duke University, Durham, NC, United States
| | - Anna Markser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Suzi Hong
- Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, CA, United States; Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Esther M Sternberg
- Center for Integrative Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gaston Kapuku
- Department of Pediatrics and Medicine, Georgia Prevention Institute, Augusta, GA, United States
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States; Department of Psychology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Sapienza J, Agostoni G, Repaci F, Spangaro M, Comai S, Bosia M. Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation. Metabolites 2025; 15:176. [PMID: 40137141 PMCID: PMC11944102 DOI: 10.3390/metabo15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood-brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Federica Repaci
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35123 Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biomedical Sciences, University of Padua, 35123 Padua, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
8
|
Kusumastuti SA, Nugrahaningsih DAA, Hartati Wahyuningsih MS. Metformin attenuates inflammation and improves insulin sensitivity in coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages mediated by IRS-1/GLUT-4 pathway. Arch Physiol Biochem 2025:1-7. [PMID: 39895508 DOI: 10.1080/13813455.2025.2460102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Metformin is an anti-diabetic drug used to control blood glucose levels. The effects of metformin on insulin sensitivity in inflammation-induced adipocytes are not fully understood.This study aimed to explore the mechanism of metformin on insulin sensitivity enhancement in the coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages. MATERIAL AND METHODS Insulin resistance was induced in coculture cells using Lipopolysaccharide, followed by adding 25, 50, and 100 µg/ml of metformin for 24 h of incubation. Glucose consumption, GLUT-4, IRS-1, and IL-6 mRNA expressions were quantified. RESULTS Metformin, starting at a concentration of 25 µg/ml, enhanced glucose consumption, upregulated GLUT-4 mRNA expression, and stimulated the expression of IRS-1 mRNA in coculture cells at 100 µg/ml of concentration. Additionally, Metformin inhibited inflammation by reducing IL-6 mRNA expression in coculture cells up to 100 µg/ml. DISCUSSION AND CONCLUSION These findings suggest that metformin attenuated inflammation and improved insulin sensitivity in inflammation-induced adipocytes that may be mediated by the IRS-1/GLUT-4 pathway.
Collapse
Affiliation(s)
- Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, South Tangerang, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Pharmacology and Therapy Department, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Pharmacology and Therapy Department, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Dhamija R, Tewari S, Gill PS, Monga N, Mittal S, Duhan J. Association of Apical Periodontitis with Glycated Hemoglobin Levels and Systemic Inflammatory Markers in Patients with Type 2 Diabetes: A Cross-Sectional Study. J Endod 2025; 51:124-131. [PMID: 39581537 DOI: 10.1016/j.joen.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION This cross-sectional study, as a preliminary part of an ongoing project, aimed to investigate the effect of apical peridontitis (AP) on glycated hemoglobin (HbA1c) and systemic inflammatory markers in diabetic individuals. METHODS A total of 280 individuals (140 with type 2 diabetes mellitus [T2DM] and 140 healthy) with and without AP were enrolled. Sixty-four age-, gender-, and body mass index-matched participants each in T2DM with AP group (DAP), T2DM without apical periodontitis (D), systemically healthy controls with apical periodontitis (CAP), and without apical periodontitis (C) groups were evaluated. Radiologic and clinical oral examination was performed for confirming the diagnosis of AP and periapical index scoring (PAI). Blood analyses were carried out for interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, high-sensitivity C-reactive protein (hsCRP), and HbA1c assessment. RESULTS Significantly higher levels of IL-1β, TNF-α, and hsCRP were observed in patients with AP in both diabetes and control groups (P < .05). In the diabetes group, AP contributed to significantly raised levels of HbA1c compared with T2DM group patients without AP. After controlling for possible confounders, partial corelation coefficients revealed positive corelation of presence of AP as well as size of the periapical lesion with HbA1c and serum levels of inflammatory markers in both diabetic and healthy individuals. Multivariate linear regression analysis revealed both presence of AP (P < .05) as well as the size of lesion (P < .001) were found to significantly predict the HbA1c levels as well as the levels of IL-1β, IL-6, TNF-α, and hsCRP in both diabetic and non-diabetic individuals. CONCLUSIONS These findings suggest that both presence of AP and size of periapical lesion was associated with glycemic control and systemic inflammatory burden in patients with T2DM.
Collapse
Affiliation(s)
- Ritika Dhamija
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Sanjay Tewari
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India.
| | - Paramjeet Singh Gill
- Department of Microbiology, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Nitika Monga
- Division of Development Research, Indian Council of Medical Research, New Delhi, India
| | - Shweta Mittal
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Jigyasa Duhan
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| |
Collapse
|
10
|
Amato M, Polizzi A, Viglianisi G, Leonforte F, Mascitti M, Isola G. Impact of Periodontitis and Oral Dysbiosis Metabolites in the Modulation of Accelerating Ageing and Human Senescence. Metabolites 2025; 15:35. [PMID: 39852378 PMCID: PMC11767177 DOI: 10.3390/metabo15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Periodontitis, a chronic multifactorial inflammatory condition of the periodontium, is originated by a dysbiotic oral microbiota and is negatively correlated with several systemic diseases. The low-chronic burden of gingival inflammation not only exacerbates periodontitis but also predisposes individuals to a spectrum of age-related conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic dysfunction, especially related to ageing. In this regard, over the local periodontal treatment, lifestyle modifications and adjunctive therapies may offer synergistic benefits in ameliorating both oral and systemic health in ageing populations. Elucidating the intricate connections between periodontitis and senescence is important for understanding oral health's systemic implications for ageing and age-related diseases. Effective management strategies targeting the oral microbiota and senescent pathways may offer novel avenues for promoting healthy ageing and preventing age-related morbidities. This review will analyze the current literature about the intricate interplay between periodontitis, oral dysbiosis, and the processes of senescence, shedding light on their collective impact on the modulation and accelerated ageing and age-related diseases. Lastly, therapeutic strategies targeting periodontitis and oral dysbiosis to mitigate senescence and its associated morbidities will be discussed.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Francesco Leonforte
- Hygiene Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95124 Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
11
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
12
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
14
|
Heikkinen J, Palosaari S, Lehenkari P. Cigarette smoke extract decreases human bone marrow mesenchymal stromal cell adipogenic differentiation. Toxicol In Vitro 2024; 101:105949. [PMID: 39343071 DOI: 10.1016/j.tiv.2024.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Smoking and nicotine impose detrimental health effects including adipose tissue dysfunction. Despite extensive physiological evidence, the cellular mechanisms remain poorly understood, with few studies examining the effects of cigarette smoke extract (CSE) or nicotine on adipocyte differentiation. METHODS Primary human bone marrow-derived mesenchymal stromal cells (MSCs) were exposed to CSE or nicotine (50-500 ng/ml) during adipogenic differentiation. Cell viability and metabolic activity were assessed via MTT assay. Lipid droplet accumulation was evaluated using Sudan III staining and quantitative image analysis. Adiponectin, IL6, and IL8 concentrations were measured after 35 days using ELISA. RESULTS At these doses, CSE and nicotine do not immediately affect cell viability but inhibit undifferentiated cell proliferation. Notably, both agents at 50 ng/ml significantly increased lipid accumulation during adipogenesis, while higher CSE doses nearly completely inhibited this process. Additionally, CSE dose-dependently decreased adiponectin secretion and increased IL6 and IL8, indicating a shift towards an inflammatory state. Nicotine alone primarily increased IL6 secretion with less pronounced effects. CONCLUSION The study highlights the complex impact of CSE and nicotine on adipocyte function during early differentiation from MSCs. Dose-dependent changes in lipid accumulation, cytokine, and adiponectin secretion induced by CSE and nicotine can partly explain smoking-related adipose tissue dysfunction.
Collapse
Affiliation(s)
- Janne Heikkinen
- Medical Faculty, Translational Medicine Research Unit, University of Oulu, Oulu, Finland.
| | - Sanna Palosaari
- Medical Faculty, Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - Petri Lehenkari
- Medical Faculty, Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland; Division of Orthopaedic Surgery, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
15
|
Li KX, Yuan H, Zhang J, Peng XB, Zhuang WF, Huang WT, Liang HX, Lin Y, Huang YZ, Qin SL. Curcumin-Loaded Long-Circulation Liposomes Ameliorate Insulin Resistance in Type 2 Diabetic Mice. Int J Nanomedicine 2024; 19:12099-12110. [PMID: 39583326 PMCID: PMC11585265 DOI: 10.2147/ijn.s487519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterised by insulin resistance, hyperglycaemia, and inflammation, with oxidative stress contributing to its progression. Curcumin (CUR), known for its anti-inflammatory, antioxidant, and insulin sensitising effects, has shown potential for the treatment of T2DM but is limited by low solubility and bioavailability. This study investigated long-circulating curcumin-loaded liposomes (CUR-LPs) to improve curcumin stability, solubility, and circulation and assessed their effect on insulin resistance in a murine model of T2DM. Methods CUR-LPs were prepared using the ethanol injection method and characterized for morphology, particle size, zeta potential, encapsulation efficiency, drug-loading capacity, and in vitro release. Cell viability was tested on murine L929 cells. In a T2DM murine model, after four weeks of CUR-LP treatment, inflammatory markers TNF-α and IL-6 were measured by real-time polymerase chain reaction, and liver tissues were analyzed for glutathione (GSH) and superoxide dismutase (SOD) via colorimetry. Results CUR-LPs were spherical, with an average diameter of (249 ± 2.3) nm and a zeta potential of (-33.5 ± 0.8) mV. They exhibited an encapsulation efficiency of (99.2 ± 0.5) %and a drug-loading capacity of (1.63 ± 0.02) %. CUR embedding in liposomes significantly maintained CUR release. In L929 cells, over 80% viability was maintained at 12 uM CUR concentration after 24 h. In HFD/STZ-induced T2DM mice, CUR-LPs improved blood glucose and insulin levels more efficiently than free CUR, and CUR-LPs also reduced hepatic inflammation (TNF-α, IL-6), enhanced hepatic GSH and SOD, and attenuated liver injury. Conclusion CUR-LPs improved glucose metabolism and insulin resistance in HFD/STZ-induced T2DM mice, which may be associated with a decrease in liver inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kang-Xin Li
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hui Yuan
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing Zhang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Xiao-bin Peng
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei-Fen Zhuang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wen-Tao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hui-Xin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying Lin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying-Zhen Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Miaskowski C, Conley YP, Levine JD, Cooper BA, Paul SM, Hammer MJ, Oppegaard K, Harris C, Shin J, Abrams G, Asakitogum D, Fu MR, Alismal S. Chronic Decrements in Energy in Women with Breast Cancer are Associated with Cytokine Gene Polymorphisms. Semin Oncol Nurs 2024; 40:151652. [PMID: 38834449 DOI: 10.1016/j.soncn.2024.151652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES Decrements in energy were found in 67% of women who underwent breast cancer surgery. However, no information is available on chronic decrements in energy and associations with inflammation. Purposes were to identify latent classes of patients with distinct average energy profiles from prior to through 12 months after breast cancer surgery; evaluate for differences in demographic and clinical characteristics between the two extreme average energy classes; and evaluate for polymorphisms for cytokine genes associated with membership in the Low energy class. METHODS Women (n = 397) completed assessments of energy prior to and for 12 months following breast cancer surgery. Growth mixture modeling was used to identify classes of patients with distinct average energy profiles. Eighty-two single nucleotide polymorphisms (SNPs) among 15 cytokine genes were evaluated. RESULTS Three distinct energy profiles were identified (ie, Low [27.0%], Moderate [54.4%], Changing [18.6%]). Data from patients in the Low and Moderate energy classes were used in the candidate gene analyses. Five SNPs and one haplotype in six different genes remained significant in logistic regression analyses (ie, interleukin [IL]-1β rs1143623, IL1 receptor 1 rs3917332 IL4 rs2243263, IL6 HapA1 [that consisted of rs1800795, rs2069830, rs2069840, rs1554606, rs2069845, rs2069849, and rs2069861], nuclear factor kappa beta subunit 1 rs170731, tumor necrosis factor rs1799964). For several SNPs for IL6, expression quantitative trait locis were identified in subcutaneous and visceral adipose tissue and thyroid tissue. In addition, skeletal muscle was identified as an expression quantitative trait loci for nuclear factor kappa beta subunit 1. CONCLUSIONS Findings suggest that cytokine genes are involved in the mechanisms that underlie chronic decrements in energy in women following breast cancer surgery. Given the roles of subcutaneous and visceral adipose and thyroid tissues in metabolism and energy balance, the findings related to IL6 suggest that these polymorphisms may have a functional role in the development and maintenance of chronic decrements in energy.
Collapse
Affiliation(s)
- Christine Miaskowski
- School of Nursing, University of California, San Francisco; School of Medicine, University of California, San Francisco.
| | | | - Jon D Levine
- School of Medicine, University of California, San Francisco
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco
| | - Steven M Paul
- School of Nursing, University of California, San Francisco
| | | | | | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | | | - Gary Abrams
- School of Medicine, University of California, San Francisco
| | | | - Mei R Fu
- University of Missouri, Kansas City
| | - Sarah Alismal
- Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
17
|
He Y, Yang X, Wu N. TGF β1, SNAIL2, and PAPP-A Expression in Placenta of Gestational Diabetes Mellitus Patients. J Diabetes Res 2024; 2024:1386469. [PMID: 39109165 PMCID: PMC11303042 DOI: 10.1155/2024/1386469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 09/17/2024] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is a pregnancy-related diabetic condition that may cause serious complications. However, its pathogenesis remains unclear. Placental damage due to GDM may lead to several health issues that cannot be ignored. Thus, we aimed to identify the mechanisms underlying GDM by screening differentially expressed genes (DEGs) related to vascular endothelial cells in the GDM databases and verify the expression of these DEGs in the placentas of women afflicted by GDM. Methods: We used GDM microarray datasets integrated from the Gene Expression Omnibus (GEO) database. Functional annotation and protein-protein interaction (PPI) analyses were used to screen DEGs. Placental tissues from 20 pregnant women with GDM and 20 healthy pregnant women were collected, and differential gene expression in the placental tissues was verified via qRT-PCR, western blotting, and immunofluorescence. Results: Bioinformatics analysis revealed three significant DEGs: SNAIL2, PAPP-A, and TGFβ1. These genes were all predicted to be underexpressed in patients with GDM. The results of qRT-PCR, western blot, and immunofluorescence analyses indicated that SNAIL2 and PAPP-A in the placenta tissue of patients with GDM were significantly underexpressed. However, TGFβ1 in the placenta tissues of GDM was significantly overexpressed. Conclusion: SNAIL2, TGFβ1, and PAPP-A may affect the placentas of pregnant women with GDM, warranting further investigation.
Collapse
Affiliation(s)
- Yujing He
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
- School of Life ScienceLiaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xiyao Yang
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
| | - Na Wu
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
- Department of PediatricsShengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
18
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
19
|
Lin CN, Liang YL, Tsai HF, Wu PY, Huang LY, Lin YH, Kang CY, Yao CL, Shen MR, Hsu KF. Adipocyte pyroptosis occurs in omental tumor microenvironment and is associated with chemoresistance of ovarian cancer. J Biomed Sci 2024; 31:62. [PMID: 38862973 PMCID: PMC11167873 DOI: 10.1186/s12929-024-01051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.
Collapse
Affiliation(s)
- Chang-Ni Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Ling Liang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hsing-Fen Tsai
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Lan-Yin Huang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Han Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Chieh-Yi Kang
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Qiu Y, Chen A, Yu R, Llevenes P, Seen M, Ko NY, Monti S, Denis GV. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592097. [PMID: 38746141 PMCID: PMC11092600 DOI: 10.1101/2024.05.01.592097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR-145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Significance IR adipocyte exosomes modify TME, increase EMT and promote metastasis to distant organs, likely through miRNA pathways. We suggest metabolic diseases such as T2D reshape the TME, promoting metastasis and decreasing survival. Therefore, TNBC patients with T2D should be closely monitored for metastasis, with metabolic medications considered.
Collapse
|
21
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
22
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
23
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N, Khakpai F, Naseroleslami M. Tyrosol-loaded Nano-niosomes Attenuate Diabetic Injury by TargetingGlucose Metabolism, Inflammation, and Glucose Transfer. Pharm Nanotechnol 2024; 12:351-364. [PMID: 37927074 DOI: 10.2174/0122117385251271231018104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes, has become a global concern, making it imperative to control. Chemical drugs commonly recommended for diabetes treatment cause many complications and drug resistance over time. METHODS The polyphenol tyrosol has many health benefits, including anti-diabetes properties. Tyrosol's efficacy can be significantly increased when it is used as a niosome in the treatment of diabetes. In this study, Tyrosol and nano-Tyrosol are examined for their effects on genes implicated in type 2 diabetes in streptozotocin-treated rats. Niosome nanoparticles containing 300 mg surfactant (span60: tween60) and 10 mg cholesterol were hydrated in thin films with equal molar ratios. After 72 hours, nano-niosomal formulas were assessed for their physicochemical properties. MTT assays were conducted on HFF cells to assess the cellular toxicity of the nano niosome contacting optimal Tyrosol. Finally, the expression of PEPCK, GCK, TNF-ɑ, IL6, GLUT2 and GLUT9 was measured by real-time PCR. Physiochemical properties of the SEM images of niosomes loaded with Tyrosol revealed the nanoparticles had a vehicular structure. RESULTS In this study, there were two stages of release: initial release (8 hours) and sustainable release (72 hours). Meanwhile, free-form drugs were considerably more toxic than niosomal drugs in terms of their cellular toxicity. An in vivo comparison of oral Tyrosol gavage with nano-Tyrosol showed a significant increase in GCK (P < 0.001), GLUT2 (P < 0.001), and GLUT9 (P < 0.001). Furthermore, nano-Tyrosol decreased the expression of TNF-ɑ (P < 0.05), PEPCK (P < 0.001), and IL-6 (P < 0.05) which had been increased by diabetes mellitus. The results confirmed nano-Tyrosol's anti-diabetes and anti-inflammatory effects. CONCLUSION These findings suggest that nano-Tyrosol has potential applications in diabetes treatment and associated inflammation. Further research is needed to better understand the mechanism of action.
Collapse
Affiliation(s)
- Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Bansod H, Wanjari A, Dumbhare O. A Review on Relationship Between Charcot Neuroarthropathy and Diabetic Patients. Cureus 2023; 15:e50988. [PMID: 38259415 PMCID: PMC10801819 DOI: 10.7759/cureus.50988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Charcot Neuroarthropathy (CN) is a complex and incapacitating disorder characterized by neuropathy, progressive deformity, and joint destruction. It is of substantial interest within the diabetic population as this ailment chiefly affects individuals with diabetes. The pathophysiology of CN is multidimensional, connecting peripheral neuropathy, repetitive trauma, and autonomic dysfunction. The review analyses the mechanisms directing the development of CN, emphasizing the influence of diabetes in individuals who lean toward this condition. Clinical presentation and diagnosis of CN in diabetic patients present unique challenges. Complex clinical features have also been discussed, including joint deformities, insidious onset, and painless swelling, which mimic other musculoskeletal conditions. The diagnostic approaches, involving clinical examination and radiological imaging, are analyzed for early and accurate diagnosis. Risk factors and epidemiology emphasize the prevalence of CN within the diabetic population and draw attention to common risk factors contributing to its development. Significant factors such as glycemic control, duration of the disease, and type of diabetes are important in estimating an individual's risk for CN. Complications, such as foot ulcers and amputations, provide an understanding of the severe outcome of this condition on patients' quality of life. Management approaches and treatment involving conservative and surgical approaches are reviewed in depth. A multidisciplinary approach to patient care is emphasized, given the complex nature of CN and the comorbidities existing in diabetic individuals. Prognosis and prevention comprise approaches for mitigating the risk of CN in diabetic patients, such as glycemic control, regular foot examinations, and patient education. This thorough review aims to outline the intricate relationship between CN and diabetes, offering an understanding of pathophysiology, clinical complexities, diagnostic nuances, treatment modalities, and prevention strategies.
Collapse
Affiliation(s)
- Himani Bansod
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Cardiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Omkar Dumbhare
- Genetics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
26
|
Orange ST, Leslie J, Ross M, Mann DA, Wackerhage H. The exercise IL-6 enigma in cancer. Trends Endocrinol Metab 2023; 34:749-763. [PMID: 37633799 DOI: 10.1016/j.tem.2023.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Interleukin (IL)-6 elicits both anticancer and procancer effects depending on the context, which we have termed the 'exercise IL-6 enigma'. IL-6 is released from skeletal muscles during exercise to regulate short-term energy availability. Exercise-induced IL-6 provokes biological effects that may protect against cancer by improving insulin sensitivity, stimulating the production of anti-inflammatory cytokines, mobilising immune cells, and reducing DNA damage in early malignant cells. By contrast, IL-6 continuously produced by leukocytes in inflammatory sites drives tumorigenesis by promoting chronic inflammation and activating tumour-promoting signalling pathways. How can a molecule have such opposing effects on cancer? Here, we review the roles of IL-6 in chronic inflammation, tumorigenesis, and exercise-associated cancer prevention and define the factors that underpin the exercise IL-6 enigma.
Collapse
Affiliation(s)
- Samuel T Orange
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Jack Leslie
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Ross
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Henning Wackerhage
- Department of Sport & Health Science, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines 2023; 11:2852. [PMID: 37893225 PMCID: PMC10603837 DOI: 10.3390/biomedicines11102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| |
Collapse
|
28
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
29
|
Guo T, Pan Y, Yang L, Chen G, Deng J, Zhu L. Flavonoid compound from Agrimonia pilosa Ledeb improves adipose insulin resistance by alleviating oxidative stress and inflammation. BMC Complement Med Ther 2023; 23:322. [PMID: 37710214 PMCID: PMC10503054 DOI: 10.1186/s12906-023-04114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Researches and practice of traditional Chinese medicine indicated that Agrimonia pilosa Ledeb could improve insulin resistance (IR) and treat type 2 diabetes (T2DM). To reveal its underling mechanisms, we isolated Flavonoid component (FC) from Agrimonia pilosa Ledeb and elucidated its effects on glucose metabolism to improve IR by suppressing oxidative stress and inflammation. METHODS Adipocytes or mice IR model was established with overdosed glucose and insulin or high-fat diet. The uptake of 2-NBDG and glucose consumption were measured to verify insulin sensitivity in vitro and vivo. Reactive oxidative species (ROS) were detected by flow cytometry, and superoxide dismutase (SOD) activity as well as the malondialdehyde (MDA) content were also measured. Meanwhile, factors associated with insulin signal pathway including PPARγ, insulin receptor substrate-1 (IRS-1), GLUT4, and oxidative stress including NF-E2-related factor 2 (Nrf2), as well as the related inflammatory cytokines such as NF-κB, IL-1β, IL-6 and TNF-α were tested. Furthermore, the JNK/PI3K/Akt signal pathway was also explored. RESULTS FC extracted from Agrimonia pilosa Ledeb ameliorated the impaired glucose metabolism significantly. Further study indicated that FC could regulate the insulin signal pathway to improve insulin resistance. Moreover, it could upregulate PPARγ with the similar efficacy as pioglitazone (Piog) straightway. FC also decreased the endogenous ROS and MDA content, increased SOD activity and Nrf2 expression to facilitate oxidative homeostasis. It attenuated expression and secretion of inflammatory cytokines obviously. At last, our results indicated JNK/PI3K/Akt pathway was regulated by FC in adipocytes and adipose tissue. CONCLUSION FC could ameliorate glucose metabolism and improve IR. It exerted these effects by suppressing oxidative stress and inflammation. FC from Agrimonia pilosa Ledeb has a good prospect to be drugs or functional foods for IR and T2DM.
Collapse
Affiliation(s)
- Tingwang Guo
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Yun Pan
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Lin Yang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Gang Chen
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
30
|
Bardhi O, Palmer BF, Clegg DJ. The evolutionary impact and influence of oestrogens on adipose tissue structure and function. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220207. [PMID: 37482787 PMCID: PMC10363706 DOI: 10.1098/rstb.2022.0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Oestrogens are sex steroid hormones that have gained prominence over the years owing to their crucial roles in human health and reproduction functions which have been preserved throughout evolution. One of oestrogens actions, and the focus of this review, is their ability to determine adipose tissue distribution, function and adipose tissue 'health'. Body fat distribution is sexually dimorphic, affecting males and females differently. These differences are also apparent in the development of the metabolic syndrome and other chronic conditions where oestrogens are critical. In this review, we summarize the different molecular mechanisms, pathways and resulting pathophysiology which are a result of oestrogens actions in and on adipose tissues. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Olgert Bardhi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Biff F. Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah J. Clegg
- Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX 75390, USA
| |
Collapse
|
31
|
Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023; 212:48-59. [PMID: 37068579 DOI: 10.1016/j.biochi.2023.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Ferdinand Blangero
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Julia Watson
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Luciano Pirola
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Assia Eljaafari
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France; Hospices Civils de Lyon: 2 quai des Célestins, 69001 Lyon, France.
| |
Collapse
|
32
|
Emmons H, Wallace C, Fordahl S. Interleukin-6 and tumor necrosis factor-α attenuate dopamine release in mice fed a high-fat diet, but not medium or low-fat diets. Nutr Neurosci 2023; 26:864-874. [PMID: 35900193 PMCID: PMC9883593 DOI: 10.1080/1028415x.2022.2103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic low-grade inflammation is associated with a state of diet-induced obesity that impacts systemic tissues and can cross the blood-brain barrier to act directly on the brain. The extent to which pro-inflammatory cytokines released in these conditions affect dopamine presynaptic neurotransmission has not been previously investigated. The purpose of this study was to examine how dopamine terminals are affected by pro-inflammatory cytokines, and to determine if dietary fat consumption potentiates cytokine effects on dopamine release and reuptake rate in the nucleus accumbens (NAc). Male and female C57BL/6J mice were fed high, medium, or low-fat diets (60%, 30%, or 10% total kcals from fat, respectively) for six weeks. Fast scan cyclic voltammetry (FSCV) was used to measure dopamine release and reuptake rate in the NAc core from ex vivo coronal brain slices. Electrically evoked dopamine release and the maximal rate of dopamine reuptake (Vmax) were significantly lower in mice fed the 30% and 60% high-fat diets compared to the 10% low-fat group (p < 0.05). IL-6 5 or 10 nM or TNFα 30 or 300 nM was added to artificial cerebrospinal fluid (aCSF) bathed over brain slices during FSCV. No effect on dopamine release or Vmax was observed with lower concentrations. However, 10 nM IL-6 and 300 nM TNFα significantly reduced dopamine release in the 60% fat group (p < 0.05). No effect of added cytokine was observed on Vmax. Overall, these data provide evidence that dietary fat increases neural responsiveness to cytokines, which may help inform comorbidities between diet-induced obesity and depression or other mood disorders.
Collapse
Affiliation(s)
- H.A. Emmons
- UNC Greensboro, Department of Nutrition, Greensboro NC
| | - C.W. Wallace
- UNC Greensboro, Department of Nutrition, Greensboro NC
- Wake Forest School of Medicine, Physiology and Pharmacology, Winston-Salem NC
| | - S.C. Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC
| |
Collapse
|
33
|
Sater MS, AlDehaini DMB, Malalla ZHA, Ali ME, Giha HA. Plasma IL-6, TREM1, uPAR, and IL6/IL8 biomarkers increment further witnessing the chronic inflammation in type 2 diabetes. Horm Mol Biol Clin Investig 2023; 44:259-269. [PMID: 36848486 DOI: 10.1515/hmbci-2022-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2D) is known to be associated with chronic inflammation, but the inflammatory regulators/markers are not exactly defined and the link between them remains undetermined. The objective of this study is to identify these markers by testing traditional (IL6 & IL8) and non-traditional (TREM1 & uPAR) inflammatory markers. METHODS Data and blood samples were obtained from 114 T2D and 74 non-diabetic Kuwaiti subjects attending health facilities in Kuwait. Chemical analyzers were used to measure glycemic and lipid profiles, while ELISA was used to measure plasma levels of insulin and several inflammatory markers. RESULTS Showed that the IL-6 and TREM1 were significantly higher in T2D compared to non-diabetic controls, and the uPAR level was borderline higher in T2D but significantly correlated with IL-6 levels. Unexpectedly, IL8 was significantly below normal in T2D and IL6/IL8 ratio was significantly higher in T2D patients. Unlike other tested markers, uPAR was in addition strongly correlated with insulin levels and HOMA-IR index. CONCLUSIONS Raised levels of IL6, TREMI, IL6/IL8 ratio, and the strong positive correlation of plasma levels of uPAR with IL-6, insulin, and HOMA-IR index, are reliable spectators of chronic inflammation in T2D patients. The reduced level of IL-8 in T2D was a peculiar observation that needs further explanation. Finally, the consequences and impact of the sustained rise of these inflammatory regulators in diabetic tissues need to be meticulously explored.
Collapse
Affiliation(s)
- Mai S Sater
- Department of Medical Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | | | - Zainab Hasan Abdulla Malalla
- Department of Medical Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | - Muhalab E Ali
- Department of Medical Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | | |
Collapse
|
34
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
35
|
Gupta A, Gupta P, Singh AK, Gupta V. Association of adipokines with insulin resistance and metabolic syndrome including obesity and diabetes. GHM OPEN 2023; 3:7-19. [PMID: 40143837 PMCID: PMC11933950 DOI: 10.35772/ghmo.2023.01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 03/28/2025]
Abstract
Adipose tissue (AT) acts as a highly active endocrine organ, which secretes a wide range of adipokine hormones. In the past few years, several adipokines (leptin, adiponectin, resistin etc.) have been discovered showing metabolic consequences in relation to insulin resistance (IR), obesity and diabetes. These adipokines are considered to be an important component playing an important role in the regulation of energy metabolism. They have been shown to be involved in the pathogenesis of metabolic syndrome (MetS) and cardiac diseases. The current article provides a holistic summary of recent knowledge on adipokines and emphasizes their importance in association with IR, obesity, diabetes and MetS. Adipokines such as leptin, adiponectin, resistin and tumor necrosis factor-alpha (TNF-α) have been involved in the regulation of an array of metabolic functions and disease associated with it, e.g. appetite and energy balance of the body, suppression of atherosclerosis and liver fibrosis, obesity with type 2 diabetes (T2D) and IR. An important adipokine, Interleukin-6 (IL-6), also correlates positively with human obesity and IR and also the elevated level of IL-6 predicts development of T2D. All of these hormones have important correlation with energy homeostasis, glucose and lipid metabolism, cardiovascular function and immunity. All the possible connections have extended the biological emphasis of AT secreted adipokines as an investigator in the development of MetS, and are now no longer considered as only an energy storage site.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Physiology, King George's Medical University, Lucknow, India
| | - Priyanka Gupta
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Arun Kumar Singh
- Department of Physiology, King George's Medical University, Lucknow, India
| | - Vani Gupta
- Department of Physiology, King George's Medical University, Lucknow, India
| |
Collapse
|
36
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
37
|
Wilson JB, Epstein M, Lopez B, Brown AK, Lutfy K, Friedman TC. The role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression. Front Endocrinol (Lausanne) 2023; 14:1224612. [PMID: 37664841 PMCID: PMC10470111 DOI: 10.3389/fendo.2023.1224612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and depression are significant public health and socioeconomic issues. They commonly co-occur, with T2DM occurring in 11.3% of the US population, while depression has a prevalence of about 9%, with higher rates among youths. Approximately 31% of patients with T2DM suffer from depressive symptoms, with 11.4% having major depressive disorders, which is twice as high as the prevalence of depression in patients without T2DM. Additionally, over 80% of people with T2DM are overweight or obese. This review describes how T2DM and depression can enhance one another, using the same molecular pathways, by synergistically altering the brain's structure and function and reducing the reward obtained from eating. In this article, we reviewed the evidence that eating, especially high-caloric foods, stimulates the limbic system, initiating Reward Deficiency Syndrome. Analogous to other addictive behaviors, neurochemical changes in those with depression and/or T2DM are thought to cause individuals to increase their food intake to obtain the same reward leading to binge eating, weight gain and obesity. Treating the symptoms of T2DM, such as lowering HbA1c, without addressing the underlying pathways has little chance of eliminating the disease. Targeting the immune system, stress circuit, melatonin, and other alterations may be more effective.
Collapse
Affiliation(s)
- Julian B. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Ma’ayan Epstein
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Psychiatric Emergency Room, Olive View – University of California, Los Angeles (UCLA) Medical Center, Sylmar, CA, United States
| | - Briana Lopez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| | - Amira K. Brown
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kabirullah Lutfy
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
38
|
Casillas-Ramírez A, Micó-Carnero M, Sánchez-González A, Maroto-Serrat C, Trostchansky A, Peralta C. NO-IL-6/10-IL-1β axis: a new pathway in steatotic and non-steatotic liver grafts from brain-dead donor rats. Front Immunol 2023; 14:1178909. [PMID: 37593740 PMCID: PMC10427871 DOI: 10.3389/fimmu.2023.1178909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Brain death (BD) and steatosis are both risk factors for organ dysfunction or failure in liver transplantation (LT). MATERIAL AND METHODS Here, we examine the role of interleukin 6 (IL- 6) and IL-10 in LT of both non-steatotic and steatotic liver recovered from donors after brain death (DBDs), as well as the molecular signaling pathways underlying the effects of such cytokines. RESULTS BD reduced IL-6 levels only in nonsteatotic grafts, and diminished IL-10 levels only in steatotic ones. In both graft types, BD increased IL-1β, which was associated with hepatic inflammation and damage. IL-6 administration reduced IL-1β only in non-steatotic grafts and protected them against damage and inflammation. Concordantly, IL-1β inhibition via treatment with an IL-1 receptor antagonist caused the same benefits in non-steatotic grafts. Treatment with IL-10 decreased IL-1β only in steatotic grafts and reduced injury and inflammation specifically in this graft type. Blockading the IL-1β effects also reduced damage and inflammation in steatotic grafts. Also, blockade of IL-1β action diminished hepatic cAMP in both types of livers, and this was associated with a reduction in liver injury and inflammation, then pointing to IL-1β regulating cAMP generation under LT and BD conditions. Additionally, the involvement of nitric oxide (NO) in the effects of interleukins was evaluated. Pharmacological inhibition of NO in LT from DBDs prompted even more evident reductions of IL-6 or IL-10 in non-steatotic and steatotic grafts, respectively. This exacerbated the already high levels of IL-1β seen in LT from DBDs, causing worse damage and inflammation in both graft types. The administration of NO donors to non-steatotic grafts potentiated the beneficial effects of endogenous NO, since it increased IL-6 levels, and reduced IL-1β, inflammation, and damage. However, treatment with NO donors in steatotic grafts did not modify IL-10 or IL-1β levels, but induced more injurious effects tan the induction of BD alone, characterized by increased nitrotyrosine, lipid peroxidation, inflammation, and hepatic damage. CONCLUSION Our study thus highlights the specificity of new signaling pathways in LT from DBDs: NO-IL-6-IL-1β in non-steatotic livers and NO-IL-10-IL-1β in steatotic ones. This opens up new therapeutic targets that could be useful in clinical LT.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Department of Teaching and Research Sub-Direction, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| | - Marc Micó-Carnero
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alfredo Sánchez-González
- Department of Teaching and Research Sub-Direction, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria, Mexico
| | - Cristina Maroto-Serrat
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carmen Peralta
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
39
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
40
|
Abd-Eltawab Tammam A, Rizg WY, Fakhry Boushra A, Alhelf M, Alissa M, Soliman GF, Nady Ouais G, Hosny KM, Alkhalidi HM, Elebiary AM. Telmisartan versus metformin in downregulating myostatin gene expression and enhancing insulin sensitivity in the skeletal muscles of type 2 diabetic rat model. Front Pharmacol 2023; 14:1228525. [PMID: 37576807 PMCID: PMC10416801 DOI: 10.3389/fphar.2023.1228525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: Telmisartan is an angiotensin receptor blocker (ARB) that specifically blocks angiotensin II type-1 receptors (AT1R). Telmisartan has been proven to have antidiabetic effects via a variety of mechanisms, and it can be utilized in some diabetic patients due to its dual benefit for hypertensive patients with type 2 DM (T2DM) and when the other oral antidiabetic medications are intolerable or contraindicated. However, its precise underlying hypoglycemic mechanism is still obscure. Aim of work: We sought to establish a link between telmisartan administration and myostatin expression in skeletal muscles of T2DM rat model as a potential hypoglycemic mechanism of telmisartan. Materials and Methods: 32 male albino rats were included in the study; 8 rats served as controls (group I). T2DM was inducted in the other 24 rats, which were then randomly subdivided into 3 groups (8 in each): (group II) the Diabetic group and (groups III and IV) which were treated with either telmisartan (8 mg/kg/day) or metformin (250 mg/kg/day) respectively via oral gavage for a 4-week period. Results: Telmisartan administration resulted in a significant improvement in OGTT, HOMA-IR, glucose uptake, and muscle mass/body ratios in Telmisartan group as compared to Diabetic group (p < 0.05). Additionally, telmisartan induced a significant boost in adiponectin and IL-10 serum levels with a substantial drop in TNF-α and IL-6 levels in Telmisartan group compared to diabetic rats (p < 0.05). Moreover, telmisartan significantly boosted SOD and GSH, and decreased MDA levels in the skeletal muscles of telmisartan group. Furthermore, a significant downregulation of myostatin and upregulation of insulin receptor, IRS-1, and IRS-3 genes in the skeletal muscles of Telmisartan group were also detected. Histologically, telmisartan attenuated the morphological damage in the skeletal muscle fibers compared to diabetic rats, as evidenced by a considerable decrease in the collagen deposition area percentage and a reduction in NF-kB expression in the muscle tissues of group III. Conclusion: Telmisartan administration dramatically reduced myostatin and NF-kB expressions in skeletal muscles, which improved insulin resistance and glucose uptake in these muscles, highlighting a novel antidiabetic mechanism of telmisartan in treating T2DM.
Collapse
Affiliation(s)
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Fakhry Boushra
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha Alhelf
- Biotechnology School, Nile University, Giza, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghada F. Soliman
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Pharmacology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Ghada Nady Ouais
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, New Giza University, Giza, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Magdy Elebiary
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
41
|
Alhelf M, Rashed L, Doss RW, Mohamed SM, Abd Elazeem NA. Long noncoding RNA (taurine upregulated gene 1) and micro RNA-377: emerging players in the development of metabolic syndrome among psoriasis patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:68. [DOI: 10.1186/s43088-023-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
Psoriasis (PsO) is an immune-mediated dermatosis and systemic inflammatory condition that can affect the skin, joints, and other organs and tissues with a range of comorbidities. The activation of proinflammatory cytokines is the primary cause of the development of skin lesions in PsO. Patients with PsO have a higher risk of developing cardiovascular metabolic comorbidities; among these is the metabolic syndrome (MetS). Particularly, MetS is characterized by abdominal obesity, hypertension, hyperglycemia, and hyperlipidemia, has been linked to PsO. The connection between PsO and MetS is believed to be caused by PsO generating systemic inflammation, which then results in elevated inflammatory adipokines, endothelial dysfunction, and insulin resistance. Micro RNA-377 and long noncoding RNA taurine upregulated 1 (TUG1) are both involved in the control of a variety of inflammatory disorders in humans and can be employed as biomarkers for the diagnosis and prognosis of psoriasis. The aim of the present study is to establish a panel of biomarkers for the early diagnosis of MetS incidence in psoriasis and thereby, reducing its lethal consequences.
Results
In this study, 120 patients: 40 psoriatic patients, 40 psoriatic patients with metabolic syndrome, and 40 healthy subjects were conducted. Expressions of Long noncoding RNA Taurine Upregulated Gene-1 (TUG1), miRNA-377 and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) were assessed in tissue lesion by real-time PCR. ELISA technique was carried out for the detection of serum levels of plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor β (TGFβ). Moreover, miRNA-377 expression was significantly elevated with the simultaneous down-regulation of both TUG-1 and PPAR-γ in PsO-MetS group when compared to those of PsO and control groups. Furthermore, PAI-1 and TGFβ levels were higher in PsO-MetS than PsO.
Conclusions
The dysregulated levels of TUG-1, miRNA-377, PPAR-γ, PAI-1, and TGFβ, biomarkers may provide information about their potential role in the emergence of MetS in psoriasis patients.
Collapse
|
42
|
Fu M, Yang L, Wang H, Chen Y, Chen X, Hu Q, Sun H. Research progress into adipose tissue macrophages and insulin resistance. Physiol Res 2023; 72:287-299. [PMID: 37449743 PMCID: PMC10668993 DOI: 10.33549/physiolres.935046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, there has been an increasing incidence of metabolic syndrome, type 2 diabetes, and cardiovascular events related to insulin resistance. As one of the target organs for insulin, adipose tissue is essential for maintaining in vivo immune homeostasis and metabolic regulation. Currently, the specific adipose tissue mechanisms involved in insulin resistance remain incompletely understood. There is increasing evidence that the process of insulin resistance is mostly accompanied by a dramatic increase in the number and phenotypic changes of adipose tissue macrophages (ATMs). In this review, we discuss the origins and functions of ATMs, some regulatory factors of ATM phenotypes, and the mechanisms through which ATMs mediate insulin resistance. We explore how ATM phenotypes contribute to insulin resistance in adipose tissue. We expect that modulation of ATM phenotypes will provide a novel strategy for the treatment of diseases associated with insulin resistance.
Collapse
Affiliation(s)
- M Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
de Baat A, Trinh B, Ellingsgaard H, Donath MY. Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol 2023:S1471-4906(23)00110-2. [PMID: 37423882 DOI: 10.1016/j.it.2023.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The innate cytokine system is involved in the response to excessive food intake. In this review, we highlight recent advances in our understanding of the physiological role of three prominent cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF), in mammalian metabolic regulation. This recent research highlights the pleiotropic and context-dependent functions in the immune-metabolic interplay. IL-1β is activated in response to overloaded mitochondrial metabolism, stimulates insulin secretion, and allocates energy to immune cells. IL-6 is released by contracting skeletal muscle and adipose tissue and directs energy from storing tissues to consuming tissues. TNF induces insulin resistance and prevents ketogenesis. Additionally, the therapeutic potential of modulating the activity of each cytokine is discussed.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Beckey Trinh
- The Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Helga Ellingsgaard
- The Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
44
|
Chen W, Cui W, Wu J, Zheng W, Sun X, Zhang J, Shang H, Yuan Y, Li X, Wang J, Hu X, Chen L, Zeng F, Xiao RP, Zhang X. Blocking IL-6 signaling improves glucose tolerance via SLC39A5-mediated suppression of glucagon secretion. Metabolism 2023:155641. [PMID: 37380017 DOI: 10.1016/j.metabol.2023.155641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia, hyperglucagonemia, and low-grade inflammation are frequently presented in obesity and type 2 diabetes (T2D). The pathogenic regulation between hyperinsulinemia/insulin resistance (IR) and low-grade inflammation is well documented in the development of diabetes. However, the cross-talk of hyperglucagonemia with low-grade inflammation during diabetes progression is poorly understood. In this study, we investigated the regulatory role of proinflammatory cytokine interleukin-6 (IL-6) on glucagon secretion. METHODS The correlations between inflammatory cytokines and glucagon or insulin were analyzed in rhesus monkeys and humans. IL-6 signaling was blocked by IL-6 receptor-neutralizing antibody tocilizumab in obese or T2D rhesus monkeys, glucose tolerance was evaluated by intravenous glucose tolerance test (IVGTT). Glucagon and insulin secretion were measured in isolated islets from wild-type mouse, primary pancreatic α-cells and non-α-cells sorted from GluCre-ROSA26EYFP (GYY) mice, in which the enhanced yellow fluorescent protein (EYFP) was expressed under the proglucagon promoter, by fluorescence-activated cell sorting (FACS). Particularly, glucagon secretion in α-TC1 cells treated with IL-6 was measured, and RNA sequencing was used to screen the mediator underlying IL-6-induced glucagon secretion. SLC39A5 was knocking-down or overexpressed in α-TC1 cells to determine its impact in glucagon secretion and cytosolic zinc density. Dual luciferase and chromatin Immunoprecipitation were applied to analyze the signal transducer and activator of transcription 3 (STAT3) in the regulation of SLC39A5 transcription. RESULTS Plasma IL-6 correlate positively with plasma glucagon levels, but not insulin, in rhesus monkeys and humans. Tocilizumab treatment reduced plasma glucagon, blood glucose and HbA1c in spontaneously obese or T2D rhesus monkeys. Tocilizumab treatment also decreased glucagon levels during IVGTT, and improved glucose tolerance. Moreover, IL-6 significantly increased glucagon secretion in isolated islets, primary pancreatic α-cells and α-TC1 cells. Mechanistically, we found that IL-6-activated STAT3 downregulated the zinc transporter SLC39A5, which in turn reduced cytosolic zinc concentration and ATP-sensitive potassium channel activity and augmented glucagon secretion. CONCLUSIONS This study demonstrates that IL-6 increases glucagon secretion via the downregulation of zinc transporter SLC39A5. This result revealed the molecular mechanism underlying the pathogenesis of hyperglucagonemia and a previously unidentified function of IL-6 in the pathophysiology of T2D, providing a potential new therapeutic strategy of targeting IL-6/glucagon to preventing or treating T2D.
Collapse
Affiliation(s)
- Wenli Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Weiyi Cui
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jianhong Wu
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China
| | - Haibao Shang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Liangyi Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China.
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China.
| |
Collapse
|
45
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
46
|
Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem 2023; 408:135183. [PMID: 36566543 DOI: 10.1016/j.foodchem.2022.135183] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the most serious health problems worldwide. Species in the genus Polygonatum are traditional food and medicinal plants, which play an important role in controlling blood glucose. In this reveiw, we systematically summarized the traditional and modern applications of the genus Polygonatum in DM, focused on the material bases of polysaccharides, flavonoids and saponins. We highlighted their mechanisms of action in preventing obese diabetes, improving insulin resistance, promoting insulin secretion, regulating intestinal microecology, inhibiting advanced glycation end products (AGEs) accumulation, suppressing carbohydrate digestion and obsorption and modulating gluconeogenesis. Based on the safety and efficacy of this 'medicinal food' and its utility in the prevention and treatment of diabetes, we proposed a research and development program that includs diet design (supplementary food), medical nutrition therapy and new drugs, which could provide new pathways for the use of natural plants in prevention and treatment of DM.
Collapse
|
47
|
Srisuporn P, Navasumrit P, Ngaotepprutaram T, Chaisatra K, Hunsonti P, Ruchirawat M. Arsenic exposure alters the expression of genes related to metabolic diseases in differentiated adipocytes and in newborns and children. Int J Hyg Environ Health 2023; 250:114124. [PMID: 36989998 DOI: 10.1016/j.ijheh.2023.114124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/11/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
The mechanisms underlying the association between prenatal arsenic exposure and the development of metabolic diseases remain unclear. Aberrant adipogenesis and adipokine production are associated with increased risk for the development of metabolic diseases in susceptible populations. Generation of mature adipocytes is tightly regulated by the expression of genes encoding: peroxisome proliferator-activated receptor γ (PPARG), fatty acid-binding protein (FABP4), and glucose transporter-4 (SLC2A4), and adipokines such as leptin (LEP) and adiponectin (ADIPOQ). This study aimed to investigate the expression of these genes, which are associated with the pathogenesis of metabolic diseases in newborns and children exposed to arsenic in utero. A high arsenic exposed group showed significantly decreased PPARG and FABP4 expression in cord blood samples from newborns and in saliva samples from children. By contrast, the expression of the SLC2A4 and ADIPOQ mRNA was significantly decreased in high-arsenic exposed children. Furthermore, the levels of toenail arsenic were negatively correlated with the salivary mRNA expression levels of PPARG (r = -0.412, p < 0.01), aP2 (r = -0.329, p < 0.05), and SLC2A4 (r = -0.528, p < 0.01). In vitro studies utilizing umbilical cord derived mesenchymal stem cells (UC-MSCs) as a surrogate for fetal MSCs showed that arsenite treatment (0.5 μM and 1 μM) significantly impaired adipogenic differentiation in a concentration dependent manner. Such impairment may be related to a significant decrease in the expression of: PPARγ, FABP4, and SLC2A4 observed at 1 μM arsenite. Arsenite treatment also promoted inflammation through a significant increase in the mRNA expression levels of the pro-inflammatory adipokine, LEP, and the inflammatory cytokines: CXCL6, IL-1β, and CXCL8. Collectively, our results suggests that such alterations may be a consequence of the effects of arsenic exposure on fetal MSCs eventually leading to impaired adipogenic differentiation and the promotion of inflammation, both of which contribute to the development of metabolic diseases later in life.
Collapse
|
48
|
Ruscitti P, Sesti G, Cipriani P, Gerli R, Giacomelli R. Correspondence on 'Disease activity, cytokines, chemokines and the risk of incident diabetes in rheumatoid arthritis'. Ann Rheum Dis 2023; 82:e119. [PMID: 33619161 DOI: 10.1136/annrheumdis-2021-220047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Piero Ruscitti
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Roma, Lazio, Italy
| | - Paola Cipriani
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Giacomelli
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Exosomes are lipid-bound particles that carry lipids, protein, and nucleic acid and affect cellular function. This review highlights the current knowledge on the crosstalk between exosomes and lipid metabolism and their impact on cardiometabolic disease. RECENT FINDINGS Recent studies revealed that lipids and lipid metabolizing enzymes are important for exosome biogenesis and internalization and conversely how exosomes affect lipid metabolism, secretion, and degradation. The interplay between exosomes and lipid metabolism affects disease pathophysiology. More importantly, exosomes and lipids might function as biomarkers for diagnosis and prognosis or possibly therapies. SUMMARY Recent advances in our understanding of exosomes and lipid metabolism have implications for our understanding of normal cellular and physiological functions as well as disease pathogenesis. Exosome and lipid metabolism have implications in novel diagnostic tests and treatments of cardiometabolic disease.
Collapse
Affiliation(s)
- Zina Zein Abdin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
| | - Apple Ziquan Geng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
| | - Mark Chandy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
- Schulich School of Medicine and Dentistry, Division of Cardiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
50
|
Loh KW, Shaz N, Singh S, Malliga Raman M, Balaji Raghavendran HR, Kamarul T. Cytokine release by human bone marrow stromal cells isolated from osteoarthritic and diabetic osteoarthritic patients in vitro. J Basic Clin Physiol Pharmacol 2023; 34:177-185. [PMID: 34182614 DOI: 10.1515/jbcpp-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Primary Osteoarthritis (OA) is a disease of progressive joints degeneration due to idiopathic causes. Recent evidence showed a positive relationship between OA and metabolic syndrome. This pilot study aimed to assess the baseline level of pro and anti-inflammatory cytokines in OA patients with or without Diabetic Mellitus (DM) and assess the effect of hydrogen peroxide (H2O2) in cytokine production. METHODS Patients with primary hip and knee OA were recruited, and 3 mL of bone marrow was harvested during joint replacement surgery. Bone marrow stromal cells (BMSC) was isolated and cultured in a culture flask for three passages. Later experiment was then sub-cultured in a well plate labeled as the control group and H2O2 (0.1 mM) treated group. ProcartaPlex® Multiplex Immunoassay was performed to measure cytokine levels produced by the BMSC at 0 h, as well as 72 h. RESULTS Cytokines such as tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, and IL-1β generally exhibited higher cytokine levels in subjects with DM than in nonDM subjects at 0 and 72 h. For IL-17, its expression was similar in nonDM and DM groups at 0 and 72 h. Cytokine IL-10 showed no significant difference in both the groups while DM and nonDM groups treated with H2O2 showed decreased IL-4 levels compared to control groups at 72 h. Bone marrow cells from DM-OA are more vulnerable to chemical insult and are associated with higher levels of proinflammatory cytokines production and lower IL-4 level production. CONCLUSIONS This study provides a clue that management of OA with co-morbidity like DM needs future studies.
Collapse
Affiliation(s)
- Kar Wai Loh
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norshazliza Shaz
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Simmrat Singh
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Murali Malliga Raman
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Tunku Kamarul
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|