1
|
Xu S, Liu K, Qian S, Wu J, Hu J, Zhou D, Zheng T. Mechanism of Tau protein incorporation into exosomes via cooperative recognition of KFERQ-like motifs by LAMP2A and HSP70. Neurochem Int 2025; 186:105976. [PMID: 40187566 DOI: 10.1016/j.neuint.2025.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Aggregates of the tau protein is a well-known hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau can be propagated between nerve cells or brain areas, similar as 'seed'. As a member of small extracellular vesicles, exosomes may act as one of the most important 'seeding machines', disseminating toxic tau and phosphorylated tau proteins between cells and thereby amplifying their neurotoxic effects. Therefore, exploring the underlying mechanisms of Tau loading into exosomes is of great importance. In this study, human P301L tau transfections were established in SH-SY5Y cells (SY5Y-EGFP-TauP301L cells). The content of membrane protein LAMP2A and HSP70 proteins was significantly increased in the SY5Y-EGFP-Tau P301L cells compared to control group. Tau containing KFERQ-like motifs pentapeptide interact with LAMP2A and HSP70, forming a multi-protein complex, which can be loaded into a subpopulation of exosomes. Moreover, knockout of LAMP2A significantly reduced the content of Tau protein in exosomes obtained from SY5Y-EGFP-Tau P301L cells. Thus, exosome-mediated secretion of tau protein may depend on the formation of multi-protein (KFERQ-like motif pentapeptide in tau,LAMP2A and HSP70) complex. These findings revealed the presence of a novel mechanism by which release of tau through exosome secretion pathway and that LAMP2A may play an important role in the regulation of exosome-mediated secretion of tau, which may become a potential therapeutic target for AD or other Tauopathies.
Collapse
Affiliation(s)
- Shan Xu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Kangyan Liu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiyan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jingying Wu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jialing Hu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
2
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Garabet L, Rangberg A, Eriksson AM, Jonassen CM, Teruel-Montoya R, Lozano ML, Martinez C, Pettersen HH, Mathisen ÅB, Tjønnfjord E, Tran H, Brodin E, Tsykunova G, Gebhart J, Bussel J, Ghanima W. MicroRNA-199a-5p may be a diagnostic biomarker of primary ITP. Br J Haematol 2025; 206:1443-1449. [PMID: 39776057 DOI: 10.1111/bjh.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
There is no diagnostic test for primary immune thrombocytopenia (ITP). Certain microRNAs have shown to have diagnostic potential in ITP. We validated 12 microRNAs identified from two previous studies to find a diagnostic biomarker. The study included two ITP cohorts (n = 61) and healthy controls (n = 28). The first ITP cohort involved 24 patients from the Prolong study, patients with newly diagnosed/persistent ITP (<1 year) treated with corticosteroids ± IVIG but relapsed/failed to respond. The second cohort comprised 37 patients from ITP biobank, Østfold Hospital, Norway, patients had different disease stages and therapies. Twelve microRNAs were measured: miR-199a-5p, miR-33a-5p, miR-195-5p, miR-130a-3p, miR-144-3p, miR-146a-5p, miR-222-3p, miR-374b-5p, miR-486-5p, miR-1341-5p, miR-766-3p and miR-409-3p. miR-199a-5p, miR-33a-5p, miR-374b-5p, miR-146a-5p and miR-409-3p were expressed differentially in the entire ITP cohort compared to controls; of those only miR-199a-5p showed good discriminative ability between ITP and controls with area under the curve (AUC) of 0.718 (95% CI: 0.599-0.836). In the Prolong cohort (ITP < 1 year), miR-199a-5p and miR-374b-5p showed very good discriminative ability between ITP and controls with AUC of 0.824 (0.708-0.940) and 0.806 (0.688-0.924) respectively. This study confirmed that miR-199a-5p has good discriminative ability between primary ITP and healthy controls, thus may be a diagnostic biomarker of ITP.
Collapse
Affiliation(s)
- Lamya Garabet
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway
| | - Anbjørg Rangberg
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
| | | | - Christine Monceyron Jonassen
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Raul Teruel-Montoya
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Maria Luisa Lozano
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Constantino Martinez
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | | | | | | | - Hoa Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Galina Tsykunova
- Department of Haematology, Haukeland University Hospital, Bergen, Norway
| | - Johanna Gebhart
- Department of Medicine, Medical University of Vienna, Vianna, Austria
| | - James Bussel
- Department of Pediatrics, Division of Hematology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
ZHENG L, YANG G, QU F. [Advances in exosome-targeting aptamer-screening techniques]. Se Pu 2025; 43:424-433. [PMID: 40331607 PMCID: PMC12059990 DOI: 10.3724/sp.j.1123.2024.10029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes play crucial intercellular-communication roles and regulate various cellular physiological processes. They are considered potential biomarkers for the early diagnosis of cancers and other diseases. Therefore, detecting and isolating exosomes with specific functions has significant clinical implications. Moreover, the development of low-cost, highly sensitive recognition elements for identifying exosomes is essential for advancing early disease diagnosis and treatment. Nucleic acid aptamers are single-stranded DNA or RNA molecules capable of specifically binding to targets and are produced through the systematic evolution of ligands by exponential enrichment (SELEX) technique. Such aptamers are highly stable, chemically synthesizable, exhibit high affinities and specificities, and are applicable to a broad range of targets, which endow them with unique advantages. Currently, aptamers that target exosomes have been used in a variety of research fields, including cell imaging, drug delivery, and disease diagnosis and treatment. However, selecting aptamers that precisely identify specific exosomes is significantly challenging owing to the complex structures of exosome and their heterogeneity. Consequently, obtaining high-performance aptamers requires efficient screening techniques. This review first summarizes the functions and selection strategies of key targets for exosome-aptamer screening. Furthermore, it outlines the main methods and techniques currently used to screen exosome aptamers, which includes five screening techniques: magnetic bead-SELEX, microfluidic-SELEX, nitrocellulose-SELEX, cell-SELEX, and capillary electrophoresis-SELEX. The separation principles, advantages, limitations, and the latest applications of these techniques are discussed in detail. The review finally addresses current challenges associated with selecting exosome aptamers and provides insight into future research directions.
Collapse
Affiliation(s)
| | - Ge YANG
- Tel:(010)63125681,E-mail:(杨歌)
| | - Feng QU
- *Tel:(010)68918015,E-mail:(屈锋)
| |
Collapse
|
5
|
Rajavel A, Kumar J, Essakipillai N, Anbazhagan R, Panneerselvam R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Label-free Detection of Urine Extracellular Vesicles from Duchenne Muscular Dystrophy Patients Using Surface-Enhanced Raman Spectroscopy Combined with Machine Learning Models. ACS OMEGA 2025; 10:16874-16883. [PMID: 40321535 PMCID: PMC12044490 DOI: 10.1021/acsomega.5c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 05/08/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that affects males in the pediatric age group. Currently, there is no painless, cost-effective prognostic method available to monitor DMD progression. The main hypothesis of this study was that the biochemical composition of extracellular vesicles (EVs) isolated from the urine of DMD patients can be distinctly differentiated from that of healthy controls using surface-enhanced Raman Spectroscopy (SERS) combined with machine learning models. This differentiation is expected to provide a noninvasive, rapid, and accurate diagnostic tool for the early detection, staging, and monitoring of DMD by identifying the molecular signatures captured by SERS and leveraging the analytical power of machine learning algorithms. We collected fasting morning urine samples from 52 DMD patients and 17 healthy controls and isolated EVs using a Total Exosome Isolation kit. The SERS substrates are prepared using silver nanoparticles, which were employed to capture the molecular fingerprints of the EVs with uniformity and reproducibility, achieving relative standard deviation values of 7.3% and 8.9%. We observed alterations in phenylalanine and α-helical proteins in patients with DMD compared to controls. These spectral data were analyzed using PCA, Support Vector Machines, and k-Nearest Neighbor (KNN) algorithms to identify distinct patterns and stage DMD based on biochemical composition. Our integrated approach demonstrated 60% sensitivity and 100% specificity in distinguishing DMD patients from healthy controls, highlighting the potential of SERS and KNN for noninvasive, accurate, and rapid diagnosis of DMD. This method offers a promising avenue for early detection and personalized treatment strategies, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayasree Kumar
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Narayanan Essakipillai
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department
of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Rajapandiyan Panneerselvam
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Jayashree Ramakrishnan
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department
of Paediatrics Neurology, Apollo Children’s
Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| |
Collapse
|
6
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
7
|
Liu Y, Ma Q, Khan MZ, Wang M, Xiang F, Zhang X, Kou X, Li S, Wang C, Li Y. Proteomic Profiling of Donkey Milk Exosomes Highlights Bioactive Proteins with Immune-Related Functions. Int J Mol Sci 2025; 26:2892. [PMID: 40243471 PMCID: PMC11988413 DOI: 10.3390/ijms26072892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The growing recognition of the role of milk-derived exosomes in metabolic and immunological processes has brought attention to the potential utility of donkey milk. However, the efficacy and bioactive components of donkey milk are underexplored. This study aimed to elucidate the proteomic profiles of exosomes isolated from donkey colostrum and mature milk using advanced four-dimensional (4D) label-free quantitative proteomics. A comprehensive analysis identified and quantified a total of 2293 exosomal proteins from donkey milk, including 276 differentially expressed exosomal proteins (DEEPs). The results revealed marked proteomic differences between colostrum and mature milk exosomes, particularly in proteins associated with immune responses and metabolic pathways. Exosomal proteins derived from colostrum were found to be enriched in immune-modulatory factors and glycan-related pathways, which may contribute to the enhancement in neonatal immune system development. In contrast, exosomal proteins from mature milk were predominantly associated with metabolic processes and cellular senescence. Protein-protein interaction (PPI) analysis further suggested that specific exosomal proteins highly expressed in colostrum could serve as nutraceutical components with potential health benefits for humans. In conclusion, this study underscores the distinct proteomic features and potential physiological roles of exosomes from donkey colostrum versus mature milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changfa Wang
- College of Agriculture and Biology, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China; (Y.L.); (Q.M.); (M.Z.K.); (M.W.); (F.X.); (X.Z.); (X.K.); (S.L.)
| | - Yan Li
- College of Agriculture and Biology, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China; (Y.L.); (Q.M.); (M.Z.K.); (M.W.); (F.X.); (X.Z.); (X.K.); (S.L.)
| |
Collapse
|
8
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Choi YH, Kim HY, Park JO, Choi E. Enhanced Anti-Tumor Effects of Natural Killer Cell-Derived Exosomes Through Doxorubicin Delivery to Hepatocellular Carcinoma Cells: Cytotoxicity and Apoptosis Study. Int J Mol Sci 2025; 26:2234. [PMID: 40076856 PMCID: PMC11900065 DOI: 10.3390/ijms26052234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Exosomes are nanosized extracellular vesicles secreted by various cells, including natural killer (NK) cells, and are known for their low toxicity, high permeability, biocompatibility, and strong targeting ability. NK cell-derived exosomes (NK-exos) contain cytotoxic proteins that enhance tumor-targeting efficiency, making them suitable for treating solid tumors such as hepatocellular carcinoma (HCC). Despite their potential in drug delivery, the mechanisms of drug-loaded NK-exos, particularly those loaded with doxorubicin (NK-exos-Dox), remain unclear in HCC. This study explored the anti-tumor effects of NK-exos-Dox against Hep3B cells in vitro. NK-exos-Dox expressed exosome markers (CD9 and CD63) and cytotoxic proteins (granzyme B and perforin) and measured 170-220 nm in size. Compared to NK-exos, NK-exos-Dox enhanced cytotoxicity and apoptosis in Hep3B cells by upregulating pro-apoptotic proteins (Bax, cytochrome c, cleaved caspase 3, and cleaved PARP) and inhibiting the anti-apoptotic protein (Bcl-2). These findings suggest that NK-exos-Dox significantly boost anti-tumor effects by activating specific cytotoxic molecules, offering promising therapeutic opportunities for solid tumor treatment, including HCC.
Collapse
Affiliation(s)
- You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea; (H.Y.K.); (J.-O.P.)
| | - Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
10
|
Ge Y, Jiang L, Dong Q, Xu Y, Yam JWP, Zhong X. Exosome-mediated Crosstalk in the Tumor Immune Microenvironment: Critical Drivers of Hepatocellular Carcinoma Progression. J Clin Transl Hepatol 2025; 13:143-161. [PMID: 39917466 PMCID: PMC11797817 DOI: 10.14218/jcth.2024.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, ranking as the sixth most prevalent malignancy and the fourth leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, mortality rates for HCC remain high. The tumor immune microenvironment (TIME) plays a vital role in HCC progression by influencing tumor cell survival and growth. Recent studies highlight the essential role of exosomes in mediating intercellular communication within the TIME, particularly in interactions among tumor cells, immune cells, and fibroblasts. These interactions drive critical aspects of tumor development, including immune escape, angiogenesis, drug resistance, and metastasis. A detailed understanding of the molecular mechanisms by which exosomes modulate the TIME is essential for developing targeted therapies. This review systematically evaluated the roles and regulatory mechanisms of exosomes within the TIME of HCC, examining the impact of both HCC-derived and non-HCC-derived exosomes on various cellular components within the TIME. It emphasized their regulatory effects on cell phenotypes and functions, as well as their roles in HCC progression. The review also explored the potential applications of exosome-based immunotherapies, offering new insights into improving therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Saadh MJ, Jasim NY, Ahmed MH, Ballal S, Kumar A, Atteri S, Vashishth R, Rizaev J, Alhili A, Jawad MJ, Yazdi F, Salajegheh A, Akhavan-Sigari R. Critical roles of miR-21 in promotions angiogenesis: friend or foe? Clin Exp Med 2025; 25:66. [PMID: 39998742 PMCID: PMC11861128 DOI: 10.1007/s10238-025-01600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
MiRNAs are small RNA strands that are managed following transcription and are of substantial importance in blood vessel formation. It is essential to oversee the growth, differentiation, death, movement and construction of tubes by angiogenesis-affiliated cells. If miRNAs are not correctly regulated in regard to angiogenesis, it can deteriorate the health and lead to various illnesses, which include cancer, cardiovascular disorder, critical limb ischemia, Crohn's disease, ocular diseases, diabetic microvascular complications, and more. Consequently, it is vital to understand the crucial part that miRNAs play in the development of blood vessels, so we can develop reliable treatment plans for vascular diseases. This write-up will assess the critical role of miR-21/exosomal miR-21 in managing angiogenesis associated with bone growth, wound recovery, and other pathological conditions like tumor growth, ocular illnesses, diabetes, and other diseases connected to formation of blood vessels. Previous investigations have demonstrated that miR-21 is present at higher amounts in certain cancerous cells, and it influences a multitude of genes that moderate the increased creation of blood vessels. Furthermore, studies demonstrated that exosomal miR-21 has the capacity to interact with endothelial cells to foster tumor angiogenesis. For that reason, this review explains the critical importance of miR-21/exosomal miR-21 in managing both healthy and diseased states of angiogenesis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Nisreen Yasir Jasim
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Management University Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Cruz CG, Sodawalla HM, Mohanakumar T, Bansal S. Extracellular Vesicles as Biomarkers in Infectious Diseases. BIOLOGY 2025; 14:182. [PMID: 40001950 PMCID: PMC11851951 DOI: 10.3390/biology14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that are secreted by all cells into the extracellular space. EVs are involved in cell-to-cell communication and can be found in different bodily fluids (bronchoalveolar lavage fluid, sputum, and urine), tissues, and in circulation; the composition of EVs reflects the physiological condition of the releasing cell. The ability to use EVs from bodily fluids for minimally invasive detection to monitor diseases makes them an attractive target. EVs carry a snapshot of the releasing cell's internal state, and they can serve as powerful biomarkers for diagnosing diseases. EVs also play a role in the body's immune and pathogen detection responses. Pathogens, such as bacteria and viruses, can exploit EVs to enhance their survival and spread and to evade detection by the immune system. Changes in the number or contents of EVs can signal the presence of an infection, offering a potential avenue for developing new diagnostic methods for infectious diseases. Ongoing research in this area aims to address current challenges and the potential of EVs as biomarkers in diagnosing a range of diseases, including infections and infectious diseases. There is limited literature on the development of EVs as diagnostic biomarkers for infectious diseases using existing molecular biology approaches. We aim to address this gap by reviewing recent EV-related investigations in infectious disease studies.
Collapse
Affiliation(s)
- Cinthia Gonzalez Cruz
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Husain M. Sodawalla
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| |
Collapse
|
13
|
Wang X, Xiang Z, Zhang Y, Tu CR, Huang C, Chung Y, Zhang W, Wang M, Liu Y, Tu W. CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma. MedComm (Beijing) 2025; 6:e70078. [PMID: 39901895 PMCID: PMC11788015 DOI: 10.1002/mco2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Interleukin (IL)-17-producing γδ-T cells (γδT-17) are a major source of IL-17 within the tumor microenvironment and have been shown to influence tumor development and therapy outcomes in various cancers. However, the role and presence of γδT-17 cells in nasopharyngeal carcinoma (NPC) remain poorly understood. It is also unclear how these cells might affect radiotherapy, the primary treatment for NPC patients. In this study, we discovered that NPC tumor tissues were rich in γδT-17 cells. Exosomes released from NPC cells (NPC-Exos) could direct γδ-T cells to differentiate into γδT-17 cells. These NPC-Exos-induced γδT-17 cells were found to enhance radioresistance in NPC, both in vitro and in vivo. Blocking IL-17 secreted by NPC-Exos-induced γδT-17 cells restored NPC cell sensitivity to radiation and elevated radiation-induced cell death. Mechanistic studies revealed that NPC-Exos not only increased the release of IL-17-promoting cytokines IL-1β, IL-6, and IL-23 from dendritic cells, but also suppressed CD25/IL-2 signaling in γδ-T cells, facilitating γδT-17 differentiation. The suppression of CD25/IL-2 signaling was driven by microRNA-15a (miR-15a) carried by NPC exosomes. Furthermore, miR-15a inhibitors were able to prevent γδT-17 induction by NPC-Exos. Our findings reveal a novel immunoregulatory role of NPC-Exos and offer potential strategies to combat NPC radioresistance.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zheng Xiang
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
- Department of Microbiology and ImmunologyHealth Science Center (School of Medicine)Jinan UniversityJinanChina
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chloe Ran Tu
- Department of data sciencesDana‐Farber Cancer InstituteHarvard UniversityBostonMassachusettsUSA
| | - Chunyu Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri‐implantationShenzhen Zhongshan Institute for Reproduction and GeneticsShenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital)ShenzhenChina
| | - Yuet Chung
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
| | - Manni Wang
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
| | - Yinping Liu
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
| | - Wenwei Tu
- Department of Paediatrics and Adolescent MedicineLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong SARChina
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
14
|
Vásquez-Pérez JM, González-Guevara E, Gutiérrez-Buenabad D, Martínez-Gopar PE, Martinez-Lazcano JC, Cárdenas G. Is Nasal Dysbiosis a Required Component for Neuroinflammation in Major Depressive Disorder? Mol Neurobiol 2025; 62:2459-2469. [PMID: 39120823 DOI: 10.1007/s12035-024-04375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Human microbiota is known to influence immune and cerebral responses by direct and/or indirect mechanisms, including hypothalamic-pituitary-adrenal axis signaling, activation of neural afferent circuits to the brain, and by altering the peripheral immune responses (cellular and humoral immune function, circulatory inflammatory cells, and the production of several inflammatory mediators, such as cytokines, chemokines, and reactive oxygen species). The inflammatory responses in the nasal mucosa (rhinitis) or paranasal sinuses (chronic rhinosinusitis) are dual conditions related with a greater risk for developing depression. In the nasal cavity, anatomic components of the olfactive function are in direct contact with the CNS through the olfactory receptors, neurons, and axons that end in the olfactory bulb and the entorhinal cortex. Local microbiome alterations (dysbiosis) are linked to transepithelial translocation of microorganisms and their metabolites, which disrupts the epithelial barrier and favors vascular permeability, increasing the levels of several inflammatory molecules (both cytokines and non-cytokine mediators: extracellular vesicles (exosomes) and neuropeptides), triggering local inflammation (rhinitis) and the spread of these components into the central nervous system (neuroinflammation). In this review, we discuss the role of microbiota-related immunity in conditions affecting the nasal mucosa (chronic rhinosinusitis and allergic rhinitis) and their relevance in major depressive disorders, focusing on the few mechanisms known to be involved and providing some hypothetical proposals on the pathophysiology of depression.
Collapse
Affiliation(s)
- Jorge Manuel Vásquez-Pérez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Diana Gutiérrez-Buenabad
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Pablo Eliasib Martínez-Gopar
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, 14330, Ciudad de México, Mexico
| | - Juan Carlos Martinez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
15
|
Zhang X, Tan Y, He X, Huang J, Ni X, Hu Q, Cai J. The diagnostic accuracy of exosomes for glioma: A meta-analysis. BIOMOLECULES & BIOMEDICINE 2025; 25:541-552. [PMID: 39465690 PMCID: PMC12010979 DOI: 10.17305/bb.2024.11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Glioma is one of the most prevalent primary intracranial tumors, and biomarker testing offers a non-invasive modality with high diagnostic efficiency. The aim of this meta-analysis is to evaluate the diagnostic effectiveness of exosomes as biomarkers for glioma. We included 16 studies on exosomes as biomarkers for gliomas. The pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) for 25 biomarkers across these 16 studies were as follows: 82% (95% CI: 0.77-0.86), 91% (95% CI: 0.86-0.94), 9.10 (95% CI: 5.64-14.68), 0.20 (95% CI: 0.16-0.25), 45.94 (95% CI: 25.40-83.09), and 0.92 (95% CI: 0.89-0.94), respectively. Meta-regression indicated that biomarker analysis, biomarker type, and sample size may be sources of heterogeneity. Subgroup analysis suggested that ultracentrifugation (UC) was a better method for extracting exosomes. miRNA and other RNA groups (sncRNA, lncRNA, circRNA) provided higher SEN (0.88 vs. 0.84 vs. 0.78) compared to proteins. This study demonstrates the superior diagnostic efficacy of exosomes as biomarkers for gliomas, with high accuracy in diagnosing gliomas.
Collapse
Affiliation(s)
- XiangMin Zhang
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - YanDi Tan
- Department of Ultrasound, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XiaoYa He
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Huang
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - XiaoYing Ni
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Qian Hu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - JinHua Cai
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| |
Collapse
|
16
|
Miao Q, Li S, Lyu W, Zhang J, Han Y. Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications. Drug Des Devel Ther 2025; 19:457-469. [PMID: 39867866 PMCID: PMC11766710 DOI: 10.2147/dddt.s505355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration. In OSCC tumor-derived exosomes promote cancer progression through cell proliferation, migration, invasion, and angiogenesis, and serve as potential biomarkers for early diagnosis and prognosis. Additionally, engineered exosomes constructed specifically based on exosome properties hold great promise for targeted drug delivery and regenerative therapies such as bone regeneration in orthodontics and periodontal healing. With continued research, exosomes hold great potential for improving diagnosis and treatment in oral diseases, advancing personalized and regenerative therapies.
Collapse
Affiliation(s)
- Qiandai Miao
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Shaoqing Li
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Weijia Lyu
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Jianxia Zhang
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Yan Han
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| |
Collapse
|
17
|
Emami A, Arabpour Z, Izadi E. Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement. Mol Biol Rep 2025; 52:113. [PMID: 39798011 DOI: 10.1007/s11033-024-10209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results. Stem cell therapy emerges as a promising avenue, but challenges like immune rejection and low cell survival rates hinder its widespread clinical implementation. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered attention for their regenerative capabilities, which surpass those of MSCs themselves. EVs offer advantages such as reduced immunogenicity, enhanced stability, and simplified storage, positioning them as a promising tool in stem cell-based therapies. This review explores the potential of EV-based therapy in bone tissue regeneration, delving into their biological characteristics, communication mechanisms, and preclinical applications across various physiological and pathological conditions. The mechanisms underlying EV-mediated bone regeneration, including angiogenesis, osteoblast proliferation, mineralization, and immunomodulation, are elucidated. Preclinical studies demonstrate the efficacy of EVs in promoting bone repair and neovascularization, even in pathological conditions like osteoporosis. EVs hold promise as a potential alternative for regenerating bone tissue, particularly in the context of critical-sized bone defects, offering new avenues for effective bone defect repair and management.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Science and University of Illinois, Chicago, IL, 60612, USA
| | - Elaheh Izadi
- Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Liu M, Teng T. Exosomes: new targets for understanding axon guidance in the developing central nervous system. Front Cell Dev Biol 2025; 12:1510862. [PMID: 39850798 PMCID: PMC11754257 DOI: 10.3389/fcell.2024.1510862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied. However, the interaction between exosomes and axon guidance molecules is poorly understood. This review summarizes the relationship between exosomes and canonical and non-canonical guidance cues and hypothesizes a possible model for exosomes mediating axon guidance between cells. The roles of exosomes in axon outgrowth, regeneration, and neurodevelopmental disorders are also reviewed, to discuss exosome-guidance interactions as potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Teng Teng
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- Department of Histology and Embryology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
19
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
20
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
21
|
Meng W, Li L, Hao Y, Tang M, Cao C, He J, Wang L, Cao B, Zhang Y, Li L, Zhu G. NAD+ Metabolism Reprogramming Mediates Irradiation-Induced Immunosuppressive Polarization of Macrophages. Int J Radiat Oncol Biol Phys 2025; 121:176-190. [PMID: 39127084 DOI: 10.1016/j.ijrobp.2024.07.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Radiation therapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiation therapy resistance, whose mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiation therapy and the associated underlying mechanisms. METHODS AND MATERIALS Male C3H mice bearing syngeneic SCC-VII tumor received irradiation (2 × 8 Gy). The impact of irradiation on tumor-infiltrating macrophages was assessed. Bone marrow-derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium and irradiated tumor-derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, whereas key metabolites were investigated for their role in the mechanism of immunosuppression of macrophages in vitro and in vivo. RESULTS Radiation therapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in the tumor microenvironment and drove infiltrated macrophages toward an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of niacinamide (NAM) to macrophages. NAM directly bound to the nuclear factor kappa-B transcriptional activity regulator USP7, through which NAM reduced translocation of nuclear factor kappa-B into the nucleus, thereby decreasing the release of cytokines interleukin 6 and interleukin 8. Increased enzyme activity of NAM phosphoribosyl transferase which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAM phosphoribosyl transferase decreased NAM levels in irTEVs and increased radiation therapy sensitivity by alleviating the immunosuppressive function of macrophages. CONCLUSIONS Radiation therapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophages toward an immunosuppressive phenotype. Pharmacologic targeting of NAD+ metabolism might be a promising strategy for radiation therapy sensitization of HNSCC.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Ling Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaying Hao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Miaomiao Tang
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Cao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Jialu He
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Wang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Wang J, Zhang H, Li J, Ni X, Yan W, Chen Y, Shi T. Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response. Cell Mol Biol Lett 2024; 29:157. [PMID: 39719600 PMCID: PMC11667977 DOI: 10.1186/s11658-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC. Recently, with the rapid development of mass spectrometry-based detection technology, researchers have paid increasing attention to exosomal cargo proteins. In this review, we discussed the origin of exosomes and the diagnostic and prognostic roles of exosomal proteins in GC. Moreover, we summarized the biological functions of exosomal proteins in GC processes, such as proliferation, metastasis, drug resistance, stemness, immune response, angiogenesis, and traditional Chinese medicine therapy. In summary, this review synthesizes current advancements in exosomal proteins associated with GC, offering insights that could pave the way for novel diagnostic and therapeutic strategies for GC in the foreseeable future.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
- Center for Systems Biology, Soochow University, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
24
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 35:855-875. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
25
|
Kameli N, Becker HEF, Jonkers DM, Penders J, Savelkoul P, Stassen F. Investigating the Immunomodulatory Impact of Fecal Bacterial Membrane Vesicles and Their IgA Coating Patterns in Crohn's Disease Patients. Int J Mol Sci 2024; 25:13194. [PMID: 39684904 DOI: 10.3390/ijms252313194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The human intestinal tract contains trillions of bacteria that coexist in a symbiotic relationship with human cells. Imbalances in this interaction can lead to disorders such as Crohn's disease (CD). Bacteria membrane vesicles (MVs), which are released by almost all bacteria, have been demonstrated to play a crucial role in bacteria-host interactions. In this study, we assessed the physical characterizations, immunomodulatory effects, and IgA interactions of MVs derived from fecal samples of CD patients and healthy controls (HCs). MVs were isolated from the frozen fecal samples using a combination of ultrafiltration and size-exclusion chromatography. Using nanoparticle tracking analysis, we found that the MVs of the CD patients showed a significantly lower concentration compared to those of the HCs. Cryo-transmission electron microscopy revealed the larger size of the MVs in active CD (Ac-CD) compared to the MVs of remission CD (Re-CD) and HCs. Differentiated monocyte THP-1 cells released more TNF-a when exposed to MVs from the HCs compared to the CD patients. On the other hand, the MVs from the HCs and Re-CD patients but not the Ac-CD patients induced more anti-inflammatory IL-10. Intriguingly, bead-based flow cytometry analysis showed that the MVs of the HCs and Re-CD patients were more coated with IgA compared to those of the Ac-CD patients. These results suggest the potential role of MVs in the immunomodulatory impact on the pathophysiology of CD. Moreover, IgA seems to regulate these effects by direct binding, which was not the case for the Ac-CD patients. Finally, the IgA coating patterns of the MVs could be used as an additional disease biomarker, as they can clearly identify the exacerbation status of CD.
Collapse
Affiliation(s)
- Nader Kameli
- Department of Medical Microbiology, College of Nursing and Health Sciences, Jazan University, Jazan 6809, Saudi Arabia
- Health Research Center, Jazan Univesiry, Jazan 6809, Saudi Arabia
- Department of Medical Microbiology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Heike E F Becker
- Department of Medical Microbiology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Gastroenterology/Hepatology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Daisy M Jonkers
- Department of Gastroenterology/Hepatology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Paul Savelkoul
- Department of Medical Microbiology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Frank Stassen
- Department of Gastroenterology/Hepatology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
26
|
Song Y, Guo N, Zi F, Zheng J, Cheng J. lncRNA H19 plays a role in multiple myeloma via interacting with hnRNPA2B1 to stabilize BET proteins by targeting osteoclasts and osteoblasts. Int Immunopharmacol 2024; 142:113080. [PMID: 39288624 DOI: 10.1016/j.intimp.2024.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Multiple myeloma (MM), characterized with bone marrow microenvironment disorder, accounts for about 20% of hematological cancer deaths globally. Tissue extracellular communication, especially extracellular vesicles, has been defined as important mediator among cell-to-cell cross-talk. Our previous study revealed an elevated level of H19 in MM, whereas, its role in MM exosomes in the development of osteolysis remains largely unknown. METHOD MM exosomes referring to 5TGM1 cells were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking and western blot analysis. The biological effects of blocking H19 were examined on osteolysis in vivo of C57Bl6/KalwRij mice, as well as on the osteoclast differentiation in vitro of RAW264.7 cells, by the application of TRAP, either with osteogenic differentiation in vitro of bone marrow mesenchymal stem cells (BMSCs), by the detection of alkaline phosphatase (ALP), alizarin red dye staining (ARS). The targeted relationships among H19/hnRNPA2B1/BET proteins were validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS 5TGM1 cells derived-exosomes lacking H19 dramatically blocked osteolysis and boosted osteogeneis in C57Bl6/KalwRij mice, either with osteoclastic differentiation of RAW264.7 cells and osteogenic differentiation of BMSCs, thereby enhancing their resorptive activity. Physically, H19 interacted with hnRNPA2B1 by preferentially adhering to it and enhancing its nuclear-cytoplasmic translocation. Further mechanistic research validated that H19 promoted the stabilization of BET proteins through hnRNA2B1 to be involved in osteoclast differentiation for contributing to MM progression. CONCLUSION Altogether, our findings suggest that H19, serving as an essential role for exosomes in the bone marrow environment, might be a viable diagnostic and therapeutic target for MM therapy.
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Ninghong Guo
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Fuming Zi
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jifu Zheng
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jing Cheng
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
27
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
28
|
Xing Y, Kang L, Chen L, Li Y, Lu D. Research progress of exosomes in pathogenesis and treatment of preeclampsia. J Obstet Gynaecol Res 2024; 50:2183-2194. [PMID: 39434205 DOI: 10.1111/jog.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
AIM Preeclampsia (PE) is a critical and severe disease in obstetrics, which seriously affects maternal and neonatal life safety and long-term prognosis. However, the etiology and pathogenesis of PE are complex, and no unified conclusion has been reached. The types and number of exosomes and their transport substances in PE patients changed. The study of exosomes in PE patients helps clarify the etiology, diagnosis, effective treatment, accurate monitoring, and prognosis. METHOD The published articles were reviewed. RESULTS Exosomes may affect endothelial and vascular production and function, participate in maternal-fetal immune regulation, and transport substances such as miRNAs, lncRNAs, and proteins involved in the development of PE. Detection of the contents of exosomes can help in the early diagnosis of PE, and can help to improve PE by inhibiting the action of exosomes or preventing their binding to target organs. CONCLUSION Exosomes may be involved in the development of PE, and exosomes can be used as markers for predicting the onset of PE and tracking the disease process and determining the prognosis, and exosomes have great potential in the treatment of PE.
Collapse
Affiliation(s)
- Yue Xing
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Luyao Kang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Youyou Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Sosnicki DM, Travis AJ, Comizzoli P. Extracellular vesicles are involved in the paracrine communication between epithelial cells in different regions of the domestic cat epididymis†. Biol Reprod 2024; 111:1056-1070. [PMID: 39190878 DOI: 10.1093/biolre/ioae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024] Open
Abstract
Sperm maturation depends on exposure to microenvironments within the different segments of the epididymis, but mechanisms underlying how these microenvironments are produced or maintained are not well understood. We hypothesized that epididymal extracellular vesicles could play a role in the process of maintaining microenvironments in different regions of the epididymis. Specifically, we tested whether the extracellular vesicles from different regions of the epididymis can ensure paracrine communication between cells in different segments. Domestic cat tissues were used to develop a reproducible in vitro culture system for corpus epididymis explants that were then exposed to extracellular vesicles collected from upstream (i.e., caput) segments. Impacts of different culture or exposure conditions were compared by analyzing the morphology, apoptosis, transcriptional activity, and gene expression in the explants. Here, we report the development of the first in vitro culture system for epididymal tissue explants in the domestic cat model. Using this system, we found that extracellular vesicles from the caput segment have a significant effect on the transcriptional profile of tissue from the corpus segment (1233 differentially expressed genes due to extracellular vesicle supplementation). Of note, expressions of genes associated with regulation of epithelial cell differentiation and cytokine signaling in the epididymis were influenced by the presence of extracellular vesicles. Together, our findings comprise the first report in any species of paracrine control of segmental gene regulation by epididymal extracellular vesicles. These results contribute to a better understanding of epididymis biology and could lead to strategies to enhance or suppress male fertility.
Collapse
Affiliation(s)
- Danielle M Sosnicki
- Department of Reproductive Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
- Department of Public & Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Pierre Comizzoli
- Department of Reproductive Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
31
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
32
|
Li M, Li Y, Liu Q, Jiang M, He Y, Liao X, Tao L, Meng J. Exosomal miR-552-3p isolated from BALF of patients with silicosis induces fibroblast activation. Toxicol Lett 2024; 401:55-70. [PMID: 39245427 DOI: 10.1016/j.toxlet.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Silica particles can cause silicosis, a disease characterized by diffuse fibrosis of the lungs. Various signaling pathways composed of different types of cells and cytokines are involved in the development of silicosis. Exosomes have become a research hotspot recently. However, the role of exosomal microRNA (miRNA) in silicosis remains unclear. METHODS In this study, we generated exosomal miRNA sequences from exosomes isolated from bronchoalveolar lavage fluid (BALF) of silicosis patients and the control group by high-throughput sequencing. Functional annotation and analysis of miRNA identified key target miRNAs. Levels of target miRNAs were analyzed in patient and animal samples and cells. Effects of increased miRNA were assessed through protein levels in target signaling pathways in cells treated with silica, miRNA mimics, and inhibitors. RESULTS Our study identified 40 up-regulated and 70 down-regulated miRNAs, with miR-552-3p and its putative target gene Caveolin 1 (CAV1) as targets for further research. We found that the levels of exosomal miR-552-3p increased in silicosis patients' BALF samples, silicosis model mice, and A549 cells exposed to silica. Inhibition of miR-552-3p suppressed the expression of fibrosis markers. The increased miR-552-3p leads to the up-regulation of fibronectin and α-smooth muscle actin (α-SMA) and the suppression of caveolin 1 in fibroblast cells. Mitogen-activated protein kinase (MAPK) signaling pathways are activated in cells treated with silica and miR-552-3p mimics. CONCLUSIONS These results help to understand exosomal miRNA-mediated intercellular communication and its key role in fibroblast activation and silicosis.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Ying Li
- The Second Department of Occupational Diseases, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, Hunan, China
| | - Qingxiang Liu
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China.
| |
Collapse
|
33
|
Kim M, Kim TH, Salas ESS, Jeon S, Shin JH, Choi D. The efficacy of exosomes from human chemically derived hepatic progenitors in liver damage alleviation: a preclinical experimental study. Ann Surg Treat Res 2024; 107:252-263. [PMID: 39524547 PMCID: PMC11543897 DOI: 10.4174/astr.2024.107.5.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Over the past decade, interest in exosomes as therapeutics has surged. In particular, stem-cell-derived exosomes may be more effective as a treatment for liver disease than the stem cells themselves. We have previously developed human chemically derived hepatic progenitors (hCdHs) from human hepatocytes. hCdHs can differentiate into hepatocytes and cholangiocytes, regenerating the liver in mouse models. In this study, we evaluated the mitigating effects of hCdHs-derived exosomes (hCdHs-exo) on liver damage and compared them with those of exosomes from bone marrow mesenchymal stem cells (BMMSCs-exo). Methods Exosomes were isolated from hCdHs and BMMSCs by culturing cells in large quantities and separating the exosomes from the culture medium using ultracentrifugation. Isolated exosomes were characterized by various methods before experimental use. In vitro, the ability of exosomes to inhibit activation of hepatic stellate cells (HSCs) by transforming growth factor beta 1 was evaluated. In vivo, exosomes were injected into mice with carbon tetrachloride (CCl4)-induced liver damage, and their effectiveness in mitigating liver damage was assessed by histological staining and biochemical analysis. Results The analyses confirmed the successful isolation of exosomes from both cell types. In vitro, hCdHs-exo significantly reduced the levels of transcription factors and activation markers in induced HSCs. In vivo, hCdHs-exo effectively alleviated liver damage caused by CCl4. Furthermore, both in vitro and in vivo studies confirmed that hCdHs-exo had a greater effect in alleviating liver damage than did BMMSCs-exo. Conclusion These results demonstrate that hCdHs-exo, similarly to hCdHs, have superior efficacy in alleviating liver damage compared with BMMSCs-exo.
Collapse
Affiliation(s)
- Min Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Tae Hun Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Elsy Soraya Silva Salas
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Soyoung Jeon
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
34
|
Muhandiram S, Kodithuwakku S, Godakumara K, Fazeli A. Rapid increase of MFGE8 secretion from endometrial epithelial cells is an indicator of extracellular vesicle mediated embryo maternal dialogue. Sci Rep 2024; 14:25911. [PMID: 39472639 PMCID: PMC11522515 DOI: 10.1038/s41598-024-75893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Successful embryo implantation relies on synchronized dialog between the embryo and endometrium, and the role of extracellular vesicles (EVs) in facilitating this cross-talk has been recently established. In our previous study, milk fat globule-EGF factor 8 protein (MFGE8) was identified as increasing in receptive endometrial epithelial cells (EECs) in response to trophoblastic EVs. However, the dynamics of MFGE8 protein in this context are not completely understood. Therefore, we examined its expression and secretion in EECs exposed to estrogen, progesterone, and trophoblastic EVs to gain deeper insights into its potential as an indicator of EV-mediated embryo-maternal dialogue. Our findings revealed that MFGE8 secretion is sensitive to estrogen and progesterone, and that trophoblastic EVs stimulate their release in both receptive and non-receptive EECs. Furthermore, trophoblast EV function was dose and time-dependent. Notably, the secretion of MFGE8 increased within a short timeframe of 30 min after addition of EVs, suggesting the possibility of rapid processes such as binding, fusion or internalization of trophoblastic EVs within EECs. Interestingly, MFGE8 released from EECs was associated with EVs, suggesting increased EV secretion from EECs in response to embryonic signals. In conclusion, increased MFGE8 secretion in this embryo implantation model can serve as an indicator of EV-mediated embryo-maternal dialogue.
Collapse
Affiliation(s)
- Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, Tartu, 50411, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
35
|
Safaei S, Alipour S, Bahojb Mahdavi SZ, Shalmashi H, Shahgoli VK, Shanehbandi D, Baradaran B, Kazemi T. Triple-negative breast cancer-derived exosomes change the immunological features of human monocyte-derived dendritic cells and influence T-cell responses. Mol Biol Rep 2024; 51:1058. [PMID: 39417912 DOI: 10.1007/s11033-024-10007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) exhibits a lower survival rate in comparison to other BC subtypes. Utilizing dendritic cell (DC) vaccines as a form of immunotherapy is becoming a promising new approach to cancer treatment. However, inadequate immunogenicity of tumor antigens leads to unsatisfactory effectiveness of the DC vaccines. Exosomes are the basis for the latest improvements in tumor immunotherapy. This study examined whether TNBC-derived exosomes elicit immunogenicity on the maturation and function of monocyte-derived DCs and the impact of the exosome-treated monocyte-derived DCs (moDCs) on T cell differentiation. METHODS exosomes were isolated from MDA-MB-231 TNBC cancer cells and characterized. Monocytes were separated from peripheral blood mononuclear cells and differentiated into DCs. Then, monocyte-derived DCs were treated with TNBC-derived exosomes. Furthermore, the mRNA levels of the genes and cytokines involved in DC maturation and function were examined using qRT-PCR and ELISA assays. We also cocultured TNBC-derived exosome-treated moDCs with T cells and investigated the role of the treatment in T cell differentiation by evaluating the expression of some related genes by qRT-PCR. The concentration of the cytokines secreted from T cells cocultured with exosome-treated moDCs was quantified by the ELISA assays. RESULTS Our findings showed that TNBC-derived exosomes induce immunogenicity by enhancing moDCs' maturation and function. In addition, exosome-treated moDCs promote cocultured T-cell expansion by inducing TH1 differentiation through increasing cytokine production. CONCLUSION TNBC-derived exosomes could improve vaccine-elicited immunotherapy by inducing an immunogenic response and enhancing the effectiveness of the DC vaccines. However, this needs to be investigated further in future studies.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hooman Shalmashi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Wang X, Yang M, Zhu J, Zhou Y, Li G. Role of exosomal non‑coding RNAs in ovarian cancer (Review). Int J Mol Med 2024; 54:87. [PMID: 39129308 DOI: 10.3892/ijmm.2024.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Ovarian cancer (OC) is a common gynecological disease with a high mortality rate worldwide due to its insidious nature and undetectability at an early stage. The standard treatment, combining platinum‑based chemotherapy with cytoreductive surgery, has suboptimal results. Therefore, early diagnosis of OC is crucial. All cell types secrete extracellular vesicles, particularly exosomes. Exosomes, which contain lipids, proteins, DNA and non‑coding RNAs (ncRNAs), are novel methods of intercellular communication that participate in tumor development and progression. ncRNAs are categorized by size into long ncRNAs (lncRNAs) and small ncRNAs (sncRNAs). sncRNAs further include transfer RNAs, small nucleolar RNAs, PIWI‑interacting RNAs and microRNAs (miRNAs). miRNAs inhibit protein translation and promote messenger RNA (mRNA) cleavage to suppress gene expression. By sponging downstream miRNAs, lncRNAs and circular RNAs can regulate target gene expression, thereby weakening the interactions between miRNAs and mRNAs. Exosomes and exosomal ncRNAs, commonly present in human biological fluids, are promising biomarkers for OC. The present article aimed to review the potential role of exosomal ncRNAs in the diagnosis and prognosis of OC by summarizing the characteristics, processes, roles and isolation methods of exosomes and exosomal ncRNAs.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Miao Yang
- Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiamei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yu Zhou
- Oriental Fortune Capital Post‑Doctoral Innovation Center, Shenzhen, Guangdong 518040, P.R. China
| | - Gencui Li
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
37
|
Bonacquisti EE, Ferguson SW, Wadsworth GM, Jasiewicz NE, Wang J, Chaudhari AP, Kussatz CC, Nogueira AT, Keeley DP, Itano MS, Bolton ML, Hahn KM, Banerjee PR, Nguyen J. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J Control Release 2024; 374:349-368. [PMID: 39111600 PMCID: PMC11550487 DOI: 10.1016/j.jconrel.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.
Collapse
Affiliation(s)
- Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott W Ferguson
- Department of Pharmaceutical Sciences, University at Buffalo, USA
| | - Gable M Wadsworth
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinli Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ameya P Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel P Keeley
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA
| | - Michelle S Itano
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew L Bolton
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, 22903, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
39
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
40
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
41
|
Yu M, Jin Y, Yuan K, Liu B, Zhu N, Zhang K, Li S, Tai Z. Effects of exosomes and inflammatory response on tumor: a bibliometrics study and visualization analysis via CiteSpace and VOSviewer. J Cancer Res Clin Oncol 2024; 150:405. [PMID: 39210153 PMCID: PMC11362500 DOI: 10.1007/s00432-024-05915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Tumor is a new organism formed by abnormal hyperplasia of local tissue cells under the action of various tumorigenic factors. Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor development, invasion and migration. More and more evidence indicate that exosomes are involved in regulating the formation of tumor microenvironment in the process of proinflammatory carcinogenesis, leading to the stimulation of anti-tumor immune response or systemic immunosuppression, and exosomes play a crucial role in the development of tumor. METHODS The articles on tumor-derived exosomes and inflammatory responses from January 2005 to January 2024 were collected through Web of Science (WOS), and the inclusion criteria were "Article", "Review Article" and "Early Access". Articles obtained after excluding "Book Chapters", "Editorial Material", "Proceeding Paper", "Meeting Abstract" and "Retracted Publication". Bibliometrics and visualization analysis were carried out on the obtained articles using CiteSpace6.2.R6 and VOSviewer1.6.20. RESULTS Total of 703 articles were included. The number of published documents showed a fluctuating growth trend year by year. A total of 61 countries have participated in the research on the effects of exosomes and inflammatory responses on tumors, among which China and the United States have the largest influence in this field. The obtained articles have been published in 60 journals around the world, among which PLOS ONE and NAT REV IMMUNOL are the journals with the most published articles and the highest co-citations respectively. The article from French author THERY C was cited the most (202 times). As a major researcher on the basic function of exosomes, THERY C established the gold standard for extraction, separation and identification of exosomes, and found that exosomes promote tumor metastasis through direct regulation of miRNA. Her research has had a huge impact on the field. Keyword co-occurrence analysis indicate that extracellular vesicles, inflammation, cancer, miRNAs, mesenchymal stem cells, drug delivery, gastric cancer and circulating endothelial microparticles are the research hotspot at present stage. The main keywords of the cluster analysis show that extracellular vesicles, human papilloma virus, myeloid cells, tumor macro-environment are the current research hotspots and frontier. The research hotspots have developed over time from the time chart of keywords and clustering, especially after 2016, exosomes have established extensive links with drug delivery, cancer treatment, inflammatory response and other fields. Tumor-derived exosomes stimulate receptor cells to secrete pro-inflammatory cytokines and growth factors, enabling immune and inflammatory cells to perceive the intracellular environment of cancer cells even when cancer cells do not express any tumor-specific antigens. For example, in anoxic environment, cancer cells can secrete exosomes containing pro-inflammatory factors to promote the invasion and metastasis of cancer cells. In the complex tumor microenvironment, both tumor cells and various stromal cells will secrete specific exosomes, and promote the development of tumors through various ways, so that tumor cells have drug resistance, and bring adverse effects on the clinical treatment of tumor patients. MicroRNAs and long noncoding RNA as hot keywords play important roles in regulating and mediating tumor development, and their specificity makes them important biomarkers for cancer prediction and diagnosis. Highlighting word analysis shows that microRNAs secreted by leukemia patients can effectively promote the proliferation of malignant cells and the development of cardiovascular diseases. At the same time, exosomes can induce the secretion of some microRNAs in patients, leading to cardiac repair and regeneration. Therefore, the detection and screening of microRNAs plays a crucial role in predicting the incidence of cardiovascular diseases in patients. CONCLUSION Exosomes have attracted increasing attention due to their significant heterogeneity and ability to regulate the tumor immune microenvironment. However, tumor cell-derived exosomes accelerate tumor progression by enhancing immunosuppression and inflammation, increasing oxidative stress, and promoting angiogenesis, which may lead to poor prognosis.
Collapse
Affiliation(s)
- Miao Yu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Yaxuan Jin
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Kaize Yuan
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Bohao Liu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Na Zhu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Ke Zhang
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Shuying Li
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China.
| | - Zhihui Tai
- North China University of Science and Technology Affiliated Hospital, Tangshan, China.
| |
Collapse
|
42
|
Zhou W, Yang F, Zhang X. Roles of M1 Macrophages and Their Extracellular Vesicles in Cancer Therapy. Cells 2024; 13:1428. [PMID: 39273000 PMCID: PMC11394047 DOI: 10.3390/cells13171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are inflammatory cells that are important components of the tumor microenvironment. TAMs are functionally heterogeneous and divided into two main subpopulations with distinct and opposite functions: M1 and M2 macrophages. The secretory function of TAMs is essential for combating infections, regulating immune responses, and promoting tissue repair. Extracellular vesicles (EVs) are nanovesicles that are secreted by cells. They play a crucial role in mediating intercellular information transfer between cells. EVs can be secreted by almost all types of cells, and they contain proteins, microRNAs, mRNAs, and even long non-coding RNAs (lncRNAs) that have been retained from the parental cell through the process of biogenesis. EVs can influence the function and behavior of target cells by delivering their contents, thus reflecting, to some extent, the characteristics of their parental cells. Here, we provide an overview of the role of M1 macrophages and their EVs in cancer therapy by exploring the impact of M1 macrophage-derived EVs (M1-EVs) on tumors by transferring small microRNAs. Additionally, we discuss the potential of M1-EVs as drug carriers and the possibility of reprogramming M2 macrophages into M1 macrophages for disease treatment. We propose that M1-EVs play a crucial role in cancer therapy by transferring microRNAs and loading them with drugs. Reprogramming M2 macrophages into M1 macrophages holds great promise in the treatment of cancers.
Collapse
Affiliation(s)
| | | | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China (F.Y.)
| |
Collapse
|
43
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
44
|
AbdelKawy M, Tarrad NAF, Shaker OG, Hassan S. Expression of microRNA-223 and microRNA-214 in gingival crevicular fluid of smoker and nonsmoker periodontitis patients, an observational diagnostic accuracy study. Clin Oral Investig 2024; 28:480. [PMID: 39126506 PMCID: PMC11316690 DOI: 10.1007/s00784-024-05844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Periodontitis is a multifactorial disease that affects a wide range of populations. However, its pathogenesis remains unclear. miRNAs are now considered potential diagnostic markers for many inflammatory diseases. Thus, the aim of this study was to assess the expression of microRNA-223(miRNA-223) and microRNA-214 (miRNA-214) in gingival crevicular fluid (GCF) of smoker and nonsmoker with periodontitis. MATERIALS AND METHODS We conducted a prospective study among 42 participants: 14 healthy controls, 14 nonsmoker periodontitis participants, and 14 smokers with periodontitis. Eligibility criteria for inclusion were consecutive adults, aged 20-60 years, with stage III periodontitis grade B/C and no systemic diseases. All consenting participants had gingival crevicular fluid samples collected after diagnosis to assess miRNA-214 and -223 by quantitative real-time polymerase chain reaction assay. RESULTS ROC curve analyses for the non-smoker periodontitis group showed that miR-214 as a predictor in comparison to miR-223 had higher sensitivity [92.86%-64.29%], same specificity [100%], and a significantly higher area under the curve [0.974-0.796] respectively (p = 0.036). As for the smoker periodontitis group, a ROC curve with miR-214 as predictor in comparison to miR-223 had higher sensitivity [100%-71.43%], same specificity [100%], and a non-significantly higher area under the curve [1-0.872], respectively (p = 0.059). CONCLUSION Both miRNA-214 and 223 are reliable potential diagnostic markers for periodontitis, with miRNA-214 being more accurate for smokers with periodontitis. CLINICAL RELEVANCE Both miRNA-214 and 223 could be considered for potential chair-side diagnostics, by simply collecting GCF detecting the disease in its first steps and aid in preventing unrepairable damage.
Collapse
Affiliation(s)
- Maha AbdelKawy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt.
| | | | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sandy Hassan
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Fayoum University, Cairo, Egypt
| |
Collapse
|
45
|
Aghayan AH, Mirazimi Y, Fateh K, Keshtkar A, Rafiee M, Atashi A. Therapeutic Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in sepsis: a Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cell Rev Rep 2024; 20:1480-1500. [PMID: 38814410 DOI: 10.1007/s12015-024-10741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis is a life-threatening disorder with no definitive cure. Preclinical studies suggest that extracellular vesicles derived from mesenchymal stromal cells (EV-MSCs) can mitigate inflammatory conditions, potentially leading to increased survival and reduced organ dysfunction during sepsis. Our aim to conduct this systematic review and meta-analysis is assessing the EV-MSCs therapeutic efficacy in sepsis. METHODS PubMed, Embase, Scopus, WOS and ProQuest databases and also Google Scholar search engine were searched for published articles. We used hazard ratio (HR) and standardized mean difference (SMD) as effect sizes to evaluate the therapeutic effect of EV-MSCs on survival rate and determine their effect on reducing organ dysfunction, respectively. Finally, we employed GRADE tool for preclinical animal studies to evaluate certainty of the evidence. RESULTS 30 studies met the inclusion criteria for our article. Our meta-analysis results demonstrate that animals treated with MSC-EVs have better survival rate than untreated animals (HR = 0.33; 95% CI: 0.27-0.41). Our meta-analysis suggests that EV-MSCs can reduce organ dysfunctions in sepsis, such as the lung, kidney, and liver. Additionally, EV-MSCs decrease pro-inflammatory mediators like TNF-α, IL-1β, and IL-6. CONCLUSION Our results indicate that EV-MSCs can be as promising therapy for sepsis management in animal models and leading to increased survival rate and reduced organ dysfunction. Furthermore, our study introduces a novel tool for risk of bias assessment and provides recommendations based on various analysis. Future studies with aiming to guide clinical translation can utilize the results of this article to establish stronger evidence for EV-MSC effectiveness.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
46
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
47
|
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024; 31:67. [PMID: 38992695 PMCID: PMC11238361 DOI: 10.1186/s12929-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program in Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, 11696, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
| |
Collapse
|
48
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
49
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
50
|
Zhang X, Yuan Y, Wang X, Wang H, Zhang L, He J. CircWHSC1 (CircNSD2): A Novel Circular RNA in Multiple Cancers. Clin Med Insights Oncol 2024; 18:11795549241254781. [PMID: 38855031 PMCID: PMC11159554 DOI: 10.1177/11795549241254781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA (ncRNA) that possesses a unique single-stranded circular structure. They are primarily formed through alternative splicing of pre-mRNA (messenger RNA). The primary biological function of circRNAs is to regulate gene expression at both the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated a close association between the dysregulation of circRNAs and the progression of diverse cancers, where they can function as either tumor suppressors or oncogenes. circWHSC1 (circNSD2) is a circular ncRNA that originates from the first 2 exons of the Wolf-Hirschhorn syndrome candidate gene (WHSC1). As Chen 2019 discovery that circWHSC1 (circNSD2) functions as a sponge for miRNAs and promotes cancer, this circRNA has garnered significant interest among researchers. circWHSC1 (circNSD2) has been found to be up-regulated in various malignant tumors, including nasopharyngeal carcinoma, lung cancer, breast cancer, liver cancer, colorectal cancer, ovarian cancer, cervical cancer, and endometrial cancer. It exerts its effects on cancer by either inhibiting or promoting the expression of related genes through direct or indirect pathways, ultimately affecting cancer proliferation, invasion, and prognosis. This article provides a comprehensive review and discussion of the biological roles of circWHSC1 (circNSD2) and its target genes in various cancers, as well as the latest research progress on related molecular biological regulatory mechanisms. Furthermore, the potential significance of circWHSC1 (circNSD2) in future clinical applications and transformations is thoroughly analyzed and discussed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Heyue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|